
1339(221)

c⃝2023 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 75, No. 4 (2023) pp. 1339–1408
doi: 10.2969/jmsj/87988798

Harder’s conjecture I

By Hiraku Atobe, Masataka Chida, Tomoyoshi Ibukiyama, Hidenori Katsurada
and Takuya Yamauchi

(Received Sep. 26, 2021)
(Revised Apr. 26, 2022)

Abstract. Let f be a primitive form with respect to SL2(Z). Then, we

propose a conjecture on the congruence between the Klingen–Eisenstein lift of
the Duke–Imamoglu–Ikeda lift of f and a certain lift of a vector valued Hecke
eigenform with respect to Sp2(Z). This conjecture implies Harder’s conjecture.
We prove the above conjecture in some cases.

1. Introduction.

Harder’s conjecture is one of the most fascinating conjectures in the arithmetic of

automorphic forms. It plays an important role in constructing nontrivial elements of the

Bloch–Kato Selmer group attached to a modular form (cf. [15], [17]). Harder’s conjecture

predicts that the Hecke eigenvalues of a primitive form for SL2(Z) are related with those

of a certain Hecke eigenform for Sp2(Z) modulo some prime ideal. We explain it more

precisely. For a non-increasing sequence k = (k1, . . . , kn) of non-negative integers we

denote by Mk(Spn(Z)) and Sk(Spn(Z)) the spaces of modular forms and cusp forms of

weight k (or, weight k, if k = (

n︷ ︸︸ ︷
k, . . . , k)) for Spn(Z), respectively. (For the definition of

modular forms, see Section 2.) Let f(z) =
∑∞

m=1 a(m, f) exp(2π
√
−1mz) be a primitive

form in S2k+j−2(SL2(Z)), and suppose that a ‘big prime’ p divides the algebraic part

of L(k + j, f). Then, Harder [17] conjectured that there exists a Hecke eigenform F in

S(k+j,k)(Sp2(Z)) such that

λF (T (p)) ≡ a(p, f) + pk−2 + pj+k−1 mod p′

for any prime number p, where λF (T (p)) is the eigenvalue of the Hecke operator T (p)

on F , and p′ is a prime ideal of Q(f) · Q(F ) lying above p. One of main difficulties in

treating this congruence arises from the fact that this is not concerning the congruence

between Hecke eigenvalues of two Hecke eigenforms of the same weight. Indeed, the

right-hand side of the above is not the Hecke eigenvalue of a Hecke eigenform if j > 0.

Several attempts have been made to overcome this obstacle. Ibukiyama [21], [23] pro-

posed a half-integral weight version of Harder’s conjecture given as congruences of Hecke
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eigenforms and related it to the original Harder’s conjecture through his conjectural

Shimura type correspondence for vector valued Siegel modular forms of degree two (and

this Shimura type conjecture was now proved by Ishimoto [34]). This explains the

Harder conjecture for odd k ([26]) and the proved example of congruence in [23] means

the Harder conjecture for (k, j) = (5, 18). In [5], Bergström and Dummigan, among other

things, reformulated Harder’s conjecture as congruence between a certain induced repre-

sentation of πf and a cuspidal automorphic representation of GSp(2). In [12], Chenevier

and Lannes gave several congruences between theta series of even unimodular lattices,

and using Arthur’s endoscopic classification and Galois representation theoretic method,

they, among other things, proved Harder’s conjecture for (k, j) = (10, 4). In this paper

we consider a conjecture concerning the congruence between two liftings to higher degree

of Hecke eigenforms (of integral weight) of degree two. More precisely, for the f above,

let In(f) be the Duke–Imamoglu–Ikeda lift of f to the space of cusp forms of weight
j
2 + k + n

2 − 1 for Spn(Z) with n even. For a sequence

k =
( n︷ ︸︸ ︷
j

2
+ k +

n

2
− 1, . . . ,

j

2
+ k +

n

2
− 1,

n︷ ︸︸ ︷
j

2
+

3n

2
+ 1, . . . ,

j

2
+

3n

2
+ 1
)

with k ≥ n + 2, let [In(f)]
k be the Klingen–Eisenstein lift of In(f) to Mk(Sp2n(Z)).

Then, we propose the following conjecture:

Conjecture 1.1 (Conjecture 4.5). Let k, j and k be as above. Let f(z) ∈
S2k+j−2(SL2(Z)) be a primitive form and p a prime ideal of Q(f). Then under cer-

tain assumptions, there exists a Hecke eigenform F in S(k+j,k)(Sp2(Z)) such that

λ
A

(I)
2n (F )

(T ) ≡ λ[In(f)]k(T ) mod p′

for any integral Hecke operator T . Here, A
(I)
2n (F ) is the lift of F to Sk(Sp2n(Z)), called

the lift of type A(I), which will be defined in Theorem 4.2. (As for the definition of

integral Hecke operators, see Section 3.)

This conjecture implies Harder’s conjecture (cf. Theorem 4.8).

The advantage of this formulation is that one can compare the Hecke eigenvalues of

two Hecke eigenforms. Indeed, by using the same argument as in Katsurada–Mizumoto

[39], under the above assumption, we can prove that there exists a Hecke eigenform

G ∈Mk(Sp2n(Z)) such that G is not a constant multiple of [In(f)]
k and

λG(T ) ≡ λ[In(f)]k(T ) mod p′

for any integral Hecke operator T . Therefore, to prove the above conjecture, it suffices to

show that G is a lift of type A(I). Here we expect that G can be taken as A(I) and indeed

we will see that in the cases (k, j) = (10, 4), (14, 4) and (4, 24) using the dimension formula

due to [57] and the numerical tables of Hecke eigenvalues due to Poor–Ryan–Yuen [52]

and Ibukiyama–Katsurada–Poor–Yuen [30]. As a result, we prove Conjecture 4.5 and so

Harder’s conjecture in those cases.
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This paper is organized as follows. In Section 2, we give a brief summary of Siegel

modular forms, especially about their Q-structures or Z-structures. In Section 3, after

giving a summary of several L-values, we state Harder’s conjecture. In Section 4, we

introduce several lifts, and among other things define the lift of A(I)-type of a vector

valued modular form in S(k+j,k)(Sp2(Z)), and propose a conjecture and explain how this

conjecture implies Harder’s conjecture. In Section 5, we consider the pullback formula

of the Siegel–Eisenstein series with differential operators. In Section 6, we consider

the congruence for vector valued Klingen–Eisenstein series, which is a generalization of

[39], and explain how the assumption that p divides the algebraic part of L(k+ j, f) for

f ∈ S2k+j−2(SL2(Z)) gives the congruence between [In(f)]
k and another Hecke eigenform

in Mk(Sp2n(Z)). In Section 7, we give a formula for the Fourier coefficients of the

Klingen–Eisenstein series, from which we can confirm some assumption in our main

results. In Section 8, we state our main results, which confirm our conjecture, and so

Harder’s.

In a subsequent paper, we will prove Conjecture 4.5 and so Harder’s in more general

setting, that is, in the case k is even and j ≡ 0 mod 4, that is, we will prove these

conjectures without using the dimension formula or the computation of Hecke eigenvalues

of Siegel modular forms (cf. [4]).

Acknowledgments. The authors thank Siegfried Böcherer, Gaëtan Chenevier,

Neil Dummigan, Günter Harder, Tamotsu Ikeda, Noritomo Kozima, and Shingo

Sugiyama for valuable comments. They also thank the referee for a careful and in-

telligent reading of their paper and for the numerous helpful suggestions to improve the
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Notation. Let R be a commutative ring. We denote by R× the unit group of R.

We denote by Mmn(R) the set of m × n-matrices with entries in R. In particular put

Mn(R) = Mnn(R). Put GLm(R) = {A ∈ Mm(R) | detA ∈ R×}, where detA denotes

the determinant of a square matrix A. For anm×n-matrixX and anm×m-matrix A, we

write A[X] = tXAX, where tX denotes the transpose ofX. Let Symn(R) denote the set of

symmetric matrices of degree n with entries in R. Furthermore, if R is an integral domain

of characteristic different from 2, let Hn(R) denote the set of half-integral matrices of

degree n over R, that is, Hn(R) is the subset of symmetric matrices of degree n with

entries in the field of fractions of R whose (i, j)-component belongs to R or 1
2R according

as i = j or not. We say that an element A of Mn(R) is non-degenerate if detA ̸= 0.

For a subset S of Mn(R) we denote by Snd the subset of S consisting of non-degenerate

matrices. If S is a subset of Symn(R) with R the field of real numbers, we denote by S>0

(resp. S≥0) the subset of S consisting of positive definite (resp. semi-positive definite)

matrices. The group GLn(R) acts on the set Symn(R) by

GLn(R)× Symn(R) ∋ (g,A) 7−→ A[g] ∈ Symn(R).

Let G be a subgroup of GLn(R). For a G-stable subset B of Symn(R) we denote by

B/G the set of equivalence classes of B under the action of G. We sometimes use the

same symbol B/G to denote a complete set of representatives of B/G. We abbreviate

B/GLn(R) as B/∼ if there is no fear of confusion. Let R′ be a subring of R. Then two

symmetric matrices A and A′ with entries in R are said to be equivalent over R′ with
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each other and write A ∼R′ A′ if there is an element X of GLn(R
′) such that A′ = A[X].

We also write A ∼ A′ if there is no fear of confusion. For square matrices X and Y we

write X⊥Y = (X O
O Y ).

For an integer D ∈ Z such that D ≡ 0 or ≡ 1 mod 4, let dD be the discriminant of

Q(
√
D), and put fD =

√
D
dD

. We call an integer D a fundamental discriminant if it is the

discriminant of some quadratic extension of Q or 1. For a fundamental discriminant D,

let (D∗ ) be the character corresponding to Q(
√
D)/Q. Here we make the convention that

(D∗ ) = 1 if D = 1. For an integer D such that D ≡ 0 or ≡ 1 mod 4, we define (D∗ ) = (dD

∗ ).

We put e(x) = exp(2π
√
−1x) for x ∈ C, and for a prime number p we denote by ep(∗)

the continuous additive character of Qp such that ep(x) = e(x) for x ∈ Z[p−1].

Let K be an algebraic number field, and O = OK the ring of integers in K. For a

prime ideal p we denote by Kp and Op the p-adic completion of K and O, respectively,

and put O(p) = Op ∩ K. For a prime ideal number p of O, we denote by ordp(∗) the

additive valuation of Kp normalized so that ordp(ϖ) = 1 for a prime element ϖ of Kp.

Moreover for any element a, b ∈ Op we write b ≡ a mod p if ordp(a− b) > 0.

2. Siegel modular forms.

We denote by Hn the Siegel upper half space of degree n, i.e.,

Hn =
{
Z ∈Mn(C) | Z = tZ = X +

√
−1Y, X, Y ∈Mn(R), Y > 0

}
.

For any ring R and any natural integer n, we define the group GSpn(R) by

GSpn(R) =
{
g ∈M2n(R) | gJn tg = ν(g)Jn with some ν(g) ∈ R×},

where Jn =
(
0n −1n
1n 0n

)
. We call ν(g) the symplectic similitude of g. We also define the

symplectic group of degree n over R by

Spn(R) = {g ∈ GSpn(R) | ν(g) = 1}.

In particular, if R is a subfield of R, we define

GSp+n (R) = {g ∈ GSpn(R) | ν(g) > 0}.

We put Γ (n) = Spn(Z) for the sake of simplicity. Now we define vector valued Siegel

modular forms of Γ (n). Let (ρ, V ) be a polynomial representation of GLn(C) on a finite

dimensional complex vector space V . We fix a Hermitian inner product ⟨∗, ∗⟩ on V such

that

⟨ρ(g)v, w⟩ = ⟨v, ρ(tḡ)w⟩ for g ∈ GLn(C), v, w ∈ V. (H)

For any V -valued function F on Hn, and for any g = (A B
C D ) ∈ GSp+n (R), we put J(g, Z) =

CZ +D and

F |ρ[g] = ρ(J(g, Z))−1F (gZ).
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For a positive integer N , we define the principal congruence subgroup Γ (n)(N) of Γ (n)

of level N by

Γ (n)(N) =

{(
A B

C D

)
∈ Γ (n)

∣∣∣∣ A ≡ D ≡ 1n, B ≡ C ≡ On mod N

}
.

A subgroup Γ of Γ (n) is said to be a congruence subgroup if Γ contains Γ (n)(N) with some

N . By definition, Γ (n)(N) is a congruence subgroup. Another example of congruence

subgroup is the group Γ
(n)
0 (N) defined by

Γ
(n)
0 (N) =

{(
A B

C D

)
∈ Γ (n)

∣∣∣∣ C ≡ On mod N

}
.

Let Γ be a congruence subgroup of Γ (n). We say that F is a holomorphic Siegel modular

form of weight ρ with respect to Γ if F is holomorphic on H and F |ρ[γ] = F for any

γ ∈ Γ (with the extra condition of holomorphy at all the cusps if n = 1). We denote

by Mρ(Γ ) the space of modular forms of weight ρ with respect to Γ , and by Sρ(Γ ) its

subspace consisting of cusp forms.

A modular form F ∈Mρ(Γ ) has the following Fourier expansion

F (Z) =
∑

T∈Sn(Q)≥0

a(T, F )e(tr(TZ)) with a(T, F ) ∈ V,

where tr(T ) is the trace of a matrix T , and in particular if Γ = Γ (n), we have

F (Z) =
∑

T∈Hn(Z)≥0

a(T, F )e(tr(TZ)),

and we have F ∈ Sρ(Γ
(n)) if and only if we have a(T, F ) = 0 unless T is positive definite.

For F,G ∈Mρ(Γ ) the Petersson inner product is defined by

(F,G)Γ =

∫
Γ\Hn

⟨
ρ(
√
Y )F (Z), ρ(

√
Y )G(Z)

⟩
det(Y )−n−1dZ, (P)

where Y = Im(Z) and
√
Y is a positive definite symmetric matrix such that

√
Y

2
= Y .

This integral converges if either F or G belongs to Sρ(Γ ). We also define (F,G) as

(F,G) = [Γ(n) : Γ ]−1(F,G)Γ .

Let λ = (k1, k2, . . .) be a finite or an infinite sequence of non-negative integers such that

ki ≥ ki+1 for all i and km = 0 for some m. We call this a dominant integral weight (or

the Young diagram). We call the biggest integer m such that km ̸= 0 a depth of λ and

write it by depth(λ). It is well known that the set of dominant integral weights λ with

depth(λ) ≤ n corresponds bijectively to the set of irreducible polynomial representations

of the GLn(C). We denote this representation by (ρn,λ, Vn,λ). We also denote it by

(ρk, Vk) with k = (k1, . . . , kn) and call it the irreducible polynomial representation of

GLn(C) of highest weight k. We then set Mk(Γ ) = Mρk
(Γ ) and Sk(Γ ) = Sρk

(Γ ). We
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say F is a modular form of weight k if it is a modular form of weight ρk. If k = (

n︷ ︸︸ ︷
k, . . . , k),

we simply write Mk(Γ ) =Mk(Γ ) and Sk(Γ ) = Sk(Γ ). We note that

M(k+j,k)(Γ
(2)) =Mdetk ⊗Symj (Γ (2)) and S(k+j,k)(Γ

(2)) = Sdetk ⊗Symj (Γ (2)),

where Symj is the j-th symmetric tensor representation of GL2(C). In general, for

the k = (k1, . . . , kn) above, we write k′ = (k1 − kn, . . . , kn−1 − kn, 0). Then, we have

ρk ∼= detkn ⊗ρk′ with (ρk′ , Vk′) an irreducible polynomial representation of highest weight

k′. Here we understand that (ρk′ , Vk′) is the trivial representation on C if k1 = · · · =
kn−1 = kn. Moreover, we may regard an element F ∈Mk(Γ ) as a Vk′ -valued holomorphic

function on H such that

F |detkn ⊗ρk′ [γ] = F

for any γ ∈ Γ (with the extra condition of holomorphy at all the cusps if n = 1). For a

representation (ρ, V ) of GLn(C), we denote by F(Hn, V ) the set of Fourier series F (Z)

on Hn with values in V of the following form:

F (Z) =
∑

A∈Hn(Z)≥0

a(A,F )e(tr(AZ)) (Z ∈ Hn, a(A,F ) ∈ V ).

For F (Z) ∈ F(Hn, V ) and a positive integer r ≤ n we define Φ(F )(Z1) = Φn
r (F )(Z1)

(Z1 ∈ Hr) as

Φ(F )(Z1) = lim
λ−→∞

F

((
Z1 O

O
√
−1λ1n−r

))
.

We make the convention that F(H0, V ) = V and Φn
0 (F ) = a(On, F ). Then, Φ(F ) be-

longs to F(Hr, V ). For a representation (ρ, V ) of GLn(C), we denote by F̃(Hn, V ) =

F̃(Hn, (ρ, V )) the subset of F(Hn, V ) consisting of elements F (Z) such that the following

condition is satisfied:

a(A[g], F ) = ρ(g)a(A,F ) for any g ∈ GLn(C).(K0)

Now let ℓ = (l1, . . . , ln) be a dominant integral weight of length n of depth m. Then

we realize the representation space Vℓ in terms of bideterminants (cf. [31]). Let U = (uij)

be an m × n matrix of variables. For a positive integer a ≤ m let SIn,a denote the set

of strictly increasing sequences of positive integers not greater than n of length a. For

each J = (j1, . . . , ja) ∈ SIn,a we define UJ as∣∣∣∣∣∣∣
u1,j1 . . . u1,ja
...

. . .
...

ua,j1 . . . ua,ja

∣∣∣∣∣∣∣ .
Then we say that a polynomial P (U) in U is a bideterminant of weight ℓ if P (U) is of

the following form:
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P (U) =
m∏
i=1

li−li+1∏
j=1

UJij ,

where (Ji1, . . . , Ji,li−li+1) ∈ SIli−li+1

n,i . Here we understand that
∏li−li+1

j=1 UJij = 1 if

li = li+1. Let BDℓ be the set of all bideterminants of weight ℓ. Here we make the

convention that BDℓ = {1} if ℓ = (0, . . . , 0). For a commutative ring R and an R-algebra

S let S[U ]ℓ denote the R-module of all S-linear combinations of P (U) for P (U) ∈ BDℓ.

Then we can define an action of GLn(C) on C[U ]ℓ as

GLn(C)× C[U ]ℓ ∋ (g, P (U)) 7→ P (Ug) ∈ C[U ]ℓ,

and we can take the C-vector space C[U ]ℓ as a representation space Vℓ of ρℓ under this

action. Let m ≤ n − 1 be a non-negative integer and U = (uij) be an m × n matrix

of variables. Let k = (k1, . . . , kn) with k1 ≥ · · · ≥ km > km+1 = · · · = kn and k′ =

(k1−km+1, . . . , km−km+1,

n−m︷ ︸︸ ︷
0, . . . , 0). Here we make the convention that k = (k1, . . . , k1)

and k′ = (0, . . . , 0) if m = 0. Then under this notation and convention, Mk(Γ
(n)) can

be regarded as a C-sub-vector space of Hol(Hn)[U ]k′ , where Hol(Hn) denotes the ring

of holomorphic functions on Hn. We sometimes write F (Z)(U) for F (Z) ∈ Mk(Γ
(n)).

Moreover, the Fourier expansion of F (Z) ∈Mk(Γ
(n)) can be expressed as

F (Z) =
∑

A∈Hn(Z)≥0

a(A,F )e(tr(AZ)),

where a(A,F ) = a(A,F )(U) ∈ C[U ]k′ .

Let r be an integer such that m ≤ r ≤ n and let l = (k1, . . . , kr−1, kr) and l′ =

(k1−km+1, . . . , km−km+1,

r−m︷ ︸︸ ︷
0, . . . , 0). For them×n matrix U , let U (r) = (uij)1≤i≤m,1≤j≤r

and put W ′ = C[U (r)]l′ . Then we can define a representation (τ ′,W ′) of GLr(C). The

representations (ρk′ , Vk′) and (τ ′,W ′) satisfy the following conditions:

(K1) W ′ ⊂ Vk′ .

(K2) ρk′
(( g1 g2

O g4

))
v = τ ′(g1)v for

( g1 g2
O g4

)
∈ GLn(C) with g1 ∈ GLr(C) and v ∈W ′.

(K3) If v ∈ Vk′ satisfies the condition

ρk′

((
1r O

O h

))
v = v for any h ∈ GLn−r(C),

then v belongs to W ′.

Let F (Z) =
∑

A∈Hn(Z)≥0
a(A,F )e(tr(AZ)) ∈ F(Hn, Vk′). Then, in a way similar to [1,

(2.3.29)], we have

Φn
r (F )(Z1) =

∑
A1∈Hr(Z)≥0

a

((
A1 O

O O

)
, F

)
e(tr(A1Z1)) (Z1 ∈ Hr).
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Suppose that F (Z) belongs to F̃(Hn, Vk′). Then, by (K0),

ρk′

((
1r O

O h

))(
a

((
A1 O

O O

)
, F

))
= a

((
A1 O

O O

)
, F

)
for any h ∈ GLn−r(C).

Hence, by (K3), a
((

A1 O
O O

)
, F
)
belongs to W ′ for any A1 ∈ Hr(Z)≥0. This implies

that Φn
r (F ) belongs to F(Hr,W

′). We easily see that Φn
r (F ) belongs to F̃(Hr,W

′), and

therefore Φn
r sends F̃(Hn, Vk′) to F̃(Hr,W

′). It is easily seen that it induces a mapping

from Mρ(Γ
(n)) to Mτ (Γ

(r)), where ρ = detkn ⊗ρk′ and τ = detkn ⊗τ ′. Let ∆n,r be the

subgroup of Γ (n) defined by

∆n,r :=

{(
∗ ∗

O(n−r,n+r) ∗

)
∈ Γ (n)

}
.

For F ∈ Sτ (Γ
(r)) the Klingen–Eisenstein series [F ]ρτ (Z, s) of F associated to ρ is defined

by

[F ]ρτ (Z, s) :=
∑

γ∈∆n,r\Γ (n)

( det Im(Z)

det Im(prnr (Z))

)s
F (prnr (Z))|ργ.

Here prnr (Z) = Z1 for Z =
( Z1 Z2
tZ2 Z4

)
∈ Hn with Z1 ∈ Hr, Z4 ∈ Hn−r, Z2 ∈ Mr,n−r(C).

We also write [F ]ρτ (Z, s) as [F ]
k
l (Z, s) or [F ]

k(Z, s).

Suppose that kn is even and 2Re(s) + kn > n + r + 1. Then, [F ]ρτ (Z, s) converges

absolutely and uniformly on Hn. This is proved by [40] in the scalar valued case, and

can be proved similarly in general case. If [F ]k(Z, s) can be continued holomorphically

in the neighborhood of 0 as a function of s, we put [F ]ρτ (Z) = [F ]ρτ (Z, 0). If [F ]ρτ (Z)

is holomorphic as a function of Z, it belongs to Mk(Γ
(n)), and we say that it is the

Klingen–Eisenstein lift of F to Mk(Γ
(n)). In particular, if kn > n+r+1, then [F ]ρτ (Z, s)

is holomorphic at s = 0 as a function of s, and [F ]ρτ (Z, 0) belongs to Mk(Γ
(n)), and

Φρ
τ ([F ]

ρ
τ ) = F . We note that [F ]ρτ (Z) is not necessarily holomorphic as a function of Z if

kn ≤ n+ r + 1.

