Nearly holomorphic modular forms and differential operators

Atsuo YAMAUCHI

2004 Oct. 25th and 26th in Hakuba

1 The case of elliptic modular forms

This lecture is a review of [3], [7], [8] and [9] in case of Siegel modular forms.

As is well known, the elliptic Eisenstein series of weight 2 is non-holomorphic. In [1], Hecke showed that

$$E_2(z;\Gamma) = \left[\sum_{\substack{a \ b \\ c \ d} \in (P \cap \Gamma) \setminus \Gamma} (cz+d) |cz+d|^{-2s} \right]_{s=0}$$

on $z \in \mathfrak{H} = \{z \in \mathbb{C} | \operatorname{Im}(z) > 0\}$ is as follows.

$$E_2(z;\Gamma) = \frac{c_0}{\text{Im}(z)} + \sum_{n=0}^{\infty} a_n \cdot \exp(2\pi\sqrt{-1}nz/N),$$

where $c_0, a_n \in \mathbb{C}$ and a positive integer N. Using this, we can consider a non-holomorphic modular form f as

$$f(z) = \sum_{i=0}^{p} \frac{f_i(z)}{\text{Im}(z)^i}$$
(1.1)

with holomorphic functions f_i on \mathfrak{H} .

We can define differential operators D_k and E (with $k \in \mathbb{Z}$) as

$$D_k f = 2\sqrt{-1} \cdot \frac{\partial f}{\partial z} + \frac{kf}{\mathrm{Im}(z)},$$

$$Ef = 2\sqrt{-1} \cdot \mathrm{Im}(z)^2 \frac{\partial f}{\partial \overline{z}}.$$

Then for any C^{∞} -function f on \mathfrak{H} and any $\alpha \in \mathrm{SL}(2,\mathbb{R})$, we have

$$\begin{array}{ll} (D_k f)|_{k+2}\alpha &= D_k(f|_k\alpha),\\ (Ef)|_{k-2}\alpha &= E(f|_k\alpha). \end{array}$$

For f as in (1.1), we obtain

$$D_k f = \sum_{i=0}^p \left(\frac{(k-i)f_i}{\operatorname{Im}(z)^{i+1}} + \frac{2\sqrt{-1}}{\operatorname{Im}(z)^i} \cdot \frac{\partial f_i}{\partial z} \right),$$

$$Ef = \sum_{i=1}^p \frac{if_i}{\operatorname{Im}(z)^{i-1}}.$$

It can be proved that $f \in C^{\infty}(\mathfrak{H}, \mathbb{C})$ can be written as (1.1) if and only if $E^{p+1}f = 0$.

Now we can define the space of nearly holomorphic (elliptic) modular forms as

$$\mathcal{N}_{k}^{p}(\Gamma) = \left\{ f \in C^{\infty}(\mathfrak{H}, \mathbb{C}) \middle| \begin{array}{l} f|_{k}\gamma = f \text{ for any } \gamma \in \Gamma, \\ E^{p+1}f = 0, \\ f \text{ is finite at every cusp,} \end{array} \right\}$$

for any congruence subgroup Γ of $SL(2,\mathbb{Z})$. Then any $f \in \mathcal{N}_k^p(\Gamma)$ is written as (1.1).

2 Nearly holomorphic Siegel modular forms

For a positive integer m, put

$$\operatorname{Sp}(m,\mathbb{R}) = \left\{ \gamma \in \operatorname{GL}(2m,\mathbb{R}) \middle| {}^{t}\gamma \left(\begin{array}{cc} 0 & -1_{m} \\ 1_{m} & 0 \end{array} \right) \gamma = \left(\begin{array}{cc} 0 & -1_{m} \\ 1_{m} & 0 \end{array} \right) \right\},$$
$$\mathfrak{H}_{m} = \left\{ Z \in \mathbb{C}_{m}^{m} \middle| {}^{t}Z = Z \text{ and } \operatorname{Im}(Z) \text{ is positive definite} \right\}.$$

