
On p-adic absolute CM-periods

Tomokazu Kashio and Hiroyuki Yoshida (Kyoto University)

In the Hakuba conference, Yoshida reported on our collaborative work.
Here we tried to reproduce the talk rather faithfully. (§5 is enlarged.) The
reader will find a list of notations (will be cited as [N]), which was distributed
for the attendants of the talk, after page 13.

§1. Two precursors

Let us first recall two well known precursors of complex and p-adic abso-
lute CM-period symbols. Let K be an imaginary quadratic field of discrim-
inant −d. Let h and w be the class number of K and the number of roots
of unity contained in K respectively. Let χ be the Dirichlet character which
corresponds to the extension K/Q. The Chowla-Selberg formula states

(1) πpK(id, id)
2 ∼

d∏
a=1

Γ(
a

d
)wχ(a)/2h.

Here pK is Shimura’s period symbol. For the reader’s convenience, its main
properties are listed in [N]. The period symbol pK is a culmination of the
theory of complex multiplication of abelian varieties. See Shimura’s book
[S3]. For an interesting episode on this topic in 1955, see Shimura’s article
[99e], page 671 in volume IV of his collected papers.

The absolute CM-period symbol gives a (conjectural) generalization of
the Chowla-Selberg formula for an arbitrary CM-field.

Let p be a prime number which decomposes completely in K. Let (p) =
PPρ be the prime ideal decomposition, where ρ denotes the complex conju-
gation. We can embed K into Qp so that P = OK ∩ pZp, where OK is the
ring of integers of K. Put Ph = (α) with α ∈ K. Then the Gross-Koblitz
formula [GK] states

(2) logp(α
ρ/α) =

w

2

d−1∑
a=1

χ(a) logp(Γp(
a

d
)).

Here logp is the p-adic logarithmic function and Γp is Morita’s p-adic gamma
function.

In this talk, we will show that Gross-Koblitz formula can be generalized to
an arbitrary CM-field in pefect analogy to the absolute CM-period symbol.
We have multifold motivations to investigate p-adic analogues of absolute
CM-periods. Some of them will be explained in the talk.
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§2. Shintani-Kashio formulas

Let F be a totally real algebraic number field of degree n. Let a1, a2, . . .,
ah0 be integral ideals which represent narrow ideal classes of F . We take a
cone decomposition (cf. [N])

Rn
+ = ⊔ϵ∈E+

F
ϵ(⊔j∈JCj).

For c ∈ Cf, we put

G(c) =
∑
j∈J

∑
z∈R(Cj ,c)

log
Γr(j)(z, Aj)

ρr(j)(Aj)
,

W (c) = − 1

n
logN(aµf)ζF (0, c),

X(c) = G(c) + V (c) +W (c).

Here V (c) is a quantity of the form

V (c) =
∑
i

ai log ϵi, ai ∈ F, ϵi ∈ E+
F .

Let ζF (s, c) be the partial zeta function of the class c. Then Shintani’s
formula for the derivative of ζF (s, c) at s = 0 can be written as

(3) ζ ′F (0, c) =
∑
σ∈JF

X(cσ).

For this formula and a generalization of it for higher derivatives, see Yoshida’s
book [Y4].

Now let p be a prime number and we fix an embedding F ⊂ Cp. Let p
be the prime ideal of F obtained from this embedding. We define 1

Gp(c) =
∑
j∈J

∑
z∈R(Cj ,c)

LΓp,r(j)(z, Aj),

Vp(c) =
∑
i

ai logp ϵi,

Wp(c) = − logp(aµ) · (ζF (0, c)− ζF (0, p
−1c)),

1logp(aµ) is defined as follows. Take a positive integer e so that aeµ = (β), β ∈ F . We
put logp(aµ) = logp β/e. Then logp(aµ) is well defined modulo addition of elements of the

form a logp(ϵ), a ∈ Q, ϵ ∈ E+
F .
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Xp(c) = Gp(c) + Vp(c) +Wp(c).