We define En,k(Z, s) as

En,k(Z, s) =
∑

γ∈∆n,0\Γ (n)

(det Im(Z))s|ργ

and call it the Siegel–Eisenstein series of weight k with respect to Γ (n). In particular, if

k = (

n︷ ︸︸ ︷
k, . . . , k) with k even, we write En,k(Z, s) for En,k(Z, s). If k > 0, then En,k(Z, s)

can be continued meromorphically to the whole s-plane as a function of s. Let k =

(

m︷ ︸︸ ︷
k + l, . . . , k + l,

n−m︷ ︸︸ ︷
k, . . . , k) such that k, l ≥ 0, and put ρ = detk ⊗ρk′ and τ = detk ⊗ρl′

with k′ = (

m︷ ︸︸ ︷
l, . . . , l, 0, . . . , 0) and l′ = (

m︷ ︸︸ ︷
l, . . . , l). Then, for F ∈ Sτ (Γ

(m)) we can define the

Klingen–Eisenstein series [F ]ρk
τ (Z, s) of F associated to ρk if k is even and 2Re(s) + k >

n+m+ 1. We note that C[U (m)]l′ is a subspace of C[U ]k′ spanned by (detU (m))l, and
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hence we have a natural isomorphism

ι : Sk+l(Γ
(m)) ∋ f 7→ f̃ := f(detU (m))l ∈ Sτ (Γ

(m)).

We sometimes write [f ]ρk or [f ]k instead of [f̃ ]ρk
τ for f ∈ Sk+l(Γ

(m)). We state the

holomorphy of the Klingen–Eisenstein series.

Proposition 2.1. Let k be an even integer.

(1) Suppose that k ≥ (n + 1)/2 and that neither k = (n + 2)/2 ≡ 2 mod 4 nor k =

(n+ 3)/2 ≡ 2 mod 4. Then En,k(Z) belongs to Mk(Γ
(n)).

(2) Let k = (

m︷ ︸︸ ︷
k + l, . . . , k + l,

n−m︷ ︸︸ ︷
k, . . . , k) such that l ≥ 0 and k > 3m/2+ 1 and let f be a

Hecke eigenform in Sk+l(Γ
(m)). Then [f ]k(Z, s) can be continued meromorphically

to the whole s-plane as a function of s, and holomorphic at s = 0. Moreover

suppose that k > (n+m+ 3)/2. Then [f ]k(Z) belongs to Mk(Γ
(n)).

Proof. The assertion (1) follows from [55, Theorem 17.7]. The assertion (2)

has been proved in the case l = 0 (cf. [47], [55]). The case l > 0 will be proved in

Section 5. □

Let ℓ = (l1, . . . , ln) be a dominant integral weight of length n of depth m. Let

Ṽ = Ṽℓ = Q[U ]ℓ. Then, (ρℓ|GLn(Q), Ṽ ) is a representation of GLn(Q), and Ṽ ⊗C = Vℓ.

We consider a Z structure of Vℓ. To do this, we fix a basis S = Sℓ = {P} of Z[U ]ℓ. We

note here that the bideterminants are not linearly independent over Z and even over C
in general, so the set BDℓ is not necessarily a basis of Z[U ]ℓ. Let R be a subring of C.
Since the set S is also linearly independent over C, an element a of R[U ]ℓ is uniquely

written as

a =
∑
P∈S

aPP with aP ∈ R.

Let K be a number field, and O the ring of integers in K. For a prime ideal p of O and

a = a(U) =
∑

P∈S aPP ∈ K[U ]ℓ with aP ∈ K, define

ordp(a) = min
P∈S

ordp(aP ).

We say that p divides a if ordp(a) > 0.

Remark 2.2. (1) The definition of ordp(∗) does not depend on the choice of a

basis of Z[U ]ℓ. We note that p does not divide a = a(U) if p does not divide a(U0)

for some element U0 of Mm,n(O).

(2) There is no canonical choice of a basis of Ṽ . But several standard choices are

known. One of them is a basis associated with the semi-standard Young tableaux

(cf. [16]). We note that it is also a basis of Z[U ]ℓ. This can be proved by a careful

analysis of the proof of [16, (4.5a)] combined with [16, (4.6a)].
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For a subring R of C, we denote by Mk(Γ
(n))(R) the R-submodule of Mk(Γ

(n))

consisting of all modular forms F such that a(T, F ) ∈ R[U ]k′ for all T ∈ Hn(Z)≥0. Here,

k′ = (k1 − km+1, . . . , km − km+1,

n−m︷ ︸︸ ︷
0, . . . , 0) for k = (k1, . . . , kn) with k1 ≥ · · · ≥ km >

km+1 = · · · = kn as stated before.

We consider tensor products of modular forms, which will be used on and after

Section 5. Let n1 and n2 be positive integers. Let k1 = (k1, . . . , km, km+1, . . . , kn1)

and k2 = (k1, . . . , km, km+1, . . . , kn2) be non-increasing sequences of integers such that

km > km+1 = · · · = kni = l for i = 1, 2. Then (ρk1 ⊗ ρk2 , V1 ⊗ V2) is a representation of

GLn1(C)×GLn2(C). Put k′
1 = (k1 − l, . . . , km − l,

n1−m︷ ︸︸ ︷
0, . . . , 0) and k′

2 = (k1 − l, . . . , km − l,
n2−m︷ ︸︸ ︷

0, . . . , 0). Then, ρk1 ⊗ ρk2 = (detl ⊗ρk′
1
) ⊗ (detl ⊗ρk′

2
) with (ρk′

i
, V ′

i ) a polynomial rep-

resentation of highest weight k′
i for i = 1, 2. To make our formulation smooth, we

sometimes regard a modular form of scalar weight k for Γ (n) as a function with values in

the one-dimensional vector space spanned by detU l with a non-negative integer l ≤ k,

where U is an n× n matrix of variables. Let U1 and U2 be m×n1 and m× n2 matrices,

respectively, of variables and for a commutative ring R and an R-algebra S let

S[U1, U2]k′
1,k

′
2
=

{∑
j

Pj(U1)Pj(U2) (finite sum) with Pj(Ui) ∈ S[Ui]k′
i
(i = 1, 2)

}
.

Here we make the convention that Pj(Ui) ∈ ⟨(detUi)
k1−l⟩C if ni = m and k1 = · · · = km

as stated above. Then, as a representation space W = Wk′
1,k

′
2
of ρk′

1
⊗ ρk′

2
we can take

C[U1, U2]k′
1,k

′
2
. Let

W̃ = W̃k′
1,k

′
2
= Q[U1, U2]k′

1,k
′
2
.

Then W̃ ∼= Ṽ ′
1 ⊗ Ṽ ′

2 and W̃ ⊗Q C =W . Let

M =Mk′
1,k

′
2
= Z[U1, U2]k′

1,k
′
2
.

We note that

M =


∑

Pτ1∈Sk′
1
,Pτ2∈Sk′

2

aτ1,τ2Pτ1(U1)Pτ2(U2)

∣∣∣∣∣∣∣ aτ1,τ2 ∈ Z

 .

Here we make the convention that Pτi(U2) = (detUi)
k1−l if ni = m and k1 = · · · = km.

Therefore, M is a lattice of W̃ and M ∼= L1 ⊗ L2 with Li = Z[Ui]k′
i
(i = 1, 2). Thus

(ρk1 ⊗ρk2 , V1⊗V2) has also a Q-structure and Z-structure and we can define ordp(a⊗ b)
for a ⊗ b ∈ W̃K . If dimC V1 = 1, then we identify V1, Ṽ1 and L1 with C,Q and Z,
respectively, and for a, b ∈ V1 and w ∈ V2, we write a ⊗ b and a ⊗ w as ab and aw,

respectively through the identifications V1 ⊗ V1 ∼= V1 and V1 ⊗ V2 ∼= V2 ⊗ V1 ∼= V2. The

tensor product Mk1(Γ
(n1)) ⊗ Mk2(Γ

(n2)) is regarded as a C-subspace of (Hol(Hn1) ⊗
Hol(Hn2))[U1, U2]k′

1,k
′
2
.
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3. Harder’s conjecture.

In this section we review several arithmetical properties of Hecke eigenvalues and

L values of modular forms, then state the original Harder’s conjecture in [17]. In the

later section, we will treat a generalized version of the conjecture. From now on, until

the end of Proposition 3.3, let k = (k1, . . . , kn) with k1 ≥ · · · ≥ kn ≥ 0. Let Ln =

L(Γ (n),GSp+n (Q) ∩M2n(Z)) be the Hecke algebra over Z associated to the Hecke pair

(Γ (n),GSp+n (Q) ∩ M2n(Z)) and for a subring R of C put Ln(R) = Ln ⊗Z R. For an

element T = Γ (n)gΓ (n) ∈ Ln(C), let

T =
r⊔

i=1

Γ (n)gi

be the coset decomposition. Then, for a modular form F ∈Mk(Γ
(n)) we define F |T as

F |T = ν(g)k1+···+kn−n(n+1)/2
r∑

i=1

F |ρk
gi.

This defines an action of the Hecke algebra Ln(C) on Mk. The operator F 7→ F |T with

T ∈ Ln(C) is called the Hecke operator. We say that F is a Hecke eigenform if F is a

common eigenfunction of all Hecke operators T ∈ Ln(C). Then we have

F |T = λF (T )F with λF (T ) ∈ C for any T ∈ Ln(C).

We call λF (T ) the Hecke eigenvalue of T with respect to F . For a Hecke eigenform F

in Mk(Γ
(n)), we denote by Q(F ) the field generated over Q by all the Hecke eigenvalues

λF (T ) with T ∈ Ln(Q) and call it the Hecke field of F . For two Hecke eigenforms F andG

we sometimes write Q(F,G) = Q(F )Q(G). We say that an element T ∈ Ln(Q) is integral

with respect to Mk(Γ
(n)) if F |T ∈ Mk(Γ

(n))(Z) for any F ∈ Mk(Γ
(n))(Z). We denote

by L
(k)
n the subset of Ln(Q) consisting of all integral elements with respect to Mk(Γ

(n)).

The following proposition can be proved in the same manner as Proposition 4.2 of [36].

Proposition 3.1. We have Ln ⊂ L
(k)
n for any k = (k1, . . . , kn) with kn ≥ n+ 1.

For a non-zero rational number a, we define an element [a] = [a]n of Ln by [a]n =

Γ (n)(a1n)Γ
(n). For each integer m define an element T (m) of Ln by

T (m) =
∑

d1,...,dn,e1,...,en

Γ (n)(d1⊥ · · ·⊥dn⊥e1⊥ · · ·⊥en)Γ (n),

where d1, . . . , dn, e1, . . . , en run over all positive integer satisfying

di|di+1, ei+1|ei (i = 1, . . . , n− 1), dn|en, diei = m (i = 1, . . . , n).

Furthermore, for i = 1, . . . , n and a prime number p put

Ti(p
2) = Γ (n)(1n−i⊥p1i⊥p21n−i⊥p1i)Γ (n).
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As is well known, Ln(Q) is generated over Q by T (p), Ti(p
2) (i = 1, . . . , n), and [p−1]n

for all p. We note that Tn(p
2) = [p]n. We note that Ln is generated over Z by T (p)

and Ti(p
2) (i = 1, . . . , n) for all p. Let F be a Hecke eigenform in Mk(Γ

(n)). As is

well known, Q(F ) is a totally real algebraic number field of finite degree. Now, first we

consider the integrality of the eigenvalues of Hecke operators. For an algebraic number

field K, let OK denote the ring of integers in K. The following assertion can be proved

in the same manner as in [50]. (See also [36].)

Proposition 3.2. Let k = (k1, . . . , kn) be as above. Suppose that kn ≥ n+1. Let

F be a Hecke eigenform in Sk(Γ
(n)). Then λF (T ) belongs to OQ(F ) for any T ∈ L

(k)
n .

Let Ln,p = L(Γ (n),GSp+n (Q) ∩GL2n(Z[p−1])) be the Hecke algebra associated with

the pair (Γ (n),GSp+n (Q)∩GL2n(Z[p−1])). Ln,p can be considered as a subalgebra of Ln,

and is generated over Q by T (p) and Ti(p
2) (i = 1, 2, . . . , n), and [p−1]n. We now review

the Satake p-parameters of Ln,p; let Pn = Q[X±
0 , X

±
1 , . . . , X

±
n ] be the ring of Laurent

polynomials in X0, X1, . . . , Xn over Q. Let Wn be the group of Q-automorphisms of

Pn generated by all permutations in variables X1, . . . , Xn and by the automorphisms

τ1, . . . , τn defined by

τi(X0) = X0Xi, τi(Xi) = X−1
i , τi(Xj) = Xj (j ̸= i).

Moreover, a group W̃n isomorphic to Wn acts on the set Tn = (C×)n+1 in a way

similar to the above. Then there exists a Q-algebra isomorphism Φn,p, called the Satake

isomorphism, from Ln,p to the Wn-invariant subring PWn
n of Pn. Then for a Q-algebra

homomorphism λ from Ln,p to C, there exists an element (α0(p, λ), α1(p, λ), . . . , αn(p, λ))

of Tn satisfying

λ
(
Φ−1

n,p(F (X0, X1, . . . , Xn))
)
= F (α0(p, λ), α1(p, λ), . . . , αn(p, λ))

for F ∈ PWn
n . The equivalence class of (α0(p, λ), α1(p, λ), . . . , αn(p, λ)) under the action

of W̃n is uniquely determined by λ. We call this the Satake parameters of Ln,p deter-

mined by λ. Now let F be a Hecke eigenform inMk(Γ
(n)). Then for each prime number p,

F defines a Q-algebra homomorphism λF,p from Ln,p to C in a usual way, and we denote

by α0(p), α1(p), . . . , αn(p) the Satake parameters of Ln,p determined by F . For later pur-

pose, we consider special elements in Ln,p; the polynomials rn(X1, . . . , Xn) =
∑n

i=1(Xi+

X−1
i ) and ρn(X0, X1, . . . , Xn) = X2

0X1X2 · · ·Xnrn(X1, . . . , Xn) are elements of PWn
n ,

and thus we can define elements Φ−1
n,p(rn(X1, . . . , Xn)) and Φ−1

n,p(ρn(X0, X1, . . . , Xn)) of

Ln,p, which are denoted by rn,1(p) and ρ̃n,1, respectively.

Proposition 3.3. (1) We have

ρ̃n,1(p) = pn(n+1)/2[p]n · rn,1(p),

and in particular

λF (ρ̃n,1(p)) = p
∑n

i=1 ki−n(n+1)/2
n∑

i=1

(αi(p) + αi(p)
−1).
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(2) Let k = (k1, . . . , kn) be as above. Suppose that kn ≥ (n + 1)/2. Then r̃n,1(p) :=

pk1−1rn,1(p) belongs to L
(k)
n .

Proof. The assertion (1) can easily be checked remarking that Φn,p(p
n(n+1)/2[p]n)

= X2
0X1 · · ·Xn (cf. [1, Lemma 3.3.34]). We will prove the assertion (2). Put

GSp+n (Q)∞ =

{(
A B

O D

)
∈ GSp+n (Q)

}
,

Γ
(n)
∞ = Γ (n) ∩ GSp+n (Q)∞, and let Ln,∞ = L(Γ

(n)
∞ ,GSp+n (Q)∞ ∩M2n(Z)) be the Hecke

algebra associated to the Hecke pair (Γ
(n)
∞ ,GSp+n (Q)∞∩M2n(Z)). Then there is a natural

injection from Ln into Ln,∞. For an element D ∈Mn(Z)nd put D∗ = tD−1 and for non-

negative integers a, b such that a + b ≤ n, put Da,b = Da,b(p) = 1n−a−b⊥p1a⊥p21b,
Ũ(Da,b) = (p2D∗

a,b⊥Da,b) and Πa,b = Γ
(n)
∞ Ũ(Da,b)Γ

(n)
∞ . For an element ( A B

O D ) ∈ Γ
(n)
∞

with D ∈Mn(Z)nd and L ∈ GLn(Z)DGLn(Z), we define the set B(L,M) as

B(L,M) =

{
N ∈Mn(Z)

∣∣∣∣ (νL∗ N

O L

)
∈ Γ (n)

∞ MΓ (n)
∞

}
,

where ν = ν(M). Then #
(
B(L,M)/L

)
does not depend on the choice of L, and is

uniquely determined by M , which will be denoted by α(M), and in particular put

β(Da,b) = α(p2D∗
a,b⊥Da,b). Then, by [1, p.160], as an element of Ln,∞, ρ̃n,1(p) is

expressed as

ρ̃n,1(p) = p(n−1)n/2
(
β(Dn−1,0)

−1Πn−1,0 + pn+1β(Dn−1,1)
−1Πn−1,1

)
.

Let k′ = (k1 − kn, . . . , kn−1 − kn, 0) and put m = depth(k′). Let F (Z) be an element of

Mk(Γ
(n))(Z). Then we have

F (Z) =
∑

T∈Hn(Z)≥0

a(T, F )(U)e(tr(TZ))

with a(T, F )(U) ∈ Z[U ]k′ . Then, we have

F |ρ̃n,1(p)(Z) = p2(k1+···+kn)−n(n+1)+(n−1)n/2

×
∑
T

{
β(Dn−1,0)

−1(detDn−1,0)
−kn

×
∑

L∈Λn\ΛnDn−1,0Λn

a(T, F )(UL−1)
∑

N∈B(L,Ũ(Dn−1,0))/L

e
(
tr
(
T (p2 tL−1Z +N)L−1

))
+ β(Dn−1,1)

−1(detDn−1,1)
−kn

×
∑

L∈Λn\ΛnDn−1,1Λn

a(T, F )(UL−1)
∑

N∈B(L,Ũ(Dn−1,1))/L

e
(
tr
(
T (p2 tL−1Z +N)L−1

))}
,

where Λn = GLn(Z). For i = 0, 1 we have
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N∈B(L,Ũ(Dn−1,i))/L

e
(
tr
(
T (p2 tL−1Z +N)L−1

))
= e

(
tr(p2T [L−1]Z)

) ∑
N∈B(L,Ũ(Dn−1,i))/L

e(tr(L−1TN)).

We have

∑
N∈B(L,Ũ(Dn−1,i))/L

e(tr(L−1TN)) =

{
β(Dn−1,i) if L−1T ∈Mn(Z),
0 otherwise.

We note that L−1T ∈Mn(Z) if and only if p2T [L−1] ∈ Hn(Z). Hence we have

F |ρ̃n,1(p)(Z) = p2(k1+···+kn)−n(n+1)+(n−1)n/2

×
∑
A

e(tr(AZ))

{
p−kn(n−1)

∑
L∈Λn\ΛnDn−1,0Λn

a(A[L], F )(UL−1)

+ p−(n+1)kn+n+1
∑

L∈Λn\ΛnDn−1,1Λn

a(A[L], F )(UL−1)

}
,

and therefore

F |rn,1(p)(Z) = pk1+···+kn−n
∑
A

e(tr(AZ))

{
p−kn(n−1)

∑
L∈Λn\ΛnDn−1,0Λn

a(A[L], F )(UL−1)

+ p−(n+1)kn+n+1
∑

L∈Λn\ΛnDn−1,1Λn

a(A[L], F )(UL−1)

}
.

We note that a(T, F )(U) is expressed as a Z-linear combination of polynomials of the

following form:

P (U) =
m∏
i=1

li−li+1∏
j=1

UJij

with li = ki−kn, where (Ji1, . . . , Ji,li−li+1) ∈ SIli−li+1

n,i . Therefore, to prove the assertion

(2), it suffices to show that

p2k1+k2+···+kn−n−1p−kn(n−1+2i)+(n+1)iP (UL−1) ∈ Z[U ]k′ (I)

for any L ∈ ΛnDn−1,iΛn with i = 0, 1. We may suppose L = Dn−1,i with i = 0, 1. First

write Dn−1,1 = pd1⊥ · · ·⊥pdn with d1 = · · · = dn−1 = 1 and dn = 2. Then we have

P (UD−1
n−1,1) = p−

∑m
i=1

∑li−li+1
j=1

∑i
a=1 dJa+jP (U),

where {Ja+j}1≤i≤m,1≤j≤li−li+1,1≤a≤i is a set of integers such that 1 ≤ Ja+j ≤ n and
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Ja+j ̸= Ja′+j′ if a+ j ̸= a′ + j′. Then we have
∑i

a=1 dJa+j ≤ i+ 1 for any i. Hence we

have

m∑
i=1

li−li+1∑
j=1

i∑
a=1

dJa+j ≤
m∑
i=1

(li − li+1)(i+ 1) = 2l1 +
m∑
i=2

li

= 2k1 +

m∑
i=2

ki − (m+ 1)kn = 2k1 +

n∑
i=2

ki − (n+ 1)kn.

Hence (I) holds for any L ∈ ΛnDn−1,1Λn. Similarly, we have

P (UD−1
n−1,0) = p−γk,nP (U)

with γk,n an integer such that

γk,n ≤
n−1∑
i=1

ki − (n− 1)kn.

By assumption, we have k1 + kn ≥ n+ 1, and hence (I) holds for any L ∈ ΛnDn−1,0Λn.

This proves the assertion (2). □

We write ΓC(s) = 2(2π)−sΓ(s) and write ΓR(s) = π−s/2Γ(s/2) as usual. Let

f(z) =

∞∑
m=1

a(m, f)e(mz)

be a primitive form in Sk(SL2(Z)), that is let f be a Hecke eigenform whose first coefficient

is 1. For a prime number p let β1,p(f) and β2,p(f) be complex numbers such that

β1,p(f) + β2,p(f) = a(p, f) and β1,p(f)β2,p(f) = pk−1. Then for a Dirichlet character χ

we define Hecke’s L function L(s, f) twisted by χ as

L(s, f, χ) =
∏
p

(
(1− β1,p(f)χ(p)p

−s)(1− β2,p(f)χ(p)p
−s)
)−1

.

We write L(s, f, χ) = L(s, f) if χ is the principal character.

Let {f1, . . . , fd} be a basis of Sk(Γ
(1)) consisting of primitive forms. Let K be

an algebraic number field containing Q(f1) · · ·Q(fd), and O the ring of integers in K.

Let f be a primitive form in Sk(SL2(Z)). Then Shimura [54] showed that there exist

two complex numbers c±(f), uniquely determined up to Q(f)× multiple such that the

following property holds:

(AL) The value ΓC(l)
√
−1

l
L(l,f,χ)

τ(χ)cs(f)
belongs to Q(f)(χ) for any positive integer l ≤

k− 1 and a Dirichlet character χ, where τ(χ) is the Gauss sum of χ, and s = s(l, χ) = +

or − according as χ(−1) = (−1)l or (−1)l−1.

We note that the above value belongs to K(χ).

