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1 The case of elliptic modular forms

This lecture is a review of [3], [7], [8] and [9] in case of Siegel modular forms.
As is well known, the elliptic Eisenstein series of weight 2 is non-holomorphic.

In [1], Hecke showed that

E2(z; Γ) =


∑

 a b
c d

∈(P∩Γ)\Γ

(cz + d) |cz + d|−2s


s=0

on z ∈ H = {z ∈ C |Im(z) > 0} is as follows.

E2(z; Γ) =
c0

Im(z)
+

∞∑
n=0

an · exp(2π
√
−1nz/N),

where c0, an ∈ C and a positive integer N . Using this, we can consider a
non-holomorphic modular form f as

f(z) =

p∑
i=0

fi(z)

Im(z)i
(1.1)

with holomorphic functions fi on H.
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We can define differential operators Dk and E (with k ∈ Z) as

Dkf = 2
√
−1 · ∂f

∂z
+

kf

Im(z)
,

Ef = 2
√
−1 · Im(z)2

∂f

∂z
.

Then for any C∞-function f on H and any α ∈ SL(2,R), we have

(Dkf)|k+2α = Dk(f |kα),
(Ef)|k−2α = E(f |kα).

For f as in (1.1), we obtain

Dkf =

p∑
i=0

(
(k − i)fi
Im(z)i+1

+
2
√
−1

Im(z)i
· ∂fi
∂z

)
,

Ef =

p∑
i=1

ifi
Im(z)i−1

.

It can be proved that f ∈ C∞(H,C) can be written as (1.1) if and only if
Ep+1f = 0.

Now we can define the space of nearly holomorphic (elliptic) modular
forms as

N p
k (Γ) =

f ∈ C∞(H,C)

∣∣∣∣∣∣
f |kγ = f for any γ ∈ Γ,
Ep+1f = 0,
f is finite at every cusp,


for any congruence subgroup Γ of SL(2,Z). Then any f ∈ N p

k (Γ) is written
as (1.1).

2 Nearly holomorphic Siegel modular forms

For a positive integer m, put

Sp(m,R) =
{
γ ∈ GL(2m,R)

∣∣∣∣tγ ( 0 −1m
1m 0

)
γ =

(
0 −1m
1m 0

)}
,

Hm = {Z ∈ Cm
m |tZ = Z and Im(Z) is positive definite} .
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Then Hm is an m(m+1)
2

-dimensional complex manifold. As is well known,
Sp(m,R) acts on Hm by

α(Z) = (AαZ +Bα)(CαZ +Dα)
−1,

where α =

(
Aα Bα

Cα Dα

)
∈ Sp(m,R) with Aα, Bα, Cα, Dα ∈ Rm

m, and Z ∈

Hm. Set
µ(α,Z) = CαZ +Dα,

η(Z) = 2
√
−1(Z − Z) = 2 · Im(Z).

For any rational representation (ρ,X) of GL(m,C) (i.e. ρ : GL(m,C) →
GLC(X)), any α ∈ Sp(m,R), and a function f : Hm → X, we define another
X-valued function f |ρα on Hm by

(f |ρα)(Z) = ρ(µ(α,Z))−1f(α(Z)).

In case ρ(a) = det(a)k, f |ρα is written as f |kα.
Put

T = Tm =
{
u ∈ Cm

m

∣∣tu = u
}
.

For f ∈ C∞(Hm, X), define Hom(T,X)-valued functions Df,Df,Dρf and
Ef by

(Df)(u) =
m∑
i=1

m∑
j=1

(
1

2
(1 + δij)

∂f

∂zij

)
· uij,

(Df)(u) =
m∑
i=1

m∑
j=1

(
1

2
(1 + δij)

∂f

∂zij

)
· uij,

(Ef)(u) = (Df)(ηutη),
Dρf = ρ(η)−1D(ρ(η)f),

where u = (uij)1≤i,j≤m ∈ T .
Let us define representations ρ⊗ τ and ρ⊗ π of GL(m,C) on Hom(T,X)

by
{(ρ⊗ τ)(a)h} (u) = ρ(a)h(taua) for any u ∈ T,
{(ρ⊗ π)(a)h} (u) = ρ(a)h(a−1uta−1) for any u ∈ T,

for h ∈ Hom(T,X).
Then by a formal computation, we obtain

Dρ(f |ρα) = (Dρf)|ρ⊗τα,
E(f |ρα) = (Ef)|ρ⊗πα,
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for any α ∈ Sp(m,R) and any f ∈ C∞(Hm, X).
The k-th iterates of Dρ and E take values in

Hom(T,Hom(T, . . . ,Hom(T,X) · · · )).