Here p denotes the class of p in Cf if p does not divide f; if p divides f, the
term which contains p should be ignored. Kashio’s formula for the derivative
of the p-adic partial zeta function ζp,F (s, c) states

(4) ζ ′p,F (0, c) =
∑
σ∈JF

Xp(c
σ)− logpN(f)ζp,F (0, c).

if f is divisible by every prime ideal of F lying over p.

§3. Absolute CM-period symbols (complex and p-adic)

Let K be a CM-field which is an abelian extension of F . Let f̃∞1∞2 · · ·
∞n be the conductor of K as a class field over F . Put G = Gal(K/F ). For
τ ∈ G, we define

gK(id, τ) = π−µ(τ)/2 exp(
1

|G|
∑
f|̃f

∑
χ∈(Ĝ−)f

χ(τ)

L(0, χ)

∑
c∈Cf

χ(c)X(c)).

Here µ(τ) is 1 if τ = id, −1 if τ = ρ and 0 otherwise; Ĝ− denotes the set of

odd characters of G; (Ĝ−)f denotes the subset of Ĝ− consisting of characters
whose conductors have f as the finite part; gK is called the absolute period
symbol. Now one of the main conjectures in [Y4] is

Conjecture C.
gK(id, τ) ∼ pK(id, τ).

The symbol gK(id, τ) depends on the choices of {Cj} and {aµ}. But we
can analyze the dependence on these data and can show that the validity of
Conjecture C does not depend on the choices of them. The symbol gK(id, τ)
also depends on the choice of F . In other words, K can be abelian over
F1 and F2 and τ ∈ Gal(K/F1) ∩ Gal(K/F2). To show the consistency of
Conjecture C when we change F is more difficult and we obtained only
partial results (cf. [Y4]). In the strict sense, gK(id, τ) should be written as
gK/F (id, τ ; {Cj}, {aµ}).

This conjecture implies that the class invariant X(c) contains information
on CM-periods and on units of abelian extension of F . To make this explicit,
we remind the reader of the conjecture of Stark-Shintani. Let M be an
abelian extension of F of conductor m∞2 . . .∞n. For σ ∈ Gal(M/F ), let
ζ(s, σ) be the partial zeta function attached to σ. Assume n ≥ 2. The
Stark-Shintani conjecture states that there exists a unit ϵ of M such that

exp(−2ζ ′(0, σ)) = ϵσ.
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By Shintani’s formula, exp(−2ζ ′(0, σ)) can be expressed as a sum of X(c).
Here it is important to notice the difference of the infinite parts of the con-
ductors. The inclusion of ∞1 brings CM-periods. We must refer to [Y4] for
detailed explanation of this interesting situation.

In the p-adic case, we put

lgp,K(id, τ) = −µ(τ)

2hK

logp α0 +
1

|G|
∑
f|̃f

∑
χ∈(Ĝ−)f

χ(τ)

L(0, χ)

∑
c∈Cf

χ(c)Xp(c).

Here phK = (α0), α0 ∈ F . (We remind the reader of that p is the prime ideal
of F obtained by the fixed embedding F ⊂ Cp.)

Conjecture P. Take aµ, 1 ≤ µ ≤ h0 so that they are not divisible by p.
Fix an embedding F ⊂ K ⊂ Cp and let P be the induced prime ideal of K.
Put PhK = (α), α ∈ K. If p is completely decomposed in K, then we have

lgp,K(id, τ) =
1

2hK

logp(α
τ−1ρ/ατ−1

) +
n−1∑
i=1

ai logp ϵi

with ai ∈ F , ϵi ∈ E+
F .

The explanation in the first paragraph after Conjecture C also applies to
the symbol lgp,K(id, τ).

Gross [Gr] generalized the Stark-Shintani conjecture to the p-adic case.
It is curious that Conjecture P is closely related to the Gross conjecture and
its relation to the p-adic periods is rather indirect. We will explain the latter
point in §5. Here let us explain the first point.

To this end, we return to the complex case. We consider the quantity

(5) ZK(id, τ) = π−nµ(τ)/2
∏

χ∈Ĝ−

exp(
χ(τ)

|G|
L′(0, χ)

L(0, χ)
).

Then a conjecture of Colmez [Co] and an author [Y2] can be brought to the
form

(6) ZK(id, τ) ∼
∏
σ∈JF

pK(σ, τσ).