For short, we write

L(l, f, χ; cs(f)) =
ΓC(l)

√
−1

l
L(l, f, χ)

τ(χ)cs(f)
.
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We sometimes write cs(l,χ)(f) = cs(l)(f) and L(l, f, χ; cs(l,χ)(f)) = L(l, f ; cs(l)(f)) if χ is

the principal character. We note that the value L(l, f, χ; cs(f)) depends on the choice of

cs(f), but if (χη)(−1) = (−1)l+m, then s := s(l, χ) = s(m, η) and, the ratio L(l,f,χ;cs(f))
L(m,f,η;cs(f))

does not depend on cs(f), which will be denoted by L(l,f,χ)
L(m,f,η) . For two positive integers

l1, l2 ≤ k− 1 and Dirichlet characters χ1, χ2 such that χ1(−1)χ2(−1) = (−1)l1+l2+1, the

value

ΓC(l1)ΓC(l2)L(l1, f, χ1)L(l2, f, χ2)
√
−1

l1+l2+1
τ((χ1χ2)0)(f, f)

belongs to Q(f)(χ1, χ2), where (χ1χ2)0 is the primitive character associated with χ1χ2

(cf. [53]). We denote this value by

L(l1, l2; f ;χ1, χ2).

In particular, we put

L(l1, l2; f) = L(l1, l2; f ;χ1, χ2)

if χ1 and χ2 are the principal characters. This value does not depend upon the choice of

c±(f). Let f be a primitive form in Sk(SL2(Z)). Let f1, . . . , fd be a basis of Sk(SL2(Z))
consisting of primitive forms with f1 = f and let Df be the ideal of Q(f) generated by all∏d

i=2(λfi(T (m))− λf (T (m)))’s (m ∈ Z>0). For a prime ideal p of an algebraic number

field, let pp be the prime number such that (pp) = Z ∩ p. The following proposition is

due to [38, Theorem 5.4].

Proposition 3.4. Let f be a primitive form in Sk(SL2(Z)). Let χ1 and χ2 be

primitive characters with conductors N1 and N2, respectively, and let l1, l2 be positive

integers such that k− l1 +1 ≤ l2 ≤ l1 − 1 ≤ k− 2. Let p be a prime ideal of Q(f)(χ1, χ2)

with pp > k. Suppose that p divides neither DfN1N2 nor ζ(1−k). Then L(l1, l2; f ;χ1, χ2)

is p-integral.

For two primitive forms f1 ∈ Sk1
(SL2(Z)) and f2 ∈ Sk2

(SL2(Z)) we define the

Rankin–Selberg L function L(s, f1 ⊗ f2) as

L(s, f1 ⊗ f2) =
∏
p

(
2∏

i=1

2∏
j=1

(
1− βi,p(f1)βj,p(f2)p

−s
))−1

.

Let F be a Hecke eigenform inMk(Γ
(n)), and for a prime number p we take the p-Satake

parameters α0(p), α1(p), . . . , αn(p) of F so that

α0(p)
2α1(p) · · ·αn(p) = pk1+···+kn−n(n+1)/2.

We define the polynomial Lp(X,F, Sp) by

Lp(X,F, Sp) = (1− α0(p)X)

n∏
r=1

∏
1≤i1<···<ir≤n

(
1− α0(p)αi1(p) · · ·αir (p)X

)
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and the spinor L function L(s, F,Sp) by

L(s, F, Sp) =
∏
p

Lp(p
−s, F, Sp)−1.

We note that L(s, f, Sp) is Hecke’s L function L(s, f) if f is a primitive form. In this

case we write Lp(s, f) for Lp(s, f, Sp). We also define the polynomial Lp(X,F, St) by

(1−X)
n∏

i=1

(1− αi(p)X)(1− αi(p)
−1X)

and the standard L function L(s, F, St) by

L(s, F, St) =
∏
p

Lp(p
−s, F, St)−1.

For a Hecke eigenform F ∈ Sk(Γ
(r)) put

L(s, F, St) = ΓC(s)
r∏

i=1

ΓC(s+ k − i)
L(s, F, St)

(F, F )
.

Remark 3.5. We note that for a positive integer m ≤ k − r

L(m,F,St) = Ar,k,m
L(m,F, St)

πr(k+m)+m−r(r+1)/2(F, F )

with an element Ar,k,m ∈ Z[2−1] such that ordp(Ar,k,m) = 0 for any prime number

p ≥ 2k − r − 1.

Proposition 3.6. Let F be a Hecke eigenform in Sk(Γ
(r)). We define n0 = 3 if

r ≥ 5 with r ≡ 1 mod 4 and n0 = 1 otherwise. Let m be a positive integer n0 ≤ m ≤
k− r such that m ≡ r mod 2. Then, a(A,F )a(B,F )L(m,F,St) belongs to Q(F ) for any

A,B ∈ Hr(Z)>0.

Proof. We note that the value a(A,F )a(B,F )L(m,F, St) remains unchanged if

we replace F by γF with any γ ∈ C×. By the multiplicity one theorem for Hecke

eigenforms (cf. Theorem A.2 (3) and Remark A.2 (2)), we can take some non-zero complex

number γ such that γF ∈ Sk(Γ
(r))(Q(F )). For this γ, we see L(m, γF, St) ∈ Q(F ) by

[50, Appendix A]. This proves the assertion. □

Let R be a commutative ring, and a an ideal of R. For two polynomials P (X) =∑n
i=1 aiX

i and Q(X) =
∑n

i=1 biX
i, we write

P (X) ≡ Q(X) mod a

if ai ≡ bi mod a for any 1 ≤ i ≤ m. Now we will state Harder’s conjecture.
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Conjecture 3.7 ([17]). Let k and j be non-negative integers such that j is even

and k ≥ 3. Let f =
∑
a(n, f)e(nz) ∈ S2k+j−2(SL2(Z)) be a primitive form, and suppose

that a “large” prime p of Q(f) divides L(k + j, f ; cs(k+j)). Then, there exists a Hecke

eigenform F ∈ S(k+j,k)(Γ
(2)), and a prime ideal p′ | p in (any field containing) Q(f)Q(F )

such that, for all primes p

Lp(X,F, Sp) ≡ Lp(X, f)(1− pk−2X)(1− pj+k−1X) mod p′.

In particular,

λF (T (p)) ≡ pk−2 + pj+k−1 + a(p, f) mod p′.

Remark 3.8. (1) The original version of Harder’s conjecture did not mention

what “largeness” of p means.

(2) To formulate Harder’s conjecture we must choose the periods cs(f) in an appropri-

ate way. The original version of Harder’s conjecture did not specify them. After

that, Harder suggested assuming another type of divisibility condition instead of

the divisibility of L(k+ j, f ; cs(f)) in his conjecture (cf. [18]). However, it does not

seem so easy to confirm such a condition.

(3) The original version of Harder’s conjecture, which states only the last congruence

on λF (T (p)), is naturally included in the above Euler factor version since we have

Lp(X,F, Sp) = 1− λF (T (p))X + λF (ρ̃2,1(p))X
2

− λF (T (p))p
2k+j−3X3 + p4k+2j−6X4,

and

Lp(X, f) = 1− a(p, f)X + p2k+j−3X2.

(4) The above congruence is trivial in the case k is even and j = 0. Indeed, for the

Saito–Kurokawa lift F of f , we have

Lp(X,F, Sp) = Lp(X, f)(1− pk−2X)(1− pk−1X),

so we have equality, not only congruence.

To avoid the ambiguity in (1) and (2) of Remark 3.8, we propose the following

conjecture, which we also call Harder’s conjecture.

Conjecture 3.9. Let k and j be non-negative integers such that j is even and

k ≥ 3, j ≥ 4. Let f be as that in Conjecture 3.7. Suppose that a prime ideal p of Q(f)

satisfies pp > 2k + j − 2 and that p divides L(k+j,f)
L(kj ,f)

, where kj = k + j/2 or k + j/2 + 1

according as j ≡ 0 mod 4 or j ≡ 2 mod 4. Then the same assertion as Conjecture 3.7

holds.
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Remark 3.10. There is no ambiguity in the assumptions of Conjecture 3.9. More-

over, since we can compute L(k+j,f)
L(kj ,f)

rigorously, we can easily check the assumption on p.

4. An enhanced version of Harder’s conjecture.

Conjectures 3.7 and 3.9 are not concerning the congruence between the Hecke eigen-

values of two Hecke eigenforms in the same space, and this is one of the reasons that it

is not easy to confirm it. To treat the conjecture more accessibly, we reformulate it in

the case k is even. (For odd k, see [21], [23].)

To do so, first, we review several results, on the Galois representations attached to

automorphic forms, and on liftings. Let R be a locally compact topological ring, and M

a free R-module of finite rank. For a profinite group G, let ρ : G −→ AutR(M) be a

continuous representation of G. When we fix a basis of M with rankRM = n, we write

ρ : G −→ GLn(R). The following result is due to Deligne [13] in the case n = 1, and due

to Weissauer [59] in the case n = 2.

Theorem 4.1. Let F be a Hecke eigenform in Skn
(Γ (n)) with n ≤ 2, where kn = k

or (k + j, k) according as n = 1 or n = 2. Let K be a number field containing Q(F )

and p be a prime ideal of K. Then there exists a semi-simple Galois representation

ρF = ρF,p : Gal(Q/Q) −→ GL2n(Kp) such that ρF,p is unramified at any prime number

p ̸= pp and

det
(
12n − ρF,p(Frob

−1
p )X

)
= Lp(X,F, Sp),

where Frobp is the arithmetic Frobenius at p.

Theorem 4.2. (1) Let k = (k1, . . . , kn) ∈ Zn with k1 ≥ · · · ≥ kn > n, and G be a

Hecke eigenform in Sk(Γ
(n)). Let k ≥ 4 and j > 0 and d > 0. Assume that

(a) k ≡ n mod 2, j ≡ 0 mod 2;

(b) k > 2d+ 1 and j > 2d− 1;

(c) j
2 + d < ki − i < j

2 + k − d− 1 for i = 1, . . . , n.

Define k′ = (k′1, . . . , k
′
n+4d) ∈ Zn+4d so that k′1 ≥ . . . ≥ k′n+4d and

{k′1 − 1, k′2 − 2, . . . , k′n+4d − n− 4d} = {k1 − 1, k2 − 2, . . . , kn − n}

∪
{
j

2
+ k + d− 2,

j

2
+ k + d− 3, . . . ,

j

2
+ k − d− 1

}
∪
{
j

2
+ d,

j

2
+ d− 1, . . . ,

j

2
− d+ 1

}
.

Then, for any Hecke eigenform F ∈ S(k+j,k)(Γ
(2)) there exists a Hecke eigenform

A
(I),k′

n,d,k (F,G) ∈ Sk′(Γ (n+4d)) such that

L
(
s,A

(I),k′

n,d,k (F,G), St
)
= L(s,G, St)

2d∏
i=1

L

(
s+ d+

j

2
+ k − 1− i, F, Sp

)
.
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Here we make the convention that L(s,G, St) = ζ(s) if n = 0.

(2) Let k and n be positive even integers such that k > n > 2. Let f be a primitive

form in S2k−n(SL2(Z)) and G be a Hecke eigenform in S(k,k−n+2)(Γ
(2)). Then,

there exists a Hecke eigenform A
(II)
n (f,G) ∈ Sk(Γ

(n)) such that

L
(
s,A(II)

n (f,G), St
)
= L(s,G,St)

n−2∏
i=1

L(s+ k − 1− i, f).

Theorem 4.3. Let G be a Hecke eigenform in Sk(Γ
(n)) for a fixed k =

(k1, . . . , kn) ∈ Zn with k1 ≥ · · · ≥ kn > n. For positive integers k and d with k > d, we

assume one of the following conditions :

(1) k − d > k1 − 1 and k ≡ d mod 2.

(2) k + d− 1 < kn − n, k > d and k ≡ d+ n mod 2.

Define k′ = (k′1, . . . , k
′
n+2d) ∈ Zn+2d so that k′1 ≥ · · · ≥ k′n+2d and

{k′1 − 1, k′2 − 2, . . . , k′n+2d − (n+ 2d)}
= {k1 − 1, k2 − 2, . . . , kn − n} ∪ {k + d− 1, k + d− 2, . . . , k − d}.

Then, for any Hecke eigenform f ∈ S2k(SL2(Z)), there exists a Hecke eigenform

Mk′

n,d,k(f,G) ∈ Sk′(Γ (n+2d)) such that

L
(
s,Mk′

n,d,k(f,G), St
)
= L(s,G, St)

2d∏
i=1

L(s+ k + d− i, f).

Here we make the convention that L(s,G, St) = ζ(s) if n = 0.

Theorem 4.2 (1) for the case n = 0, and Theorem 4.2 (2) have been proved in [14,

Proposition 5.3] and [14, Proposition 5.2], respectively. (These results were proved under

a certain assumption. But such an assumption was proved by Arancibia, Mœglin and

Renard [2](cf. Remark A.2), and they are now unconditional results.) A general case of

Theorem 4.2 (1) and Theorem 4.3 may be proved similarly. But, for readers’ convenience

we will give their proofs in Appendix A. Theorem 4.2 was conjectured by Ibukiyama [22]

in special cases with numerical examples. We say that the lifts in (1) and (2) are the

lifts of types A(I) and A(II), respectively. If n = 0 and

k′ =
( 2d︷ ︸︸ ︷
j

2
+ k + d− 1, . . . ,

j

2
+ k + d− 1,

2d︷ ︸︸ ︷
j

2
+ 3d+ 1, . . . ,

j

2
+ 3d+ 1

)
,

we simply write A
(I)
4d (F ) instead of A

(I),k′

0,d,k (F,G) because k and k′ are determined by F

and d. Theorem 4.3 was conjectured by Miyawaki [49] with numerical examples. We also

note thatMk′

n,d,k(f,G) was constructed by Ikeda [33] in the case (2) under the assumption

k1 = · · · = kn and the non-vanishing condition. In particular in the case n = 0, it was
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constructed by Ikeda [32], and we write it as I2d(f). The following proposition is more

or less well known.

Proposition 4.4. Let k = (k1, . . . , km, . . . , kn) and l = (k1, . . . , km) with k1 ≥
· · · ≥ km ≥ · · · ≥ kn. Let F be a Hecke eigenform in Sl(Γ

(m)), and suppose that

[F ]k = [F ]k(Z, 0) belongs to Mk(Γ
(n)). Then, [F ]k is a Hecke eigenform and

L(s, [F ]k, St) = L(s, F, St)
n∏

i=m+1

(
ζ(s+ ki − i)ζ(s− ki + i)

)
.

Proof. The assertion is well known in the case k1 = · · · = km = · · · = kn (cf. [1,

Exercise 4.3.24]), and a general case can also be proved by the same argument. □

Let F and G be Hecke eigenforms in Mk(Γ
(n)) and p a prime ideal of Q(F ). We

say that F is Hecke congruent to G modulo p if there is a prime ideal p′ of Q(F ) ·Q(G)

lying above p such that

λG(T ) ≡ λF (T ) mod p for any T ∈ L(k)
n .

We denote this property by

G ≡ev F mod p.

Conjecture 4.5. Let k, j and n be positive integers. Suppose that

(a) n ≡ k ≡ j ≡ 0 mod 2 and j/2 + n/2 ≡ 1 mod 2.

(b) k > n+ 1 and j > n− 1.

Put

k =
( n︷ ︸︸ ︷
j

2
+ k +

n

2
− 1, . . . ,

j

2
+ k +

n

2
− 1,

n︷ ︸︸ ︷
j

2
+

3n

2
+ 1, . . . ,

j

2
+

3n

2
+ 1
)
.

Let f(z) =
∑
a(l, f)e(lz) ∈ S2k+j−2(SL2(Z)) be a primitive form. Let p be a prime ideal

of Q(f) such that pp > 2k + j − 2 and suppose that p divides L(k+j,f)
L(j/2+k+n/2−1,f) . Then,

there exists a Hecke eigenform F ∈ S(k+j,k)(Γ
(2)) such that

A
(I)
2n (F ) ≡ev [In(f)]

k mod p.

Remark 4.6. Since we have j+3n/2+1 > 3n/2+1, [In(f)]
k belongs toMk(Γ

(2n))

by Proposition 2.1 (2).

Let O be the ring of integers in an algebraic number field K, and P a maximal ideal

of O. Let AP be the Grothendieck group of finite dimensional Galois representations of

Gal(Q/Q) with coefficients OP/P unramified outside P. Let S be the set of isomorphism

classes of irreducible representations in AP. Write an element H of AP as
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H =
∑
S∈S

nSS with nS ∈ Z

and set

∥H∥ =
∑
S∈S

|nS | dimS.

Lemma 4.7. Let P be as above. Suppose that pP is odd. Let H be an element of

AP. Suppose that (χ̄i+1)H = 0 with i = 1, 2, where χ̄ is the mod P representation of the

cyclotomic character χ : Gal(Q/Q) −→ GL1(KP). Then ∥H∥ is divisible by (pP − 1)/i.

Proof. The assertion for i = 1 has been proved in Proposition 10.4.6 of Chenevier

and Lannes [12], and the other assertion can also be proved by using the same argument

as there. □

Theorem 4.8. Let the notation be as in Conjecture 4.5.

(1) Conjecture 3.9 holds for the case j ≡ 0 mod 4 if Conjecture 4.5 holds for n = 2.

(2) Suppose that 2k + j − 2 ≥ 20. Then Conjecture 3.9 holds for the case j ≡ 2 mod 4

if Conjecture 4.5 holds for n = 4.

Proof. Let f be a primitive form in Conjecture 3.9, and suppose that a prime

ideal p of Q(f) satisfies the assumptions in Conjecture 3.9. Then, by Conjecture 4.5, there

exists a Hecke eigenform F in S(k+j,k)(Γ
(2)) satisfying the conditions in Conjecture 4.5.

Let K = Q(f) ·Q(F ) and O the ring of integers in K. Take a prime ideal P of O lying

above p. Then it suffices to show that

Lp(X,F, Sp) ≡ Lp(X, f)(1− pk−2X)(1− pj+k−1X) mod P (Cp)

for any prime number p. By Proposition 4.4, we have

L(s, [In(f)]
k, St) = L(s, In(f), St)

n∏
i=1

ζ

(
s+

j

2
+
n

2
+ 1− i

)
ζ

(
s− j

2
− n

2
− 1 + i

)
and

L(s, In(f), St) = ζ(s)
n∏

i=1

L

(
s+

j

2
+ k +

n

2
− 1− i, f

)
.

Hence

L(s, [In(f)]
k, St)

= ζ(s)
n∏

i=1

L

(
s+

j

2
+ k +

n

2
− 1− i, f

) n∏
i=1

ζ

(
s+

j

2
+
n

2
+ 1− i

)
ζ

(
s− j

2
− n

2
− 1 + i

)

= ζ(s)

n∏
i=1

(
L

(
s+

j

2
+ k +

n

2
− 1− i, f

)
ζ

(
s+

j

2
+
n

2
+ 1− i

)
ζ

(
s− j

2
+
n

2
− i

))
.
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Then, by (1) of Theorem 4.2, we have

L
(
s,A

(I)
2n (F ), St

)
= ζ(s)

n∏
i=1

L(s+ j/2 + k + n/2− 1− i, F, Sp).

By [1, (3.3.52), (3.3.53), Theorem 3.3.30, Lemma 3.3.34], for any prime number p, the i-

th coefficient of Lp(X, [In(f)]
k, St) and Lp(X,A

(I)
2n (F ),St) are of the form pniλ[In(f)]k(Ti)

and pniλ
A

(I)
2n (F )

(Ti) with ni ∈ Z≤0 and Ti ∈ Lk
n, respectively. Therefore, for any prime

number p ̸= pp, they belong to OP, and by the assumption, we have

Lp

(
X,A

(I)
2n (F ), St

)
≡ Lp(X, [In(f)]

k,St) mod P.

Hence we have

n∏
i=1

Lp(p
i−1X,F, Sp) ≡

n∏
i=1

Lp(p
i−1X, f)(1− pi−1pk−2X)(1− pi−1pj+k−1X) mod P

(Dp)

for any prime number p ̸= pp. Let ρF : Gal(Q/Q) −→ GL4(KP) and ρf : Gal(Q/Q) −→
GL2(KP) be the Galois representation attached to the spin L functions of F and f ,

respectively. For ρ = ρF , ρf let ρ̄ be the mod P representation of ρ. Then, by (Dp), in

the Grothendieck ring AP,

(1 + χ̄−1)ρ̄F = (1 + χ̄−1)(ρ̄f + χ̄2−k + χ̄−j−k+1)

or

(1 + χ̄−1)(1 + χ̄−2)ρ̄F = (1 + χ̄−1)(1 + χ̄−2)(ρ̄f + χ̄2−k + χ̄−j−k+1)

according as n = 2 or 4. Define an element H of AP as

H = ρ̄F − (ρ̄f + χ̄2−k + χ̄−j−k+1).

Then we have ||H|| ≤ 8. Let n = 2. Then, we have

(1 + χ̄−1)H = 0.

Since we have 2k+ j − 2 ≡ 2 mod 4, by assumption we have pP = pp ≥ 2k+ j − 2 ≥ 18.

Hence, by Lemma 4.7, we have H = 0. Let n = 4. Then,

(1 + χ̄−1)(1 + χ̄−2)H = 0.

Since we have pP = pp > 2k + j − 2 ≥ 20, using Lemma 4.7 repeatedly, we also have

H = 0. Hence, in AP we have

ρ̄F = ρ̄f + χ̄2−k + χ̄−j−k+1.

This implies that the congruence relation (Cp) holds for any prime number p ̸= pp.
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Let p = pp. Then we have

λ
A

(I)
2n (F )

(r2n,1(p)) = p−j/2−k−n/2+1λF (T (p))

n∑
i=1

pi,

and

λ[In(f)]k(r2n,1(p)) = p−j/2−k−n/2+1a(p, f)

n∑
i=1

pi + p−j/2−n/2−1
n∑

i=1

pi + pj+n/2+1
n∑

i=1

p−i.

Since the Hecke operator r̃2n,1(p) = pk+j/2+n/2−2r2n,1(p) belongs to Lk
2n by Proposi-

tion 3.3, we have

λF (T (p)) ≡ λ
A

(I)
2n (F )

(r̃2n,1(p)) ≡ λ[In(f)]k(r̃2n,1(p)) ≡ a(p, f) mod P.

Moreover, all the coefficients of Xm with m ≥ 2 of the both polynomials Lp(X,F, Sp)

and L(X, f)(1 − pk−2X)(1 − pj+k−1X) are congruent to 0 modulo P. This proves the

assertion. □

Remark 4.9. (1) Our conjecture is stronger than Conjecture 3.7 in the case k is

even.

(2) The above conjecture tells nothing about the case k is odd. However, we can

propose a similar conjecture in the case k is odd.

5. Pullback formula.

5.1. Differential operators with automorphic property.

In this section, we explain some explicit differential operators that are used in the

pullback formula.

5.1.1. Setting. Now for an integer n ≥ 2, fix a partition (n1, n2) with n = n1+n2
with ni ≥ 1. Let λ be a dominant integral weight with depth(λ) ≤ min(n1, n2). For

i = 1, 2, let (ρni,λ, Vni,λ) be the representation of GLni(C) defined in Section 1. Put

Vλ,n1,n2 = Vn1,λ ⊗ Vn2,λ. We regard Hn1 × Hn2 as a subset of Hn by the diagonal em-

bedding. We consider Vλ,n1,n2 valued differential operators D on scalar valued functions

of Hn, satisfying Condition 1 below on automorphy: We fix λ, n1, n2 as above. For

variables Zi ∈ Hni , irreducible representations (ρi, Vi) of GLni(C) for i = 1, 2, a V1 ⊗ V2
valued function f(Z1, Z2) on Hn1 ×Hn2 , and gi =

(
Ai Bi

Ci Di

)
∈ Spni

(R), we write

(f |ρ1,ρ2 [g1, g2])(Z1, Z2) = ρ1(C1Z1 +D1)
−1 ⊗ ρ2(C2Z2 +D2)

−1f(g1Z1, g2Z2).

