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Abstract. Let f be a primitive form with respect to SL2(Z). Then, we
propose a conjecture on the congruence between the Klingen—Eisenstein lift of
the Duke-Imamoglu—Ikeda lift of f and a certain lift of a vector valued Hecke
eigenform with respect to Sp,(Z). This conjecture implies Harder’s conjecture.
We prove the above conjecture in some cases.

1. Introduction.

Harder’s conjecture is one of the most fascinating conjectures in the arithmetic of
automorphic forms. It plays an important role in constructing nontrivial elements of the
Bloch—Kato Selmer group attached to a modular form (cf. [15], [17]). Harder’s conjecture
predicts that the Hecke eigenvalues of a primitive form for SLy(Z) are related with those
of a certain Hecke eigenform for Sp,(Z) modulo some prime ideal. We explain it more
precisely. For a non-increasing sequence k = (ki,...,k,) of non-negative integers we
denote by My(Sp,,(Z)) and Sk(Sp,,(Z)) the spaces of modular forms and cusp forms of

n

weight k (or, weight k, if k = (k,...,k)) for Sp,(Z), respectively. (For the definition of
modular forms, see Section 2.) Let f(z) = > °_ a(m, f)exp(2mv/—1mz) be a primitive
form in Sogyj—2(SLa(Z)), and suppose that a ‘big prime’ p divides the algebraic part
of L(k + j, f). Then, Harder [17] conjectured that there exists a Hecke eigenform F' in
S(k+4,k)(SP2(Z)) such that

Ar(T(p) = alp, f) + "2 +p™ 1 mod p’

for any prime number p, where Ap(T(p)) is the eigenvalue of the Hecke operator T'(p)
on F, and p’ is a prime ideal of Q(f) - Q(F) lying above p. One of main difficulties in
treating this congruence arises from the fact that this is not concerning the congruence
between Hecke eigenvalues of two Hecke eigenforms of the same weight. Indeed, the
right-hand side of the above is not the Hecke eigenvalue of a Hecke eigenform if 5 > 0.
Several attempts have been made to overcome this obstacle. Ibukiyama [21], [23] pro-
posed a half-integral weight version of Harder’s conjecture given as congruences of Hecke
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eigenforms and related it to the original Harder’s conjecture through his conjectural
Shimura type correspondence for vector valued Siegel modular forms of degree two (and
this Shimura type conjecture was now proved by Ishimoto [34]). This explains the
Harder conjecture for odd & ([26]) and the proved example of congruence in [23] means
the Harder conjecture for (k, j) = (5,18). In [5], Bergstrém and Dummigan, among other
things, reformulated Harder’s conjecture as congruence between a certain induced repre-
sentation of 7¢ and a cuspidal automorphic representation of GSp(2). In [12], Chenevier
and Lannes gave several congruences between theta series of even unimodular lattices,
and using Arthur’s endoscopic classification and Galois representation theoretic method,
they, among other things, proved Harder’s conjecture for (k,j) = (10,4). In this paper
we consider a conjecture concerning the congruence between two liftings to higher degree
of Hecke eigenforms (of integral weight) of degree two. More precisely, for the f above,
let J,(f) be the Duke-Imamoglu-Tkeda lift of f to the space of cusp forms of weight
2 +k+2—1for Sp,(Z) with n even. For a sequence

n n

3n j  3n
L S A 1)
3 T 2 Tt

_ (4 n_ J noyJ
Kk = (2+k+ s Lo gHk+s -1+
with k > n + 2, let [J,,(f)]* be the Klingen-Eisenstein lift of J,,(f) to My(Spy,(Z)).
Then, we propose the following conjecture:

CONJECTURE 1.1 (Conjecture 4.5). Let k,j and k be as above. Let f(z) €
Soktj—2(SL2(Z)) be a primitive form and p a prime ideal of Q(f). Then under cer-
tain assumptions, there exists a Hecke eigenform F in S(;1;x)(Spa(Z)) such that

A0 () (T) = Apg,, sy (T) - mod p’

for any integral Hecke operator T. Here, Ag;) (F) is the lift of F' to Sx(Spsy,(Z)), called
the lift of type AD), which will be defined in Theorem 4.2. (As for the definition of
integral Hecke operators, see Section 3.)

This conjecture implies Harder’s conjecture (cf. Theorem 4.8).

The advantage of this formulation is that one can compare the Hecke eigenvalues of
two Hecke eigenforms. Indeed, by using the same argument as in Katsurada—Mizumoto
[39], under the above assumption, we can prove that there exists a Hecke eigenform
G € My (Spy,(Z)) such that G is not a constant multiple of [J,,(f)]* and

)\G(T) = A[Jn(f)]k(T) mod p/

for any integral Hecke operator T'. Therefore, to prove the above conjecture, it suffices to
show that G is a lift of type A(). Here we expect that G can be taken as AY) and indeed
we will see that in the cases (k, j) = (10,4), (14, 4) and (4, 24) using the dimension formula
due to [57] and the numerical tables of Hecke eigenvalues due to Poor-Ryan—Yuen [52]
and Ibukiyama—Katsurada—Poor—Yuen [30]. As a result, we prove Conjecture 4.5 and so
Harder’s conjecture in those cases.
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This paper is organized as follows. In Section 2, we give a brief summary of Siegel
modular forms, especially about their Q-structures or Z-structures. In Section 3, after
giving a summary of several L-values, we state Harder’s conjecture. In Section 4, we
introduce several lifts, and among other things define the lift of A()-type of a vector
valued modular form in Sy 1) (Sp2(Z)), and propose a conjecture and explain how this
conjecture implies Harder’s conjecture. In Section 5, we consider the pullback formula
of the Siegel-FEisenstein series with differential operators. In Section 6, we consider
the congruence for vector valued Klingen—Eisenstein series, which is a generalization of
[39], and explain how the assumption that p divides the algebraic part of L(k + j, f) for
[ € Sak+j—2(SLa(Z)) gives the congruence between [J,,(f)]* and another Hecke eigenform
in Mx(Spy,(Z)). In Section 7, we give a formula for the Fourier coefficients of the
Klingen—Eisenstein series, from which we can confirm some assumption in our main
results. In Section 8, we state our main results, which confirm our conjecture, and so
Harder’s.

In a subsequent paper, we will prove Conjecture 4.5 and so Harder’s in more general
setting, that is, in the case k is even and j = 0 mod 4, that is, we will prove these
conjectures without using the dimension formula or the computation of Hecke eigenvalues
of Siegel modular forms (cf. [4]).

ACKNOWLEDGMENTS. The authors thank Siegfried Bocherer, Gaétan Chenevier,
Neil Dummigan, Gilinter Harder, Tamotsu Ikeda, Noritomo Kozima, and Shingo
Sugiyama for valuable comments. They also thank the referee for a careful and in-
telligent reading of their paper and for the numerous helpful suggestions to improve the
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NoTATION. Let R be a commutative ring. We denote by R* the unit group of R.
We denote by M,,,(R) the set of m X n-matrices with entries in R. In particular put
M, (R) = Mp,(R). Put GL,,(R) = {A € M,,(R) | det A € R*}, where det A denotes
the determinant of a square matrix A. For an m X n-matrix X and an m x m-matrix A, we
write A[X] = X AX, where X denotes the transpose of X. Let Sym,, (R) denote the set of
symmetric matrices of degree n with entries in R. Furthermore, if R is an integral domain
of characteristic different from 2, let #H,(R) denote the set of half-integral matrices of
degree n over R, that is, H,(R) is the subset of symmetric matrices of degree n with
entries in the field of fractions of R whose (i, j)-component belongs to R or %R according
as i = j or not. We say that an element A of M, (R) is non-degenerate if det A # 0.
For a subset S of M, (R) we denote by S the subset of S consisting of non-degenerate
matrices. If S is a subset of Sym,, (R) with R the field of real numbers, we denote by S
(resp. S>¢) the subset of S consisting of positive definite (resp. semi-positive definite)
matrices. The group GL,(R) acts on the set Sym,,(R) by

GL,(R) x Sym,(R) > (g9, A) — Alg] € Sym,,(R).

Let G be a subgroup of GL,(R). For a G-stable subset B of Sym,, (R) we denote by
B/G the set of equivalence classes of B under the action of G. We sometimes use the
same symbol B/G to denote a complete set of representatives of B/G. We abbreviate
B/GL,,(R) as B/~ if there is no fear of confusion. Let R’ be a subring of R. Then two
symmetric matrices A and A’ with entries in R are said to be equivalent over R’ with
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each other and write A ~pg/ A’ if there is an element X of GL, (R’) such that A" = A[X].
We also write A ~ A’ if there is no fear of confusion. For square matrices X and Y we
write X LY = (¥ ).

For an integer D € Z such that D = 0 or = 1 mod 4, let 0p be the discriminant of
Q(v/D), and put fp = \/g . We call an integer D a fundamental discriminant if it is the
discriminant of some quadratic extension of Q or 1. For a fundamental discriminant D,
let (£) be the character corresponding to Q(v/D)/Q. Here we make the convention that
(2) =1if D = 1. For an integer D such that D = 0 or = 1 mod 4, we define (£) = (22).
We put e(z) = exp(2my/—1z) for x € C, and for a prime number p we denote by e, (*)
the continuous additive character of Q, such that e,(z) = e(x) for z € Z[p~!].

Let K be an algebraic number field, and O = O the ring of integers in K. For a
prime ideal p we denote by K, and O, the p-adic completion of K and O, respectively,
and put O,y = O, N K. For a prime ideal number p of O, we denote by ord,(*) the
additive valuation of K, normalized so that ord,(w) = 1 for a prime element @ of K.
Moreover for any element a,b € O, we write b = a mod p if ord,(a — b) > 0.

2. Siegel modular forms.
We denote by H,, the Siegel upper half space of degree n, i.e.,
H,={ZeM,(C)|Z="Z=X+V-1Y, X,Y € M,(R),Y > 0}.
For any ring R and any natural integer n, we define the group GSp,,(R) by

GSp,,(R) = {g € My, (R) | gJn'g = v(g)J, with some v(g) € RX},

where J, = ({" 3'"). We call v(g) the symplectic similitude of g. We also define the

symplectic group of degree n over R by
Sp,,(R) = {g € GSp,(R) | v(g9) = 1}.
In particular, if R is a subfield of R, we define
GSp;; (R) = {g € GSp,(R) | v(g) > 0}

We put I'(") = Sp,,(Z) for the sake of simplicity. Now we define vector valued Siegel
modular forms of I'™). Let (p, V) be a polynomial representation of GL, (C) on a finite
dimensional complex vector space V. We fix a Hermitian inner product (x, %) on V such
that

{p(9)v,w) = (v, p(*g)w) for g € GL,(C),v,w € V. (H)

For any V-valued function F on H,,, and forany g = (4 5) € GSp," (R), we put J(g, Z) =
CZ + D and

Flolg) = p(J(g.2)) " F(92).