Here we use the same letter σ for (any of) its extension to an isomorphism
of K into C. A careful factorization of (6) using (3) suggests Conjecture C.
In this respect, we note that Conjecture C is much stronger than (6); we can
predict the values of pK by Conjecture C but it is impossible to do so only
by (6) (see, [Y4], p. 74–82).
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In analogy to (5), put

(7) LZp,K(id, τ) =
1

|G|
∑
χ∈Ĝ−

χ(τ)
L′
p(0, ωχ)

L(0, χ)
.

Here ω denotes the Teichmüller character and Lp(s, ωχ) denotes the p-adic
L-function. Let p1, . . ., pt be all the prime ideals of F lying over p. For
simplicity, we assume that p is unramified in K. We put σi = (K/F

pi
) using

the Artin symbol. The Gross conjecture on L′
p(0, ωχ) assumes that one of pi

decomposes completely in K. So we may assume that p1 = p and that P is
a prime factor of p in K as in our conjecture. Let KP be the completion of
K at P. The Gross conjecture is equivalent to

LZp,K(id, τ)

=
1

2hK

[
logp(NKP/Qp

(ατ−1ρ/ατ−1

))

+
t−1∑
s=1

∑
2≦i1<···<is≦t

(−1)s logp(NKP/Qp
(ατ−1σ−1

i1
···σ−1

is
ρ/ατ−1σ−1

i1
···σ−1

is ))

]
.

Now we distinguish three cases.
(I) If σi = 1 for some i, 2 ≦ i ≦ t, then L′

p(0, ωχ) = 0 for every χ ∈
Ĝ−. (This is a part of the Gross conjecture and is proved by Kashio [Kas].)
Thus no direct relations are present between the Gross conjecture and our
conjecture.

(II) Suppose that σi ̸= 1 for all i, 2 ≦ i ≦ t.
(a) If p is unramified and of degree 1 over Q, i.e., Fp = Qp for the

completion of F at p, then the Gross conjecture and our conjecture are
essentially equivalent.

(b) If [Fp : Qp] > 1, then our conjecture gives an essential refinement of
the Gross conjecture. It gives a factorization of LZp,K(id, τ); it also implies
the Gross conjecture modulo computable numbers of the form

∑
i ai logp ϵi,

where ai ∈ F̃ , ϵi is a totally positive unit of F̃ , F̃ being the normal closure
of F over Q.

In the next section, we will give examples.. The case p = 23 corresponds
to (I). The case p = 17 corresponds to (II), (b).

§4. Examples

Let F = Q(
√
29), K = Q(

√
9+

√
29

2
i), f = (9+

√
29

2
). Then K is the

maximal ray classfield of F modulo f∞1∞2. This is the situation studied in
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[Y3], Example 3, [Y4], Chapter III, Example 4.1. The fundamental unit of F

is ϵ0 = 5+
√
29

2
and ϵ = ϵ20 = 27+5

√
29

2
is the totally positive fundamental unit.

We have hF = h0 = 1. We take a1 = (1) as the representative of the narrow
ideal class. We can obtain a cone decomposition of R2

+ taking C1 = C(1, ϵ),
C2 = C(1). We have

OK =
1

2
(

√
9 +

√
29

2
i+

3 +
√
29

2
)OF ⊕OF .

Let χ be the nontrivial character of Gal(K/F ). We have L(0, χ) = 2. Hence
hK = 1.

First we take p = 23. Put p = (11+
√
29

2
), p′ = (11−

√
29

2
). Then both

of p and p′ decompose completely in K. The Gross conjecture just tells
L′
p(0, ω) = L′

p(0, χω) = 0, which is a special case of a theorem of Kashio.
Put

α =

√
9 +

√
29

2
i+ 1, α0 =

11 +
√
29

2
.

Then we have ααρ = α0. We take P = (α) and embed K into Qp so that
the induced prime ideal is P. By numerical computations, we find

(8) lgp,K(id, id) =
1

2
logp(α

ρ/α)− 172 +
√
29

22 · 13 · p
logp ϵ.