We regard Spn1
(R)× Spn2

(R) as a subgroup of Spn(R) by

ι(g1, g2) =


A1 0 B1 0

0 A2 0 B2

C1 0 D1 0

0 C2 0 D2

 (gi ∈ Spni
(R) for i = 1, 2).
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For Z = (zij) ∈ Hn, we denote by ∂Z the following n × n symmetric matrix of partial

derivations

∂Z =

(
1 + δij

2

∂

∂zij

)
1≤i,j≤n

.

For a Vλ,n1,n2 valued polynomial P (T ) in components of n× n symmetric matrix T , we

put DP = P (∂Z).

Condition 1. We fix k and λ. Let D = P (∂Z) as above. For any holomorphic

function F on Hn and any (g1, g2) ∈ Spn1
(R)× Spn2

(R), the operator D satisfies

Res(D(F |k[ι(g1, g2)]) = (Res D(F ))|detk ρn1,λ,detk ρn2,λ
[g1, g2],

where Res means the restriction of a function on Hn to Hn1 ×Hn2 .

For Z =
( Z1 Z12

tZ12 Z2

)
∈ Hn with Z1 ∈ Hn1 , Z2 ∈ Hn2 , Z12 ∈Mn1,n2(C), we sometimes

write D(F )
(
Z1 O
O Z2

)
instead of Res D(F (Z)). This condition on D is, roughly speaking,

the condition that, if F is a Siegel modular form of degree n of weight k, then Res(D(F ))
is a Siegel modular form of weight detk ρni,λ for each variable Zi for i = 1, 2. Here,

if 2k ≥ n, the condition that ρ1 and ρ2 correspond to the same λ is a necessary and

sufficient condition for the existence of D ([20]). A characterization for P is given in

[20]. We review it since we need it later. For an m × 2k matrix X = (xiν) of variables

and for any (i, j) with 1 ≤ i, j ≤ m, we put

∆ij(X) =
2k∑
ν=1

∂2

∂xiν∂xjν
.

We say that a polynomial P̃ (X) in xiν is pluri-harmonic if

∆ij(X)P̃ (X) = 0

for any i, j with 1 ≤ i, j ≤ m.

Theorem 5.1 ([20]). We assume that 2k ≥ n. Notation and assumptions being

as above, the operator D = P (∂Z) satisfies Condition 1 if and only if the Vλ,n1,n2 valued

polynomial P satisfies the following two conditions.

(1) For i = 1, 2, let Xi be an ni × 2k matrix of variables. Then the polynomial

P̃ (X1, X2) := P

(
X1

tX1 X1
tX2

X2
tX1 X2

tX2

)
is pluri-harmonic for each X1, X2, that is, ∆ij(X1)P̃ = ∆ij(X2)P̃ = 0, regarding that

the variables in X1 and in X2 are independent.

(2) For any A1 ∈ GLn1(C) and A2 ∈ GLn2(C), we put

A =

(
A1 0

0 A2

)
.
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Then we have

P (AT tA) = ρn1,λ(A1)⊗ ρn2,λ(A2)P (T ).

Besides, for any fixed k with 2k ≥ n = n1 + n2 and λ, the polynomial P (T ) satisfying

(1) and (2) exists and is unique up to constant.

There are a lot of results concerning explicit description of P , notably in [25], [27].

But still we need more explicit formula for our purpose and we will explain it in the next

subsection.

5.1.2. Explicit formula. In this section, we consider some special type of λ.

We assume that λ = (l, . . . , l, 0, . . . , 0) with depth m. Put λ0 = (l, . . . , l). Then first we

explain some general way to construct Vλ,n1,n2
polynomial P (T ) satisfying Condition 1

from a scalar valued polynomial P0(S) satisfying Condition 1 for ρm,λ0 ⊗ ρm,λ0 . Here T

is an n×n symmetric matrix and S is an 2m× 2m symmetric matrix. Then for the case

m ≤ 2 and any l, we give a completely explicit description of P (T ). (The case m = 1

has been already given in [20] and a new point is the case m = 2.) Here we note that

ρm,λ0 = detl and detk ρm,λ0 = detk+l.

For any positive integers k, l, we consider Condition 1 for n = 2m, (n1, n2) = (m,m)

and from weight k to weight detk+l ⊗ detk+l. If we denote by Pk,k+l(S) a non-zero

polynomial satisfying Condition 1 for this case, this is a scalar valued polynomial in

components of an 2m × 2m symmetric matrix S. We assume that we know Pk,k+l(S),

and then we consider how to give more general case starting from this Pk,k+l.

First we review realization of representations of GLn1(C)×GLn2(C) by bidetermi-

nants. Let U , V be m × n1 and m × n2 matrices of independent variables respectively.

Let λ = (l, . . . , l, 0, . . . , 0) such that depth(λ) = m. For a integers n1 and n2 such that

n1, n2 ≥ m, put k1
′ = (

m︷ ︸︸ ︷
l, . . . , l,

n1−m︷ ︸︸ ︷
0, . . . , 0) and k2

′ = (

m︷ ︸︸ ︷
l, . . . , l,

n2−m︷ ︸︸ ︷
0, . . . , 0), and let C[U, V ]k′

1,k
′
2

be the vector space defined in Section 2. Then, we can take C[U, V ]k′
1,k

′
2
as a represen-

tation space of ρn1,λ ⊗ ρn2,λ as explained in Section 2. We denote by U the following

2m× n matrix, where n = n1 + n2:

U =

(
U 0

0 V

)
.

Proposition 5.2. Notation being as above, consider λ = (l, . . . , l, 0, . . . , 0) such

that depth(λ) = m. For a partition n = n1+n2, we assume that m ≤ min(n1, n2). Let T

be an n×n symmetric matrix. Then for Q(T ) = Pk,k+l(UT tU), the differential operator

Dλ,n1,n2 = Q(∂Z) for Z ∈ Hn satisfies Condition 1 for k and detk ρn1,λ, det
k ρn2,λ.

Proof. For A1 ∈ GLn1(C) and A2 ∈ GLn2(C), we put

A =

(
A1 0

0 A2

)
.

The fact that Q(T ) is in the representation space of ρn1,λ⊗ρn2,λ for the action U → UA1

and V → V A2 is concretely proved by using a structure theorem on the shape of Pk,k+l(S)
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in [29, Proposition 3.1], but we will later give a more abstract proof in the lemma below.

So here we prove the rest. We write

T =

(
T11 T12
tT12 T22

)
, (1)

where T11 is an n1 × n1, T12 is an n1 × n2, and T22 is an n2 × n2 matrix. Then

Q(AT tA) = Pk,k+l

(
UA1T11

t(UA1) UA1T12
t(V A2)

(V A2)
tT12

t(UA1) V A2T22
t(V A2)

)
.

So surely the action of A to T gives the action of A on U , V given by UA1 and V A2.

This means that

Q(AT tA) = ρn1,λ(A1)⊗ ρn2,λ(A2)Q(T ).

Finally we see the pluri-harmonicity. Let X and Y be n1 × 2k and n2 × 2k matrices,

respectively. We put

Q̃(X,Y ) = Q

(
X tX X tY

Y tX Y tY

)
and we must show that Q̃ is pluri-harmonic for each X and Y . As before, for m × 2k

matrices X1 and X2, we write

P̃k,k+l(X1, X2) = Pk,k+l

(
X1

tX1 X1
tX2

X2
tX1 X2

tX2

)
.

Then we have Q̃(X,Y ) = P̃k,k+l(UX, V Y ). We write U = (uij), V = (vij) and put

(ξiµ)1≤i≤m,1≤µ≤2k = UX, (ηiν)1≤i≤m,1≤µ≤2k = V Y.

Then we have

ξiµ =
2k∑
l=1

uilxlµ.

So we have

∂Q̃(X,Y )

∂xlµ
=

m∑
i=1

uil
∂P̃k,k+l

∂ξiµ
(UX, V Y ),

∂2Q̃(X,Y )

∂xlµ∂xtµ
=

m∑
i,j=1

uilujt
∂2P̃k,k+l

∂ξiµ∂ξjµ
(UX, V Y ).

So for any l, t with 1 ≤ t, l ≤ n1, we have

2k∑
µ=1

∂2Q̃(X,Y )

∂xlµ∂xtµ
=

m∑
i,j=1

uilujt

2k∑
µ=1

∂2P̃k,k+l

∂ξiµ∂ξjµ
(UX, V Y ).
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The last expression is 0 by the pluri-harmonicity of Pk,k+l. In the same way, we can

show that Q̃(X,Y ) is pluri-harmonic also for Y . □

Lemma 5.3. Let n1, m be integers such that 1 ≤ m ≤ n1. Let U be anm×n1 matrix

of variables. Let Q(U) be a (scalar valued) polynomial in the components of U such that

Q(BU) = det(B)lQ(U) for any B ∈ GLm(C). Then Q(U) is a linear combination of

products
∏l

i=1 UIi , where Ii ⊂ {1, . . . , n1} with |Ii| = m and UIi is the m × m minor

consisting of pν-th columns for pν ∈ Ii.

Proof. We regard B = (bij)1≤i,j≤m as a matrix of variables and define a matrix

of operators by

∂

∂B
=

(
∂

∂bij

)
1≤i,j≤m

.

We consider

det

(
∂

∂B

)
=
∑

σ∈Sm

sgn(σ)
∂

∂b1σ(1)
· · · ∂

∂bmσ(m)
,

where Sm is the permutation group on m letters. By Cayley type identity ([11]), we

have

det

(
∂

∂B

)
det(B)l = (l)m det(B)l−1,

where (x)m = x(x + 1) · · · (x +m − 1) is the ascending Pochhammer symbol, so by the

assumption Q(BU) = det(B)lQ(U), we have

det

(
∂

∂B

)
Q(BU) = (l)m det(B)l−1Q(U).

Repeating this process, we have

det

(
∂

∂B

)l
Q(UB) = (l)m(l − 1)m · · · (1)mQ(U).

On the other hand, writing U = (uiν) and BU = (viν), we have viν =
∑m

p=1 bipupν and

∂

∂biσ(i)
(Q(BU)) =

m∑
j=1

n1∑
ν=1

∂vjν
∂biσ(i)

∂Q

∂vjν
(BU) =

n1∑
ν=1

uσ(i)ν
∂Q

∂viν
(BU).

So we have

det

(
∂

∂B

)
Q(BU) =

n1∑
ν1,...,νm=1

( ∑
σ∈Sm

sgn(σ)uσ(1)ν1
· · ·uσ(m)νm

)
∂mQ

∂v1ν1 · · · ∂vmνm

(BU).

Here if we fix ν1, . . . , νm, then we have
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∑
σ∈Sm

sgn(σ)uσ(1)ν1
· · ·uσ(m)νm

=

∣∣∣∣∣∣∣
u1ν1 · · · u1νm

...
. . .

...

umν1 · · · umνm

∣∣∣∣∣∣∣ .
If νi = νj for some i ̸= j, then of course this is 0 and if the cardinality |I| of I =

{ν1, . . . , νm} is m, then this is UI up to sign. By taking B to be scalar, we see that Q(U)

is a homogeneous polynomial of the total degree ml, so the ml-th derivative of Q(U) is

a constant. So we see that

det

(
∂

∂B

)l
Q(BU)

is a linear combination of l products of m × m minors of U . Since this is equal to

(l)m(l − 1)m−1 · · · (1)mQ(U), we see that Q(U) is a linear combination of l products of

minors of degree m of U . □

Remark 5.4. By Proposition 5.2, the operator Res Dλ,n1,n2 sendsMk(Γ
(n1+n2)) to

Mdetk ρn1,λ
(Γ (n1))⊗Mdetk ρn2,λ

(Γ (n2)). Moreover, if l > 0 and n1 = m, by the property

of Pk,k+l(∂Z), for A =
( A1 R/2
tR/2 A2

)
∈ Hm+n2(Z)≥0 with A1 ∈ Hm(Z), A2 ∈ Hn2(Z)

and R ∈ Mm,n2(Z), we have Dλ,m,n2e(tr(AZ)) = 0 unless A1 > 0. Hence we have

(Res Dλ,m,n2)(Mk(Γ
(m+n2))) ⊂ Sdetk ρm,λ

(Γ (m))⊗Mdetk ρn2,λ
(Γ (n2)).

If we write

Pk,k+l(S) = Pk,k+l

(
S11 S12
tS12 S22

)
for m×m matrices Sij , then by definition, for Bi ∈ GLm(C), we have

Pk,k+l

(
B1S11

tB1 B1S12
tB2

B2
tS12B1 B2S22

tB2

)
= det(B1B2)

lPk,k+l(S).

So

Pk,k+l

(
(B1U)T11

t(B1U) (B1U)T12
t(B2V )

(B2V ) tT12
t(B1U) (B2V )T22

t(B2V )

)
= det(B1B2)

lPk,k+l

(
UT11

tU UT12
tV

V tT12
tU V T22

tV

)
.

So applying Lemma 5.3, we see that Q(T ) is in the representation space of ρn1,λ ⊗ ρn2,λ.

Now we apply this for concrete cases. For m = 1, the polynomial Pk,k+l is essen-

tially the (homogeneous) Gegenbauer polynomial of degree l. Based on these facts and

Lemma 5.2, this case gives differential operators for n = n1+n2 and λ with depth 1, that

is, the case λ = (l, 0, . . . , 0). The corresponding representation is the symmetric tensor

representation Sym(l) of degree l, so D is from weight k to detk Sym(l) ⊗ detk Sym(l).

An explicit generating function of such operators for general n = n1+n2 has been already

given in [20, pp.113–114].
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Here we give the depth 2 case with λ = (l, l, 0, . . . , 0). This means m = 2 and an

explicit generating function of Pk,k+l(S) for l ≥ 0 is given in [20, p.114] explicitly, where

S is a 4×4 symmetric matrix. Polynomials for general n = n1+n2 for λ = (l, l, 0, . . . , 0)

based on Proposition 5.2 are given as follows. For a 4×4 symmetric matrix S =
( S11 S12
tS12 S22

)
with 2× 2 matrices Sij of variables for i, j = 1, 2, we put

f1(S) = det(S12),

f2(S) = det(S11) det(S22),

f3(S) = det(S).

For an indeterminate t, we put

∆0(S, t) = 1− 2f1(S)t+ f2(S)t
2,

R(S, t) =
(
∆0(S, t) +

√
∆0(S, t)− 4f3(S)t2

)
/2.

Then for each l, we define a polynomial Ql(T,U, V ) = Ql,n1,n2(T,U, V ) by the following

generating function.

1

R(UT tU, t)k−5/2
√
∆0(UT tU, t)− 4f3(UT tU)t2

=
∞∑
l=0

Ql(T,U, V )tl.

Here Ql is a non-zero polynomial. For Z ∈ Hn, we put

Dl = Dl,n1,n2 = Ql,n1,n2(∂Z , U, V ). (2)

Then Dl is a differential operator satisfying Condition 1 for k and λ = (l, l, 0, . . . , 0),

where the representation space is realized by bideterminants as we explained. When

2k ≥ n, such differential operator Dl is unique up to constant.

Actually, the generating series is easily expanded by a well-known formula, and more

explicitly we have the following formula,

Lemma 5.5. The polynomials fi being the same as above, we put

Fi(T,U, V ) = fi(UT tU)

for i = 1, 2, 3. Then we have

Ql(T,U, V )

=
∑

0≤a,b,c
a+2b+2c=l

(−1)b2a

a!b!c!

(
k + c− 3

2

)
a+b+c

F1(T,U, V )aF2(T,U, V )bF3(T,U, V )c.

5.2. Weak pullback formula.

Let n1, n2 be positive integers such that n1 ≤ n2. Let λ be a dominant integral

weight such that depth(λ) ≤ n1. We consider a differential operator Dλ = Dλ,n1,n2 on

Hn1+n2 satisfying Condition 1 for k and detk ρn1,λ ⊗ detk ρn2,λ. For an integer r such

that depth(λ) ≤ r, we put ρr = detk ρr,λ. For a Hecke eigenform f ∈ Sρr (Γ
(r)) we define
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D(s, f) as

D(s, f) = ζ(s)−1
r∏

i=1

ζ(2s− 2i)−1L(s− r, f, St).

For any polynomial Q(U) with complex coefficients, we denote by Q(U) = Q(U) the

polynomial obtained by changing the coefficients of Q(U) by the complex conjugates.

For any function f(Z), we write (θf)(Z) = f(−Z). This means that if f(z) is a Fourier

series of the following form

f(z) =
∑
T

a(T )e(tr(TZ))

with a(T ) = a(T )(U) a polynomial in U , then we have

(θf)(Z) =
∑
T

a(T )e(tr(TZ)).

So if we take a(T ) to be real, (which is possible), we just have θf = f .

The next theorem is (a pullback formula) essentially due to Kozima [46].

Theorem 5.6. Let λ = (l, . . . , l, 0, . . . , 0), n1, n2, k and Dλ,n1,n2 be those in Propo-

sition 5.2. Besides we assume that k is even and n2 ≥ n1. Let s ∈ C such that

2Re(s) + k > n1 + n2 + 1. Then for any Hecke eigenform f ∈ Sρn1
(Γ (n1)) we have(

f,Dλ,n1,n2En1+n2,k

((
∗ O

O −W

)
, s̄

))
= c(s, ρn1)D(2s+ k, f)[f ]

ρn2
ρn1

(W, s),

where c(s, ρn1) is a function of s depending on ρn1 but not on n2.

Remark 5.7. This type of formula has been proved in the case k > n1+n2+1 and

s = 0 in [45] in more general setting, and it can also be generalized in the case s ̸= 0 using

the same method as in [45] (cf. [46]). Kozima [46] gave an abstract pullback formula for

general λ assuming that P in Condition 1 is realized in his special way. The existence

of P satisfying Condition 1 itself has been known in [20]. For further development on

realization of P and exact pullback formula, see [28].

Now we prove Proposition 2.1 (2), that is, we prove the following statement:

Let k = (

m︷ ︸︸ ︷
k + l, . . . , k + l,

n−m︷ ︸︸ ︷
k, . . . , k) such that l ≥ 0 and k > 3m/2 + 1 and let f be

a Hecke eigenform in Sk+l(Γ
(m)). Then [f ]k(Z, s) can be continued meromorphically to

the whole s-plane as a function of s, and holomorphic at s = 0. Moreover suppose that

k > (n+m+ 3)/2. Then [f ]k(Z) belongs to Mk(Γ
(n)).

Proof. Suppose that l > 0. Let λ = (

m︷ ︸︸ ︷
l, . . . , l, 0, . . . , 0). Then for any n2 ≥ m we

have
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f,Dλ,m,n2Em+n2,k

((
∗ O

O −W

)
, s̄

))
= c(s, ρm)D(2s+ k, f)[f ]

ρn2
ρm (W, s).

In particular,(
f,Dλ,m,mE2m,k

((
∗ O

O −W

)
, s̄

))
= c(s, ρm)D(2s+ k, f)f(W ).

We claim that c(s, ρm) is a meromorphic function of s, and holomorphic and non-zero at

s = 0. We note that Dλ,m,m coincides with the differential operator
◦

Dl
m,k in [10, (1.14)]

up to constant multiple not depending on s. Moreover, by [10, Theorem 3.1], we have(
f,

◦
Dl

m,k E2m,k

((
∗ O

O −W∗

)
, s̄

))
= Ωk+l,l(s)D(k + 2s, f)f(W ),

where

Ωk+l,l(s)

= (−1)
m(k+l)

2 2−m(k+l)+
m(m+3)

2 −2msπ
m(m+1)

2
Γm(k + l + s− m

2 )Γm(k + l − m+1
2 )

Γm(k + s)Γm(k + s− m
2 )

.

(There is a minor misprint in [10]. On page 1393, line 9, “21+n(n+1)/2−2ns” should

be “21−nl+n(n+3)/2−2ns”.) Therefore c(s, ρm) coincides with Ωk+l,l(s) up to constant

multiple. Hence, c(s, ρm) is a meromorphic function of s, and holomorphic and non-zero

at s = 0.

We have(
f,Dλ,m,nEm+n,k

((
∗ O

O −W

)
, s̄

))
= c(s, ρm)D(2s+ k, f)[f ]k(W, s).

As stated before, Em+n,k

(
( Z O
O W ), s

)
can be continued meromorphically to the whole

s-plane, and holomorphic at s = 0, and therefore so is Dλ,m,nEm+n,k

(
( ∗ O
O −W ), s̄

)
. More-

over, D(2s + k, f) can be continued meromorphically to the whole s-plane. Moreover,

since we have k > 3m/2 + 1, by [55, Theorem 21.3], it is holomorphic and non-zero at

s = 0. This proves the first part of the assertion. Moreover, if k ≥ (n+m+ 1)/2, then

by Proposition 2.1 (1), Dλ,m,nEm+n,k(
∗ O
O −W ) belongs to Mk(Γ

(n)) as a function of W

except in the cases k = (n+m+2) ≡ 2 mod 4 and k = (n+m+3)/2 ≡ 2 mod 4. Since

c(0, ρm)D(k, f) ̸= 0, this proves the second part of the assertion. □

We note that the constant cr in the pullback formula depends on two things. One

is a definition of the differential operator, and the other is a definition of the Petersson

inner product (P) in Section 2. First we fix a definition of the inner product. For a while,

we fix a dominant integral weight λ = (l1, . . . , lm, 0, . . . , 0) of depth m.

For an integer r such that m ≤ r, let U be an m × r matrix of variables and

k′
r = (l1, . . . , lm,

r−m︷ ︸︸ ︷
0, . . . , 0), and we take Vr,λ = C[U ]k′

r
as the representation space of ρr,λ
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as stated before. Here we make the convention that C[U ]k′
r
= C if m = 0. We fix an

inner product ⟨v, w⟩ of Vr,λ such that

⟨ρr,λ(g)v, w⟩ = ⟨v, ρr,λ(tg)w⟩

as in (H) in Section 2. This relation is valid also for the representation ρr = detk ρr,λ, so

we often use the same inner product for these. Now we must fix an inner product ⟨∗, ∗⟩
of Vr,λ explicitly. Since we have Vr,λ = C[U ]k′

r
, an element of Vr,λ is a polynomial in the

components of an m × r matrix U where the action of ρr,λ is induced by U → UA for

any A ∈ GLr(C): (ρr,λ(A)Q)(U) = Q(UA). For any B ∈ GLr(C), we obviously have

Q(UB) = Q(UB).

Here the right-hand side means to substitute the argument U in Q(U) by UB and the

left-hand side means to replace coefficients of Q(UB) by complex conjugates. We put

∂

∂U
=

(
∂

∂uij

)
1≤i≤m,1≤j≤r

.

For two homogeneous polynomials P (U) and Q(U) of the same degree, we define

⟨P,Q⟩0 = P

(
∂

∂U

)
Q(U).

Then we have

⟨ρr,λ(A)P,Q⟩0 = ⟨P, ρr,λ(tA)Q⟩0. (3)

Indeed, if we put V = UB, then by the chain rule we have

∂

∂U
=

∂

∂V
tB,

so if we put A = tB−1, then we have

P

(
∂

∂U
A

)
= P

(
∂

∂V

)
,

and

P

(
∂

∂U
A

)
Q(U) = P

(
∂

∂V

)
Q(V tA)

= P

(
∂

∂V

)
Q(V tA).

