
Holomorphic components of nonholomorphic
differential operators (after restriction)

The purpose of the talk is to describe some relations between Maaß-Shimura type differ-

ential operators and holomorphic differential operators. This kind of connection may be of

interest, because the Maaß-Shimura operators can (ultimately) be explained by Lie-theory.

our main tool is the theory of nearly holomorphic functions due to Shimura.

§1 Examples (Here we describe two simple examples)

Example 1: The Maaß-Shimura differential operator δ
(n)
k on Hn (changing

weights from k to k + 2 can be defined by

δ
(n)
k = det(Y )−k+n−1

2 det(∂ij)det(Y )k−
n−1
2 .

For n=2 it has the explicit form

δ
(2)
k =

k(k − 1
2
)

det(2iY )
+ (k − 1

2
) · 2i(y1∂11 + 2y12∂12 + y4∂22)

det(2iY )
+ det(∂ij)

The degree 1 operators are of the form δ
(1)
k = k

2iy
+ ∂

∂z
; we therefore get a

decomposition(
δ
(2)
k

)
|z12=0

=
k − 1

2

k
·
(
δ
(1)
k ⊗ δ

(1)
k

)
︸ ︷︷ ︸
Maaß diff.operator

+

(
1

2k
∂11∂22 − ∂2

12

)
z12=0︸ ︷︷ ︸

holomorphic diff. operator

(k ̸= 0)

We can view the holomorphic part D as a kind of holomorphic projection,
because for (holomorphic) cusp forms F on H2 of weight k and f,g on H of
weight k+2 we have

(

∫ ∫
δ
(2)
k F )(

(
z1 0
0 z2

)
f(z1)g(z2)y

k
1y

k
2dz1dz2 =

(

∫ ∫
D(F )(

(
z1 0
0 z2

)
f(z1)g(z2)y

k
1y

k
2dz1dz2

It is a nice extra feature that the equality of the integrals above holds true already after

one integration!
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The cases k = 1
2
and k = 0 deserve special attention:

For k = 1
2
only the holomorphic part appears.

For k = 0 the decomposition is of different nature(
δ
(2)
0

)
|z12=0

= −1

2

(
∂11
2iy22

+
∂22
2iy11

)
− ∂2

12︸ ︷︷ ︸
strange new (?) operator

+ ∂11 · ∂22︸ ︷︷ ︸
δ
(1)
0 ⊗δ

(1)
0

Example 2: This is a (minor) digression from the main topic

Let f and g be elliptic modular forms of weight k and l respectively. Then
by an easy calculation

f · δ(1)l (g) =

l

k + l
δ
(1)
k+l(f · g) + 1

k + l

(
k · f

(
∂

∂z
g

)
− l

(
∂

∂z
f

)
g

)
︸ ︷︷ ︸

a Rankin Cohen bracket

Again the cases l = 0 and k + l need special attention:
For l = 0 both sides of the equation above are holomorphic anyway.
For k+ l = 0 no reasonable decomposition seems available; if we symmetrize
the situation, then it becomes better:

k · f · (δ(1)l g)− l · g · δ(1)k (f) = kf(
∂

∂z
g)− lg(

∂

∂z
f)︸ ︷︷ ︸

Rankin Cohen bracket

As before we can view the Rankin-Cohen-bracket as a kind of holomorphic
projection, because∫

f · (z)δ(1)l (g)(z) · h(z)yk+ldxdy =

∫
[f, g] · h(z)yk+ldxdy ;

this is true for all holomorphic cusp forms h of weight k + l + 2 - at least if
f, g are holomorphic cusp forms of weights k and l.

Concerning this integral - and the one from example 1 - one does not need to work with
cusp forms; it would be sufficient to work in a space

Lhol(Γ\H; yrdxdy)
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of holomorphic functions which are Γ-invariant for a subgroup Γ of SL(2,Z) with respect

to the |r+2-action and square-integrable w.r.t. yrdxdy. The group Γ does not need to be

of finite index !

Conclusion: Both these examples show that it is possible to get various
types of holomorphic differential operators from nonholomorphic differential
operators of Maaß-Shimura type. If the weights are not too special, we can
hope for reasonable results.

§2 Maaß-Shimura operators and restrictions

Concerning restrictions of functions on Hn to products of (diagonally embedded) lower-

dimensional upper half spaces, we will tacitly use the same notations as in [3].