Both sides are elements of Zp and the equality holds at least modulo p50.
(We don’t have a proof of (8).)

Next we take p = 17. Then p remains prime in F . For

α =
3

2
(

√
9 +

√
29

2
i+

3 +
√
29

2
)−

√
29,

we have ααρ = p. We verified that

(9)
∑

c∈Cf(p)

χ(c)Xp(c) = 2 logp(α
ρ/α)

modulo p50(OK)p. In this case, the Gross conjecture states that

(10) L′
p(0, χω) = 2 logp(NKP /Qp(α

ρ/α)).

We see easily that (9) implies Conjecture P and the Gross conjecture. (Con-
jecture P implies (9) modulo addition of elements of the form a logp ϵ, a ∈ F .)
For more examples, see [KY1].
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§5. Dictionary

We wish to know the nature of the p-adic absolute period symbol
lgp,K(id, τ). Conjecture P clarifies it when p is completely decomposed in
K. Though there is some room for improvements, we think that the main
feature is revealed in this case by Conjecture P. Now the main problem is to
drop the assumption that p is completely decomposed in K.

For the formulation of the conjecture in general case, it seems most con-
venient to consider motives attched to Grössencharacters of type A0. In fact,
in the complex case, a refinement of Conjecture C is formulated with respect
to the critical values of the L-functions attached to such Grössencharacters,
which eventually turns out to be amenable to numerical tests.

Let K be a CM-field. Let χ be a Grössencharacter of K of conductor f
such that

χ((α)) =
∏
σ∈JK

σ(α)lσ , α ≡ 1 mod ×f.

Here lσ are integers such that lσ + lσρ is independent of σ. Put

E = Q(χ(a) | a is an integral ideal prime to f),

Then E is an algebraic number fields of finite degree.
There exists a motive M = M(χ) over K with coefficients in E; M is

characterized by the property

L(M, s) = (L(s, σ(χ)))σ∈JE .

We consider four realizations of M ; de Rham, p-adic, Betti and cristalline.
FirstM has the de Rham realizationHDR(M) which is an E⊗QK-module

of rank 1. For a finite place λ of E, M has the λ-adic realization Hλ(M)
which is an Eλ-module of rank 1. We have Eλ-linear action of Gal(K/K) on
Hλ(M). We put

Hp(M) = ⊕λ|p Hλ(M).

Let Q be the algebraic closure of Q in C. We fix an embedding of Q into
Cp and let P be the prime ideal of K induced by this embedding. Below we
take KP as the basic local field.

Using K ⊂ Q ⊂ C, we have the Betti realization HB(M) which is an
E-module of rank 1. We have the canonical isomorphism

(11) ip : HB(M)⊗Q Qp
∼= Hp(M)

as E ⊗Q Qp-modules of rank 1. The de Rham and p-adic realizations are re-
lated in the following way. Let BDR be the discrete valuation field introduced
by Fontaine [Fo]. We have

(12) IDR : Hp(M)⊗Qp BDR
∼= HDR(M)⊗K BDR.
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Both sides are isomorphic as free E ⊗Q BDR -modules of rank 1. The iso-
morphism is compatible with the action of Gal(Qp/KP) and filtrations.

Suppose that χ is unramified at P. Then M has the cristalline realization
Hcris(M). Let k be the residue field of KP and KP,0 be the quotient field of
W (k), the ring of Witt vectors over k. We identify KP,0 with the maximal
unramified extension of Qp contained in KP. Hcris(M) is a free E⊗ZW (k) ∼=
E ⊗Q KP,0 -module of rank 1. We have the isomorphism

(13) Icris : Hp(M)⊗Qp Bcris
∼= Hcris(M)⊗W (k) Bcris.

Both sides are isomorphic as free E⊗Q Bcris-modules of rank 1. The isomor-
phism is compatible with the action of Gal(Qp/KP) and Frobenius. Here
Bcris denotes the subring of BDR introduced by Fontaine.

Let φ ∈ Gal(Qp/Qp) be a Frobenius and let φP be a Frobenius ofP which

lies in Gal(Qp/KP). We may take φP = φf where f denotes the degree of
P over Q. The action of φP on Hcris(M) is given by

(14) φP | Hcris(M) = χ(P)⊗ 1.