So (3) is proved. Of course such an inner product is determined only up to constant,

and there is no canonical choice, but we must fix something. When ρr,λ is scalar valued

representation detl, if we define an inner product by ⟨P,Q⟩0/(l)r(l− 1)r · · · (1)r then by

the Cayley type identity [11], this just means to take a product of scalars, so
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(f, g) =

∫
Γ(r)\Hr

f(Z)g(Z) det(Im(Z))l−r−1dZ.

Then we have a weak type of the pullback formula. Let k and l be non-negative integers.

For the dominant integral λ = (l, l, 0, . . . , 0) of depth m and integers n1, n2 such that

2 ≤ n1 ≤ n2, let ρn1 = detk ρn1,λ and ρn2 = detk ρn2,λ be the representations of GLn1(C)
and GLn2(C), respectively, as above. We note that m = 0 or 2 according as l = 0 or

l > 0. Moreover, let Dl,n1,n2 be the differential operator corresponding to the polynomial

Ql,n1,n2 in Lemma 5.5.

Theorem 5.8. Let the notation be as above. We define a subspace M̃ρn1
(Γ (n1)) of

Mρn1
(Γ (n1)) as

M̃ρn1
(Γ (n1)) =

{
F ∈Mρn1

(Γ (n1)) | Φn1
2 (F ) ∈ Sρ2(Γ

(2))
}

or Mρn1
(Γ (n1)) according as l > 0 or l = 0. Let {f2,j}1≤j≤d(2) be a basis of Sρ2(Γ

(2))

consisting of Hecke eigenforms, and take Hecke eigenforms {Fj}d(2)+1≤j≤d so that

{[f2,j ]
ρn1
ρ2 (1 ≤ j ≤ d(2)), Fj (d(2) + 1 ≤ j ≤ d)} forms a basis of M̃ρn1

(Γ (n1)). Suppose

that k ≥ max((n1 + n2 + 1)/2, 6) and that neither k = (n1 + n2 + 2)/2 ≡ 2 mod 4 nor

k = (n1 + n2 + 3) ≡ 2 mod 4. Then

Dl,n1,n2En1+n2,k

(
Z O

O W

)
= c(0, ρ2)

d(2)∑
j=1

D(k, f2,j)

(f2,j , f2,j)
[f2,j ]

ρn1
ρ2 (Z)(U)[θf2,j ]

ρn2
ρ2 (W )(V )

+
d∑

j=d(2)+1

Fj(Z)(U)Gj(W )(V ) (Z ∈ Hn1 ,W ∈ Hn2),

where Gj is a certain element of Mρn2
(Γ (n2)). Here, U and V are m × n1 and m × n2

matrices of variables, respectively, and we regard [f2,j ]
ρn1
ρ2 and Fj (resp. [θf2,j ]

ρn2
ρ2 and

Gj ) as elements of Hol(Hn1)[U ]k′
n1

(resp. Hol(Hn2)[V ]k′
n2

). Moreover we have

c(0, ρ2) =
29−2(k+2l)(−1)k+lπ3(2k − 3)l(2k − 1)2l−3

l!
.

Proof. First suppose that l > 0. Let d0 = dimMρn1
(Γ (n1)) and {Fj}d+1≤j≤d0

be a basis of the orthogonal complement of M̃ρn1
(Γ (n1)) in Mρn1

(Γ (n1)) with respect to

the Petersson inner product. Then we have

Dl,n1,n2En1+n2,k

(
Z O

O W

)
=

d(2)∑
j=1

[f2,j ]
ρn1
ρ2 (Z)(U)Gj(W )(V )

+

d0∑
j=d(2)+1

Fj(Z)(U)Gj(W )(V ).

For m1 ≥ m2 and l1 ≥ l2 and H(Z,W )(U, V ) =
∑

j Aj(Z)(U)Bj(W )(V ) ∈
Mρm1

(Γ (m1))⊗Mρl1
(Γ (l1)), we define Φm1

m2
⊗ Φl1

l2
(H(Z,W )(U, V )) as
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Φm1
m2

⊗ Φl1
l2
(H(Z,W )(U, V )) =

∑
j

Φm1
m2

(Aj(Z)(U))Φl1
l2
(Bj(W )(V )).

We note that we have Φn1
2 (Fj) = 0 for d(2) + 1 ≤ j ≤ d. Hence we have

(Φn1
2 ⊗ Φn2

n2
)

(
Dl,n1,n2

En1+n2,k

(
Z O

O W

))

=

d(2)∑
j=1

f2,j(Z
(2))(U (2))Gj(W )(V ) +

d0∑
j=d+1

Φn1
2 (Fj(Z)(U))Φn2

n2
(Gj(W )(V )),

where Z(2) = prn1
2 (Z) for Z ∈ Hn1 , and U

(2) = (uij)1≤i,j≤2 for U = (uij)1≤i≤2,1≤j≤n1 .

On the other hand, let A =
( A1 O R1/2

O O O
tR1/2 O D1

)
∈ Hn1+n2(Z)≥0 with A1 ∈ H2(Z), D1 ∈

Hn2(Z) and R1 ∈M2,n2(Z). Then we have

(Φn1
2 ⊗ Φn2

n2
)

(
Res Dl,n1,n2

(
e

(
tr

(
A

(
Z Z12

tZ12 W

)))))
= Res Dl,2,n2

(
e

(
tr

((
A1 R1/2

tR1/2 D1

)(
Z(2) Z

(2)
12

tZ
(2)
12 W

))))

for
( Z Z12
tZ12 W

)
∈ Hn1+n2 with Z ∈ Hn1 , W ∈ Hn2 and Z12 ∈ Mn1,n2(C). Here Z

(2)
12 is the

upper-left 2× n2 block of Z12. Hence we have

(Φn1
2 ⊗ Φn2

n2
)

(
Dl,n1,n2En1+n2,k

(
Z O

O W

))
= Dl,2,n2E2+n2,k

(
Z(2) O

O W

)
,

and therefore, by Remark 5.4, (Φn1
2 ⊗Φn2

n2
)
(
Dl,n1,n2En1+n2,k(

Z O
O W )

)
belongs to Sρ2(Γ

(2))⊗
Mρn2

(Γ (n2)). We note that Φ
ρn1
ρ2 (Fj) ̸∈ Sρ2

(Γ (2)) for d + 1 ≤ j ≤ d0. Hence we have

Gj(W )(V ) = 0 for d+ 1 ≤ j ≤ d0 and

Dl,2,n2E2+n2,k

(
Z(2) O

O W

)
=

d(2)∑
j=1

f2,j(Z
(2))(U (2))Gj(W )(V ).

By Theorem 5.6, we see that

(f2,j , f2,j)θGj(W )(V ) = c(0, ρ2)D(k, f2,j)[f2,j ]
ρn2
ρ2 (W )(V ).

We note that D(k, f2,j) is real number, and hence

Gj(W )(V ) = c(0, ρ2)
D(k, f2,j)

(f2,j , f2,j)
[θf2,j ]

ρn2
ρ2 (W )(V ).

This proves the first part of the assertion. By using the same argument as above, we

have
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Dl,2,2E4,k

(
Z(2) O

O W (2)

)
=

d(2)∑
j=1

f2,j(Z
(2))(U (2))θf2,j(W

(2))(V (2)),

where W (2) = prn1
2 (Z) for W ∈ Hn2 , and V

(2) = (vij)1≤i,j≤2 for V = (vij)1≤i≤2,1≤j≤n1 .

Let

ι : Sk+l(Γ
(2)) −→ Sρ2

(Γ (2))

be the isomorphism stated before. Take an element g2,j ∈ Sk+l(Γ
(2)) such that f2,j =

ι(g2,j). Then {g2,j}j forms a basis of Sk+l(Γ
(2)) and

D(k, f2,j) = D(k, g2,j)

and

(f2,j , f2,j) = (g2,j , g2,j).

We also note that

Dl,2,2 = (detU (2) detV (2))l Dl,k+l,

where Dk,k+l = Pk,k+l(∂Z̃) with Z̃ ∈ H4. Hence we have

Dk,k+lE4,k

(
Z(2) O

O W (2)

)
= c(0, ρ2)

d(2)∑
j=1

D(k, g2,j)

(g2,j , g2,j)
g2,j(Z

(2))⊗ θg2,j(W
(2)).

Hence we have(
g2,j ,Dk,k+lE4,k

(
∗ O

O −W (2)

))
= c(0, ρ2)D(k, g2,j)g2,j(W

(2)).

On the other hand, let
◦
Dl

2,k be the differential operator in [10, (1.14)]. Then by [10,

Theorem 3.1] we have(
g2,j ,

◦
Dl

2,k E4,k

(
∗ O

O −W (2)

))
= c̃2D(k, g2,j)g2,j(W

(2))

with

c̃2 = (−1)k+l26−2(k+l)π3Γ(k + l − 1)Γ(k + l − 3/2)2Γ(k + l − 2)

Γ(k)Γ(k − 1/2)Γ(k − 1)Γ(k − 3/2)
.

By page 71 in [37], we have

Dλ = dk,l
◦
Dl

2,k



1375(257)

Harder’s conjecture I 1375

with

dk,l =
( 2k+2l−5

l
)∏l

i=1(k + l − 2− i/2)(k + l − 3/2− i/2)
.

Hence we have c(0, ρ2) = dk,lc̃2, and by a simple computation we prove the assertion.

Next suppose that l = 0. Then the assertion can be proved using the same argument as

above. □

Remark 5.9. (1) The second part of the assertion can be also proved by the fact

that the differential operator is realized uniformly in Lemma 5.5 and its operation on the

automorphy factor is essentially the same as the case when U = V = 12.

(2) If k > n1 +n2 +1, then [f ]
ρn1
ρr (Z,U) and [f ]

ρn2
ρr (W,V ) are holomorphic modular

forms for any Hecke eigenform f in Sρr (Γ
(r)), and we can get an explicit pullback formula

(cf. Theorems B.1 and B.13). However, if k ≤ n1 + n2 + 1, it does not necessarily hold.

This is why we say that the formula in the above theorem is a weak type of pullback

formula. We note that it is sufficient for proving our main results in Section 8.

6. Congruence for Klingen–Eisenstein lifts.

To explain why Conjecture 4.5 is reasonable, we consider congruence for Klingen–

Eisenstein series, which is a generalization of [39]. For λ = (k − l, k − l, 0, 0) with k ≥ l

and 2 ≤ m ≤ 4, let (ρm,λ, Vm,λ) be the representation of GLm(C) defined in the previous

section, and put ρm = detl ⊗ρm,λ and k′
m = (k−l, k−l,

m−2︷ ︸︸ ︷
0, . . . , 0) and km = (k, k,

m−2︷ ︸︸ ︷
l, . . . , l).

Let U and V be 2×n1 and 2×n2 matrices of variables, respectively. Then we recall that

Vn1,λ = C[U ]k′
n1
, Vn2,λ = C[V ]k′

n2
and that every element F ofMρn1

(Γ (n1))⊗Mρn2
(Γ (n2))

is expressed as

F (Z1, Z2) =
∑

A1∈Hn1 (Z)≥0,A2∈Hn2 (Z)≥0

c(A1, A2;F )(U, V )e(tr(A1Z1 +A2Z2))

with c(A1, A2;F )(U, V ) ∈ C[U, V ]k′
n1

,k′
n2
. For a subring R of C, we denote by

(Mρn1
(Γ (n1)) ⊗Mρn2

(Γ (n2)))(R) the submodule of Mρn1
(Γ (n1)) ⊗Mρn2

(Γ (n2)) consist-

ing of all F ’s such that c(A1, A2;F )(U, V ) ∈ R[U, V ]k′
n1

,k′
n2

for all A1 ∈ Hn1(Z)≥0, A2 ∈
Hn2(Z)≥0. We also note that every element F of Mρn1

(Γ (n1))⊗ Vn2,λ is expressed as

F (Z1) =
∑

A1∈Hn1 (Z)≥0

c(A1;F )(U, V )e(tr(A1Z1))

with c(A1;F )(U, V ) ∈ C[U, V ]k′
n1

,k′
n2
. We then define a submodule (Mρn1

(Γ (n1)) ⊗
Vn2,λ)(R) of Mρn1

(Γ (n1)) ⊗ Vn2,λ consisting of all F ’s such that c(A1;F )(U, V ) ∈
R[U, V ]k′

n1
,k′

n2
for all A1 ∈ Hn1(Z)≥0.

For positive integers n and l, put

Z(n, l) = ζ(1− l)

[n/2]∏
j=1

ζ(1 + 2j − 2l).
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We define Ẽn,l as

Ẽn,l(Z) = Z(n, l)En,l(Z)

and we set

E(Z1, Z2) = Ek,l,n1,n2(Z1, Z2) = (k − l)!(2π
√
−1)−2(k−l)Dk−l,n1,n2Ẽn1+n2,l

(
Z1 O

O Z2

)
.

Moreover, for positive integers m, l and a Hecke eigenform F ∈ Sk(Γ
(2)) put

Cm,l(F ) =
Z(m, l)

Z(4, l)
L(l − 2, F, St).

We also use the same symbol Cm,l(f) to denote the value Z(m,l)
Z(4,l) L(l−2, f, St) for a Hecke

eigenform f ∈ Sρ2(Γ
(2)). As stated before, we have the following isomorphism:

ι : Sk(Γ
(2)) ∋ F 7→ F̃ := F (detU)k−l ∈ Sρ2(Γ

(2)), (IS)

where U is 2× 2 matrix of variables. Then we note that Cm,l(F̃ ) = Cm,l(F ) for a Hecke

eigenform F ∈ Sk(Γ
(2)).

Now, for our later purpose, we rewrite a special case of Theorem 5.8 as follows.

Proposition 6.1. Let n1, n2 be integers such that 2 ≤ n1 ≤ n2 ≤ 4 and let k, l be

even positive integers such that k ≥ l. Then we have

Ek,l,n1,n2(Z1, Z2) = γ2

d(2)∑
j=1

Cn1+n2,l(f2,j)[f2,j ]
ρn1
ρ2 (Z1)(U)[θf2,j ]

ρn2
ρ2 (Z2)(V )

+

d∑
j=d(2)+1

Fj(Z1)(U)G̃j(Z2)(V ),

where γ2 is a certain rational number which is p-unit for any prime number p > 2k, and

G̃j(Z2)(V ) is an element of Mρn2
(Γ (n2)).

We write E(Z1, Z2) as

E(Z1, Z2) =
∑

N∈Hn2

g
(n1)
(k,l,n1,n2),N

(Z1)e(tr(NZ2)). (∗)

Then g
(n1)
N = g

(n1)
(k,l,n1,n2),N

belongs to Mρn1
(Γ (n1)) ⊗ Vn2,λ. To consider congruence

between Klingen–Eisenstein lift and another modular form of the same weight, we rewrite

the above proposition as follows:

Corollary 6.2. Under the same notation and the assumption as above, let N ∈
Hn2(Z)>0. Then,
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g
(n1)
N (Z1) = γ2

d(2)∑
j=1

Cn1+n2,l(f2,j)[f2,j ]
ρn1
ρ2 (Z1)(U)a(N, [f2,j ]

ρn2
ρ2 )(V )

+
d∑

j=d(2)+1

Fj(Z1)(U)a(N, G̃j)(V ).

Observe that the first term in the right-hand side of the above is invariant if we

multiply f2,j by an element of C×.

To see the Fourier expansion of Ẽn,k(Z), we review the polynomial Fp(B,X) at-

tached to the local Siegel series bp(B, s) for an element B of Hn(Zp) (cf. [35]). We define

χp(a) for a ∈ Q×
p as follows:

χp(a) :=


+1 if Qp(

√
a) = Qp,

−1 if Qp(
√
a)/Qp is quadratic unramified,

0 if Qp(
√
a)/Qp is quadratic ramified.

For an element B ∈ Hn(Zp)
nd with n even, we define ξp(B) by

ξp(B) := χp((−1)n/2 detB).

For a non-degenerate half-integral matrixB of size n over Zp define a polynomial γp(B,X)

in X by

γp(B,X) :=

(1−X)
∏n/2

i=1(1− p2iX2)(1− pn/2ξp(B)X)−1 if n is even,

(1−X)
∏(n−1)/2

i=1 (1− p2iX2) if n is odd.

Then it is well known that there exists a unique polynomial Fp(B,X) in X over Z with

constant term 1 such that

bp(B, s) = γp(B, p
−s)Fp(B, p

−s)

(e.g. [35]). For B ∈ Hn(Z)>0 with n even, let dB be the discriminant of

Q(
√
(−1)n/2 detB)/Q, and χB = (dB

∗ ) the Kronecker character corresponding to

Q(
√
(−1)n/2 detB)/Q. We note that we have χB(p) = ξp(B) for any prime p.

We define a polynomial F ∗
p (T,X) for any T ∈ Hn(Zp) which is not-necessarily non-

degenerate as follows: For an element T ∈ Hn(Zp) of rank m ≥ 1, there exists an element

T̃ ∈ Hm(Zp)
nd such that T ∼Zp T̃⊥On−m. We note that Fp(T̃ ,X) does not depend on

the choice of T̃ . Then we put F ∗
p (T,X) = Fp(T̃ ,X). For an element T ∈ Hn(Z)≥0 of

rank m ≥ 1, there exists an element T̃ ∈ Hm(Z)>0 such that T ∼Z T̃⊥On−m. Then χT̃

does not depend on the choice of T̃ . We write χ∗
T = χT̃ if m is even.

Proposition 6.3. Let k ∈ 2Z. Assume that k ≥ (n + 1)/2 and that neither

k = (n+ 2)/2 ≡ 2 mod 4 nor k = (n+ 3)/2 ≡ 2 mod 4. Then for T ∈ Hn(Z)≥0 of rank

m, we have
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a(T, Ẽn,k) = 2[(m+1)/2]
∏

p|det(2T̃ )

F ∗
p (T, p

k−m−1)

×


∏[n/2]

i=m/2+1 ζ(1 + 2i− 2k)L(1 +m/2− k, χ∗
T ) if m is even,∏[n/2]

i=(m+1)/2 ζ(1 + 2i− 2k) if m is odd.

Here we make the convention F ∗
p (T, p

k−m−1) = 1 and L(1 +m/2− k, χ∗
T ) = ζ(1− k) if

m = 0.

To consider the integrality of a(T, Ẽn,k), we provide the following lemma.

Lemma 6.4. Let T ∈ Hm(Zp)
nd. Then, we have Fp(p

−[(m+1)/2]T,X) ∈ Z[X].

Proof. The assertion has been proved in [32, Lemma 15] in the case m is even,

and the assertion for odd case can also be proved in the same manner. □

Proposition 6.5. Let the notation and the assumption be as in Proposition 6.3.

Then, we have Ẽn,k belongs toMk(Γ
(n))(Q). In particular, for any prime number p > 2k,

Ẽn,k belongs to Mk(Γ
(n))(Z(p)).

Proof. The first assertion is well known. We prove the second assertion. Let

T ∈ Hn(Z)≥0 of rank m. Since we have k ≥ (n + 1)/2, by Lemma 6.4, the product∏
p| det(2T̃ ) F

∗
p (T, p

k−m−1) is an integer. Moreover, since we have p > 2k, by the theorem

of von Staudt–Clausen, the value ζ(1−k) and ζ(1+2i−2k) for a positive integer i ≤ [n/2]

belong to Z(p), and by [6, (5.1), (5.2)], the value L(1 +m/2 − k, χ∗
T ) belongs to Z(p) if

m ≥ 2 is even. Thus the assertion follows from Proposition 6.3. □

Proposition 6.6. Let the notation and the assumption be as in Proposition 6.1.

Then

Ek,l,n1,n2(Z1, Z2) ∈
(
Mρn1

(Γ (n1))⊗Mρn2
(Γ (n2))

)
(Q),

and more precisely

Ek,l,n1,n2
(Z1, Z2) ∈

(
Mρn1

(Γ (n1))⊗Mρn2
(Γ (n2))

)
(Z(p))

for any prime number p > 2k.

Proof. For T1 ∈ Hn1 and T2 ∈ Hn2 , put

ϵ(T1, T2)(U, V ) = ϵk,l,n1,n2(T1, T2)(U, V )

=
∑

R∈Mn1,n2 (Z)

a

((
T1 R/2

tR/2 T2

)
, Ẽn1+n2,l

)

×Qk−l,n1,n2

((
T1 R/2

tR/2 T2

)
, U, V

)
, (E)

where Qk−l,n1,n2 is the polynomial in Section 5.1.2. Then we have
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Ek,l,n1,n2(Z1, Z2) =
∑

T1∈Hn1 (Z)≥0,T2∈Hn2 (Z)≥0

ϵ(T1, T2)(U, V )e(tr(T1Z1 + T2Z2)).

Hence the assertion follows from Proposition 6.5. □

Corollary 6.7. For each N ∈ Hn2(Z)>0 let g
(n1)
N be that defined above. Then

g
(n1)
(k,l,n1,n2),N

(Z1) ∈ (Mρn1
(Γ (n1))⊗ Vn2,λ)(Q)

and moreover

g
(n1)
(k,l,n1,n2),N

(Z1) ∈ (Mρn1
(Γ (n1))⊗ Vn2,λ)(Z(p))

for any prime number p > 2k.

Proof. g
(n1)
(k,l,n1,n2),N

(Z1) is expressed as

g
(n1)
(k,l,n1,n2),N

(Z1) =
∑

T∈Hn1 (Z)

ϵk,l,n1,n2(T,N)(U, V )e(tr(TZ1)).

Hence the assertion directly follows from the above proposition. □

Proposition 6.8. Let the notation and the assumptions be as in Theorem 5.8,

and let 2 ≤ m ≤ 4. Then for any Hecke eigenform f in Sρ2(Γ
(2))(Q(f)), [f ]ρm

ρ2
∈

Mρm(Γ (m))(Q(f)).

Proof. The assertion in the case k = l has been proved by Mizumoto [50], and

the other case can also be proved by using the same method. □

Proposition 6.9. Let the notation and the assumption be as in Proposition 6.1.

Let f be a Hecke eigenform in Sk(Γ
(2)). Then, for any N ∈ Hn2(Z)>0 and N1 ∈

H2(Z)>0, the value Cn2+2,l(f)a(N, [f̃ ]
ρn2
ρ2 )(V )a(N1, f) belongs to Q(f)[V ]k′

2
, where f̃ is

that in (IS).

Proof. The value in question remains unchanged if we replace f by cf with

c ∈ C×. Moreover we can take c ∈ C× so that cf ∈ Sk2(Γ
(2))(Q(f)). Thus the assertion

follows from Proposition 6.8 remarking that a(N1, [f̃ ]
ρ2
ρ2
) = a(N1, f)(detU)k−l. □

The following lemma can be proved by a careful analysis of the proof of [36,

Lemma 5.1].

Lemma 6.10. Let F1, . . . , Fd be Hecke eigenforms in Mρn1
(Γ (n1)) linearly indepen-

dent over C. Let K be the composite field Q(F1) · · ·Q(Fd), O the ring of integers in K

and p a prime ideal of K. Let G(Z,U, V ) ∈ (Mρn1
(Γ (n1))⊗Vn1,λ)(O(p)) and assume the

following conditions

(1) G is expressed as

G(Z,U, V ) =
d∑

i=1

ci(V )Fi(Z)(U)
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with ci(V ) ∈ Vn1,λ.