Harder’s conjecture I 1343

For a positive integer N, we define the principal congruence subgroup I"(™ (N) of I (n)
of level N by

F(”)(N){(é g) EF(”)‘ADln,BC’On modN}.

A subgroup I" of '™ is said to be a congruence subgroup if I" contains ") (N) with some
N. By definition, I"™(N) is a congruence subgroup. Another example of congruence
subgroup is the group I O(n)(N ) defined by

n A B n
I )(N):{(C D) er

Let I" be a congruence subgroup of I'™. We say that F is a holomorphic Siegel modular
form of weight p with respect to I" if F' is holomorphic on H and F|,[y] = F for any
~v € I' (with the extra condition of holomorphy at all the cusps if n = 1). We denote
by M,(I") the space of modular forms of weight p with respect to I', and by S,(I") its
subspace consisting of cusp forms.

A modular form F' € M,(I") has the following Fourier expansion

CEOnmodN}.

F(Z)= > a(l Fle(tx(TZ)) witha(T,F)eYV,
T€S(Q)>0

where tr(7T) is the trace of a matrix 7', and in particular if I" = '™, we have

F(Z)y= Y a(I,Flet(TZ)),

TEHn (Z) >0

and we have F' € S,(I"™) if and only if we have a(T, F') = 0 unless T is positive definite.
For F,G € M,(I") the Petersson inner product is defined by

(F,G)r = /F STV pT )G derl) iz (P)

where Y = Im(Z) and VY is a positive definite symmetric matrix such that \/172 =Y.
This integral converges if either F' or G belongs to S,(I"). We also define (F,G) as

(F,G)=["™ : I"Y(F,G)r.

Let A = (kq1, ko, ...) be a finite or an infinite sequence of non-negative integers such that
ki > ki1 for all ¢ and k,,, = 0 for some m. We call this a dominant integral weight (or
the Young diagram). We call the biggest integer m such that k,, # 0 a depth of A and
write it by depth(\). It is well known that the set of dominant integral weights A with
depth(X) < n corresponds bijectively to the set of irreducible polynomial representations
of the GL,,(C). We denote this representation by (pn x, Vnx). We also denote it by
(px, V) with k = (k1,...,k,) and call it the irreducible polynomial representation of
GL,,(C) of highest weight k. We then set My (I") = M, (I') and Sk(I') = S, (I"). We
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—
say F'is a modular form of weight k if it is a modular form of weight px. If k = (k, ..., k),
we simply write My, (I") = My (I") and Sk(I") = Sk(I"). We note that

M(k+j,k) (F(2)) = Mdetk ®SymJ (F(z)) and S(k-i—j,k) (F(Q)) = Sdetk ®SymI (F(Q))’

where Sym/ is the j-th symmetric tensor representation of GLy(C). In general, for
the k = (ki,...,k,) above, we write k' = (k; — ky,...,kn—1 — kn,0). Then, we have
Pk = det®n ®pxr with (pw, Vi) an irreducible polynomial representation of highest weight
k’. Here we understand that (pxs, Vi) is the trivial representation on C if k; = -+ =
kn—1 = kn. Moreover, we may regard an element F' € My (I") as a Vie-valued holomorphic
function on H such that

Flaetkn gp, ] = F

for any v € I' (with the extra condition of holomorphy at all the cusps if n = 1). For a
representation (p, V) of GL,(C), we denote by §(H,, V) the set of Fourier series F'(Z)
on H,, with values in V of the following form:

F(Z)= Y (A Fe(tr(AZ)) (Z€Hy, a(A,F)eV).
AEHH(Z)EO

For F(Z) € §(H,,V) and a positive integer r < n we define ®(F)(Z,) = P (F)(Z1)
(Z, € H,) as

- e (% 2 )

We make the convention that F(Hy, V) = V and ®3(F) = a(O,,F). Then, ®(F) be-
longs to F(H,,V). For a representation (p,V) of GL,(C), we denote by §(H,,V) =
F(H,, (p,V)) the subset of F(H,, V) consisting of elements F(Z) such that the following
condition is satisfied:

(K0) a(Algl, F) = p(g)a(A, F) for any g € GL,(C).

Now let £ = (l1,...,l,) be a dominant integral weight of length n of depth m. Then
we realize the representation space Vg in terms of bideterminants (cf. [31]). Let U = (u;;)
be an m x n matrix of variables. For a positive integer a < m let ST, , denote the set
of strictly increasing sequences of positive integers not greater than n of length a. For
each J = (j1,...,Ja) € SZy,q we define U as

Uty - Ul

Ua,ji - Uajg

Then we say that a polynomial P(U) in U is a bideterminant of weight £ if P(U) is of
the following form:
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UJija

i—lig1
J=1

m 1
P(U):H

where (Ji1,...,Jit,—1,,,) € SIZ;I"“. Here we understand that Hé;ll“ Uj, = 1if
l; = liy1. Let BDy be the set of all bideterminants of weight £. Here we make the
convention that BDy = {1} if £ = (0, ...,0). For a commutative ring R and an R-algebra
S let S[U]e denote the R-module of all S-linear combinations of P(U) for P(U) € BDy.

Then we can define an action of GL,(C) on C[U]; as

and we can take the C-vector space C[U], as a representation space V; of pg under this
action. Let m < n — 1 be a non-negative integer and U = (u;;) be an m x n matrix

of variables. Let k = (k1,...,k,) with ky > -+ >k, > kypy1 = -+ = ky, and k' =
n—m
(k1 —km41,- -y km — km+1,0,...,0). Here we make the convention that k = (k1,..., k1)

and k' = (0,...,0) if m = 0. Then under this notation and convention, My (I"™) can
be regarded as a C-sub-vector space of Hol(H,)[U]x/, where Hol(H,,) denotes the ring
of holomorphic functions on H,,. We sometimes write F(Z)(U) for F(Z) € My (I'™).
Moreover, the Fourier expansion of F(Z) € My (I'™) can be expressed as

F(Z)= Y a(A Fe(tr(AZ)),
AeHn(Z)>0

where a(A, F) = a(A4,F)(U) € C[U]y -
Let r be an integer such that m < r < n and let 1 = (ky,...,k—1,k,) and I’ =

T—m

——
(k‘l _karl’ ey km_karlv 0, AN 70). For the m xn matrix l]7 let U(T) = (uij)lgigmylgjgr
and put W’ = C[U™)]y. Then we can define a representation (7/,W’) of GL,(C). The
representations (pys, Vi) and (7', W') satisfy the following conditions:

(Kl) W' C Vie.
(K2) o ((653))v=""(g1)v for (5 §2) € GL,(C) with g; € GL,(C) and v € W'.

(K3) If v € Vi satisfies the condition

1, O B
Px’ ((O h>> v=wv for any h € GL,_.(C),

then v belongs to W'.

Let F(Z) = ZAG’HTL(Z)>O a(A, Fle(tr(AZ)) € §(H,, Vi). Then, in a way similar to [1,
(2.3.29)], we have B

ar(Fz)= Y a ((‘él 8>,F> e(tr(4121)) (21 € H,).

A1€H(Z)>0
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Suppose that F(Z) belongs to §(H,,, Vir). Then, by (KO0),

(5 D ) +((5 ) mww recrie

Hence, by (K3), a((%l 8),F) belongs to W' for any Ay € H,(Z)>o. This implies
that ®"(F) belongs to F(H,, W’). We easily see that ®"(F) belongs to F(H,, W’), and
therefore @7 sends §(Hn, Vi) to %(HT, W'). Tt is easily seen that it induces a mapping
from M,(I"™) to M, (I'™), where p = det" @py and 7 = det™ @7/, Let A, be the

subgroup of I'™ defined by

k *
A, = S F(")} .
’ { (O<nnn+r> *)

For F € S,(I"") the Klingen-Eisenstein series [F]2(Z, s) of F associated to p is defined
by

FEZ = Y (i) FOR@

T det Im(pr2(Z

Here pr'(Z) = 7y for Z = (7}, %) € H, with Zy € H,, Z4 € H,_p, Z € My r(C).
We also write [F]2(Z, s) as [F]K(Z,s) or [F]¥(Z, s).

Suppose that k, is even and 2Re(s) + ky, > n +r + 1. Then, [F]?(Z,s) converges
absolutely and uniformly on H,,. This is proved by [40] in the scalar valued case, and
can be proved similarly in general case. If [F]¥(Z, s) can be continued holomorphically
in the neighborhood of 0 as a function of s, we put [F|2(Z) = [F]2(Z,0). If [F]2(Z)
is holomorphic as a function of Z, it belongs to My (I'™), and we say that it is the
Klingen-Eisenstein lift of F' to My (I'™). In particular, if k,, > n+47+1, then [F]?(Z, s)
is holomorphic at s = 0 as a function of s, and [F]2(Z,0) belongs to M (I"™), and
®2([F]?) = F. We note that [F]2(Z) is not necessarily holomorphic as a function of Z if
k,<n-+r+1.

We define E, k(Z, s) as

Enx(Zs)= ) (detIm(2))"],y
’YGAn,o\F(")

and call it the Siegel-Eisenstein series of weight k with respect to I'™. In particular, if
n

——
k = (k,..., k) with k even, we write E, ;(Z,s) for E, x(Z,s). If k > 0, then E, 1(Z, s)
can be continued meromorphically to the whole s-plane as a function of s. Let k =

m n—m

7 > > k k

(k+1,...,k+1,k,..., k) such that k,I > 0, and put p = det” Qpy and 7 = det” Rpy
m m

with k' = (1,...,1,0,...,0) and ' = (I,...,1). Then, for F € S,(I""™) we can define the

Klingen—Eisenstein series [F]?%(Z, s) of F associated to px if k is even and 2Re(s) + k >

n+m + 1. We note that C[U™)]}, is a subspace of C[U]ys spanned by (det U"™))! and
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hence we have a natural isomorphism
Lt Sk (DY 3 f s fo= f(det UM™Y € 8 (™).