There is a KP,0-structure on HDR(M)⊗K KP which we denote by
HDR(M/KP,0). We have

(15) I0 : Hcris(M)⊗W (k) KP,0
∼= HDR(M/KP,0),

(16) IDR = (I0)DR ◦ (Icris)DR.

Here (Icris)DR denotes the isomorphism obtained by taking ⊗Bcris
BDR in (13)

and (I0)DR denotes the isomorphism by taking ⊗KP ,0
BDR in (15).

Hereafter we assume that KP,0 = KP for simplicity. This condition is
satisfied when P is unramified over Q.

We take 0 ̸= cB ∈ Hτc,B(M). Then ip(cB) is a generator of Hp(M) as an
E ⊗Q Qp-module. Take cDR ∈ HDR(M) which is a generator of HDR(M) as
an E ⊗Q K-module. Then we define the period P (χ) by

(17) IDR(ip(cB)⊗ 1) = P (χ)(cDR ⊗ 1).

We have P (χ) ∈ (E ⊗Q BDR)
×; it is determined up to the multiplication of

elements of (E ⊗Q K)×. Here we regard E ⊗Q K as a subring of E ⊗Q BDR.
P (χ) is the p-adic period in the standard sense.

We can choose a generator ccris of Hcris(M) as an E ⊗Z W (k)-module so
that

(18) I0(ccris ⊗ 1) = cDR ⊗ 1.

8



We define P̃ (χ) ∈ (E ⊗Q Bcris)
× by

(19) Icris(ip(cB)⊗ 1) = P̃ (χ)(ccris ⊗ 1).

Since Bcris ⊂ BDR, we can regard P̃ (χ) ∈ (E ⊗Q BDR)
×. Then, by (16) and

(19), we have

(20) P (χ) = P̃ (χ).

Since Hcris(M,W (k)) ⊗W (k) KP,0 is a free E ⊗Q KP,0-module of rank 1,
we can write

(21) φi(ccris ⊗ 1) = Q(i)(ccris ⊗ 1), 1 ≦ i ∈ Z

with Q(i) ∈ (E⊗QKP,0)
×. Applying the Frobenius i-times on (19), we obtain

Φi
cris(P̃ (χ))φi(ccris ⊗ 1) = P̃ (χ)(ccris ⊗ 1).

Here Φcris denotes the action of Frobenius on Bcris. Therefore we obtain

(22) Φi
cris(P̃ (χ))Q(i) = P̃ (χ), 1 ≦ i ∈ Z.

We put Q = Q(1). In particular, we have

(23) Φcris(P̃ (χ))Q = P̃ (χ).

Applying Φcris on both sides noting that Φcris acts on KP,0 by the absolute
Frobenius φ, we get

Φ2
cris(P̃ (χ))φ(Q) = Φcris(P̃ (χ)) = P̃ (χ)Q−1.

Hence we have
Q(2) = φ(Q)Q.

Repeating this process, we get

(24) Q(i) = φi−1(Q) · · ·φ(Q)Q, 1 ≦ i ∈ Z.

We note that

(25) Q(f) = χ(P)⊗ 1 ∈ (E ⊗Q KP,0)
×

which follows from (14).

9



Using Q(i), we can predict the nature of lgp,K in the general case. Suppose
that K is abelian over a totally real number field F as in our construction of
lgp,K . Take τ ∈ Gal(K/F ). We write lgp,K/F (id, τ) for lgp,K(id, τ). We have

Q(i) ∈ (E ⊗Q KP,0)
× ⊂ (E ⊗Q Qp)

× ∼=
∏

σ:E⊂Q

Qp
×
.

Let Q(i)(σ) ∈ Qp
×
denote the σ-component of Q(i). Let p be the prime ideal

of F below P and let f0 be the degree of p over Q. We take a Hecke character
χ of the form

χ((α)) = (τ(α)/ρτ(α))l, α ≡ 1 mod ×f

with 1 ≤ l ∈ Z. Let K̃ be the normal closure of K over Q. We can take l
and χ so that E ⊂ K̃. Then E ⊗Q K̃ ∼=

∏
σ∈JE K̃.