(2) c1(V )a(A1, F1)(U) ∈ (Vn1,λ⊗Vn1,λ)(K) and ordp(c1(V )a(A1, F1)(U)) < 0 for some

A1 ∈ Hn1(Z).

Then there exists i ̸= 1 such that

Fi ≡ev F1 mod p.

Theorem 6.11. Let k and l be positive even integers such that k ≥ l ≥ 6 and put

k = (k, k, l, l) and M̃k(Γ
(4)) = M̃ρ4(Γ

(4)). Let F ∈ Sk(Γ
(2)) be a Hecke eigenform, and

p a prime ideal of Q(F ). Suppose that p divides |a(A1, F )|2 L(l − 2, F, St) and does not

divide

C8,l(F )a(A1, F )a(A, [F ]k)

for some A1 ∈ H2(Z)>0 and A ∈ H4(Z)>0, where [F ]k = [F̃ ]ρ4
ρ2

as stated in Section 1.

Then there exists a Hecke eigenform G ∈ M̃k(Γ
(4)) such that G is not a constant multiple

of [F ]k and

G ≡ev [F ]k mod p.

Proof. The assertion in the case k = l has been proved in [39] in more general

setting and the other case can also be proved using the same argument as in its proof.

But for the sake of convenience, we here give an outline of the proof. Suppose that k > l.

Take a basis {Fj}1≤j≤d of M̃k(Γ
(4)) such that F1 = [F ]k. Then, by Corollary 6.2, for

any A ∈ H4(Z)>0 we have

g
(4)
(k,l,4,4),A(Z1) =

d∑
j=1

cj(A, V )Fj(Z1)(U),

where c1(A, V ) = γ2C8,l(F )a(A, [F ]k)(V ) and cj(A, V ) = a(A, G̃j)(V ) for some G̃j ∈
Mk(Γ

(4)) for 2 ≤ j ≤ d. We have

Z(8, l)

Z(4, l)
C8,l(F )a(A, [F ]k)(U)a(A, [F ]k)(V )

=
(Z(8, l)
Z(4, l)

)2 L(l − 2, F, St)a(A1, F )a(A, [F ]
k)(U)L(l − 2, F, St)a(A1, F )a(A, [F ]k)(V )

|a(A1, F )|2 L(l − 2, F, St)
.

We note that the reduced denominator of Z(8,l)
Z(4,l) is not divisible by p by the theorem of

von Staudt–Clausen. Hence we have

ordp
(
γ2C8,l(F )a(N, [F ]k)(U)a(N, [F ]k)(V )

)
< 0.

Hence the assertion follows from Lemma 6.10. □
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Proposition 6.12. Let k and l be even integers such that 6 ≤ l ≤ k. Let f be

a primitive form in S2k−2(SL2(Z)). Suppose that a prime ideal p in Q(f) satisfies the

following conditions (1), (2), (3):

(1) pp ≥ 2k − 2.

(2) p divides L(k + l − 4, f)/L(k, f).

(3) p divides neither Df nor ζ(3−2k), where Df is the ideal of Q(f) defined in Propo-

sition 3.4.

Then for any N ∈ H2(Z)>0 such that p ∤ dN , we have

ordp
(
|a(N, I2(f))|2 L(l − 2, I2(f),St)

)
> 0.

Here, dN is the discriminant of Q(
√
− detN)/Q as defined before.

Proof. Let g be a Hecke eigenform in the Kohnen plus space S+
k−1/2(Γ0(4)) cor-

responding to f under the Shimura correspondence (cf. [41]). For any N ∈ H2(Z)>0 we

have a(N, I2(f)) = ba(|dN |, g) with b ∈ Z. Hence

L(l − 2, I2(f), St)|a(N, I2(f))|2 = b2A2,k,l−2
L(l − 2, I2(f), St)

π2k+3l−9⟨I2(f), I2(f)⟩
|a(|dN |, g)|2

with A2,k,l−2 ∈ Z(pp) (cf. Remark 3.5). By definition, we have

L(l − 2, I2(f),St) = ζ(l − 2)L(k + l − 3, f)L(k + l − 4, f).

Moreover, by [42], we have

⟨I2(f), I2(f)⟩ = 2k−2⟨g, g⟩ΓC(2)ζ(2)ΓC(k)L(k, f),

and by [43] we have

|a(|dN |, g)|2

⟨g, g⟩
=

2k−2|dN |k−3/2 ΓC(k − 1)L(k − 1, f, (dN ))

⟨f, f⟩
.

We note that τ((dN )) =
√
−1 |dN |1/2, and π2−lζ(l − 2) and π−2ζ(2) belong to Z(pp).

Hence, by a simple computation, we have

L(l − 2, I2(f),St)|a(N, I2(f))|2 = ϵk,N
L(k + l − 4, f)

L(k, f)
L

(
k + l − 3, k − 1; f ;1,

(dN ))
where ϵk,N is a p-integral rational number. Since p divides neither DfdN nor ζ(3− 2k),

by Proposition 3.4, the value L(k+l−3, k−1; f ;1, (dN )) is p-integral. Thus the assertion

holds. □

The next theorem clarifies what we need to look at to try to prove Conjecture 4.5.
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Theorem 6.13. Let k and l positive even integers such that 6 ≤ l ≤ k, and put

k = (k, k, l, l). Let f be a primitive form in S2k−2(SL2(Z)) and p a prime ideal of Q(f)

such that

(1) pp ≥ 2k − 2.

(2) p divides L(k + l − 4, f)/L(k, f).

(3) p divides neither Df nor ζ(3− 2k).

(4) p divides neither C8,l(I2(f))a(A1, I2(f))a(A, [I2(f)]k) nor dA1 for some A1 ∈
H2(Z)>0 and A ∈ H4(Z)>0.

Then there exists a Hecke eigenform G in M̃k(Γ
(4)) such that G is not a constant multiple

of [I2(f)]
k and

G ≡ev [I2(f)]
k mod p.

Proof. The assertion follows from Theorem 6.11 and Proposition 6.12. □

7. Fourier coefficients of Klingen–Eisenstein lift.

Let k = (k, k, l, l) with k, l positive even integers such that k ≥ l. To confirm the

condition (4) in Theorem 6.13, we give a formula for computing L(l − 2, F, St)a(T, F )

a(N, [F ]k) for a Hecke eigenform F in Sk(Γ
(2)), T ∈ H2(Z)>0 and N ∈ H4(Z)>0. For

T ∈ H2(Z)>0 and N ∈ H4(Z)>0, let ϵk,l,2,4(T,N)(U, V ) be as in (E) and put gN =

g
(2)
(k,l,2,4),N . Recall that U and V are 2× 2 and 2× 4 matrices, respectively, of variables.

We note that ϵk,l,2,4(T,N)(U, V ) can be expressed as

ϵk,l,2,4(T,N)(U, V ) = (detU)k−lϵk,k(T,N)(V )

with ϵk,k(T,N) = ϵk,k(T,N)(V ) ∈ C[V ](k−l,k−l,0,0). Then gN is expressed as

gN (W ) =
∑

T∈H2(Z)

(detU)k−lϵk,k(T,N)e(tr(TW )).

Now, for a positive integer m, let T (m) be the element of L2 defined in Section 3. For

a positive integer m = p1 · · · pr with pi a prime number, we define the Hecke operator

T (m) = T (p1) · · ·T (pr). We make the convention that T (1) = T (1). We note that

T (m) = T (m) if p1, . . . , pr are distinct, but in general it is not. For each m ∈ Z>0 and

N ∈ H4(Z)>0, write gN |T (m)(W ) as

gN |T (m)(W ) =
∑

T∈H2(Z)>0

(detU)k−lϵk,k(m,T,N)e(tr(TW ))

with ϵk,k(m,T,N) ∈ C[V ](k−l,k−l,0,0).

Let Mk,l = Mk(Γ
(2)) or Sk(Γ

(2)) according as k = l or not, and let {Fj}dj=1 be a

basis of Mk,l consisting of Hecke eigenforms. Furthermore write
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Fj |T (m)(z) = λj,mFj(z).

Then the following proposition is a consequence of applying T (m) to the formula in

Corollary 6.2 with n1 = 2 and n2 = 4.

Proposition 7.1. Notation being as above, we have

ϵk,k(m,T,N) =
d∑

j=1

λj,ma(T, Fj)B(Fj)

for any N ∈ H4(Z)>0, T ∈ H2(Z)>0 and m ∈ Z>0, where B(Fj) is a certain element of

C[V ](k−l,k−l,0,0), and in particular we have

B(Fj) = γ2C6,l(Fj)a(N, [Fj ]k)

if Fj ∈ Sk(Γ
(2)). Here, γ2 is the rational number in Proposition 6.1.

We note that C8,l(F ) = ζ(9− 2l)C6,l(F ) for a Hecke eigenform F in Sk(Γ
(2)). Hence

by the above proposition, we have the following formula:

Proposition 7.2. For N1 ∈ H2(Z)>0, N ∈ H4(Z)>0 let em = ϵk,k(m,N1, N).

Let F be a Hecke eigenform in Sk(Γ
(2)) and {Fj}dj=1 a basis of Mk,l consisting of

Hecke eigenforms such that F1 = F . For positive integers m1, . . . ,md put ∆ =

∆(m1, . . . ,md) = det(λj,mi)1≤i,j≤d. Then,

∆γ2C8,l(F )a(N1, F )a(N, [F ]k) = ζ(9− 2l)

∣∣∣∣∣∣∣
e1 λ1,2 . . . λ1,d
...

...
...

...

ed λd,2 . . . λd,d

∣∣∣∣∣∣∣ .
Corollary 7.3. Let the notation and the assumption as above. Let p be a

prime ideal of Q(F ) such that pp > 2k. Suppose that p divides neither ζ(9 − 2l) nor∣∣∣∣ e1 λ1,2 ... λ1,d...
...

...
...

ed λd,2 ... λd,d

∣∣∣∣. Then, p does not divide C8,l(F )a(N1, F )a(N, [F ]k).

Proof. By Proposition 3.2, ∆ is an algebraic integer, and by the assumption, γ2
is a p-unit. Thus the assertion holds. □

The following lemma will be used in the next section.

Lemma 7.4. Let N ∈ H4(Z)>0. Then for any T ∈ H2(Z)>0 and a prime number

p, we have the following recursion formula for ϵk,k(m,T,N):

ϵk,k(1, T,N) = ϵk,k(T,N),

and for m > 1,

ϵk,k(m,T,N) = ϵk,k(mp
−1, pT,N) + p2k−3ϵk,k(mp

−1, T/p,N)
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+ pk−2
∑

D∈GL2(Z)UpGL2(Z)/GL2(Z)

ϵk,k(mp
−1, T [D]/p,N),

where p is a prime factor of m and Up = ( 1 0
0 p ).

Proof. The assertion follows from [1, Exercise 4.2.10]. □

Let U and V be the matrices of variables stated above.

Theorem 7.5. For A0 ∈ H2(Z)>0, A1 ∈ H4(Z)>0 and R ∈ M2,4(Z), put r(R) =
r(A0, A1, R) = rank

( A0 R/2
tR/2 A1

)
and

Z(A0, A1, R, l) =


L
(
4− l, χ( A0 R/2

tR/2 A1

)) if r(A0, A1, R) = 6,

ζ(7− 2l) if r(A0, A1, R) = 5,

ζ(7− 2l)L(3− l, χA1) if r(A0, A1, R) = 4.

Moreover, put

P

((
A0 R/2

tR/2 A1

))
(V ) = (k − l)!

∑
a,b,c≥0

a+2b+2c=k−l

(−1)b2a

a!b!c!

(
l + c− 3

2

)
a+b+c

× |R tV |a(|V A1
tV ||A0|)b

∣∣∣∣ A0 R tV/2

V tR/2 V A1
tV

∣∣∣∣c .
Then

ϵk,k(A0, A1)(V ) =
∑

R∈M2,4(Z)(
A1 R/2

tR/2 A1

)
≥0

2[r(R)+1)/2]Z(A0, A1, R, l)P

((
A0 R/2

tR/2 A1

))
(V )

×
∏
p

F ∗
p

((
A0 R/2

tR/2 A1

)
, pl−r(R)−1

)
.

Proof. Let Qk−l,2,4 be the polynomial in Section 5.1.2. Then, by Lemma 5.5, we

have

Qk−l,2,4

((
A0 R/2

tR/2 A1

)
, U, V

)
= (detU)k−lP

((
A0 R/2

tR/2 A1

))
(V ).

Thus by (E) in the proof of Proposition 6.6, Lemma 5.5, and Proposition 6.3, we prove

the assertion. □

We have an explicit formula for Fp(T,X) for any nondegenerate half-integral matrix

T over Zp (cf. [35]), and an algorithm for computing it (cf. Lee [48]). Therefore, by

using Proposition 7.2 and Theorem 7.5 we can compute the Fourier coefficients of the

Klingen–Eisenstein series in question.
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8. Main results.

For l = 12, 16, 18, 22, 26 let ϕl be a unique primitive form in Sl(SL2(Z)), and for

l = 24, 28, 30, 32, 34, 38 let ϕ±l be a unique primitive form in Sl(SL2(Z)) such that

a(2, ϕ±) = a ± b
√
D with a ∈ Q, b ∈ Q>0, where D is the discriminant of Q(ϕ±).

For each (k, j) = (10, 4), (14, 2), or (4, 24) let Gk,j be a Hecke eigenform in S(k+j,k)(Γ
(2))

uniquely determined up to constant multiple, and {G+
14,4, G

−
14,4} is a basis of S(18,14)(Γ

(2))

consisting of Hecke eigenforms.

(1) Let f = ϕ22. Put k = (12, 12, 6, 6). Then, by Taibi [56] and the numerical table

in [57], we have

Sk(Γ
(4)) = ⟨A(I)

4 (G10,4)⟩C,

S(12,12,6)(Γ
(3)) = {0},

S12(Γ
(2)) = ⟨I2(ϕ22)⟩C.

Hence we have M̃k(Γ
(4)) = ⟨[I2(ϕ22)]k, A

(I)
4 (G10,4)⟩C. Then 41 is the only prime num-

ber which satisfies the assumptions in Conjecture 3.9, and it divides L(14, f)/L(12, f).

Let N =

(
1 1/2 0 1/2

1/2 1 0 0
0 0 1 1/2

1/2 0 1/2 1

)
and N1 = ( 1 0

0 1 ). Then, substituting V for ( 1 0 1 0
1 1 0 3 ) in

Theorem 7.5, by a computation with Mathematica [60]

ϵ12,k(N1, N)

((
1 0 1 0

1 1 0 3

))
=

−20874555

28
≡ 11 mod 41.

Hence, applying Corollary 7.3 to d = 1 and λ1,1 = 1, we see that p does not divide

C8,6(I2(ϕ22))a(N, [I2(ϕ22)]k)a(N1, I2(ϕ22)), and by Theorem 6.13 we prove the following

theorem.

Theorem 8.1. There exists a Hecke eigenform G in S(14,10)(Γ
(2)) such that

A
(I)
4 (G) ≡ev [I2(f)]

k mod 41.

Corollary 8.2. Conjecture 3.9 holds for (k, j) = (10, 4).

We note that Harder’s conjecture for (k, j) = (10, 4) has been already proved by

Chenevier and Lannes [12].

(2) Let f = ϕ+30 and f ′ = ϕ−30 and put

α = 4320 + 96
√
51349 and α′ = 4320− 96

√
51349.

Then

a(2, f) = α, a(3, f) = −552α− 99180

and

a(2, f ′) = α′, a(3, f) = −552α′ − 99180.
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We also have

λI2(f)(T (2)) = α+ 49152, λI2(f ′)(T (2)) = α′ + 49152,

and

λI2(f)(T (3)) = −552α+ 19032696, λI2(f ′)(T (3)) = −552α′ + 19032696.

(2.1) Let (k, j) = (14, 4). Then the prime number 4289 divides NQ(f)/Q(L(18, f)/

L(16, f)) and it splits in Q(f). Hence there exists prime ideals q, q′ of Q(f) such that

(4289) = qq′ and q divides L(18, f)/L(16, f). The prime ideal q is the only prime ideal

which satisfies the assumptions in Conjecture 3.9. Put k = (16, 16, 6, 6). LetN andN1 be

as those in (1). For V = ( 1 0 1 0
1 1 0 3 ), put ϵ16,k(N1, N) = ϵ16,k(N1, N)(V ), ϵ16,k(2N1, N) =

ϵ16,k(2N1, N)(V ), and ei = ϵ16,k(i,N1, N) (i = 1, 2). Then

e1 = ϵ16,k(N1, N), e2 = ϵ16,k(2N1, N) + 214ϵ16,k(N1, N)

and

α16,k(N1, N) =

∣∣∣∣ e1 1

e2 λI2(f ′)(T (2))

∣∣∣∣ .
By a computation with Mathematica [60], we have

ϵ16,k(N1, N) = 1744286277555/28672, ϵ16,k(2N1, N) = 309108562779375/112,

and hence

α16,k(N1, N) = 405
(
−1114174584071 + 12920639093

√
51349

)
/896.

Using Theorem 7.5, by a computation with Mathematica [60] we have

NQ(f)/Q(α16,k(N1, N)) ≡ 2206 mod 4289.

Hence, by Corollary 7.3, p does not divide C8,6(I2(f))a(N, [I2(f)]k)a(N1, I2(f)). More-

over, by Taibi [56] and the numerical table in [57], we have

Sk(Γ
(4)) = ⟨A(I)

4 (G+
14,4),A

(I)
4 (G−

14,4)⟩C,

S(16,16,6)(Γ
(3)) = {0},

S16(Γ
(2)) = ⟨I2(ϕ+30), I2(ϕ

−
30)⟩C.

The prime ideal q does not divide Df and [I2(ϕ
+
30)]

k ̸≡ [I2(ϕ
−
30)]

k mod q. Hence, by

Theorem 6.13 we prove the following theorem.

Theorem 8.3. There exists a Hecke eigenform G in S(18,14)(Γ
(2)) such that

A
(I)
4 (G) ≡ev [I2(f)]

k mod q.
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Corollary 8.4. Conjecture 3.9 holds for (k, j) = (14, 4).

(2.2) Let (k, j) = (4, 24) and put k = (16, 16, 16, 16). Then the prime number 97

divides NQ(f)/Q(L(28, f)/L(16, f)) and it splits in Q(f). Hence there exist prime ideals

q, q′ of Q(f) such that (97) = qq′ and q divides L(28, f)/L(16, f). The prime ideal q is

the only prime ideal which satisfies the assumptions in Conjecture 3.9. We have

M16(Γ
(2)) =

⟨
E2,16, [ϕ16]

(16,16), I2(f), I2(f
′)
⟩
C.

Let N be as that in (1), N1 = ( 1 1/2
1/2 1 ), and N2 = ( 1 0

0 3 ). Put ei = e16,k(i,N1, N) (i =

1, 2, 3, 4). Then

e1 = ϵ16,k(N1, N),

e2 = ϵ16,k(2N1, N),

e3 = ϵ16,k(3N1, N) + 314ϵ16,k(N1, N),

e4 = ϵ16,k(4N1, N) + 229ϵ16,k(N1, N) + 3 · 214ϵ16,k(N2, N)

and

α16,k(N1, N) =

∣∣∣∣∣∣∣∣
e1 1 1 1

e2 λI2(f ′)(T (2)) λ[ϕ16](16,16)(T (2)) λE2,16
(T (2))

e3 λI2(f ′)(T (3)) λ[ϕ16](16,16)(T (3)) λE2,16(T (3))

e4 (λI2(f ′)(T (2)))
2 (λ[ϕ16](16,16)(T (2)))

2 (λE2,16(T (2)))
2

∣∣∣∣∣∣∣∣ .
Then, by Lemma 7.4, we have ei = ϵ(i,N1, N) for i = 1, 2, 3, 4. Using Theorem 7.5, by

a computation with Mathematica [60], we have

ϵ16,k(N1, N) = 38740804007974226508744800778240/6232699579062017,

ϵ16,k(2N1, N) = 8035873503466715618094093067152998400/6232699579062017,

ϵ16,k(3N1, N) = −29430266109700665036971047394543222568960/6232699579062017,

ϵ16,k(4N1, N) = 7060754204175435666580204417230810153615360/6232699579062017

and

ϵ16,k(N2, N) = 337608542664093039037162829831689850880/6232699579062017.

We also have

λ[ϕ16](16,16)(T (2)) = a(2, ϕ16)(1 + 214) = 216(1 + 214),

λ[ϕ16](16,16)(T (3)) = a(3, ϕ16)(1 + 314) = −3348(1 + 314),

λE2,16
(T (q)) = (1 + q14)(1 + q15) for q = 2, 3.

Hence by a simple computation we have

NQ(f)/Q(αk,k(N1, N)) ̸≡ 0 mod 97.

Hence by Corollary 7.3, p does not divide C8,16(I2(f))a(N1, I2(f))a(N, [I2(f)]k). The
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prime ideal q does not divideDf . Hence, by Theorem 6.13, there exists a Hecke eigenform

F in M16(Γ
(4)) such that

F ≡ev [I2(f)]
k mod q.

To show that F is a lift of type A(I), we classify the Hecke eigenforms in M16(Γ
(4))

following [52] and [30].

Proposition 8.5. We have dimM16(Γ
(4)) = 14 and dimS16(Γ

(4)) = 7, and we

have the following :

(1) We can take a basis {hi}7i=1 of S16(Γ
(4)) such that

hi =



I4(ϕ
+
28) i = 1,

I4(ϕ
−
28) i = 2,

A
(II)
4 (ϕ+30, G14,2) i = 3,

A
(II)
4 (ϕ−30, G14,2) i = 4,

M(I)(ϕ26, I2(ϕ
+
30)) i = 5,

M(I)(ϕ26, I2(ϕ
−
30)) i = 6,

A
(I)
4 (G4,24) i = 7.

Moreover we have

λhi(T (2)) =



12960(67989 + 443
√
18209) i = 1,

12960(67989− 443
√
18209) i = 2,

−230400(1703 + 9
√
18209) i = 3,

−230400(1703− 9
√
18209) i = 4,

1175040(557 +
√
51349) i = 5,

1175040(557−
√
51349) i = 6,

230400000 i = 7.

(2) We can take a basis {hi}14i=8 of S16(Γ
(4))⊥ such that

hi =



E4,16 i = 8,

[ϕ16]
k i = 9,

[M(I)(ϕ16, ϕ
+
28)]

k i = 10,

[M(I)(ϕ16, ϕ
−
28)]

k i = 11,

[H
(3)
16 ]k i = 12,

[I2(ϕ
−
30)]

k i = 13,

[I2(ϕ
+
30)]

k i = 14,

where H
(3)
16 is a unique tempered Hecke eigenform, up to constant multiple, in

S16(Γ
(3)). For the definition of tempered forms, see Appendix A.
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Moreover, we have

λhi(T (2)) =



18022646021156865 i = 8,

118797996294360 i = 9,

4097(4414176 + 23328
√
18209) i = 10,

4097(4414176− 23328
√
18209) i = 11,

−471974400 i = 12,

33566721(53472−
√
51349) i = 13,

33566721(53472 +
√
51349) i = 14.