We recall that a nearly holomorphic function on Hn is a polynomial in the
entries of Y −1 with holomorphic functions as coefficients. In particular, N ν

n

denotes the complex vector space of nearly holomorphic functions of degree
≤ ν. The following (completely elementary!) remark is crucial:

Remark: The restriction of a nearly holomorphic function F on Hn to Hp×
Hq with p+ q = n is again nearly holomorphic (in both sets of variables)

Let us start from a differential operator D on Hn with the following properties

1. It is a polynomial in the (holomorphic) derivatives and the entries of
Y −1

2. It changes the automorphy factor (k, ρ) to (k‘, ρ‘)

Let F be a holomorphic function F on Hn and apply such a differential
operator D to it and restrict it to Hp × Hq; we call this operator Do. Upon
restriction to GL(p,C)×GL(q,C) the representation detk

′ ⊗ ρ′ decomposes
as a direct sum of tensor products. Let (detk

′
1 ⊗ ρ1)⊗ (detk

′
2 ⊗ ρ2) be such a

summand occuring in the restriction of ρ. Let D0
ρ1,ρ2

be the restriction to this
representation. From the remark above, D0

ρ1,ρ2
(F ) ∈ N νp

p ⊗N νq
q for suitable

νp, νq. When we apply the structure theorem of Shimura to D0
ρ1,ρ2

(F ), this
means that there are appropriate Maaß-Shimura operators Di

p and Dj
q acting
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on functions onHp andHq and moreover holomorphic functions fij onHp×Hq

such that
Do

ρ1,ρ2
(F ) =

∑
i,j

(Di
p ⊗Dj

q)(fij).

An inspection of the proof of Shimura shows that (in this situation) the func-
tions fij are polynomials in the (holomorphic!) derivatives of F , evaluated
at w = 0. These polynomials (as well as the operators Di

p and Dj
q) do not

depend on the individual F at all. We therefore get

Theorem: (first version)
For a given differential operator D as above on Hn there are Maaß-Shimura
operators Di

p and Dj
q and holomorphic differential operators Dij, which are

polynomials in the holomorphic partial derivatives (evaluated at w = 0) such
that

Do
ρ1,ρ2

=
∑
ij

(
Di

p ⊗Dj
q

)
◦ Dij

These equations are true at least if some inequality between the degree and
the weights is satisfied (k′

i ≥ Ci where the constant Ci depends on νi and on
ρi‘). If we denote the trivial operator (=identity operator) by D0

p ⊗D0
q , then

we can consider the operator D00 as a holomorphic component of the Maaß-
Shimura operator D0. In the sequel, we write D′

00 for this to distinguish it
(at least formally) from the one obtained below.

There is a second version of this statement, which is more focussed on the
”holomorphic component”. It is more explicit with respect to the range of
applicability :

For D and F as above, there are nearly holomorphic functions G0, G1, G2, G3

on Hp ×Hq such that

D0
ρ1,ρ2

(F ) = G0 + Lp(G1) + Lq(G2) + (Lp ⊗ Lq)(G3)

where the Li are kind of Laplacians on Hi (whose image is orthogonal to
holomorphic functions under suitable conditions, e.g. orthogonal to cusp
forms). In the scalar-valued case (ρ1 = 1, ρ2 = 1) this is true at least under
the conditions

k′
1 /∈ [p+

3− t1
2

, p+ t1]
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k2 /∈ [q +
3− t2
2

, q + t2]

where t1, t2 denotes the degree of D
0(F )ρ1,ρ2 as nearly holomorphic on Hp and

Hq respectively (for the vector-valued case there is a less explicit condition)
Again we can reformulate this as

Theorem (second version)
Under the same conditions as above,

Dρ1,ρ2 = D′′
00 + Lp(P1) + Lq(P2) + Lp ⊗ Lq(P3)

with some differential operators Pi sending functions on Hn to functions on
Hp × Hq; again D′′

00 is a polynomial in the holomorphic partial derivatives,
evaluated at w = 0.

Remarks

• These general statements explain the example 1 from the beginning.

• There should also be a Lie-theoretic explanation for the Theorem above,
for this see the contribution of Schulze-Pillot [10].

• Of course, in some sense the Dij for (i, j) ̸= (0, 0) are less interesting
(and more difficult to describe) than D0,0. In [2] there is a completely
explicite description of the equality above for the case D0 changes the
automorphy factor from (detkn ⊗ syml) to (detkp ⊗ syml+2ν) ⊗ (detkq ⊗
syml+2ν).