This vector space can be identified with the space of all multilinear maps of
T k into X, which we denote by M↕k(T,X). We define representations ρ⊗τ k

and ρ⊗ πk of GL(m,C) on M↕k(T,X) by{
(ρ⊗ τ k)(a)h

}
(u1, . . . , uk) = ρ(a)h(tau1a, . . . ,

tauka),{
(ρ⊗ πk)(a)h

}
(u1, . . . , uk) = ρ(a)h(a−1u1

ta−1, . . . , a−1uk
ta−1),

for h ∈ M↕k(T,X) and (u1, . . . , uk) ∈ T k. Then clearly

(Dρ⊗τk−1 · · ·Dρ⊗τDρ)(f |ρα) = (Dρ⊗τk−1 · · ·Dρ⊗τDρf)|ρ⊗τkα,
Ek(f |ρα) = (Ekf)|ρ⊗πkα,

for any α ∈ Sp(m,R).
We can view that τ (resp. π) is a representation of GL(m,C) on T by

τ(a)u = taua (resp. π(a) = a−1uta−1), and ρ ⊗ τ k (resp. ρ ⊗ πk) can be
identified with ρ ⊗ (τ⊗k) (resp. ρ ⊗ (π⊗k)). Then we identify the space
M↕k(T,X) with X ⊗ T⊗k or Hom(T⊗k, X).

But actually, the images of Dρ⊗τk−1 · · ·Dρ⊗τDρ and Ek take values in

Sk(T,X) =

{
h ∈ M↕k(T,X)

∣∣∣∣ h(uε(1), . . . , hε(k)) = h(u1, . . . , uk)
for any ε ∈ Sk

}
,

which is identified with X ⊗ SymkT or Hom(SymkT,X).
Put

r(Z) = (rij(Z))1≤i,j≤m = (Z − Z)−1.

Then we have the following lemma.

Lemma 2.1. Assume that f ∈ C∞(Hm, X) and Ep+1f = 0 for some non-
negative integer p. Then f can be written as a polynomial of {rij}1≤i,j≤m of
degree at most p, with coefficients in holomorphic functions on Hm.

Note that, if f is written as a polynomial of {rij}1≤i,j≤m of degree p with
coefficients in holomorphic functions on Hm, Dρf (resp. Ef) is written as
that of degree p+ 1 (resp. p− 1).
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For a non-negative integer p and a congruence subgroup Γ of Sp(m,Z),
we denote by N p

ρ (Γ), the space of all f ∈ C∞(Hm, X) satisfying the following
properties (1)–(3).
(1) f |ργ = f for any γ ∈ Γ.
(2) Ep+1f = 0 .
(3) f is finite at every cusp if m = 1.
We denote by N p

ρ the union of N p
ρ (Γ) for all congruence subgroups Γ of

Sp(m,Z). If m is odd, the Eisenstein series of weight (m+ 3)/2 is contained
in Nm

(m+3)/2. (See, Proposition 4.1 of [8].)

Consider a subspace Y of SymkT which is stable under the action of
GL(m,C) by Symkτ (resp. Symkπ) and denote by DY

ρ f (resp. EY f), the
restriction of (Dρ⊗τk−1 ◦ · · · ◦Dρ)f (resp. Ekf) to Y for any f ∈ C∞(Hm, X).
In this case DY

ρ f and EY f are Hom(Y,X)-valued.

Since det2 is a subrepresentation of Symmτ , there exists a one-dimensional
subspace Y of SymmT such that

(Symmτ)(a)vY = det(a)2vY ,

for any a ∈ GL(m,C), where 0 ̸= vY ∈ Y . Hence we can define the differen-
tial operator ∆ρ : C

∞(Hm, X) → C∞(Hm, X) by

(∆ρf) = (Dρ⊗τk−1 ◦ · · · ◦Dρ ◦ f)(vY ).

Then we have
det(µ(α,Z))−2(∆ρf)|ρα = ∆ρ(f |ρα),

for any α ∈ Sp(m,R). If ρ(a) = det(a)k, then ∆ρ is essentially same as Maass
operator Mk, which is concretely written in [2]. (Strictly, ∆ρ = const ×
det(Im(Z))−1Mk.)