Conjecture Q. We have

lgp,K/F (id, τ
−1) = − 1

2l
logpQ

(f0)(id) +
∑
i

ai logp ϵi + logp b

with ai ∈ F , ϵi ∈ E+
F , b ∈ K̃.

Since P̃ (χ) is determined up to the multiplication of elements in (E ⊗Q

K)×, Q(f0) is determined up to the multiplication of elements of the form
φf0(c)/c, c ∈ (E ⊗Q K)× by (22). Therefore the validity of Conjecture Q
does not depend on choices of cB, ccris and cDR.

We can show, using (25), that Conjecture P is equivalent to the statement
that Conjecture Q is true with b = 1 if p is completely decomposed in K.
We also note that the p-adic period can be understood more explicitly in this
case.

What is remarkable here is that the nature of the p-adic absolute period
symbol lgp,K/F (id, τ) depends strongly on F in general. (This is not so when
p is completely decomposed in K.) In the complex case, pK(id, τ)

2l appears
in place of Q(f0)(id)−1. We can show that the dictionary complex → p-adic
is fairly complete.
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For a, b ∈ C, we write a ∼ b if b ̸= 0 and a/b is an algebraic number.
ρ: the complex conjugation
Cp: the completion of an algebraic closure of Qp

Let F be an algebraic number field.
OF : the ring of integers of F
EF , E

+
F : the group of units and the group of totally positive units of F

hF : the class number
JF : the set of all isomorphisms of F into C
IF : the free abelian group generated by JF
Let F be totally real and put n = [F : Q].
∞1, . . ., ∞n: infinite places of F
Cf: The ideal class group modulo f∞1 · · ·∞n

h0: the class number of F in the narrow sense
a1, a2, . . ., ah0 : integral ideals which represent narrow ideal classes
The r-ple gamma function is defined as follows:
Let ω = (ω1, ω2, . . . , ωr), ωi > 0 for 1 ≦ i ≦ r and x > 0. We define the

r-ple zeta function by

ζr(s, ω, x) =
∑

Ω=m1ω1+m2ω2+···+mrωr

(x+ Ω)−s.

Here (m1,m2, . . . ,mr) extends over all r-tuples of nonnegative integers. We
put

− log ρr(ω) = lim
x→+0

{
∂

∂s
ζr(s, ω, x)

∣∣∣∣
s=0

+ log x

}
,

∂

∂s
ζr(s, ω, x)

∣∣∣∣
s=0

= log
Γr(x, ω)

ρr(ω)
.

If r = 1, ω = 1, we have

Γ1(x, 1) = Γ(x), ρ1(1) =
√
2π.

Let F be a totally real number field. Fix an embedding F ⊂ Cp and p be
the induced prime ideal of F . If ωi > 0, x > 0, we have a p-adic r-ple zeta
function ζp,r(s, ω, x) satisfying

ζp,r(−m,ω, x) = ζr(−m,ω, x) for 0 ≦ m ∈ Z, m ≡ 0 mod pf − 1.

(f is the degree of p.) We define the p-adic logarithmic r-ple gamma function
by

∂

∂s
ζp,r(s, ω, x)

∣∣∣∣
s=0

= LΓp,r(x, ω).
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For r linearly independent vectors v1, v2, . . ., vr ∈ Rn, put

C(v1, v2, . . . , vr) =

{
r∑

i=1

tivi

∣∣∣∣ t1, t2, . . . , tr > 0

}

and call C(v1, v2, . . . , vr) an r-dimensional open simplicial cone with basis v1,
v2 , . . ., vr. We have a cone decomposition with basis from OF (Shintani):

Rn
+ = ⊔ϵ∈E+

F
ϵ (⊔j∈J Cj).

Let r(j) be the dimension of Cj and put

Cj = C(vj1, vj2, . . . , vjr(j)), Aj = (vj1, vj2, . . . , vjr(j)).

For z ∈ Cj, we define the coordinate xi(z) ∈ R+ by

z = x1(z)vj1 + x2(z)vj2 + . . .+ xr(j)(z)vjr(j).