We sometimes write [f]?% or [f]¥ instead of [f]2« for f € Sk (I'™). We state the
holomorphy of the Klingen—Eisenstein series.

PROPOSITION 2.1.  Let k be an even integer.

(1) Suppose that k > (n+ 1)/2 and that neither k = (n +2)/2 = 2 mod 4 nor k =
(n+3)/2=2mod 4. Then E, 1(Z) belongs to My (I'™).

m n—m
(2) Letk=(k+1,....k+1,k,...,k) such thatl >0 and k > 3m/2+1 and let f be a
Hecke eigenform in Sy (™). Then [f]%(Z, s) can be continued meromorphically

to the whole s-plane as a function of s, and holomorphic at s = 0. Moreover
suppose that k > (n+m + 3)/2. Then [f]¥(Z) belongs to My (I'™).

PrOOF. The assertion (1) follows from [55, Theorem 17.7]. The assertion (2)
has been proved in the case I = 0 (cf. [47], [565]). The case | > 0 will be proved in
Section 5. O

Let £ = (I1,...,1l,) be a dominant integral weight of length n of depth m. Let
V = Vg = Q[U]e. Then, (pe|GL,(Q), V) is a representation of GL, (Q), and V @ C = V.
We consider a Z structure of V. To do this, we fix a basis S = S¢ = {P} of Z[U],. We
note here that the bideterminants are not linearly independent over Z and even over C
in general, so the set BD, is not necessarily a basis of Z[U]e. Let R be a subring of C.
Since the set S is also linearly independent over C, an element a of R[U]e is uniquely
written as

a= Z apP with ap € R.
PeS

Let K be a number field, and O the ring of integers in K. For a prime ideal p of O and
a=a(U) =3 pcsapP € K[U]y with ap € K, define

ordy(a) = min ordy(ap).

We say that p divides a if ord,(a) > 0.

REMARK 2.2. (1) The definition of ord, () does not depend on the choice of a
basis of Z[U]e. We note that p does not divide a = a(U) if p does not divide a(Up)
for some element Uy of M, »(9O).

(2) There is no canonical choice of a basis of V. But several standard choices are
known. One of them is a basis associated with the semi-standard Young tableaux
(cf. [16]). We note that it is also a basis of Z[U],. This can be proved by a careful
analysis of the proof of [16, (4.5a)] combined with [16, (4.6a)].
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For a subring R of C, we denote by M (I"™)(R) the R-submodule of M (I"(™)
consisting of all modular forms F such that a(7, F') € R[U]y for all T € H,,(Z)>¢. Here,
n—m
k' = (kl — k41, s km — k‘erl,O,...,O) for k = (k‘h...,k‘n) with k1 > --- >k, >
km+1 = -+ = ky as stated before.
We consider tensor products of modular forms, which will be used on and after
Section 5. Let n; and ny be positive integers. Let k; = (k1,..., km,km+t1, -5 kny)

and ko = (k1,..., km, km+1,- .., kn,) be non-increasing sequences of integers such that
km > kmy1 =+ =k,, =1l fori=1,2. Then (px, ® pk,, V1 ® V) is a representation of
ny—m
GL,,(C) x GL,,,(C). Put k} = (k1 —1,..., ks —1,0,...,0) and k = (k1 — I,.. .,k — I,
na2—m

—— l l . .
0,...,0). Then, px, ® px, = (det’ ®py;) @ (det” @py; ) with (pis, V) a polynomial rep-
resentation of highest weight ki for ¢ = 1,2. To make our formulation smooth, we
sometimes regard a modular form of scalar weight k for '™ as a function with values in
the one-dimensional vector space spanned by det U! with a non-negative integer [ < k,
where U is an n x n matrix of variables. Let Uy and Us be m x n; and m X no matrices,
respectively, of variables and for a commutative ring R and an R-algebra S let

S[U1, Uslw, e, = {ZP Up)P;(Uz) (finite sum) with P;(U;) € S[Ui]y; (i = 172)}.

Here we make the convention that P;(U;) € ((det U;)* !¢ if n; =m and ky = - = kyy,
as stated above. Then, as a representation space W = W, x, of Pry @ pi;, we can take
(C[Ul, UQ]kll,k/z' Let

W= Wkg,k; = Q[U1, Ua]x; k-
Then W = V/ ® VJ and W@@C:W. Let
M = My x, = Z[U1, Uz]i; x;-

We note that

M - Z aTl’Tz Tl(Ul) T2 (UQ) aT17T2 S Z
Pry Eskll’PTQESk/z

Here we make the convention that P, (Us) = (detU;)**~if n; = m and ky = -+ = ky,
Therefore, M is a lattice of W and M = Ly ® L, with L; = ZUil, (i = 1,2). Thus
(Pk; ® Pkss e V3) has also a Q-structure and Z-structure and we can define ord,(a®b)
fora®b € WK If dim¢ Vi = 1, then we identify Vl,Vl and L; with C,Q and Z,
respectively, and for a,b € V; and w € Vs, we write a ® b and a ® w as ab and aw,
respectively through the identifications V1 ® V3 2 V) and V1 @ Vo = Vo @ V7 = V4. The
tensor product M, (I'™)) @ My, (I'("2)) is regarded as a C-subspace of (Hol(H,,) ®
HOI(an))[Ul, U2]k’1,k'2-
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3. Harder’s conjecture.

In this section we review several arithmetical properties of Hecke eigenvalues and
L values of modular forms, then state the original Harder’s conjecture in [17]. In the
later section, we will treat a generalized version of the conjecture. From now on, until
the end of Proposition 3.3, let k = (k1,...,k,) with &y > --- > k, > 0. Let L, =
L(I'™,GSp; (Q) N Ma,(Z)) be the Hecke algebra over Z associated to the Hecke pair
('™ GSp;H(Q) N My, (Z)) and for a subring R of C put L,(R) = L, ®; R. For an
element T = '™ g™ ¢ L, (C), let

T= |_| r™g,
i=1

be the coset decomposition. Then, for a modular form F € My (I'™) we define F|T as

FIT = p(g)t a2 3 T ), g,
=1

This defines an action of the Hecke algebra L, (C) on M. The operator F — F|T with
T € L,(C) is called the Hecke operator. We say that F' is a Hecke eigenform if F' is a
common eigenfunction of all Hecke operators T € L,,(C). Then we have

F|T = Ap(T)F with Ap(T') € C for any T € L,,(C).

We call Ap(T) the Hecke eigenvalue of T' with respect to F'. For a Hecke eigenform F'
in My (I'™), we denote by Q(F) the field generated over Q by all the Hecke eigenvalues
Ar(T) with T € L, (Q) and call it the Hecke field of F'. For two Hecke eigenforms F' and G
we sometimes write Q(F, G) = Q(F)Q(G). We say that an element T' € L, (Q) is integral
with respect to My (I'™) if F|T € My (I'™)(Z) for any F € My (I'"™)(Z). We denote
by L{ the subset of L, (Q) consisting of all integral elements with respect to My (™).
The following proposition can be proved in the same manner as Proposition 4.2 of [36].

PROPOSITION 3.1.  We have L,, C Lgf) for any k = (ky,...,ky) with k, >n+1.

For a non-zero rational number a, we define an element [a] = [a],, of L,, by [a], =
'™ (al,)I'™). For each integer m define an element T'(m) of L, by

T(m) = > I™(dyL - LdyLlegd - Ley) ™,
diseesdnselsensen
where di,...,d,,e1,...,e, run over all positive integer satisfying
dildiv1, eip1les G=1,...,n—1),dplen,die; =m (i=1,...,n).
Furthermore, for ¢ = 1,...,n and a prime number p put

T;(p?) = '™ (1, Lpl; Lp*1,_; Lpl,) '™,
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As is well known, L, (Q) is generated over Q by T'(p), T;(p?) (i = 1,...,n), and [p~1],
for all p. We note that T,,(p?) = [p],. We note that L, is generated over Z by T(p)
and T;(p?) (i = 1,...,n) for all p. Let F be a Hecke eigenform in M (I'™). As is
well known, Q(F) is a totally real algebraic number field of finite degree. Now, first we
consider the integrality of the eigenvalues of Hecke operators. For an algebraic number
field K, let Ok denote the ring of integers in K. The following assertion can be proved
in the same manner as in [50]. (See also [36].)

PROPOSITION 3.2.  Letk = (ki,...,ky) be as above. Suppose that k, > n+1. Let
F be a Hecke eigenform in S (I'™). Then Ap(T) belongs to Oq(ry for any T € L%k).

Let L, , = L(I"™, GSp;' (Q) N GLa, (Z[p~'])) be the Hecke algebra associated with
the pair (I'™), GSp;’ (Q) N GLa,(Z[p~'])). Ly, can be considered as a subalgebra of L,
and is generated over Q by T'(p) and T;(p?) (i = 1,2,...,n), and [p~!],. We now review
the Satake p-parameters of Ly, ,; let P,, = Q[X&, X5, ..., X;] be the ring of Laurent
polynomials in Xy, X1,...,X, over Q. Let W,, be the group of Q-automorphisms of
P,, generated by all permutations in variables Xi,..., X, and by the automorphisms
Ty, ..., Tn defined by

7i(Xo) = XoX;, (X)) = X, H (X)) = X; (5 #49).
Moreover, a group Wn isomorphic to W,, acts on the set 7,, = (C*)"*! in a way
similar to the above. Then there exists a Q-algebra isomorphism &, ,, called the Satake
isomorphism, from L, , to the W-invariant subring PW» of P,,. Then for a Q-algebra
homomorphism A from L, ,, to C, there exists an element (ag(p, A), a1 (p, A), - .., an(p, A))
of T,, satisfying
A(‘IﬁjﬂF(Xg,Xl7 . ,Xn))) = F(ag(p, ), a1(p, A), ..., an(p, A))

for F € PW». The equivalence class of (ag(p, ), a1(p, ), .., an(p, A)) under the action
of Wn is uniquely determined by A. We call this the Satake parameters of L, , deter-
mined by X\. Now let F' be a Hecke eigenform in My (I"™)). Then for each prime number p,
F' defines a Q-algebra homomorphism Mg, from L,, , to C in a usual way, and we denote
by ao(p), @1(p), - . ., an(p) the Satake parameters of L, , determined by F'. For later pur-
pose, we consider special elements in Ly, ,; the polynomials ry, (X1,..., X,) = > i, (X;+
X[l) and p,(Xo, X1,...,Xn) = XgX1 X2 X (X1,...,X,) are elements of PWn,
and thus we can define elements ®, % (r, (X1, ..., X,)) and @, (p, (X0, X1,..., X,,)) of
L, ,, which are denoted by r, 1(p) and p, 1, respectively.