Remark 8.6. We have M(I)(ϕ26, I2(ϕ
±
30)) = M(II)(ϕ±30, I2(ϕ26)).

By Proposition 8.5, we have

λhi(T (2)) ̸≡ λ[I2(f)]k(T (2)) mod q

for any 1 ≤ i ≤ 13 such that i ̸= 7. Hence F coincides with h7 up to constant multiple.

Hence we have the following theorem.

Theorem 8.7. There exists a Hecke eigenform G in S(28,4)(Γ
(2)) such that

A
(I)
4 (G)k ≡ev [I2(f)]

k mod q.

Corollary 8.8. Conjecture 3.9 holds for (k, j) = (4, 24).

Appendix A. Proofs of Theorems 4.2 and 4.3.

In this appendix, we will give proofs of Theorems 4.2 and 4.3. These theorems are

a simple application of Arthur’s endoscopic classification [3] to Siegel modular forms as

in the book of Chenevier–Lannes [12, Section 8.5.1].

First we recall the explicit multiplicity formula for Spn(Z). The following theorem

is just a reformulation of [12, Theorem 8.5.2, Corollary 8.5.4].

Theorem A.1 (explicit multiplicity formula for Sk(Spn(Z))). Let k = (k1, . . . , kn)

be a sequence of positive integers such that k1 ≥ · · · ≥ kn ≥ n+ 1.

(1) We can associate each Hecke eigenform G in Sk(Spn(Z)) with its A-parameter ψG

which is a formal sum

ψG = ⊞t
i=1πi[di],

where π and di satisfy the following conditions (a) to (f ):

(a) πi = ⊗vπi,v is an irreducible unitary cuspidal automorphic self-dual represen-

tation of PGLni(AQ);

(b) di is a positive integer such that
∑t

i=1 nidi = 2n+ 1;
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(c) πi,p is unramified for any prime p <∞ ;

(d) if we denote the infinitesimal character of πi,∞ by ci,∞ which is a semisimple

conjugacy class of slni(R), and if we set

ed = diag

(
d− 1

2
,
d− 3

2
, . . . ,−d− 1

2

)
∈ sld(R),

then the eigenvalues of the semisimple conjugacy class

t⊕
i=1

ci,∞ ⊗ edi

in sl2n+1(R) are the distinct integers

k1 − 1 > · · · > kn − n > 0 > −(kn − n) > · · · > −(k1 − 1);

(e) there exists 1 ≤ i0 ≤ t such that di0 = 1, ni0 ≡ 1 mod 2, and nidi ≡ 0 mod 4

for any i ̸= i0 ;

(f) the sign condition

∏
1≤j≤t
j ̸=i

ϵ(πi × πj)
min{di,dj} =

 (−1)
nidi

4 if di ≡ 0 mod 2,

(−1)|Ki| if di ≡ 1 mod 2

holds for any i ̸= i0, where Ki is the set of odd indices 1 ≤ j ≤ n such that

kj − j is an eigenvalue of ci,∞.

The A-parameter ψG is characterized by

L(s,G,St) =
t∏

i=1

di∏
d=1

L∞
(
s+

di + 1

2
− d, πi

)
,

where the right-hand side is a product of the finite parts of the Godement–Jacquet

L-functions.

(2) Conversely, for any formal sum ψ = ⊞k
i=1πi[di] satisfying (a)–(f) above, there exists

a Hecke eigenform G such that ψ = ψG.

(3) For two Hecke eigenforms G1, G2 in Sk(Spn(Z)), the following are equivalent :

• G1 and G2 are constant multiples of one another ;

• L(s,G1, St) = L(s,G2, St);

• ψG1 = ψG2 .

Here, a formal sum means that it is an equivalence class defined so that ⊞t
i=1τi[di] ∼

⊞t′

i=1τ
′
i [d

′
i] if t = t′ and if there exists a permutation σ ∈ St such that π′

i
∼= πσ(i) and

d′i = dσ(i) for any 1 ≤ i ≤ t.
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Remark A.2. (1) In [12, Theorem 8.5.2], Chenevier and Lannes assumed [12,

Conjecture 8.4.22]. As is written in the postface in that book, this conjecture has

been proved by Arancibia, Mœglin and Renard [2].

(2) Theorem A.1 (3) is a multiplicity one theorem. In [12, Corollary 8.5.4], not to use

[12, Conjecture 8.4.22], the stronger assumption k1 > · · · > kn > n+1 is assumed.

Using [2], the same proof is available even when k1 ≥ · · · ≥ kn ≥ n+ 1.

(3) By condition (d), πi is an irreducible regular algebraic cuspidal self-dual automor-

phic representation of PGLni(AQ) ([12, Definition 8.2.7]). As explained in [12,

Theorem 8.2.17], thanks to numerous mathematicians, one can prove that such

a representation satisfies the Ramanujan conjecture. Namely, for any p, all the

eigenvalues of the Satake parameter of πi,p have absolute value 1. In particular, a

Hecke eigenform G in Sk(Spn(Z)) satisfies the Ramanujan conjecture if and only

if its A-parameter is of the form ψG = ⊞t
i=1πi[1]. In this case we call G tempered.

(4) By the purity lemma of Clozel [12, Proposition 8.2.13], the Langlands parameter

of πi,∞ is completely determined by the eigenvalues of the infinitesimal character

ci,∞. In particular, one can compute the Rankin–Selberg root number ϵ(πi × πj)

explicitly in terms of the eigenvalues of ci,∞ and cj,∞ by

ϵ(πi × πj) =
∏
wi>0

∏
wj>0

(−1)1+max{2wi,2wj} ×


1 if i, j ̸= i0,∏
wi>0

(−1)
1+2wi

2 if i ̸= j = i0,

where wi (resp. wj) runs over the positive eigenvalues of ci,∞ (resp. cj,∞). Note that

wi and wj are in (1/2)Z and that 2wi ≡ di − 1 mod 2 for any (positive) eigenvalue

wi of ci,∞.

(5) By [3, Theorem 1.5.3], we know that ϵ(πi×πj) = 1 if di ≡ dj mod 2. This is easily

checked when i, j ̸= i0.

(6) Theorem A.1 is an existence theorem. To construct a modular form G from a

parameter ψ is a different problem.

(7) If we were not to assume that kn > n, the statement of theorem would be much

more difficult. At least when the scalar weight case, i.e., when k1 = · · · = kn = k

with k ≤ n, a similar theorem, in particular a multiplicity one theorem, would

follow from a result of Mœglin–Renard [51].

To obtain several lifting theorems, we need the following proposition which comes

from accidental isomorphisms.

Proposition A.3. (1) Suppose that k > 0 is even. For any primitive form f in

Sk(SL2(Z)), there exists an irreducible unitary cuspidal automorphic self-dual represen-

tation πf of PGL2(AQ) such that

L

(
s+

k − 1

2
, f

)
= L∞(s, πf )
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and such that the eigenvalues of the infinitesimal character of πf,∞ are ±(k − 1)/2.

(2) Suppose that j > 0 is even and that k ≥ 4. For any Hecke eigenform F in

S(k+j,k)(Sp2(Z)), there exists an irreducible unitary cuspidal automorphic self-dual

representation πF of PGL4(AQ) such that

L

(
s+

2k + j − 3

2
, F, Sp

)
= L∞(s, πF )

and such that the eigenvalues of the infinitesimal character of πF,∞ are ±(j+2k−
3)/2,±(j + 1)/2.

(3) Suppose that k1 ≥ k2 > 0 are even. For any primitive forms f1 ∈ Sk1(SL2(Z)) and
f2 ∈ Sk2(SL2(Z)), there exists an irreducible unitary cuspidal automorphic self-dual

representation πf1,f2 of PGL4(AQ) such that

L

(
s+

k1 + k2 − 2

2
, f1 ⊗ f2

)
= L∞(s, πf1,f2)

and such that the eigenvalues of the infinitesimal character of πf1,f2,∞ are ±(k1 +

k2 − 2)/2 and ±(k1 − k2)/2.

Proof. (1) is well-known (see, e.g., [12, Proposition 9.1.5]). (2) is [12, Proposi-

tion 9.1.4]. (3) can be proved in a way similar to [12, Proposition 9.1.4]. □

Now we explain Theorems 4.2 and 4.3.

Proof of Theorem 4.2 (1). Let G be a Hecke eigenform in Sk(Spn(Z)), and
ψG = ⊞t

i=1πi[di] be its A-parameter. Here we make the convention that ψG = 1GL1(AQ)[1]

if n = 0. Let F ∈ S(k+j,k)(Sp2(Z)) be a Hecke eigenform with k ≥ 4 and j > 0 even, and

πF be the irreducible unitary cuspidal automorphic self-dual representation of PGL4(AQ)

associated by F by Proposition A.3 (2). It suffices to show that under the assumptions

of Theorem 4.2 (1), the parameter

ψ′ = ψG ⊞ πF [2d]

satisfies the conditions (a)–(f) of Theorem A.1 (1) with respect to k′ = (k′1, . . . , k
′
n+4d) ∈

Zn+4d defined in Theorem 4.2 (1). The conditions (a), (b), (c) and (e) are obvious. The

condition (d) follows from the definition of k′. To check the sign condition (f), we will

compute ϵ(πi × πF ). By Remark A.2 (5), we have ϵ(πi × πF ) = 1 if di is even. When

di is odd, any positive eigenvalue wi of ci,∞ belongs to {k1 − 1, . . . , kn − n} so that

j+1 < 2wi < j+2k−3. Hence when di is odd and i ̸= i0 so that ni ≡ 0 mod 4, we have

ϵ(πi × πF )
min{di,2d} =

( ∏
wi>0

(−1)max{2wi,j+2k−3}+max{2wi,j+1}

)min{di,2d}

=

( ∏
wi>0

(−1)j+2k−3+2wi

)min{di,2d}

= (−1)
ni
2 (j+2k−3)min{di,2d} = 1.
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Since the cardinality of the set Ki for ψ
′ is the same as the one for ψG, we obtain the

sign condition for πi. Also,

t∏
j=1

ϵ(πF × πj)
min{2d,dj} = ϵ(πF × πi0)

min{2d,di0}

= (−1)
ni0

−1

2 (j+2k−3)+
1+(j+2k−3)

2 +
1+(j+1)

2 = (−1)n+k

since ni0 ≡ 2n+1 mod 4 and j ≡ 0 mod 2. Hence the sign condition for πF is equivalent

to k ≡ n mod 2. □

The proofs of Theorem 4.2 (2) and Theorem 4.3 are similar. Let G and f be as in

the statements, ψG = ⊞t
i=1πi[di] be the A-parameter of G. and πf be the irreducible

unitary cuspidal automorphic self-dual representation of PGL2(AQ) associated to f . We

have to check the conditions (a)–(f) in Theorem A.1 for

ψ′ = ψG ⊕ πf [2d]

with 2d = n− 2 in the proof of Theorem 4.2 (2). Only the condition (f) is non-trivial.

When G is in Theorem 4.2 (2), we claim that ψG is of the form πG[1] for some

irreducible unitary cuspidal automorphic self-dual representation πG of PGL5(AQ). If

not, by the condition (e) and by n > 2, we would have ψG = π1[1]⊞ 1GL1(AQ)[1]. In this

case, the sign condition fails since |K1| = 1. Since

ϵ(πf × πG) = (−1)(1+max{2k−n−1,2(k−1)})+(1+max{2k−n−1,2(k−n)})+ 1+(2k−n−1)
2

= (−1)2(k−1)+(2k−n−1)+k−n
2 = (−1)k−

n−2
2 = (−1)k+

2d
2 ,

the sign condition for ψ′ holds if and only if k is even.

When G is in Theorem 4.3, since

ϵ(πf × πj)
min{2d,dj} =


1 if j ̸= i0,

(−1)k if j = i0 in case (1),

(−1)k+n if j = i0 in case (2)

and the right-hand side of (f) for πf [2d] is (−1)d, we can check the sign conditions. This

completes the proofs of Theorems 4.2 and 4.3.

Appendix B. An explicit pullback formula.

Suppose that k > n1 +n2 +1. Then for any r ≤ min(n1, n2) and a Hecke eigenform

f ∈ Sρr (Γ
(r)), the Klingen–Eisenstein series [f ]

ρn1
ρr (Z,U) and [f ]

ρn2
ρr (W,V ) become holo-

morphic modular forms, and we obtain more explicit results. The proof of the following

theorem is independent of Böcherer’s argument. The proof here is a brute force but we

still believe this way of calculation would be useful in some cases. For more conceptual

description of a complete general exact pullback formula, see [28].
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Theorem B.1. Notation being as in Theorem 5.6, suppose that l > 0. Then we

have

(Dλ,n1,n2
En1+n2,k)

(
Z 0

0 W

)

=

min(n1,n2)∑
r=2

cr

d(r)∑
j=1

D(k, fr,j)

(fr,j , fr,j)
[fr,j ]

ρn1
ρr (Z)(U)[θfr,j ]

ρn2
ρr (W )(V ),

where cr is a certain constant depending on Dλ,n1,n2 .

This has been already proved by Kozima [45] in more general setting. However

he does not give explicit values of cr in general. He gave in [45] one strategy how to

calculate the constant cr in the formula. Actually this calculation is difficult to execute

in general, but in the next section, we explain how to do this when Dλ = Ql(∂Z , U, V ),

where Ql is defined by (2) before Lemma 5.5. Though this calculation is not necessary for

proving our main results, it is interesting in its own right, and may have an application

for computing exact standard L-values for f ∈ Sρr
(Γ (r)).

B.0.1. Calculation of the constant. To calculate the constant cr, we follow

Kozima’s formulation in [45]. We fix g = (A B
C D ) ∈ Spn1+n2

(R) and put δ = det(CZ+D).

To obtain cr for our differential operator D we need, it is a key to calculate D(δ−k)

explicitly. For Z ∈ Hn1+n2
, we write

Z =

(
Z11 Z12
tZ12 Z22

)
with Z11 ∈ Hn1 , Z22 ∈ Hn2 , Z12 ∈Mn1,n2(C).

For an m × n1 matrix U and m × n2 matrix V of variables, define U as before and we

write

∂U,Z = (∂Uij) = UZtU =

(
UZ11

tU UZ12
tV

V tZ12
tU V Z22

tV

)
.

We put ∆ = (CZ +D)−1C and

∆U = (∆ij) = U(CZ +D)−1C tU.

It is well-known and easy to see that this is a symmetric matrix. We write blocks of ∆

by

∆U =

(
∆(11) ∆(12)

t∆(12) ∆(22)

)
,

where ∆(ij) are m ×m matrices. We consider a differential operator D = P (∂Z) which

satisfies Condition 1. The following proposition is the same as Proposition 4.1 in page 241

in [45] except for the point that the realization of the representation is slightly different.

Proposition B.2. There exists a polynomial Q(X) in the components of m×m

matrix X such that
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D(δ−k) = δ−kQ(∆(12)).

The key point is that the polynomial does not contain components of ∆(11) and

∆(22).

Since the realization of our polynomials and Kozima’s are different, we explain the

relation. We fix λ = (l, . . . , l, 0, . . . , 0) with depth(λ) = m. We denote by ui and vj
the i-th row vector of U and the j-th row vector of V respectively and write U = (ui),

V = (vj). Our polynomial is a polynomial in components of T , U and V . We write

this as P (T,U, V ) to emphasize its dependence on U and V . We define polarization

of P for each rows ui, vj in the usual way as follows. We prepare ml row vectors ξiν
(1 ≤ i ≤ m, 1 ≤ ν ≤ l) and other ml vectors ηjµ (1 ≤ j ≤ m, 1 ≤ µ ≤ l) of variables. We

write ξ = (ξiν) and η = (ηjµ) for short. For P we define P ∗ by

P ∗(T, ξ, η)

= l−2ml
l∑

i,j=1

∂l

∂ci1 · · · ∂cil
∂l

∂dj1 · · · ∂djl
P

(
T,

(
l∑

ν=1

ciνξiν

)
,

(
l∑

µ=1

djlηjl

))∣∣∣∣∣
ciν=djµ=0

.

In other words, replacing ui and vj by ui = ci1ξi1+· · ·+cilξil and vj = dj1ηi1+· · ·+djlηjl
respectively in P (T,U, V ) and take coefficients of

m∏
i,j=1

l∏
ν,µ=1

ciνdjµ.

Here by definition, the polynomial P ∗ is a multilinear polynomial in ξiνT11
tξjµ,

ξiνT12
tηjµ, ηiνT22

tηjµ and it is homogeneous in the sense of Kozima. Since the po-

larization P → P ∗ commutes with ∆ij(X) and ∆ij(Y ), the polynomial P ∗ is also pluri-

harmonic. The action of A1 ∈ GL(n1,C) and A2 ∈ GL(n2,C) is the same as P since we

have uiA1 =
∑l

ν=1 ciνxiνA1 and vjA2 =
∑l

µ=1 djµηjµA2. So if we use P ∗ instead of P ,

our formulation becomes Kozima’s formulation. So we can use Kozima’s Proposition 4.1

in [45], and the interpretation in our case is given in Proposition B.2 above.

Our next problem is to obtain Q in Proposition B.2.

For any row vector x, y of length n, we write

∂[x, y] = x∂Z
ty =

∑
1≤i,j≤n

1 + δij
2

xiyj
∂

∂zij
.

The following formulas are given in Kozima [45]. (See also [24] for a precise proof.) For

any row vectors u1, u2, u3, u4 of length n and any functions f , g of Z, we have

(D1) ∂[u1, u2](fg) = (∂[u1, u2]f)g + f(∂[u1, u2]g),

(D2) ∂[u1, u2](δ
−k) = −kδ−ku1∆

tu2,

(D3) ∂[u1, u2](u3∆
tu4) = −1

2

(
(u1∆

tu3)(u2∆
tu4) + (u1∆

tu4)(u2∆
tu3)

)
.

By iterate use of these formulas, we can calculate the action of P (U∂Z tU) for any poly-

nomial P . But actual calculation is a bit complicated. For our case, we have a following
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result. The rest of this section is devoted to prove this theorem.

Theorem B.3. We assume that m = 2 and we define differential operator Dl =

Ql(∂Z , U, V ) from detk to detk ρn1,λ ⊗ detk ρn2,λ for λ = (l, l, 0, . . . , 0) by (2) before

Lemma 5.5. We write U(CZ +D)−1CtU = (∆ij)1≤i,j≤4. Then we have

Dl(δ
−k) =

1

22ll!
(2k − 3)l(2k − 1)2l(∆13∆24 −∆14∆23)

2l.

In the notation before, we have det(∆(12)) = ∆13∆24 −∆14∆23.

A simple theoretical proof of Theorem B.3 is given in [28], but here we give an

original proof prepared for the present paper. This proof consists of complicated combi-

natorial brute force calculations, and we believe such alternative proof is not useless.

To make it readable, we first explain rough idea of calculation, and then we give

actual calculation. Define Fi(T,U, V ) as in Lemma 5.5. We also define

F4(T,U, V ) = det(UT11
tU), F5(T,U, V ) = det(V T22

tV ),

where Tij are defined by (1) in Section 5. Then of course we have F2 = F4F5. We write

Fi = F1(∂Z , U, V ), i = 1, 2, 3, 4, 5.

Here F1, F4, F5 are differential operators of order 2 and F3 of order 4. We put

∆U = U(CZ +D)−1C tU = (∆ij), C1 = ∆13∆24 −∆14∆23,

C4 = ∆11∆22 −∆2
12, C5 = ∆33∆44 −∆2

34, C2 = C4C5, C3 = det(∆U).

Now our strategy of calculation is as follows.

(1) For any a, b, c, we see easily that Fa
1Fb

2Fc
3(δ

−k) is written as a product of δ−k and

a polynomial in ∆ij by virtue of the formulas (D1), (D2), (D3). But in fact, more

strongly, we can show that it is a product of δ−k and a polynomial in C1, C2, C3

that is a weighted homogeneous polynomial of total degree a + 2b + 2c if we put

deg(C1) = 1, deg(C2) = 2, deg(C3) = 2.

(2) Here we can show that C1, C2 and C3 are algebraically independent for generic g

and ∆U, so by virtue of Lemma B.2, we need only the coefficient of Ca+2b+2c
1 in

Fa
1Fb

2F3(δ
−k) to describe Dl(δ

−k). So we calculate these coefficients for all (a, b, c)

and sum them up according to the explicit definition of Dl.

Now we execute these calculations.

Lemma B.4. For any non-negative integer, we have

F3(δ
−kCr

3) =
(k + r − 1)(k + r)(2k + 2r − 3)(2k + 2r − 1)

4
δ−kCr+1

3 .

Proof. The operator F3 is a differential operator of order 4. There are many

ways to prove Lemma B.4. One way is to use computer directly. Actually, by (D1),

(D2), (D3), it is clear that
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F3(δ
−kCr

3) = δ−kCr−4
3 × P (r,∆ij),

where P (r,∆ij) is a polynomial in r of degree 4 whose coefficients are polynomials in

∆ij that do not depend on r. So the calculation for r = 0, . . . , 4 is enough and executing

these we obtain the above formula. An alternative way is to specialize ∆ to the case

n1 = n2 = 2 and U = 12, V = 12, C = 14, D = 04. Then we have ∆U = Z−1 for Z ∈ H4.

Then under this specialization on ∆U and F3, we have

F3(δ
−kCr

3) = det(∂Z)(det(Z)
−k−r)

= (k + r)

(
k + r +

1

2

)
(k + r + 1)

(
k + r +

3

2

)
det(Z)−k−r−1

=
(k + r)(2k + 2r + 1)(k + r + 1)(2k + 2r + 3)

4
δ−kCr+1

3 .

The second equality is nothing but the Cayley type identity for symmetric matrices

([11]). Since the calculation is formally the same, we get Lemma B.4. □

Next we consider F1 and F2 = F4F5. Since F1, F4, F5 are differential operators

of order 2, the operation of these on products of functions can be calculated if we have

several fundamental operations on factors. To explain this, we assume that F is a

differential operator of homogeneous order 2 and define a bracket {A,B}F by

F(AB) = F [A]B +AF [B] + {A,B}F .

We have {B,A}F = {A,B}F . For the operator ∂1∂2 where ∂1 and ∂2 are differential

operators of the first order, we have

{A,B}∂1∂2 = (∂1A)(∂2B) + (∂2A)(∂1B),

so for general F of order 2 and functions A, B, C, we have

{A,BC}F = {A,B}FC + {A,C}FB.

So for example, the operation of F on a product A1 · · ·Aν of functions Ai can be calcu-

lated if we have F(Ai) and {Ai, Aj}F . More generally, for δ−k, any functions A, B, C,

and non-negative integers p, q, r and for a differential operator F of second order, we

can give the following general formula by repeating the above consideration.

Lemma B.5.

F (δ−kApBqCr) = F (δ−k)ApBqCr + pAp−1BqCr{δ−k, A}F + qApBq−1Cr{δ−k, B}F

+ rApBqCr−1{δ−k, C}F + δ−k

(
pAp−1BqCrF (A) + qApBq−1CrF (B)

+ rApBqCr−1F (C) + pqAp−1Bq−1Cr{A,B}F + qrApBq−1Cr−1{B,C}F

+ pqAp−1BqCr−1{A,C}F +
p(p− 1)

2
Ap−2BqCr{A,A}F

q(q − 1)

2
ApBq−2Cr{B,B}F

+
r(r − 1)

2
ApBqCr−2{C,C}F

)
.
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So for δ−k, C1, C2, C3 (and C4, C5 when necessary), and F = F1, F4, F5, we list

up all these fundamental data below. For i = 1, 4, 5, we write {∗, ∗}Fi = {∗, ∗}i.
Next we consider F1 and F2. We give fundamental formulas below.