Then \mathfrak{H}_m is an $\frac{m(m+1)}{2}$ -dimensional complex manifold. As is well known, $\operatorname{Sp}(m, \mathbb{R})$ acts on \mathfrak{H}_m by

$$\alpha(Z) = (A_{\alpha}Z + B_{\alpha})(C_{\alpha}Z + D_{\alpha})^{-1},$$

where $\alpha = \begin{pmatrix} A_{\alpha} & B_{\alpha} \\ C_{\alpha} & D_{\alpha} \end{pmatrix} \in \operatorname{Sp}(m, \mathbb{R})$ with $A_{\alpha}, B_{\alpha}, C_{\alpha}, D_{\alpha} \in \mathbb{R}_{m}^{m}$, and $Z \in \mathfrak{H}_{m}^{m}$. Set

$$\mu(\alpha, Z) = C_{\alpha}Z + D_{\alpha}, \eta(Z) = 2\sqrt{-1}(\overline{Z} - Z) = 2 \cdot \operatorname{Im}(Z).$$

For any rational representation (ρ, X) of $\operatorname{GL}(m, \mathbb{C})$ $(i.e. \ \rho : \operatorname{GL}(m, \mathbb{C}) \to$ $\operatorname{GL}_{\mathbb{C}}(X)$, any $\alpha \in \operatorname{Sp}(m, \mathbb{R})$, and a function $f : \mathfrak{H}_m \to X$, we define another X-valued function $f|_{\rho}\alpha$ on \mathfrak{H}_m by

$$(f|_{\rho}\alpha)(Z) = \rho(\mu(\alpha, Z))^{-1} f(\alpha(Z)).$$

In case $\rho(a) = \det(a)^k$, $f|_{\rho}\alpha$ is written as $f|_k\alpha$.

Put

$$T = T_m = \left\{ u \in \mathbb{C}_m^m \, \middle| \, ^t u = u \right\}$$

For $f \in C^{\infty}(\mathfrak{H}_m, X)$, define $\operatorname{Hom}(T, X)$ -valued functions $Df, \overline{D}f, D_{\rho}f$ and Ef by

$$(Df)(u) = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\frac{1}{2}(1+\delta_{ij})\frac{\partial f}{\partial z_{ij}}\right) \cdot u_{ij},$$

$$(\overline{D}f)(u) = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\frac{1}{2}(1+\delta_{ij})\frac{\partial f}{\partial \overline{z_{ij}}}\right) \cdot u_{ij},$$

$$(Ef)(u) = (\overline{D}f)(\eta u^t \eta),$$

$$D_{\rho}f = \rho(\eta)^{-1}D(\rho(\eta)f),$$

where $u = (u_{ij})_{1 \le i,j \le m} \in T$.

Let us define representations $\rho \otimes \tau$ and $\rho \otimes \pi$ of $GL(m, \mathbb{C})$ on Hom(T, X)by

$$\begin{array}{ll} \left\{ (\rho \otimes \tau)(a)h \right\}(u) &= \rho(a)h({}^taua) & \text{for any } u \in T, \\ \left\{ (\rho \otimes \pi)(a)h \right\}(u) &= \rho(a)h(a^{-1}u^ta^{-1}) & \text{for any } u \in T, \end{array}$$

for $h \in \text{Hom}(T, X)$.

Then by a formal computation, we obtain

$$D_{\rho}(f|_{\rho}\alpha) = (D_{\rho}f)|_{\rho\otimes\tau}\alpha,$$

$$E(f|_{\rho}\alpha) = (Ef)|_{\rho\otimes\pi}\alpha,$$

for any $\alpha \in \operatorname{Sp}(m, \mathbb{R})$ and any $f \in C^{\infty}(\mathfrak{H}_m, X)$.

The k-th iterates of D_{ρ} and E take values in

 $\operatorname{Hom}(T, \operatorname{Hom}(T, \ldots, \operatorname{Hom}(T, X) \cdots)).$

This vector space can be identified with the space of all multilinear maps of T^k into X, which we denote by $\mathcal{M}_k^*(T, X)$. We define representations $\rho \otimes \tau^k$ and $\rho \otimes \pi^k$ of $\operatorname{GL}(m, \mathbb{C})$ on $\mathcal{M}_k^*(T, X)$ by

$$\{ (\rho \otimes \tau^k)(a)h \} (u_1, \dots, u_k) = \rho(a)h({}^tau_1a, \dots, {}^tau_ka), \{ (\rho \otimes \pi^k)(a)h \} (u_1, \dots, u_k) = \rho(a)h(a^{-1}u_1{}^ta^{-1}, \dots, a^{-1}u_k{}^ta^{-1}),$$