PRrOPOSITION 3.3. (1) We have

ﬁn71(p) = pn(n+1)/2[p]n ' rn,1<p)7

and in particular

n

AF(Pn,1(p)) = pizs kimnint1)/2 Z(Oéi(p) +ai(p)™).

=1
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(2) Let k = (k1,...,ky) be as above. Suppose that k, > (n+1)/2. Then T, 1(p) :=

p*171r, 1(p) belongs to L&,

PROOF. The assertion (1) can easily be checked remarking that ®,, ,(p™("+1)/2[p],,)
= X2X1 -+ X, (cf. [1, Lemma 3.3.34]). We will prove the assertion (2). Put

asoi (@ ={ (5 ) cGS@],

" = 1™ A GSp? (Q)se, and let Ly, oo = L(I'Y, GSpt (Q)oe N M, (Z)) be the Hecke
algebra associated to the Hecke pair (Fgf), GSp;’ (Q)soNMs,,(Z)). Then there is a natural
injection from L, into L, . For an element D € M, (Z)“d put D* =*D~! and for non-
negative integers a,b such that a + b < n, put Dy = Dyp(p) = lp—a_plplelp?1y,
U(Dap) = (p*D} L Dayp) and T, = IU(Da ). For an element (AB) € i
with D € M,,(Z)* and L € GL,(Z)DGL,(Z), we define the set B(L, M) as

B(L,M) = {N € M, () ‘ (”é sz) € Fég)MF(EZ})},

where v = v(M). Then #(B(L,M)/L) does not depend on the choice of L, and is
uniquely determined by M, which will be denoted by «(M), and in particular put
B(Dap) = a(p®D},LDap). Then, by [1, p.160], as an element of Ly o, pn1(p) is
expressed as

ﬁn,l(p) = p(nfl)n/Q (B(D7L—1,O)71Hn—1,0 + pn+1/8(Dn—1,1)71Hn—1,1) .

Let X' = (k1 — kn, ..., kn—1 — kn,0) and put m = depth(k’). Let F(Z) be an element of
My (I'™)(Z). Then we have

F(Z)= Y o F)U)e(tx(TZ))
TEH(Z)>0

with (T, F)(U) € Z[U]x . Then, we have

F|pna(p)(Z) = p?tr ) mnnt D3 0n=tn/2
X Z{ﬁ(DnLo)l(det Dy10) "
T
« Z a(T, F)(UL™Y) Z e(tr(T(p2 L71Z 4+ N)Lfl))

LEAN\ARDy_1,0Ay NeB(L,U(Dn-1,))/L
+ ﬁ(Dn—l,l)_l(det l)n—l,l)_kn

% Z a(T, F)(UL™Y) Z e(tr(T(p2 Ltz + N)L_l)) }7

LeA\AnDp—1,1A, NeB(L,U(Dn_11))/L

where A,, = GL,,(Z). For i = 0,1 we have
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Z e(tr(T (p? 'L™'Z + N)L_l))

NeB(L,U(Dn_1,:))/L

= e(tr(p*T[L71)2)) > e(tr(L7I1TN)).

NeB(L,U(Dn-1,:))/L

We have

-1 | B(Dn_1y) i LT'T € My(Z),
> e(tr(L7ITN)) = {0

P otherwise.
NeB(L,U(Dpn-1,:))/L

We note that L='T € M, (Z) if and only if p?T[L~!] € H,(Z). Hence we have
Flpn1(p)(2) = p2(k1+~~'+kn)fn(n+1)+(n71)n/2

x> e (tr(AZ)){ Fn (n—1) > a(A[L], F)(UL™Y)
A

LEA AR Ds—1,0An

ptee S e |
LEAn\Ananl,lAn

and therefore

Flrn1(p)(2) p’“*"'*k"”Ze(tr(AZ)){pk"("1) > a(A[L], F)(UL™")

A LeA\AnDy_1,0An

Fpr kL S a(A[L1,F><UL1>}.

LeANARDp_1,1An

We note that a(T, F')(U) is expressed as a Z-linear combination of polynomials of the
following form:

u::js

11 v

with l; = k; —kp, where (Ji1, ..., Jig,—1,,,) € SIZ;““. Therefore, to prove the assertion
(2), it suffices to show that
p2k1+k:2+~~~+kﬂ,—n—lp—kn(n—1+2i)+(n+1)iP(UL—1) c Z[U]k/ (I)

for any L € A, D, ;A, with ¢ = 0,1. We may suppose L = D,,_;; with ¢ =0, 1. First
write D11 = phl ... Lp® withd; =--- =d,_1 =1 and d,, = 2. Then we have

(U‘Dn 11) = - Xt E] BED o 1dJa+7P(U)

where {Jo4j}1<i<m,1<j<l;—l,41,1<a<i is a set of integers such that 1 < J,1; < n and
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Jatj # Jargjr if a+j # o’ + j'. Then we have Zfl:l dj,., <i+1 for any i. Hence we
have

Z Z Zd‘]u+j < Z(Zi —lip1)(@+1) =20 + Zli

i=1 j=1 a=1 i=1

=2k + > ki — (m+ Dk, =2k + > _ ki — (n+ k.

i=2 i=2

Hence (I) holds for any L € A, D,,—1 1A, Similarly, we have
P(UD;il,O) =p " P(U)

with i », an integer such that

n—1

Yk,n < Z ki — (Tl - 1)kn-
=1

By assumption, we have ki + k, > n + 1, and hence (I) holds for any L € A, D, _1 0A,,.
This proves the assertion (2). O

We write I'c(s) = 2(27)~°TI'(s) and write T'r(s) = 7~%/2T'(s/2) as usual. Let

f(z) =Y a(m, fle(mz)

m=1

be a primitive form in S, (SL2(Z)), that is let f be a Hecke eigenform whose first coefficient
is 1. For a prime number p let 51 ,(f) and B2 ,(f) be complex numbers such that

Bip(f) + Bap(f) = a(p, f) and B1,(f)B2,p(f) = p*~1. Then for a Dirichlet character x
we define Hecke’s L function L(s, f) twisted by x as

1

L(s, f,x) = [ (1 = Bup(H)x(@)p™*) (1 = Bap(Hx(0)p™)) -

p

We write L(s, f,x) = L(s, f) if x is the principal character.

Let {fi,...,fa} be a basis of Si(I"™) consisting of primitive forms. Let K be
an algebraic number field containing Q(f1)---Q(f4), and O the ring of integers in K.
Let f be a primitive form in Si(SLy(Z)). Then Shimura [54] showed that there exist
two complex numbers c4(f), uniquely determined up to Q(f)* multiple such that the
following property holds:

1
(AL)  The value W belongs to Q(f)(x) for any positive integer { <
k —1 and a Dirichlet character y, where 7(x) is the Gauss sum of y, and s = s(l, x) = +

or — according as x(—1) = (=1)! or (—1)'"%
We note that the above value belongs to K ().

For short, we write

l

Tes(f)

L(l, f,x;¢s(f)) =
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We sometimes write g,y (f) = csq)(f) and L(l, f, x; csa) (f)) = LI, fics0y(f)) if x is
the principal character. We note that the value L(l, f, x; ¢s(f)) depends on the choice of

cs(f), but if (xn)(—=1) = (=1)"*™ then s := s(I, x) = s(m, n) and, the ratio M
(4fx)

does not depend on ¢, (f), which will be denoted by IIj(m Fy For two positive integers
l1,lo < k—1 and Dirichlet characters x1, x2 such that x;(—1)x2(—1) = (=1)1+=2F1 the
value

Le(l)le(lz) L1, fox1) L2, f, x2)
VAT (axe)o) (£ )

belongs to Q(f)(x1,Xx2), where (x1Xx2)o is the primitive character associated with x1x2
(cf. [53]). We denote this value by

L(l1,l2; f3x1, X2)-

In particular, we put

L(l1,lo; f) = L(li, 125 f5 x1, X2)

if x1 and xo are the principal characters. This value does not depend upon the choice of
c+(f). Let f be a primitive form in S (SLy(Z)). Let fi,..., fa be a basis of S (SL2(Z))
consisting of primitive forms with f; = f and let © s be the ideal of Q(f) generated by all
H?:Q()\fi (T'(m)) — Ap(T'(m)))’s (m € Zo). For a prime ideal p of an algebraic number
field, let p, be the prime number such that (pp,) = Z Np. The following proposition is
due to [38, Theorem 5.4].

PROPOSITION 3.4. Let f be a primitive form in Sy(SL2(Z)). Let x1 and x2 be
primitive characters with conductors N1 and N, respectively, and let l1,ls be positive
integers such that k —11 +1 <1y <l —1 < k—2. Let p be a prime ideal of Q(f)(x1, x2)
with p, > k. Suppose that p divides neither ® y N1 No nor ((1—Fk). Then L(l1,l2; f; x1, x2)
is p-integral.

For two primitive forms f; € Sk, (SL2(Z)) and fo € S, (SL2(Z)) we define the
Rankin—Selberg L function L(s, f1 ® f2) as

2 2 -1
L(s, /1 ® f2) = H(HH — Bip(f1)Bjp(f2)P~ )) :

Let F' be a Hecke eigenform in Mk(F(”)), and for a prime number p we take the p-Satake
parameters ag(p), a1(p),...,an(p) of F so that

ao(p)zm(p) cea(p) = pk1+--~+kn—n(n+1)/2'

We define the polynomial L, (X, F,Sp) by

LP(XaFv Sp) 1 —Oéo H H (]‘ _ao(p)ail(p)"'air(p)X)

r=1 1<i1<-<,<n
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and the spinor L function L(s, F,Sp) b

L(s, F,Sp) = [ [ Lp(»™, F.Sp) "

P

We note that L(s, f,Sp) is Hecke’s L function L(s, f) if f is a primitive form. In this
case we write Ly(s, f) for L,(s, f,Sp). We also define the polynomial L,(X, F,St) by

H 1—ai(p 1—ai(p)_1X)

i=1

and the standard L function L(s, F, St) by

L(s, F, St) HL (p~*, F,St)~

For a Hecke eigenform F € Si(I'™) put

L(s, F, St)
L(s, F,St) = HF@ (s+k— 7@ o

REMARK 3.5. We note that for a positive integer m < k —r

L(m, F, St)
,]-[-r(/’c+m)+77177"(7‘Jr1)/2(F‘7 F)

L(m, F, St) = Ar,k:,m

with an element A, ., € Z[27!] such that ord,(A,xm) = 0 for any prime number
p>2k—r—1.