• There are cases with D0.0 = 0:
Take e.g. n=3 and p = 2, q = 1, D=Maass operator on H3. An explicit
calculation for the decomposition of the theorem shows that D′

00 =
0. This can also be predicted by abstract reasoning of representation
theory.

• Clearly, we can get the same kind of statement for any kind of embed-
ding

Hn1 × . . .Hnr ↪→ Hn (n = n1 + . . . nr)

• Ususally, the differential operators D come up as families, parametrized
by the (initial) weight k. Then more explicit statements are possible,
e.g. concerning the dependence of coefficicents on k.

5



• If we take the explict form of D for granted, we can get an explicit form
of D′′

00 by ”holomorphic projection” of D0; it is enough to do this for a
suitable class of ”test functions”, see the example below.

Example: We take again our ”standard case” n1 = n2 = n and a Maaß
-type operator D on H2n changing the weight from k to k + 2ν. We work in
the space

L2
hol(An\Hn ; det(Y )k+2νd∗Z),

whereAn denotes the group of (integral) translations (i.e. An =

(
1n ∗
0n 1n

)
).

As a test function we choose

FT (Z) := e2πitr(T Z)

with T symmetric, semiintegral, positiv definit. We define two polynomials
arising fom D0 and D00 by

D0(FT ) = Q(T , y−1
1 , y−1

4 )e2πitr(T1z1+T4z4)

D00(FT ) = P (T )e2πitr(T1z1+T4z4)

Clearly P determines D00.
Both D0(FT ) and D00(FT ) define elements of the L2-space from above (w.r.t.
z1 and z4); their scalar products against (z1, z4) 7−→ e2πitr(T1z1+T4z4) coincide.
This gives rise (after the two trivial integrations over ℜ(zi) mod 1) to an
identity∫ ∫

Q(T , y−1
1 , y−1

4 ) (det(y1)det(y4))
k+2ν−n+1

2 e−4πtr(T1y1+T4y4)d∗y1d
∗y4 =

P ((T )

∫ ∫
(det(y1)det(y4))

k+2ν−n+1
2 e−4πtr(T1y1+T4y4)d∗y1d

∗y4

The integrations go over the space of positive definite matrices.
This can be considered to be an analytic method to get an explicit formula
for P and then for D00. On both sides of the equality above, the integrals
can be expressed in terms of gamma functions and polynomials in the entries
of T , divided by powers of det(t1) and det(t4).
This method (analytic construction) should only be applied, if algebraic or
combinatorial formulas are not (yet) available; it can however give us some
idea about the (combinatorial) nature of the polynomials in question.
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Some questions about the two versions:
The following questions should be answered within the framework of the
theory of nearly holomorphic functions (not depending on the very special
way, in which our nearly holomorphic functions arise from applying D to a
holomorphic function F )

Q1 Are the fij and the Gl uniquely determined by F ?

Q2 Are the (Di
p ⊗Dj

q)(fij) orthogonal to cusp forms (for i, j) ̸= (0, 0)) ?

Q3 Is D′
00(F ) = D′′

00(F ) ?

The functionG0 is indeed always uniquely determined by F and therefore also
the differential operators D′′

00, see [4] In the special situation of our theorem,
there is another approach to the question Q3: For simplicity, we consider
only the scalar-valued case (ρ = 1). We take the test function FT as before;
by using the differential operators D′

00 and D′′
00 we obtain two polynomials

P ′(T ) and P ′′(T ); these polynomials have to be proportional by Ibukiyama
[8], at least if 2k ≥ n , therefore the differential operators D′

00 and D′′
00 have

to be proportional. To see that the constant is actually equal to 1 (again for
2k ≥ n), one has to look at the terms of highest degree in the derivatives
∂wij, evaluated in w = 0.

On the doubling method
Here we use the differential operators D0

α,ν from [8, 1] for the embedding
Hn × Hn ↪→ H2n; they change the weight from α = k + s to α + ν (for
arbitrary α ∈ C.
For a (holomorphic) function F on H2n we can look at F 7−→ D0

k,ν(F ) but
also at the “disturbed version”

F 7−→ K0
α,ν(F ) := det(y1)

sdet(y4)
sD0

α,ν(F · det(Y )−s)

which changes the weight in the same way (from k to k+ ν). By the unique-
ness of the Ibukiyama type differential operators (for large k) it is clear that
the holomorphic component G0 of K0

α,ν(F ) must be a multiple of D0
k,ν(F ).