3 Holomorphic projection

Given a rational representation (ρ,X) of GL(m,C), we define a contraction
map θX : M↕k(T,M↕k(T,X)) → X by

θXφ =
∑

φ(c1, . . . , ck; c1, . . . , ck),

where c1, . . . , ck run independently over the standard basis of T . Then we
have

θX ◦ (ρ⊗ τ k ⊗ πk)(a) = θX ◦ (ρ⊗ πk ⊗ τ k)(a)
= ρ(a) ◦ θX ,
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for any a ∈ GL(m,C).

Theorem 3.1. (Proposition 3.4 of [7], Proposition 3.3 of [8])
Let ρ(a) = det(a)νρ0(a) for a ∈ GL(m,C) with ν ∈ Z and a rational repre-
sentation (ρ0, X) of GL(m,C). Let f ∈ N p

ρ (Γ) with a congruence subgroup
Γ of Sp(m,Z). If ν is larger than an integer N(ρ0, p) depending omly on ρ0
and p, then

f =

p∑
l=0

(θX ◦Dρ⊗πl⊗τ l−1 ◦ · · · ◦Dρ⊗πl⊗τ ◦Dρ⊗πl)(gl), (3.1)

with holomorphic modular forms gl with respect to Γ and the representations
ρ⊗ πl.

For example, elliptic Eisenstein series of weight 2 can not be written as
(3.1). But any nearly holomorphic (scalar-valued) elliptic modular form can
be made from holomorphic ones and E2 (non-holomorphic Eisenstein series of
weight 2) by using differential operators Dk. It is because nearly holomorphic

elliptic modular form of weight k is contained in N k/2
k or N (k−1)/2

k according
to the parity of k. In case of f ∈ N p

k (Γ) (k > 2p), it can be written as

f =

p∑
l=0

Dk−2 ◦ · · · ◦Dk−2l ◦ gl

with holomorphic modular forms gl of weights k − 2l with respect to Γ. On
the other hand, f ∈ N p

2p(Γ) can be written as

f = c ·D2p−2 ◦ · · · ◦D2 ◦ E2 +

p−1∑
l=0

D2p−2 ◦ · · · ◦D2p−2l ◦ gl

with a constant c, (non-holomorphic) Eisenstein series E2 ∈ N 1
2 (Γ), and

holomorphic modular forms gl of weights 2p− 2l with respect to Γ.
Define an operator Lρ : C

∞(Hm, X) → C∞(Hm, X) by

Lρ = −θX ◦Dρ⊗π ◦ E.

Then clearly we have
(Lρf)|ρα = Lρ(f |ρα),
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for any α ∈ Sp(m,R). Hence we have Lρ(N p
ρ (Γ)) ⊂ N p

ρ (Γ). Moreover, the
image of Lρ is orthogonal to any cusp forms with respect to ρ.

In case ρ(a) = det(a)k, we write Lρ by Lk. Using this Lk, we can make an
orthogonal projection of nearly holomorphic modular forms to holomorphic
ones as follows.

Theorem 3.2. (Theorem 3.3 of [9], Proposition 15.3 of [10])
Let p, k be non-negative integers such that

k > m+ p or k < m+
3− p

2
.

For any irreducible subspace Y of SymiT with respect to Symiτ , put

αY = i(k − (m+ 1) + (1− i)cY ),

where −1/2 ≤ cY ≤ 1 denotes a rational number depending only on Y (not
on k). Put Ai =

∏
Y (1 − α−1

Y Lk) for 0 < i ≤ p, where Y runs over all the
irreducible subspaces of SymiT (with respect to Symiτ), and A =

∏p
i=1Ai.

Take any f ∈ N p
k . Then Af is a holomorphic modular form of weight k and

f = Af + Lkt with t ∈ N p
k .

Note that < f, g >=< Af, g > for any holomorphic cusp form g of weight
k.

This theorem essentially uses the fact that the space SymiT is a direct sum
of irreducible (rational) representations of GL(m,C), and each irreducible
constituent has multiplicity one. (See, §12 of [10] and [6].) The author
doesn’t know how to generalize this theorem to the case of vector-valued
modular forms. In fact, let ρ be a rational representation of GL(m,C) on a C-
vector space X. Then the irreducible decomposition of the space X⊗SymiT
does not satisfy the property of multiplicity one in general.

Professor Böecherer conjectures that both holomorphic projections of
Theorems 3.1 and 3.2 are equal. It means that Af in Theorem 3.2 coincides
with g0 in Theorem 3.1 for any scalar valued modular form f (of sufficiently
high weight.)
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