PROPOSITION 3.6. Let F be a Hecke eigenform in Sp(I'")). We define ng = 3 if
r > 5 withr = 1 mod 4 and ng = 1 otherwise. Let m be a positive integer ng < m <
k —r such that m = r mod 2. Then, a(A, F)a(B, F)L(m, F,St) belongs to Q(F) for any
A, BeH.(Z)so

PROOF.  We note that the value a(A, F)a(B, F)L(m, F,St) remains unchanged if
we replace F' by vF with any v € C*. By the multiplicity one theorem for Hecke
eigenforms (cf. Theorem A.2 (3) and Remark A.2 (2)), we can take some non-zero complex
number « such that vF € Si,(I'"™)(Q(F)). For this v, we see L(m,vF,St) € Q(F) b
[50, Appendix A]. This proves the assertion. O

Let R be a commutative ring, and a an ideal of R. For two polynomials P(X) =
S a; X and Q(X) = >, b; X", we write

P(X)=Q(X) moda

if a; = b; mod a for any 1 <1i < m. Now we will state Harder’s conjecture.
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CONJECTURE 3.7 ([17]). Let k and j be non-negative integers such that j is even
and k> 3. Let f =" a(n, f)e(nz) € Sopt;—2(SLa(Z)) be a primitive form, and suppose
that a “large” prime p of Q(f) divides L(k + j, f; csk+5)). Then, there exists a Hecke
eigenform F' € Sg.1;x)(I'?), and a prime idealp’ | p in (any field containing) Q(f)Q(F)
such that, for all primes p

Ly(X,F,Sp) = Ly(X, /)1 - p*2X)(1 — p ™*71X) mod p’.
In particular,

Ar(T(p) =p" 2+ +alp, f) modyp.

REMARK 3.8. (1) The original version of Harder’s conjecture did not mention
what “largeness” of p means.

(2) To formulate Harder’s conjecture we must choose the periods ¢s(f) in an appropri-
ate way. The original version of Harder’s conjecture did not specify them. After
that, Harder suggested assuming another type of divisibility condition instead of
the divisibility of L(k+ 7, f;cs(f)) in his conjecture (cf. [18]). However, it does not
seem so easy to confirm such a condition.

(3) The original version of Harder’s conjecture, which states only the last congruence
on Ap(T'(p)), is naturally included in the above Euler factor version since we have

Ly(X, F.Sp) = 1= Ap(T(p))X + Ar (P21 (p)) X*
_ )\F(T(p))ka}+]—3X3 +p4k+2j_6X47

and

L;D(Xa f) =1- (l(p,f)X +p2k+j73X2'

(4) The above congruence is trivial in the case k is even and j = 0. Indeed, for the
Saito—Kurokawa lift F' of f, we have

LP(X7 F7 Sp) = LP(Xv f)(l - pk72X)(1 - pkilX)v
so we have equality, not only congruence.

To avoid the ambiguity in (1) and (2) of Remark 3.8, we propose the following
conjecture, which we also call Harder’s conjecture.

CONJECTURE 3.9. Let k and j be non-negative integers such that j is even and
k>3,5>4. Let f be as that in Conjecture 3.7. Suppose that a prime ideal p of Q(f)

satisfies pp > 2k 4 j — 2 and that p divides L&;j}];), where kj =k +j/2 ork+j/2+1

according as j = 0mod 4 or j = 2mod 4. Then the same assertion as Conjecture 3.7
holds.
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REMARK 3.10. There is no ambiguity in the assumptions of Conjecture 3.9. More-

over, since we can compute LI%C]: ]}];) rigorously, we can easily check the assumption on p.
g

4. An enhanced version of Harder’s conjecture.

Conjectures 3.7 and 3.9 are not concerning the congruence between the Hecke eigen-
values of two Hecke eigenforms in the same space, and this is one of the reasons that it
is not easy to confirm it. To treat the conjecture more accessibly, we reformulate it in
the case k is even. (For odd k, see [21], [23].)

To do so, first, we review several results, on the Galois representations attached to
automorphic forms, and on liftings. Let R be a locally compact topological ring, and M
a free R-module of finite rank. For a profinite group G, let p : G — Autr(M) be a
continuous representation of G. When we fix a basis of M with rankp M = n, we write
p: G — GL,(R). The following result is due to Deligne [13] in the case n = 1, and due
to Weissauer [59] in the case n = 2.

THEOREM 4.1.  Let F be a Hecke eigenform in Sy, (I'™) withn < 2, where k, =k
or (k+ j,k) according as n = 1 or n = 2. Let K be a number field containing Q(F')
and p be a prime ideal of K. Then there exists a semi-simple Galois representation
pr = prp : Gal(Q/Q) — GLan (K,) such that pry is unramified at any prime number
p # py and

det (12 — ppp(Frob, 1) X) = L,(X, F,Sp),
where Frob,, is the arithmetic Frobenius at p.

THEOREM 4.2. (1) Letk = (ky,...,kn) € Z"™ withky > --- >k, > n, and G be a
Hecke eigenform in Si(I'™). Let k >4 and j > 0 and d > 0. Assume that

(a) k=nmod2, j=0mod 2;
(b) k>2d+1 and j >2d - 1;
() d+d<ki—i<i+k—d—1fori=1,...n
Define X' = (ki,... .kl 4q) € Z" 4 so that k| > ... > k], 4, and

(K =1k =2,k gy —n—4dy = {ky — 1, ky — 2, ky —n}

U{;+k+d—2,;+k+d—37...,‘;+k—d—1}

J J Jj
“4+dZ+d-1,....,=—d+1,.
@] {2 + a, 2 + , '3 + }
Then, for any Hecke eigenform F € S(k+j,k)(F(2)) there ewists a Hecke eigenform
‘Aglllli(Fa G) € Sy (I 4D such that

2d .
L(s, A% (F.G),8t) = L(s,G,St) [[ L <s+d+ % +hk—1 —i,F,Sp) .

i=1
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Here we make the convention that L(s,G,St) = ((s) if n = 0.

(2) Let k and n be positive even integers such that k > n > 2. Let f be a primitive
form in Sop_n(SLa(Z)) and G be a Hecke eigenform in S(k,k—n+2)(F(2))- Then,
there exists a Hecke eigenform A%H)(f, G) € Si(I'™) such that

n—2
L(s, A (1,G),8t) = L(s,G,St) [ L(s + k=1 =4, ).
=1

THEOREM 4.3. Let G be a Hecke eigenform in Sk (I'™) for a fived k =
(k1y...,kn) € Z"™ with ky > --+ > ky > n. For positive integers k and d with k > d, we
assume one of the following conditions:

(1) k—d>ki—1 and k = dmod 2.
(2) k+d—-1<ky,—n, k>dand k=d+nmod 2.
Define K = (k{,..., k], 04) € Z""2% s0 that k{ > --- > k!, ,, and

{ki_17k/2_25-~'7k;+2d_(n+2d)}
={k— 1, ko — 2, ky—n}U{k+d—1k+d—2,....k—d)}.

Then, for any Hecke eigenform f € Soi(SLa(Z)), there exists a Hecke eigenform
M%:d,k(fa G) € Sy (I 2D) such that

2d
L(s, M 40 (£, G),St) = L(s,G,St) [[ L(s + k +d — i, f).

i=1
Here we make the convention that L(s,G,St) = ((s) if n = 0.

Theorem 4.2 (1) for the case n = 0, and Theorem 4.2 (2) have been proved in [14,
Proposition 5.3] and [14, Proposition 5.2], respectively. (These results were proved under
a certain assumption. But such an assumption was proved by Arancibia, Mceglin and
Renard [2](cf. Remark A.2), and they are now unconditional results.) A general case of
Theorem 4.2 (1) and Theorem 4.3 may be proved similarly. But, for readers’ convenience
we will give their proofs in Appendix A. Theorem 4.2 was conjectured by Ibukiyama [22]
in special cases with numerical examples. We say that the lifts in (1) and (2) are the
lifts of types A and AU respectively. If n = 0 and

2d 2d

k’:(%+k+d—1,...,%+k+d—1,%+3d+1,...,%+3d+1),

we simply write Agi)(F ) instead of A((){L)l:ll:/(F ,G) because k and k" are determined by F

and d. Theorem 4.3 was conjectured by Miyawaki [49] with numerical examples. We also
note that Mﬁl ax(fs G) was constructed by lkeda [33] in the case (2) under the assumption
k1 = -+- = k, and the non-vanishing condition. In particular in the case n = 0, it was
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constructed by ITkeda [32], and we write it as Jo4(f). The following proposition is more
or less well known.

PROPOSITION 4.4. Let k = (k1,..., km,---,kn) and 1 = (ky, ... kp) with ky >
- >kyp > -+ >k, Let F be a Hecke eigenform in Sl(F(m)), and suppose that
[F]¥ = [F]¥(Z,0) belongs to My (I'™). Then, [F]* is a Hecke eigenform and

n

L(s, [F]%,St) = L(s, F,St) [] (C(s+ ki —)¢(s — ki +14)).

i=m-+1
PROOF. The assertion is well known in the case k1 = -+ =k, = -+ = ky, (cf. [1,
Exercise 4.3.24]), and a general case can also be proved by the same argument. O

Let F' and G be Hecke eigenforms in M (I'™) and p a prime ideal of Q(F). We
say that F' is Hecke congruent to G modulo p if there is a prime ideal p’ of Q(F) - Q(G)
lying above p such that

Ae(T) = Ap(T) mod p for any T € LX),
We denote this property by
G =ev FF' mod p.
CONJECTURE 4.5. Let k,j and n be positive integers. Suppose that
(a) n=k=j=0mod 2 and j/2+n/2=1 mod 2.
(b) k>n+1andj>n—1.