The constant was determinend explicitly in [5]. This allows to compare the
two integrals ∫

D0
k,ν(F )(z1, z4)f(z1)g(z4)det(y1)det(y4)dz1dz4
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and ∫ ∫
K0

α,ν(F )(z1, z4)f(z1)g(z4)det(y1)det(y4)dz1dz4

for two (holomorphic cusp forms f and g. In particular in the situation
of the doubling method, this allows us to substitute the integral involving
D0

k,ν(E
2n
k (Z, s) by an integral, which is easier to unfold, namely an integral

involving D0
k+s,ν(G

2n(Z)k+s,s), see also [3]. Here

Gn
k+s,s(Z) =

∑
C,D

det(CZ +D)−k−sdet(CZ +D)−s

En
k (Z, s) = det(Y )s ·Gn

k+s,s(Z)

§3 A criterion for nonvanishing of the holomorphic com-
ponent (often quite useful!)
Tacitly we assume that we can apply a version of the Theorem above (weights
are high compared to degree as polynomials in the entries of Y −1). We for-
mulate this more generally for any embedding

Hn1 × . . .Hnr ↪→ Hn (n = n1 + . . . nr)

We denote by wij those variables of Z ∈ Hn which lie ”outside ” the block
diagonal given by the embedding above.
Criterion: Suppose that the differential operator D0 contains a nonzero
summand of the form (

monom in the
∂

∂wij

)
|w=0

(i.e. a summand which does not involve entries of Y −1 nor derivatives from
the block diagonals). Then, with the obvious generalization of the notations
above

D0
ρ′1,...,ρ

′
r
= D0,...,0 + . . .

with D0,...0 ̸= 0.

Example: We consider the Maaß-operator D for H2n, changing the weight
from detk to detk+2l and consider the case r = 2, n1 = n2 = n. Then D0(F )
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is nearly holomorphic of degree l and it clearly contains a summand of the

form det
(

∂
∂wij

)2l

. Therefore we see that (at least as long as k + 2l > n + l)

there are holomorphic differential operators raising weights from k to k + 2l
for the embedding Hn × Hn ↪→ H2n which come from Maaß-type operators
on H2n. Ibukiyama [8] , using invariant theory in his construction, relied
somewhat on the condition 2k ≥ 2n.
Remark: The example from above can be generalized to the case of an
arbitrary embedding n = n1 + . . . nr and weight change from k to (k +
2l, . . . , k + 2l); again we can produce a nontrivial holomorphic differential
operator for this case provided that the initial k is large enough and the
”blocks” are not too big: The reasoning as before works, if detn(Z) has
summands which involve only the entries of w.

§4 Rankin-Cohen brackets from the point of view
of Maaß differential operators.

Here we follow the strategy described in [1] (where the case of the Jacobi
group was considered).
From the point of view of representation theory, this has been studied by
Harris [6],[7].
We use iterates of Maaß-Shimura operators, which we denote by

δ
(n)
k,r := δ

(n)
k+2r−2 ◦ · · · ◦ δ

(n)
k

We start from two holomorphic functions F and G on Hn and consider the
product

H(F,G) := δ
(n)
k,ν1

(F ) · δ(n)l,ν2
(G).

This changes the weight from k and l to k + l + 2ν with ν = ν1 + ν2.
Then H is nearly holomorphic of degree n(ν). If k + l + ν is large , then
there are (possibly vector valued) holomorphic functions Hi and Shimura-
type differential operators Di such that

H(F,G) = Ho(Z) +
∑
i

Di(Hi)
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Again by inspection of Shimura‘s proof, the Hi = Hi(F,G) can be written as

Hi = Ri(F,G) (0 ≤ i)

where the Ri are bilinear (holomorphic) differential operators not depending
on F and G. The operator R0 can be viewed as holomorphic component of
the operator

H : (F,G) 7−→ δ(F ) · δ(G);

this operator can be written as

H = R0 +
∑
i

Di ◦ Ri.

Whenever this decomposition holds (i.e. essentially for k+ l large), we would
like to see that R0 ̸= 0. To see such nonvanishing, the best thing is to use the
analytic construction mentioned earlier. This method was used extensively
in the case of Jacobi forms [1].

§5 Final remarks
In this note we completely ignored the viewpoints of Lie-theory and repre-
sentation theory. Our basic tools were Maaß-Shimura type operators, which
come from Lie-theory, therefore Lie theory has something to say about this
topic (see [10])! One can study the theorem in §2 from the viewpoint of
branching rules for holomorphic discrete series; our section 4 on Rankin-
Cohen brackets is related to properties of tensor products for holomorphic
discrete series.
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