F1(δ
−k) =

k(2k − 1)

2
C1δ

−k, F1(C1) =
1

2
C2, F1(C2) = 3C1C2, F1(C3) =

1

2
C1C3,

{δ−k, C1}1 =
k

2
(3C2

1 + C2 − C3)δ
−k, {δ−k, C2}1 = 4kC1C2δ

−k,

{δ−k, C3}1 = 2kC1C3δ
−k, {C1, C1}1 =

1

2
(2C2

1 + 2C2 − C3),

{C1, C2}1 = C2(3C
2
1 + C2 − C3), {C1, C3}1 =

1

2
C3(3C

2
1 + C2 − C3),

{C2, C2}1 = 8C1C
2
2 , {C2, C3}1 = 4C1C2C3, {C3, C3}1 = 2C1C

2
3 ,

F4(δ
−k) =

k(2k − 1)

2
C4δ

−k, F4(C1) =
1

2
C4C1, F4(C2) =

1

2
C4(4C

2
1 + 2C2 − C3),

F4(C3) =
1

2
C4C3, {δ−k, C1}4 = 2kC4C1δ

−k, {δ−k, C2}4 = kC4(C
2
1 + 3C2 − C3)δ

−k,

{δ−k, C3}4 = 2kC4C3δ
−k, {C1, C1}4 = 2C4C

2
1 , {C1, C2}4 = C4C1(C

2
1 + 3C2 − C3),

{C1, C3}4 = 2C4C1C3, {C2, C2}4 = 2C4C2(2C
2
1 + 2C2 − C3),

{C2, C3}4 = C4C3(C
2
1 + 3C2 − C3), {C3, C3}4 = 2C4C

2
3 , F5(δ

−k) =
k(2k − 1)

2
C5,

F5(C1) =
1

2
C5C1, F5(C2) =

1

2
C5(4C

2
1 + 2C2 − C3), F5(C3) =

1

2
C5C3,

F5(C4) =
1

2
(2C2

1 − C2 + C3), {δ−k, C1}5 = 2kC5C1δ
−k,

{δ−k, C2}5 = kC5(C
2
1 + 3C2 − C3)δ

−k, {δ−k, C3}5 = 2kC5C3δ
−k,

{δ−k, C4}5 = k(C2
1 + C2 − C3)δ

−k, {C1, C1}5 = 2C5C
2
1 ,

{C1, C2}5 = C5C1(C
2
1 + 3C2 − C3), {C1, C3}5 = 2C5C1C3,

{C2, C2}5 = 2C5C2(2C
2
1 + 2C2 − C3), {C2, C3}5 = C5C3(C

2
1 + 3C2 − C3),

{C3, C3}5 = 2C5C
2
3 , {C1, C4}5 = C1(C

2
1 + C2 − C3),

{C2, C4}5 = C2(3C
2
1 + C2 − C3), {C3, C4}5 = C3(C

2
1 + C2 − C3).

Lemma B.6. For a generic g, U , V such that ∆ij are algebraically independent,

three variables C1, C2 and C3 are algebraically independent.

Proof. Assume that ∑
p,q,r

C(p, q, r)Cp
1C

q
2C

q
3 = 0

for some constants C(p, q, r) where the degree of C1 is the smallest among such relations.

If we put ∆14 = ∆24 = 0, then we have C1 = 0, and C3 = ∆2
13∆22∆44+ · · · . Then, since

C2 does not contain any ∆13, this means that C(0, q, r) = 0 for any q, r. So we may

assume that
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C1

∑
p≥1,q,r

C(p, q, r)Cp−1
1 Cq

2C
r
3 = 0.

Since the polynomial ring in ∆ij is UFD, we have
∑

p≥1,q,r C(p, q, r)C
p−1
1 Cq

2C
r
3 = 0.

This contradicts to the assumption. □

Lemma B.7. For any integers a, b, c, p, q, r ≥ 0, there exists a polynomial

P (C1, C2, C3) such that

Fa
1Fb

2Fc
3(δ

−k) = δ−kP (C1, C2, C3).

Proof. By Lemma B.4, it is enough to assume that the left-hand side is

Fa
1Fb

2(δ
−kCr+1

3 ). Here we have F2 = F5F4. By the fundamental formulas, we see

that for i, j with 1 ≤ i < j ≤ 3, any of F4(δ
−k), F4(Ci), {δ−k, Ci}4, {Ci, Cj}4 are δ−kC4

times a polynomial in C1, C2, C3, so by Lemma B.5, we see that

F4(δ
−kCp

1C
q
2C

r
3) = δ−kC4P1(C1, C2, C3)

for some polynomial P1(x, y, z) in three variables. We have

F5(δ
−kC4P1(C1, C2, C3)) = C4F5(δ

−kP1(C1, C2, C3)) + F5(C4)δ
−kP1(C1, C2, C3)

+ {C4, δ
−kP1(C1, C2, C3)}5.

Here by the same reason as before, the first term is equal to

C4C5δ
−kP2(C1, C2, C3) = δ−kC2P2(C1, C2, C3)

for some polynomial P2(x, y, z). Since δ
k{C4, δ

−k}5, {C4, Ci}5 for i = 1, 2, 3 and F5(C4)

are polynomials in C1, C2, C3, we see that F2(δ
−kCp

1C
q
2C

r
3) is δ−k times a polynomial

in C1, C2, C3. We can show inductively that the same is true for Fb
2 and Fa

1Fb
2 , so we

prove the lemma. □

By Lemma B.2, we need only the power of C1 part in the polynomial in C1, C2, C3,

so we will study that.

We denote by C3 = C3C[C1, C2, C3] and C23 = (C2, C3)C[C1, C2, C3] the ideals of

C[C1, C2, C3] generated by C3, and by C2 and C3, respectively. We have the following

result.

Proposition B.8. (i) If c ≥ 1, then we have

δkFa
1Fb

2Fc
3(δ

−k) ∈ C3.

(ii) When c = 0 in the above, we have

δkFa
1Fb

2(δ
−k) ≡ 1

2a
b!(k)2b

(
k − 1

2

)
b

(k + 2b)a(2k + 2b− 1)aC
a+2b
1 mod C23.

To prove Proposition B.8, we prepare several lemmas.
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Lemma B.9. (i) For any integer r ≥ 1, we have

δkF2(δ
−kCp

1C
q
2C

r
3) ∈ C3.

(ii) For any integer b ≥ 0, we have

δkFb
2(δ

−k) ≡
b∑

p=0

p!

(
b

p

)2
(k)2b

(
k − 1

2

)
b

(
k + p− 1

2

)
b−p

C2p
1 Cb−p

2 mod C3.

Proof. We have

F4(δ
−kCp

1C
q
2C

r
3) = δ−kCp

1C
q
2F4(C

r
3) + Cr

3F4(δ
−kCp

1C
q
2) + {δ−kCp

1C
q
2 , C

r
3}4.

Since F4(C3) ∈ C4C3, {Ci, C3}4 ∈ C4C3 for i = 1, 2, 3, and {δ−k, C3}4 ∈ δ−kC4C3, we see

that F4(δ
−kCp

1C
q
2C

r
3) ∈ δ−kC4C3. In the same way, we can show that F5(δ

−kC4C3) ⊂ C3.

So we prove (i). Next we prove (ii) by induction. By direct calculation, we have

δkF2(δ
−k) =

k(2k − 1)(k + 1)

2
C2

1 +
k(2k − 1)2(k + 1)

4
C2 −

k(2k − 1)2

4
C3.

This is nothing but the case b = 1 of Lemma B.9 (2). Next we calculate F2(δ
−kCp

1C
q
2)

in order to calculate Fb
2(δ

−k) inductively. We have

F4(δ
−kCp

1C
q
2) = F4(δ

−k)Cp
1C

q
2 + {δ−k, Cp

1C
q
2}4 + δ−kF4(C

p
1C

q
2)

= F4(δ
−k)Cp

1C
q
2 + pCp−1

1 Cq
2{δ−k, C1}4 + qCp

1C
q−1
2 {δ−k, C2}4

+ δ−k
(
F4(C

p
1 )C

q
2 + {Cp

1 , C
q
2}4 + Cp

1F4(C
q
2)
)

= F4(δ
−k)Cp

1C
q
2 + pCp−1

1 Cq
2{δ−k, C1}4 + qCp

1C
q−1
2 {δ−k, C2}4

+ δ−k

(
pF4(C1)C

p−1
1 Cq

2 +
p(p− 1)

2
{C1, C1}4Cp−2

1 Cq
2

+ pqCp−1
1 Cq−1

2 {C1, C2}4 + qCp
1C

q−1
2 F4(C2)

+
q(q − 1)

2
Cp

1C
q−2
2 {C2, C2}4

)
.

So by the fundamental formulas, we have

F4(δ
−kCp

1C
q
2) = δ−kC4C

p
1C

q−1
2 ×

(
q(k + p+ 2q)C2

1 +
(k + p+ 2q)(2k + 2p+ 2q − 1)

2
C2

− 1

2
q(2k + 2p+ 2q − 1)C3

)
. (4)

In the same way, we have

F5(δ
−kC4C

p
1C

q
2) = δ−kCp

1C
q
2 ×

(
(q + 1)(k + p+ 2q + 1)C2

1

+
(k + p+ 2q + 1)(2k + 2p+ 2q − 1)

2
C2 −

(q + 1)(2k + 2p+ 2q − 1)

2
C3

)
. (5)
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By applying (4), we have

δkF2(δ
−kCp

1C
q
2) ≡ q(k + p+ 2q)F5(δ

−kC4C
p+2
1 Cq−1

2 )

+
(k + p+ 2q)(2k + 2p+ 2q − 1)

2
F5(δ

−kC4C
p
1C

q
2) mod C3, (6)

and by (5), we have

δkF2(δ
−kCp

1C
q
2) = q2(k + p+ 2q)(k + p+ 2q + 1)Cp+4

1 Cq−1
2

+ (k + p+ 2q)(k + p+ 2q + 1)

(
(4p+ 2) +

(
2p2 + pq + p+ q − 1

2

))
Cp+2

1 Cq
2

+
1

4
(k + p+ 2q)(k + p+ 2q + 1)(2k + 2p+ 2q − 1)2Cp

1C
q+1
2 . (7)

Now assume that the claim (ii) holds for b − 1. Then applying (7), we have (ii).

This is of course a straight forward calculation, but this is a bit complicated so we give

a precise proof. For the sake of simplicity, we put

xp,b = p!

(
b

p

)2
(k)2b

(
k − 1

2

)
b

(
k + p− 1

2

)
b−p

.

To see the coefficient of C2p
1 Cb−p

2 in F2(Fb−1
2 (δ−k)), we should see the linear combination

of δ−kC2p−4
1 Cb−p−1

2 , δ−kC2p−2
1 Cb−p

2 and δ−kC2p
1 Cb−1−p

2 in Fb−1
2 (δ−k) and apply F2 on it

and see the coefficient at C2p
1 Cb−p

2 . We compare each term with xp,b. First the coefficient

at C2p
1 Cb−p

2 of δkF2(δ
−kC2p−4

1 Cb−p+1
2 ) is given by

(k + 2b− 2)(k + 2b− 1)(b− p+ 1)2.

We must multiply xb−1,p−2 to this. The product is given by

(b− 1)!2

(p− 2)!(b− p)!2
(k)2b

(
k − 1

2

)
b−1

(
k + p− 5

2

)(
k + p− 3

2

)
· · ·
(
k + b− 5

2

)
= e1xp,b

where we put

e1 =
p(p− 1)(k + p− 5

2 )(k + p− 3
2 )

b2(k + b− 3
2 )

2
.

Secondly, the coefficient at C2p
1 Cb−p

2 of δkF2(δ
−kC2p−2

1 Cb−p
2 ) is given by

1

2
(k + 2b− 2)(k + 2b− 1)

(
2(2b− 2p+ 1)k + (4b2 − 6b− 4p2 + 10p− 5)

)
.

We must multiply xb−1,p−1 to this. The result is e2xb,p, where we put

e2 =
p(k + p− 3

2 )
(
(2b− 2p+ 1)k + (2b2 − 3b− 2p2 + 5p− 5

2 )
)

b2(k + b− 3
2 )

2
.
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Finally, the coefficient at C2p
1 Cb−p

2 of δkF2(δ
−kC2p

1 Cb−1−p
2 ) is given by

1

4
(k + 2b− 2)(k + 2b− 1)(2k + 2b+ 2p− 3)2.

Multiplying xb−1,p to this, we have e3xb,p, where we put

e3 =
(b− p)2(k + b+ p− 3

2 )
2

b2(k + b− 3
2 )

2
.

Since we easily see c1 + c2 + c3 = 1, we prove (ii). □

Lemma B.10. (i) For any integer r ≥ 1, we have

δkF1(δ
−kCp

1C
q
2C

r
3) ∈ C3.

(ii) For any integer q ≥ 1, we have

δkF1(C
p
1C

q
2) ∈ C23.

(iii) For any non-negative integers a, p, we have

δkF1(δ
−kCp

1 ) =
(k + p)(2k + p− 1)

2
Cp+1

1 +
p(k + p)

2
Cp−1

1 C2 −
p(2k + p− 1)

4
Cp−1

1 C3,

δkFa
1 (δ

−kCp
1 ) ≡

(k + p)a(2k + p− 1)a
2a

Ca+p
1 mod C23.

Proof. Since F1(C3), δ
k{δ−k, C3}1, {Ci, C3}1 are in C3 for any i = 1, 2, 3, the

assertion (i) is clear. Since F1(C2), δ
k{δ−k, C2}1, {Ci, C2}1 are in C23 for any i = 1, 2,

the assertion (ii) is clear. For (iii), the first assertion is obtained by direct calculation.

The second assertion is shown by induction by using (i) and (ii). □

Proof of Proposition B.8. The assertion (i) is clear from Lemma B.4 and

Lemmas B.9 (i), B.10 (i). The assertion (ii) is obvious by Lemmas B.9 (ii) and B.10 (iii).

So Proposition B.8 is proved. □

In order to prove Theorem B.3, we fix a non-negative integer l. In order to give

Dl(δ
−k), we must sum up each contribution of Fa

1Fb
2Fc

3(δ
−k) such that a+ 2b+ 2c = l.

By Proposition B.2 and Proposition B.8 (i), the term with c ≥ 1 does not contribute to

the final sum. So we assume c = 0 and a+ 2b = l. We put

qa,b =
(−1)b

a!
(k)l(2k + 2b− 1)a

(
k − 1

2

)
b

(
k − 3

2

)
a+b

.

By Proposition B.8, we see that this is the contribution from Fa
1Fb

2(δ
−k) times the

coefficient of F a
1 F

b
2 in the definition of Dl, noting that

(k)2b(k + 2b)a = (k)l.
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What we want to calculate is q0 =
∑

a+2b=l qa,b. Denote by [l/2] the maximum integer

which does not exceed l/2. To calculate Q inductively, for any integer b such that

0 ≤ b ≤ [l/2], we put

qb =
∑

0≤b≤b0≤[l/2]

ql−2b0,b0 .

Lemma B.11. The notation being as above, for any b with 0 ≤ b ≤ [l/2], we have

qb =
2(k + b− 1)(2k + 2l − 2b− 3)

(2k + l − 2)(2k + l − 3)
qa,b. (8)

Proof. We prove this by induction from b = [l/2] to b = 0. First we show this

for b = [l/2]. By definition, we have qb = ql−2b,b, so the problem is if the coefficient of

the right-hand side of (8) is 1. For even l, we have [l/2] = l/2 and for odd l we have

[l/2] = (l − 1)/2, and in both cases we have

2(k + [l/2]− 1)(2k + 2l − 2[l/2]− 3) = (2k + l − 2)(2k + l − 3).

So the assertion is clear for b = [l/2]. Now assume that the claim holds for some b ≤ [l/2]

and we calculate qb−1. Calculating the ratio qa,b/qa+2,b−1, we have

qb−1 = qb + qa+2,b−1 = qa+2,b−1

(
1− (l − 2b+ 1)(l − 2b+ 2)

(2k + l − 2)(2k + l − 3)

)
=

2(k + b− 2)(2k + 2l − 2b− 1)

(2k + l − 2)(2k + l − 3)
ql−2b+2,b−1.

So the claim holds also for b− 1. □

Proof of Theorem B.3. By Lemma B.11, we have

q0 =
2(k − 1)(2k + 2l − 3)

(2k + l − 2)(2k + l − 3)
×

(k)l(2k − 1)l(k − 3
2 )l

l!
.

Here we have

(k)l

(
k − 3

2

)
l

(2k + 2l − 3) = 2−2l(2k − 3)(2k − 1)2l,

and

2(k − 1)
(2k − 1)l

(2k + l − 2)(2k + l − 3)
= (2k − 2)(2k − 1)l−2,

where we define (x)−1 = 1/(x− 1) and (x)−2 = 1/(x− 1)(x− 2). So we have

q0 =
1

22ll!
(2k − 3)l(2k − 1)2l.

So we prove Theorem B.3. □
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B.0.2. Explicit pullback formula. Based on the results in the last subsection,

we can write down the pullback formula for the differential operator Dl in general for any

n = n1+n2 with 2 ≤ min(n1, n2) and λ = (l, l, 0, . . . , 0). We use Kozima’s formula in [45,

p.247]. We define Q(X) as in Proposition B.2 and Theorem 3.2. Then by Theorem B.3,

we have

Q(∆(12)) = q0C
2l
1 .

For an n× n symmetric matrix, we write a block decomposition as

T =

(
T11 T12
tT12 T22

)
,

where T11 and T22 are n1×n1 and n2×n2 matrices, respectively. We define a polynomial

Q(T ) in tij by

Q(T ) = Q(UT12
tV ).

Then we have Q((CZ+D)−1C) = Q(∆(12)). For any r ≤ min(n1, n2), we define n1×n2
matrix by ( 1r 0

0 0 ), and by abuse of language, we denote this also by 1r. As in Kozima, we

are allowed to write Q(T ) for T12 = 1r as

Q

(
∗ 1r
∗ ∗

)
,

not specifying ∗, since this does not depend on ∗ part by definition. Now we put

Rr =
∑

1≤i<j≤r

(u1iu2j − u1ju2i)(v1iv2j − v1jv2i).

Then for λ = (l, l, 0, . . . , 0), we have

Q

(
∗ 1r
∗ ∗

)
= q0 ×Rl

r.

We consider two isomorphic realizations of the representation detk ρr,λ, one is on the

space generated by bideterminants in uij with i = 1, 2, j ≤ r and the other is on the

space generated by bideterminants in vij with i = 1, 2, j ≤ r. We denote the former

representation space by V r
∗ and the latter by V∗r. We identify these representation spaces

of GLr(C) on U variables and V variables by mapping uij to vij . For v∗ ∈ V∗r, we denote

by v∗ the corresponding element in V ∗
r . Now we define

Sr =
{
S ∈Mr(C) | S = tS, 1r − SS > 0

}
,

where ∗ > 0 means that the matrix is positive definite. We define a linear map from Vr∗
to Vr∗ by

ψ(v∗) =

∫
Sr

⟨
ρr(1r − SS)v∗,Q

(
∗ 1r
∗ ∗

)⟩
det(1r − SS)−r−1dS,
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where ρr = det kρr,λ and dS =
∏

h≤j dxhjdyhj for S = X + iY with X = (xhj), Y =

(yhj) ∈ Mr(R). Then we know that ψ(v∗) = φv∗ for some constant φ. Then by the

result of [45] in page 247, we have

cr = 2r(r+1)+1−(rk+2l)irk+2l · φ.

Here φ obviously depends on the inner product. We can explicitly calculate the inner

product ⟨∗, ∗⟩0 defined before for the necessary quantity.

Lemma B.12. We have

⟨v∗, Rl
r⟩0 = (l + 1)!l!v∗.

Proof. For the proof, we quote [11, Theorem 2.16]. Let X = (xij) be an m× r

matrix of variables with m ≤ r, and let ∂ = ( ∂
∂xij

). Let A and B be r × m constant

matrices. Then that theorem gives the following general formula.

det(∂ ×B)(det(XA))s = det(tAB)(s)m det(XA)s−1.

So if we put m = 2 and assume X and tA to be 2 × r matrices consisting of the first r

columns of U and V respectively, and B = ( 12
0r−2,2

), then the above formula means

∂2Rl
r

∂u11∂u22
− ∂2Rl

r

∂u12∂u21
= l(l + 1)(v11v22 − v12v21)R

l−1
r .

In the same way we have

∂Rl
r

∂u1p∂u2q
− ∂Rl

r

∂u1q∂u2p
= l(l + 1)(v1pv2q − v1qv2p)R

l−1
r .

So iterating these operations l times, we have the assertion. □

By the above results, it is natural to use here the inner product

⟨∗, ∗⟩l = ⟨∗, ∗⟩0/(l + 1)!l!. (9)

The remaining part is the following integral

Ir =

∫
Sr

ρr(1r − SS) det(1r − SS)−r−1dS,

where ρr = detk ρr,λ, to which a dominant integral weight (k + l, k + l, k, . . . , k) corre-

sponds. By Kozima [44, Lemma 2] (and also by [19], [7], [9], [58]) we have

Ir =
2rπr(r+1)/2∏4

ν=2(2k + 2l − ν)
∏2

µ=1

∏r
ν=3(2k + l − µ− ν)

∏
3≤µ≤ν≤r(2k − µ− ν)

.

Theorem B.13. We assume that k is even with k > n+ 1. Assumption being the

same as above, taking the inner product ⟨∗, ∗⟩l as in (9), the constants cr for 2 ≤ r ≤
min(n1, n2) in Theorem 5.6 are given by
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cr =
2(r+1)2−(rk+2l)(−1)rk/2+lπr(r+1)/2(2k − 3)l(2k − 1)2l

22ll!
∏4

ν=2(2k + 2l − ν)
∏2

µ=1

∏r
ν=3(2k + l − µ− ν)

∏
3≤µ≤ν≤r(2k − µ− ν)

.

In particular, we have

c2 =
29−2(k+2l)(−1)k+lπ3(2k − 3)l(2k − 1)2l−3

l!
.

We note here that since we assumed that k is even, the number rk/2 is an integer.

References

[ 1 ] A. N. Andrianov, Quadratic Forms and Hecke Operators, Grundlehren Math. Wiss., 286, Springer-

Verlag, Berlin, 1987, xii+374 pp.

[ 2 ] N. Arancibia, C. Mœglin and D. Renard, Paquets d’Arthur des groupes classiques et unitaires,

Ann. Fac. Sci. Toulouse Math. (6), 27 (2018), 1023–1105.

[ 3 ] J. Arthur, The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups,

Amer. Math. Soc. Colloq. Publ., 61, Amer. Math. Soc., Providence, RI, 2013, xviii+590 pp.

[ 4 ] H. Atobe, M. Chida, T. Ibukiyama, H. Katsurada and T. Yamauchi, Harder’s conjecture II, in

preparation.

[ 5 ] J. Bergström and N. Dummigan, Eisenstein congruences for split reductive groups, Selecta Math.

(N.S.), 22 (2016), 1073–1115.
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