Put

n n

J n j  3n j  3n
St+k+-——-1,24—+1,...,= 4+ — 1).
2+ +2 ,2+2+, ,2+2+

J n
k:(f B+ 21
Skt s L

Let f(z) =Y a(l, f)e(lz) € Sak+;j—2(SLa(Z)) be a primitive form. Let p be a prime ideal
of Q(f) such that py, > 2k + j — 2 and suppose that p divides % Then,

there exists a Hecke eigenform F € S(k-s-j,k)(f’@)) such that
A (F) =Zey (] mod p.

REMARK 4.6.  Since we have j+3n/2+1 > 3n/241, [3,(f)]¥ belongs to My (I"*™)
by Proposition 2.1 (2).

Let O be the ring of integers in an algebraic number field K, and 8 a maximal ideal
of O. Let Ay be the Grothendieck group of finite dimensional Galois representations of
Gal(Q/Q) with coefficients Og3 /9 unramified outside . Let 8 be the set of isomorphism
classes of irreducible representations in Agq. Write an element H of Agp as
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H = ngS with ng € Z
sSes8
and set
|H|| = ng|dim S.
Ses

LEMMA 4.7.  Let P be as above. Suppose that pyp is odd. Let H be an element of
Asp. Suppose that (X'+1)H = 0 with i = 1,2, where X is the mod B representation of the
cyclotomic character x : Gal(Q/Q) — GL1(Ky). Then ||H|| is divisible by (pyp — 1)/i.

PROOF. The assertion for i = 1 has been proved in Proposition 10.4.6 of Chenevier
and Lannes [12], and the other assertion can also be proved by using the same argument
as there. ]

THEOREM 4.8.  Let the notation be as in Conjecture 4.5.
(1) Congecture 3.9 holds for the case j = 0 mod 4 if Conjecture 4.5 holds for n = 2.

(2) Suppose that 2k + j — 2 > 20. Then Conjecture 3.9 holds for the case j = 2 mod 4
if Conjecture 4.5 holds for n = 4.

PROOF. Let f be a primitive form in Conjecture 3.9, and suppose that a prime
ideal p of Q(f) satisfies the assumptions in Conjecture 3.9. Then, by Conjecture 4.5, there
exists a Hecke eigenform F' in S(kﬂ-’k)(l“@)) satisfying the conditions in Conjecture 4.5.
Let K = Q(f) - Q(F) and O the ring of integers in K. Take a prime ideal 3 of O lying
above p. Then it suffices to show that

LP(X? F, Sp) = LP(X7 f)(l _pk_2X)(1 _pj+k_1X) mod ‘1‘ (Cp)

for any prime number p. By Proposition 4.4, we have

L(s, [9n(F)]%, St) :L(s,9n<f),3t)f[lg(s+g+g+1—¢><(s— J —’;—Hi)

and

L(s,Jn(f),St):C(s)HL(s—i-g—|—k:+7;—1—i,f).

=1

Hence

L(s, [9u(f)]*, St)

:((s)il;[lL<s+g+k+Z—1—z',f)E((s+é+§+1—i)g<s—;—Z—Hi)

:g(s)H(L(er‘;+k+g—1—i,f>g(s+‘;+Z+1—i)g<s—;+g—z‘)).

i=1
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Then, by (1) of Theorem 4.2, we have

L(s, AS)(F), St) = ¢(s) ﬁL(s +j/24k+n/2—1—i, F Sp).

i=1

By [1, (3.3.52), (3.3.53), Theorem 3.3.30, Lemma 3.3.34], for any prime number p, the i-
th coefficient of L, (X, [J,,(f)]¥, St) and L, (X, Agi) (F),St) are of the form p™ Ay (5 (T3)
and p"i)\Au)(F) (T;) with n; € Z<o and T; € LX, respectively. Therefore, for any prime

n?

number p # pp, they belong to Og, and by the assumption, we have
) — k
Lp(X, A, (F),St) = L,(X, [T, (f)]¥,St) mod ‘P.

Hence we have

n n

12,0 x. F.8p) = [] Lo~ X, )1 = p 92 X) (1 = p =1 X)  mod B

i=1 i=1
(Dy)

for any prime number p # p,. Let pp : Gal(Q/Q) — GL4(Ky) and py : Gal(Q/Q) —
GLa(Kqp) be the Galois representation attached to the spin L functions of F' and f,
respectively. For p = pp, py let p be the mod P representation of p. Then, by (D,), in
the Grothendieck ring Ag,

(L+x e = 1+ X+ X+ X777
or
L+ X" DA +X)pr = 0+ X A+ X )P +X77F X777
according as n = 2 or 4. Define an element H of Ay as
H = pr = (pr + X" +x777").
Then we have ||H|| < 8. Let n = 2. Then, we have
(1+x YHH =0.

Since we have 2k + j — 2 = 2 mod 4, by assumption we have pp = p, > 2k +j —2 > 18.
Hence, by Lemma 4.7, we have H = 0. Let n = 4. Then,

1+x H1+x2)H=0.

Since we have pp = p, > 2k + j — 2 > 20, using Lemma 4.7 repeatedly, we also have
H = 0. Hence, in Ay we have

pr=pyr+ X7+

This implies that the congruence relation (C,) holds for any prime number p # p,.
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Let p = pp. Then we have

n

A0 oy (20,1 (9)) = p~I 2R INR (T (p) Y0

i=1

and
. n . . n . . n .
Mg, (ppe(tan1(p)) = p /27K 2 g (p, £) N " pt 4 p I 2TRRTEN Tt g p 2N
=1 =1 =1

Since the Hecke operator To, 1(p) = p*+i/2¥"/2=2p,, | (p) belongs to LX, by Proposi-
tion 3.3, we have

Ar(T(p) = )‘A;L)(F)(FZn,l(p)) = Mg, (1 (Tan,1(p)) = a(p, f) mod P.

Moreover, all the coefficients of X™ with m > 2 of the both polynomials L,(X, F, Sp)
and L(X, f)(1 — p*72X)(1 — p?**~1X) are congruent to 0 modulo *B. This proves the
assertion. 0

REMARK 4.9. (1) Our conjecture is stronger than Conjecture 3.7 in the case k is
even.

(2) The above conjecture tells nothing about the case k is odd. However, we can
propose a similar conjecture in the case k is odd.

5. Pullback formula.

5.1. Differential operators with automorphic property.
In this section, we explain some explicit differential operators that are used in the
pullback formula.

5.1.1. Setting. Now for an integer n > 2, fix a partition (n1,ng) with n = n;+nq
with n; > 1. Let A be a dominant integral weight with depth(A\) < min(ny,ns). For
i = 1,2, let (pn;.a, Voui,n) be the representation of GL,,(C) defined in Section 1. Put
Wanime = Vaix @ Vi, n. We regard H,,, x H,,, as a subset of H,, by the diagonal em-
bedding. We consider V) j,, », valued differential operators I on scalar valued functions
of H,,, satisfying Condition 1 below on automorphy: We fix A\, ny, no as above. For
variables Z; € H,,, irreducible representations (p;, V;) of GL,,,(C) for i =1,2,a V1 @ V3

valued function f(Z1,Z2) on H,, x H,,, and g; = (éi gi) € Sp,, (R), we write

(Flpr.palg1,92])(Z1, Za) = p1(C1Z1 + D1) ™ @ p2(CaZo + Do) f(g1 21, g2 22).
We regard Sp,,, (R) x Sp,,,(R) as a subgroup of Sp,, (R) by

A, 0 By 0

0 Ay, 0 B,

Hg192) = Cc, 0 D 0
0 C, 0 D,

(9: € Sp,, (R) for i = 1,2).
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For Z = (z;;) € H,, we denote by Jz the following n x n symmetric matrix of partial

5 (1 +d;; O )
Z p— .
2 Oz 1<i,j<n

For a Vy p, n, valued polynomial P(T') in components of n X n symmetric matrix T, we
put ]D)p = P(az)

derivations

CoNDITION 1. We fix k and A\. Let D = P(Jz) as above. For any holomorphic
function F' on Hl, and any (g1, 92) € Sp,, (R) x Sp,,, (R), the operator I) satisfies

Res(D(F|k[c(g1, 92)]) = (Res D(F))|getr Prq,a,det® an,A[gl,QQ]v

where Res means the restriction of a function on H,, to H,,, x H,,.

For Z = (é; ZZI;) € H,, with Z, e H,,,,Z, € H,,, Z12 € My, »,(C), we sometimes
write D(F) (G £) instead of Res D(F(Z)). This condition on D is, roughly speaking,
the condition that, if F' is a Siegel modular form of degree n of weight &, then Res(D(F))
is a Siegel modular form of weight det® Pn;,x for each variable Z; for ¢ = 1, 2. Here,
if 2k > n, the condition that p; and ps correspond to the same A is a necessary and
sufficient condition for the existence of I ([20]). A characterization for P is given in
[20]. We review it since we need it later. For an m X 2k matrix X = (x;,) of variables

and for any (7,7) with 1 <4, j < m, we put

2%k 52
Aij(X) = ; Gandzy,
We say that a polynomial P(X) in z;, is pluri-harmonic if
AG(X)P(X) =0
for any 4, j with 1 <4,7 < m.

THEOREM 5.1 ([20]). We assume that 2k > n. Notation and assumptions being
as above, the operator D = P(0yz) satisfies Condition 1 if and only if the Vi ny n, valued
polynomial P satisfies the following two conditions.

(1) Fori=1, 2, let X; be an n; x 2k matriz of variables. Then the polynomial

> o X1'X7 XX,
P(X1,X5) = P <X2 o X

is pluri-harmonic for each X1, Xs, that is, Aij(Xl)ﬁ = Ay (Xg)]5 = 0, regarding that
the variables in X1 and in X5 are independent.
(2) For any Ay € GL,,, (C) and Az € GL,,,(C), we put

(A0
a0y,
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Then we have
P(AT'A) = ppy A(A1) @ ppy A (A2) P(T).

Besides, for any fized k with 2k > n = ny + ny and A, the polynomial P(T) satisfying
(1) and (2) exists and is unique up to constant.

There are a lot of results concerning explicit description of P, notably in [25], [27].
But still we need more explicit formula for our purpose and we will explain it in the next
subsection.