for $h \in \mathcal{M}_k^*(T, X)$ and $(u_1, \ldots, u_k) \in T^k$. Then clearly

$$\begin{array}{ll} (D_{\rho\otimes\tau^{k-1}}\cdots D_{\rho\otimes\tau}D_{\rho})(f|_{\rho}\alpha) &= (D_{\rho\otimes\tau^{k-1}}\cdots D_{\rho\otimes\tau}D_{\rho}f)|_{\rho\otimes\tau^{k}}\alpha, \\ E^{k}(f|_{\rho}\alpha) &= (E^{k}f)|_{\rho\otimes\pi^{k}}\alpha, \end{array}$$

for any $\alpha \in \operatorname{Sp}(m, \mathbb{R})$.

We can view that τ (resp. π) is a representation of $\operatorname{GL}(m, \mathbb{C})$ on T by $\tau(a)u = {}^{t}aua$ (resp. $\pi(a) = a^{-1}u^{t}a^{-1}$), and $\rho \otimes \tau^{k}$ (resp. $\rho \otimes \pi^{k}$) can be identified with $\rho \otimes (\tau^{\otimes k})$ (resp. $\rho \otimes (\pi^{\otimes k})$). Then we identify the space $\mathcal{M}_{k}^{*}(T, X)$ with $X \otimes T^{\otimes k}$ or $\operatorname{Hom}(T^{\otimes k}, X)$.

But actually, the images of $D_{\rho \otimes \tau^{k-1}} \cdots D_{\rho \otimes \tau} D_{\rho}$ and E^k take values in

$$\mathcal{S}_k(T,X) = \left\{ h \in \mathcal{M}_k(T,X) \middle| \begin{array}{c} h(u_{\varepsilon(1)},\ldots,h_{\varepsilon(k)}) = h(u_1,\ldots,u_k) \\ \text{for any } \varepsilon \in \mathfrak{S}_k \end{array} \right\},\$$

which is identified with $X \otimes \operatorname{Sym}^{k}T$ or $\operatorname{Hom}(\operatorname{Sym}^{k}T, X)$.

 Put

$$r(Z) = (r_{ij}(Z))_{1 \le i,j \le m} = (Z - \overline{Z})^{-1}.$$

Then we have the following lemma.

Lemma 2.1. Assume that $f \in C^{\infty}(\mathfrak{H}_m, X)$ and $E^{p+1}f = 0$ for some nonnegative integer p. Then f can be written as a polynomial of $\{r_{ij}\}_{1\leq i,j\leq m}$ of degree at most p, with coefficients in holomorphic functions on \mathfrak{H}_m .

Note that, if f is written as a polynomial of $\{r_{ij}\}_{1 \le i,j \le m}$ of degree p with coefficients in holomorphic functions on \mathfrak{H}_m , $D_\rho f$ (resp. Ef) is written as that of degree p + 1 (resp. p - 1).

For a non-negative integer p and a congruence subgroup Γ of $\text{Sp}(m, \mathbb{Z})$, we denote by $\mathcal{N}^p_{\rho}(\Gamma)$, the space of all $f \in C^{\infty}(\mathfrak{H}_m, X)$ satisfying the following properties (1)–(3).

(1) $f|_{\rho}\gamma = f$ for any $\gamma \in \Gamma$.

- (2) $E^{p+1}f = 0$.
- (3) f is finite at every cusp if m = 1.

We denote by \mathcal{N}^p_{ρ} the union of $\mathcal{N}^p_{\rho}(\Gamma)$ for all congruence subgroups Γ of $\operatorname{Sp}(m,\mathbb{Z})$. If m is odd, the Eisenstein series of weight (m+3)/2 is contained in $\mathcal{N}^m_{(m+3)/2}$. (See, Proposition 4.1 of [8].)

Consider a subspace Y of $\operatorname{Sym}^k T$ which is stable under the action of $\operatorname{GL}(m,\mathbb{C})$ by $\operatorname{Sym}^k \tau$ (resp. $\operatorname{Sym}^k \pi$) and denote by $D_{\rho}^Y f$ (resp. $E^Y f$), the restriction of $(D_{\rho\otimes\tau^{k-1}}\circ\cdots\circ D_{\rho})f$ (resp. $E^k f$) to Y for any $f\in C^{\infty}(\mathfrak{H}_m,X)$. In this case $D_{\rho}^Y f$ and $E^Y f$ are $\operatorname{Hom}(Y,X)$ -valued.