Put tx(z) = (x1(z), x2(z), . . . , xr(j)(z)). For a fractional ideal a of F , we put

R(Cj, a) = {z ∈ a ∩ Cj | 0 < x1(z), x2(z), . . . , xr(j)(z) ≦ 1, tx(z) ∈ Qr(j)}.

For c ∈ Cf, take aµ so that c and aµf belong to the same narrow ideal
class and define a finite set by

R(Cj, c) = {z ∈ R(Cj, (aµf)
−1) | (z)aµf = c in Cf}.

We put

G(c) =
∑
j∈J

∑
z∈R(Cj ,c)

log
Γr(j)(z, Aj)

ρr(j)(Aj)
,

W (c) = − 1

n
logN(aµf)ζF (0, c),

X(c) = G(c) + V (c) +W (c).

Here V (c) is a quantity of the form

V (c) =
∑
i

ai log ϵi, ai ∈ F, ϵi ∈ E+
F .

In the p-adic case, we define

Gp(c) =
∑
j∈J

∑
z∈R(Cj ,c)

LΓp,r(j)(z, Aj),
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Vp(c) =
∑
i

ai logp ϵi,

Wp(c) = − logp(aµ) · (ζF (0, c)− ζF (0, p
−1c)),

Xp(c) = Gp(c) + Vp(c) +Wp(c).

LetK be an abelian extension of F . We assume thatK is a CM-field. Let
f̃ be the finite part of the conductor of K over F . For τ ∈ G = Gal(K/F ),
we define

gK(id, τ) = π−µ(τ)/2 exp(
1

|G|
∑
f|̃f

∑
χ∈(Ĝ−)f

χ(τ)

L(0, χ)

∑
c∈Cf

χ(c)X(c)).

In the p-adic case, we put

lgp,K(id, τ) = −µ(τ)

2hK

logp α0 +
1

|G|
∑
f|̃f

∑
χ∈(Ĝ−)f

χ(τ)

L(0, χ)

∑
c∈Cf

χ(c)Xp(c).

Here phK = (α0), α0 ∈ F .
Let K be a CM-field, Φ be a CM-type of K and σ ∈ Φ. Taking an abelian

variety A defined over Q of type (K,Φ), we can define pK(σ,Φ) ∈ C× by∫
c

ωσ ∼ πpK(σ,Φ) for every c ∈ H1(A,Z).

Here ωσ ̸= 0 is a regular 1-form defined over Q such that a∗ωσ = aσωσ,
a ∈ K. There exists a map pK : IK×IK −→ C× with the following properties
(Shimura).
(1) pK(σ,Φ) is defined as above if Φ is a CM-type of K and σ ∈ Φ.
(2) pK(σ1 + σ2, τ) ∼ pK(σ1, τ)pK(σ2, τ), pK(σ, τ1 + τ2) ∼ pK(σ, τ1)pK(σ, τ2)

for every σ, σ1, σ2, τ , τ1, τ2 ∈ IK .
(3) pK(ξρ, η) ∼ pK(ξ, ηρ) ∼ pK(ξ, η)

−1 for every ξ, η ∈ IK .
(4) pK(ξ,ResL/K(ζ)) ∼ pL(InfL/K(ξ), ζ) if ξ ∈ IK , ζ ∈ IL and K ⊂ L, L is a

CM-field.
(5) pK(ResL/K(ζ), ξ) ∼ pL(ζ, InfL/K(ξ)) if ξ ∈ IK , ζ ∈ IL and K ⊂ L, L is a

CM-field.
(6) pK′(γξ, γη) ∼ pK(ξ, η) if γ is an isomorphism of K ′ onto K.

Conjecture (complex case).

gK(id, τ) ∼ pK(id, τ).

In the p-adic case, we take an embedding K ⊂ Cp and let P be the
induced prime ideal of K. Put PhK = (α), α ∈ K.
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Conjecture (padic case). If p is completely decomposed in K, then
we have

lgp,K(id, τ) =
1

2hK

logp(α
τ−1ρ/ατ−1

) +
n−1∑
i=1

ai logp ϵi

with ai ∈ F , ϵi ∈ E+
F .
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