5.1.2. Explicit formula. In this section, we consider some special type of \.
We assume that A = (I,...,1,0,...,0) with depth m. Put A\g = ({,...,1). Then first we
explain some general way to construct Vi »,.n, polynomial P(T) satisfying Condition 1
from a scalar valued polynomial Py(S) satistying Condition 1 for p,, x, ® pm,x,. Here T
is an n X n symmetric matrix and S is an 2m x 2m symmetric matrix. Then for the case
m < 2 and any [, we give a completely explicit description of P(T). (The case m = 1
has been already given in [20] and a new point is the case m = 2.) Here we note that
Pmro = det! and det” Pmre = detF*t.

For any positive integers k, [, we consider Condition 1 for n = 2m, (n1,n2) = (m, m)
and from weight k to weight det"™ @det**'. If we denote by Py j1i(S) a non-zero
polynomial satisfying Condition 1 for this case, this is a scalar valued polynomial in
components of an 2m x 2m symmetric matrix S. We assume that we know Py x4+:(5),
and then we consider how to give more general case starting from this Py ;.

First we review realization of representations of GLy, (C) x GL,,(C) by bidetermi-
nants. Let U, V be m x ny and m X ny matrices of independent variables respectively.
Let A= (l,...,1,0,...,0) such that depth(\) = m. For a integers n; and ng such that

m ni—m m no—m
, — , —
n1,mg > m,put ky' = (I,...,1,0,...,0) and ko" = ({,...,1,0,...,0), and let C[U, V]y; 1,
be the vector space defined in Section 2. Then, we can take C[U, V]i; i, as a represen-
tation space of pp, x ® pp,,x as explained in Section 2. We denote by U the following
2m X n matrix, where n = ny + no:
U o0
U= ( ’ V) .

PROPOSITION 5.2.  Notation being as above, consider A = (I,...,1,0,...,0) such
that depth(\) = m. For a partition n = ny +na, we assume that m < min(ny, ng). Let T
be an n x n symmetric matriz. Then for Q(T) = Py p+1(UT 'U), the differential operator
Dy ne = Q(0z) for Z € H, satisfies Condition 1 for k and det® Prars det® PraA-

ProoF. For 4; € GL,,(C) and Ay € GL,,(C), we put

A= (4 0,
0 A
The fact that Q(T') is in the representation space of pp, A ® pn, . for the action U — U Ay
and V' — V A, is concretely proved by using a structure theorem on the shape of Py, ;1(.5)
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in [29, Proposition 3.1], but we will later give a more abstract proof in the lemma below.
So here we prove the rest. We write

(T T
T - tT T k) (]‘)
12 22
where 171 is an ny X nq, T2 is an ny X ng, and Thy is an ng X ny matrix. Then

QAT'A) = P, k+l( Uy ‘Udr)  UArTha (VA)
= Pt ( .

VAQ) tT12 *(UAl) VA2T22 f(VAQ)

So surely the action of A to T gives the action of A on U, V given by UA; and V A,.
This means that

Q(ATtA) = pnh)\(Al) ® pn2,)\(A2)Q(T>'

Finally we see the pluri-harmonicity. Let X and Y be ny x 2k and ns X 2k matrices,
respectively. We put

axn=a(Yiy yo)

and we must show that Qv is pluri-harmonic for each X and Y. As before, for m x 2k
matrices X; and X5, we write

~ X1'X; X4tXx
Pk,k+l(XlaX2)Pk,k+l< ot ! 2)

Xo'X1 XotXo
Then we have Q(X,Y) = ﬁk7k+l(UX, VY). We write U = (u;;), V = (vi;) and put

(Gip)r<i<ma<u<er = UX,  (Miv)i<i<m,i<p<zk = VY.

Then we have

2%
&ip = E U1 Ty
=1

So we have

0UY) _ -, Ok

UX,VY),
8xlu i1 851# ( )
6‘2 Xm: wiugy LDkt P kv (UX,VY),

axmaxw (“)fwaﬁw

So for any [, t with 1 <t,l < ny, we have

m

0Py 1
X.VY).
Z azl#axm =2 “”“J'fz agwagw (UX,VY)

4,j=1
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The last expression is 0 by the pluri-harmonicity of Pj x4;. In the same way, we can
show that Q(X,Y) is pluri-harmonic also for Y. O

LEMMA 5.3.  Letni, m be integers such that 1 < m < mnq. Let U be an mxni matrix
of variables. Let Q(U) be a (scalar valued) polynomial in the components of U such that
Q(BU) = det(B)!Q(U) for any B € GL,,(C). Then Q(U) is a linear combination of
products Hi:l Ur,, where I; C {1,...,n1} with |I;| = m and Uy, is the m x m minor
consisting of p,-th columns for p, € I,.

PrOOF. We regard B = (b;j)1<i,j<m as a matrix of variables and define a matrix

Of OperatOI‘S by

0
det( ) Z 8bla(l) " Oy

€Sm

We consider

where S, is the permutation group on m letters. By Cayley type identity ([11]), we
have

det(aaB>det( )= (1) det(B) 1

where ()., = z(x +1)--- (x +m — 1) is the ascending Pochhammer symbol, so by the
assumption Q(BU) = det(B)'Q(U), we have

det ((;;) Q(BU) = (1) det(B)'*Q(U).

Repeating this process, we have

l
det () QUE) = Wnlt = -+ (D QIO

On the other hand, writing U = (u;,) and BU = (v;,,), we have v, = E;":I biptp, and
0 UL v, oL oQ
— ~,——(BU).
abia(l JZI ; 8b’ta (1) 81}]” U) ; for avil/ ( U)

So we have

d o1 amQ

— BU) = E § - * _ (BU).
det(@B) BlI= 2 _1<GGS 9o oy ”"<m>”m> Forer -+ Doy 0

Here if we fix v1,..., vy, then we have
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ULy, o Uly,,

Z sgn(o—)ua(l)ul o Us(m)vy, =

7€Sm umvl tee umum

If v; = v; for some i # j, then of course this is 0 and if the cardinality |I| of I =
{v1,...,Vm} is m, then this is Ur up to sign. By taking B to be scalar, we see that Q(U)
is a homogeneous polynomial of the total degree ml, so the mi-th derivative of Q(U) is
a constant. So we see that

ao (2 e

is a linear combination of [ products of m X m minors of U. Since this is equal to
Dm(l = D1 - (1)mnQ(U), we see that Q(U) is a linear combination of ! products of
minors of degree m of U. 0

REMARK 5.4. By Proposition 5.2, the operator Res Dy ,,, n, sends My, (I'("1+72)) to
My oir pnl,A(F(”l)) ® Myeir pn2’A(F("2)). Moreover, if [ > 0 and n; = m, by the property

of Peri1(0z), for A = (ip)y 7)€ Huniny(Z)30 with Ay € Hyn(Z), Ay € Hyy(2)
and R € M,.n,(Z), we have Dy, n,e(tr(AZ)) = 0 unless A; > 0. Hence we have

(Res D ) (Mi(D0"F72))) € Sgerr (D) @ Mgy, (1)),

DN

If we write

S S
Pr i+1(S) = Py iy < " 12)

tS12 Sao

for m x m matrices S;;, then by definition, for B; € GL,,(C), we have

B
B1S11'By  Bi1S12'Bs

— l
Pk,kJrl <32 tSmBl B2522 th) = det(BlBQ) Pk,k+l(5>-

So

p (BlU)THt(BlU) (BlU)Tth(BQV)
i ((BQV) T Y(B,U) (BgV)ngt(BQV)>

t t
= det(B1B3)" Pr ot (VU’?;’;Q g] ‘U/gz tg) '
So applying Lemma 5.3, we see that Q(T') is in the representation space of pp, x ® pn, .
Now we apply this for concrete cases. For m = 1, the polynomial P ;4 is essen-
tially the (homogeneous) Gegenbauer polynomial of degree I. Based on these facts and
Lemma 5.2, this case gives differential operators for n = nq +mn9 and A with depth 1, that
is, the case A = (1,0,...,0). The corresponding representation is the symmetric tensor
representation Sym(l) of degree I, so D is from weight k to det” Sym(l) ® det® Sym(1).
An explicit generating function of such operators for general n = ni+ns has been already
given in [20, pp.113-114].
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Here we give the depth 2 case with A = ({,[,0,...,0). This means m = 2 and an
explicit generating function of Py, j4;(S) for I > 0 is given in [20, p.114] explicitly, where

S is a 4 X 4 symmetric matrix. Polynomials for general n = ny +ngy for A = (1,1,0,...,0)

based on Proposition 5.2 are given as follows. For a 4 x 4 symmetric matrix S = (tSSlllz g;z)

with 2 x 2 matrices S;; of variables for i, j = 1, 2, we put

f1(S) = det(S12),
fQ(S) = det(Sn) det(SQQ),
f3(8) = det(S).

For an indeterminate t, we put

Ao(S,t) =1 —=2f1(9)t + f2(9)¢7,
R(S,t) = (Ao(S,t) + v/Ao(S, 1) — 4f3(5)t2) /2.

Then for each I, we define a polynomial Q;(T,U, V) = Qj.n, n, (T, U, V) by the following
generating function.

1
R(UT tU, t)k=5/2 /Ao (UT 'U, t) — 4 f3(UT U)¢>

=Y QT U V)t
=0

Here Q; is a non-zero polynomial. For Z € H,,, we put

Dl = Dl,nl,ng = Ql,nl,ng (8Za U7 V) (2)

Then D; is a differential operator satisfying Condition 1 for k and A = (1,,0,...,0),
where the representation space is realized by bideterminants as we explained. When
2k > n, such differential operator ID; is unique up to constant.

Actually, the generating series is easily expanded by a well-known formula, and more
explicitly we have the following formula,

LEMMA 5.5.  The polynomials f; being the same as above, we put
Fy(T,U,V) = f;(UT'U)
fori1=1,23. Then we have

QuT,U,V)

-1 b2a
= § (=1 k+c— 3 F\(T,U, V) Fy(T,U, V) F3(T,U, V).
a'ble! 2 .
0<a,b,c a+b+c

a+2b+2c=l1

5.2. Weak pullback formula.

Let ny, ny be positive integers such that ny < ns. Let A be a dominant integral
weight such that depth(\) < n;. We consider a differential operator Dy = D) ,,, n, On
H,, n, satisfying Condition 1 for k£ and det” Prax @ det” Pns.x- For an integer r such
that depth()\) < r, we put p, = det” p,. 5. For a Hecke eigenform f € S, (I'")) we define



Harder’s conjecture I 1369

D(s, f) =((s)™* HC(25 —2i)7 L(s —r, f,St).