Since det² is a subrepresentation of $\operatorname{Sym}^{m}\tau$, there exists a one-dimensional subspace Y of $\operatorname{Sym}^{m}T$ such that

$$(\operatorname{Sym}^m \tau)(a)v_Y = \det(a)^2 v_Y,$$

for any $a \in \operatorname{GL}(m, \mathbb{C})$, where $0 \neq v_Y \in Y$. Hence we can define the differential operator $\Delta_{\rho} : C^{\infty}(\mathfrak{H}_m, X) \to C^{\infty}(\mathfrak{H}_m, X)$ by

$$(\Delta_{\rho}f) = (D_{\rho \otimes \tau^{k-1}} \circ \cdots \circ D_{\rho} \circ f)(v_Y).$$

Then we have

$$\det(\mu(\alpha, Z))^{-2}(\Delta_{\rho} f)|_{\rho} \alpha = \Delta_{\rho}(f|_{\rho} \alpha),$$

for any $\alpha \in \operatorname{Sp}(m, \mathbb{R})$. If $\rho(a) = \det(a)^k$, then Δ_{ρ} is essentially same as Maass operator M_k , which is concretely written in [2]. (Strictly, $\Delta_{\rho} = \operatorname{const} \times \det(\operatorname{Im}(Z))^{-1}M_k$.)

3 Holomorphic projection

Given a rational representation (ρ, X) of $\operatorname{GL}(m, \mathbb{C})$, we define a contraction map $\theta_X : \mathcal{M} \updownarrow_k(T, \mathcal{M} \updownarrow_k(T, X)) \to X$ by

$$\theta_X \varphi = \sum \varphi(c_1, \ldots, c_k; c_1, \ldots, c_k),$$

where c_1, \ldots, c_k run independently over the standard basis of T. Then we have

$$\begin{aligned} \theta_X \circ (\rho \otimes \tau^k \otimes \pi^k)(a) &= \theta_X \circ (\rho \otimes \pi^k \otimes \tau^k)(a) \\ &= \rho(a) \circ \theta_X, \end{aligned}$$

for any $a \in \mathrm{GL}(m, \mathbb{C})$.

Theorem 3.1. (Proposition 3.4 of [7], Proposition 3.3 of [8]) Let $\rho(a) = \det(a)^{\nu}\rho_0(a)$ for $a \in \operatorname{GL}(m, \mathbb{C})$ with $\nu \in \mathbb{Z}$ and a rational representation (ρ_0, X) of $\operatorname{GL}(m, \mathbb{C})$. Let $f \in \mathcal{N}^p_{\rho}(\Gamma)$ with a congruence subgroup Γ of $\operatorname{Sp}(m, \mathbb{Z})$. If ν is larger than an integer $N(\rho_0, p)$ depending omly on ρ_0 and p, then

$$f = \sum_{l=0}^{p} (\theta_X \circ D_{\rho \otimes \pi^l \otimes \tau^{l-1}} \circ \dots \circ D_{\rho \otimes \pi^l \otimes \tau} \circ D_{\rho \otimes \pi^l})(g_l),$$
(3.1)

with holomorphic modular forms g_l with respect to Γ and the representations $\rho \otimes \pi^l$.

For example, elliptic Eisenstein series of weight 2 can not be written as (3.1). But any nearly holomorphic (scalar-valued) elliptic modular form can be made from holomorphic ones and E_2 (non-holomorphic Eisenstein series of weight 2) by using differential operators D_k . It is because nearly holomorphic elliptic modular form of weight k is contained in $\mathcal{N}_k^{k/2}$ or $\mathcal{N}_k^{(k-1)/2}$ according to the parity of k. In case of $f \in \mathcal{N}_k^p(\Gamma)$ (k > 2p), it can be written as

$$f = \sum_{l=0}^{p} D_{k-2} \circ \dots \circ D_{k-2l} \circ g_l$$

with holomorphic modular forms g_l of weights k - 2l with respect to Γ . On the other hand, $f \in \mathcal{N}_{2p}^p(\Gamma)$ can be written as

$$f = c \cdot D_{2p-2} \circ \dots \circ D_2 \circ E_2 + \sum_{l=0}^{p-1} D_{2p-2} \circ \dots \circ D_{2p-2l} \circ g_l$$

with a constant c, (non-holomorphic) Eisenstein series $E_2 \in \mathcal{N}_2^1(\Gamma)$, and holomorphic modular forms g_l of weights 2p - 2l with respect to Γ .

Define an operator $L_{\rho}: C^{\infty}(\mathfrak{H}_m, X) \to C^{\infty}(\mathfrak{H}_m, X)$ by

$$L_{\rho} = -\theta_X \circ D_{\rho \otimes \pi} \circ E.$$

Then clearly we have

$$(L_{\rho}f)|_{\rho}\alpha = L_{\rho}(f|_{\rho}\alpha),$$

for any $\alpha \in \operatorname{Sp}(m, \mathbb{R})$. Hence we have $L_{\rho}(\mathcal{N}^p_{\rho}(\Gamma)) \subset \mathcal{N}^p_{\rho}(\Gamma)$. Moreover, the image of L_{ρ} is orthogonal to any cusp forms with respect to ρ .

In case $\rho(a) = \det(a)^k$, we write L_{ρ} by L_k . Using this L_k , we can make an orthogonal projection of nearly holomorphic modular forms to holomorphic ones as follows.

Theorem 3.2. (Theorem 3.3 of [9], Proposition 15.3 of [10]) Let p, k be non-negative integers such that

$$k > m + p \quad or \quad k < m + \frac{3-p}{2}.$$

For any irreducible subspace Y of $\operatorname{Sym}^{i}T$ with respect to $\operatorname{Sym}^{i}\tau$, put

$$\alpha_Y = i(k - (m+1) + (1-i)c_Y),$$

where $-1/2 \leq c_Y \leq 1$ denotes a rational number depending only on Y (not on k). Put $A_i = \prod_Y (1 - \alpha_Y^{-1}L_k)$ for $0 < i \leq p$, where Y runs over all the irreducible subspaces of SymⁱT (with respect to Symⁱ τ), and $\mathfrak{A} = \prod_{i=1}^p A_i$. Take any $f \in \mathcal{N}_k^p$. Then \mathfrak{A}_f is a holomorphic modular form of weight k and $f = \mathfrak{A}_f + L_k t$ with $t \in \mathcal{N}_k^p$.

Note that $\langle f, g \rangle = \langle \mathfrak{A}f, g \rangle$ for any holomorphic cusp form g of weight k.

This theorem essentially uses the fact that the space $\operatorname{Sym}^i T$ is a direct sum of irreducible (rational) representations of $\operatorname{GL}(m, \mathbb{C})$, and each irreducible constituent has **multiplicity one**. (See, §12 of [10] and [6].) The author doesn't know how to generalize this theorem to the case of vector-valued modular forms. In fact, let ρ be a rational representation of $\operatorname{GL}(m, \mathbb{C})$ on a \mathbb{C} vector space X. Then the irreducible decomposition of the space $X \otimes \operatorname{Sym}^i T$ does not satisfy the property of multiplicity one in general.

Professor Böecherer conjectures that both holomorphic projections of Theorems 3.1 and 3.2 are equal. It means that $\mathfrak{A}f$ in Theorem 3.2 coincides with g_0 in Theorem 3.1 for any scalar valued modular form f (of sufficiently high weight.)

References

 E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Hamburg 5(1927), 199-224.

- [2] H. Maass, Siegel's Modular Forms and Dirichlet Series, Lecture Notes in Math. 216(1971), Springer-Verlag.
- [3] G. Shimura, Arithmetic of differential operators on symmetric domains, Duke Math. J. 48(1981), 813-843.
- [4] _____, Confluent hypergeometric functions on tube domains, Math. Annalen **260**(1982), 269-302.
- [5] _____, On Eisenstein series, Duke Math. J. **50**(1983), 417-476.
- [6] _____, On differential operators attached to certain representations of classical groups, Invent. Math. 77(1984), 463-488.
- [7] _____, On a class of nearly holomorphic automorphic forms, Ann. of Math. 123(1986), 347-406.
- [8] _____, Nearly holomorphic functions on hermitian symmetric spaces, Math. Annalen 278(1987), 1-28.
- [9] ____, Differential operators, holomorphic projection, and singular forms. Duke Math. J. **76**(1994), 141-173.
- [10] ____, Arithmeticity in the Theory of Automorphic Forms, Mathematical Surveys and Monographs vol.82(2000), AMS.