For any polynomial Q(U) with complex coefficients, we denote by Q(U) = Q(U) the
polynomial obtained by changing the coefficients of Q(U) by the complex conjugates.

For any function f(Z), we write (0f)(Z) = f(—Z). This means that if f(z) is a Fourier
series of the following form

f(z) =) a(T)e(tr(T2))

T

with a(T) = a(T)(U) a polynomial in U, then we have

0£)(2) =) a(T)e(tx(T2)).

T

So if we take a(T) to be real, (which is possible), we just have 0f = f.
The next theorem is (a pullback formula) essentially due to Kozima [46].

THEOREM 5.6. Let A= (l,...,0,0,...,0),n1,n2,k and Dy, n, be those in Propo-
sition 5.2. Besides we assume that k is even and ny > ny. Let s € C such that
2Re(s) +k > ny +n2 + 1. Then for any Hecke eigenform f € S,, (™)) we have

<.f7 ]D))\,nl,ngEnl—i-nQ,k (<2 —?V) ) 5)) = C(Sa pnl)D(25 + kv f)[f]ﬁ:ii (VV, 8)7

where ¢(s, pn,) s a function of s depending on p,, but not on ns.

REMARK 5.7.  This type of formula has been proved in the case k > ny +n.+1 and
s = 0in [45] in more general setting, and it can also be generalized in the case s # 0 using
the same method as in [45] (cf. [46]). Kozima [46] gave an abstract pullback formula for
general A\ assuming that P in Condition 1 is realized in his special way. The existence
of P satisfying Condition 1 itself has been known in [20]. For further development on
realization of P and exact pullback formula, see [28].

Now we prove Proposition 2.1 (2), that is, we prove the following statement:

m n—m
Letk = (k+1,...,k+1,k,...,k) such that ] > 0 and k > 3m/2 + 1 and let f be
a Hecke eigenform in Sy (™). Then [f]¥(Z,s) can be continued meromorphically to
the whole s-plane as a function of s, and holomorphic at s = 0. Moreover suppose that
k> (n+m+3)/2. Then [f]¥(Z) belongs to My (I'™).

m

—
PROOF.  Suppose that [ > 0. Let A = (,...,,0,...,0). Then for any ns > m we
have
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(FDsmmsBninss (5 5)+5)) = clowpmDlzs + k1A OV-0)

In particular,

(fa D)\,m,mE%n,k’ <<g ?V) ) §)> = C(S’ pm)D(25 + k’ f)f(W)

We claim that ¢(s, pr,) is a meromorphic function of s, and holomorphic and non-zero at

[e]
s = 0. We note that Dy s, coincides with the differential operator ©!  in [10, (1.14)]
up to constant multiple not depending on s. Moreover, by [10, Theorem 3.1], we have

(7 Dt Bons ({5 _53)+5) ) = Qwsna)Dlk+ 251507,
where

Qps1,(s)
(_1) m(};+l) 27m(k+l)+7n(’n2l+3) 72ms7r”m(7r21+1) Fm(k +1+s— %)Fm(k +1— mT-i-l) .
Cr(k+8)Tm(k+s— %)

(There is a minor misprint in [10]. On page 1393, line 9, «2i+n(n+1)/2=2ns» ghoyld
be «“l—ni4n(n+3)/2=2ns» ) Therefore c(s,pm) coincides with Qx1;,(s) up to constant
multiple. Hence, ¢(s, p.,) is a meromorphic function of s, and holomorphic and non-zero
at s =0.

We have

(FDsmnEmens (5 G)+5) ) =l pmDC2s K DU,

As stated before, Em+n7k((g V?,),s) can be continued meromorphically to the whole

s-plane, and holomorphic at s = 0, and therefore so is Dy 0 Emtn, i (((*) f)W), 5). More-
over, D(2s + k, f) can be continued meromorphically to the whole s-plane. Moreover,
since we have k > 3m/2 + 1, by [55, Theorem 21.3], it is holomorphic and non-zero at
s = 0. This proves the first part of the assertion. Moreover, if &k > (n 4+ m + 1)/2, then
by Proposition 2.1 (1), D m.nEmink( f)W) belongs to My (I'™) as a function of W
except in the cases k = (n+m+2) =2 mod 4 and k = (n+m+3)/2 = 2 mod 4. Since
c(0, pm)D(k, f) # 0, this proves the second part of the assertion. O

We note that the constant ¢, in the pullback formula depends on two things. One
is a definition of the differential operator, and the other is a definition of the Petersson
inner product (P) in Section 2. First we fix a definition of the inner product. For a while,
we fix a dominant integral weight A = (I1,...,0»,0,...,0) of depth m.

For an integer r such that m < r, let U be an m x r matrix of variables and

r—m

p — .
k. = (l1,.,lm,0,...,0), and we take V;.x = C[U]x, as the representation space of p; x



Harder’s conjecture I 1371

as stated before. Here we make the convention that C[U]w, = C if m = 0. We fix an
inner product (v, w) of V.  such that

(pra(g)v,w) = (v, prA ("G)w)

as in (H) in Section 2. This relation is valid also for the representation p, = det® Pr.x, SO
we often use the same inner product for these. Now we must fix an inner product (x, *)
of V. x explicitly. Since we have V,. y = C[U]k; , an element of V. 5 is a polynomial in the
components of an m x r matrix U where the action of p, » is induced by U — UA for
any A € GL,(C): (pr2(A)Q)(U) = Q(UA). For any B € GL,(C), we obviously have

Q(UB) = Q(UB).

Here the right-hand side means to substitute the argument U in Q(U) by UB and the
left-hand side means to replace coefficients of Q(UB) by complex conjugates. We put

a_< 0 )
oU Ouij 1§i§m,1§j§7’.

For two homogeneous polynomials P(U) and Q(U) of the same degree, we define

.= (5 ) QW)

Then we have

(prA(A)P,Q)o = (P, pra("A)Q)o. (3)
Indeed, if we put V = UB, then by the chain rule we have
0 0
v~ v >

so if we put A =*B~!, then we have

and
0 — o\ —
Pl —=A U)=P| — ViA
(54) @) =P (53 )@ a)

=P i QV tZ)

oV '
So (3) is proved. Of course such an inner product is determined only up to constant,
and there is no canonical choice, but we must fix something. When p,  is scalar valued
representation det!, if we define an inner product by (P, Q)o/({)r(I — 1), - -- (1), then by
the Cayley type identity [11], this just means to take a product of scalars, so
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(f.9)= / f(2)g(Z) det(Im(2))'=""tdZ.
T(M\H,.

Then we have a weak type of the pullback formula. Let k and [ be non-negative integers.
For the dominant integral A\ = (I,1,0,...,0) of depth m and integers ni,ns such that
2 <nyp < ng,let pp, = det® Prax and pn, = det® Pns.x be the representations of GL,, (C)
and GL,,(C), respectively, as above. We note that m = 0 or 2 according as [ = 0 or
I > 0. Moreover, let I ,,, », be the differential operator corresponding to the polynomial
Qi.n1 n, in Lemma 5.5.

THEOREM 5.8.  Let the notation be as above. We define a subspace Mpnl (F("l)) of
My, (rm)) qs

M, (™)) ={Fe M, (I'™)| &} (F) e S,,(I'?)}

or Mpnl(F("l)) according as 1 > 0 or 1 = 0. Let {fa;}1<j<arz) be a basis of Sy, (I'?)
consisting of Hecke eigenforms, and take Hecke eigenforms {Fj}aw)+1<j<a S0 that
{[foslonr (1<j<d(?2), F; (d(2)+1<j<d)} forms a basis of Mpnl (™)), Suppose
that k > max((n1 + ne + 1)/2,6) and that neither k = (nqy + na +2)/2 = 2 mod 4 nor
k= (n1+n2+3)=2mod4. Then

d(2)
Z 0 D(k, f2,5) ” -
Dl,m,anm-i-nz,k <O W> _C(Oap2);m[f2,j]gz (Z)(U)[GfQ,j]g2 (W)(V)
d
+ > BOWGW)V)  (Z€H,,WeH,,),
J=d(2)+1

where G; is a certain element of M,, (™). Here, U and V are m x ny and m X ny
matrices of variables, respectively, and we regard [fa;]on* and Fj (resp. [0fz;]on? and
G;) as elements of Hol(Hnl)[U]k;L1 (resp. HOI(HM)[V]k;12 ). Moreover we have

29-2(k+20) (_1)k+lz3(2k — 3),(2k — 1)91_3
I ’

C(O, P2) =

ProoF.  First suppose that [ > 0. Let do = dim M), (™)) and {F}}ay1<i<do

be a basis of the orthogonal complement of Mpnl (I in M, (™)) with respect to
the Petersson inner product. Then we have

z 0\ X
DusmsBninai (g 19) = O Uaslfst ()OG5 0)V)

j=1

do
+ Y FH@OWGW)V).
j=d(2)+1
For mi > ms and 1 > Iy and H(Z,W)(U,V) = Z]AJ(Z)(U)BJ(W)(V) S

M, (I'™)) @ M, (I'™W), we define &%t ® ®j} (H(Z,W)(U,V)) as
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Dy © O (H(Z,W)(U,V)) = 3 Bt (45(Z) (V)1 (B; (W)(V)).
J

We note that we have @3 (F;) = 0 for d(2) + 1 < j < d. Hence we have

n n Zz 0O
((I)21 Y q)ni) (Dl7n1,n2En1+n2,k (O W))

foz ZD)UP)a, Z Y (F3(Z)(U)) @2 (G5 (W)(V)),

j=d+1

where Z(Q) = pl‘gl (Z) for Z € Hnl, and U(Q) = (Uij)lgi,j§2 for U = (Uij)1§i§2,1§j§n1-
A1 O Ri/2

On the other hand, let A = (tRO/Q 8 1()) ) € Hnytns(Z)>o with Ay € Ho(Z), Dy €
1 1

an (Z) and Rl € M2,n2 (Z) Then we have
) ) VARRVAD
(@21 ® (I)ng) (RGS Dl,m,nz (e (tl‘ (A (tzlg w >)>)>
_ A Ry2\ (2?0 2
= Res Dy 2., (e (tr <<tR1/2 Dy ) (tzg) w

for (i %2) € Hpyn, with Z € Hy,, W € Hy, and Zip € My, 1, (C). Here Z{3 is the
upper-left 2 x ns block of Z15. Hence we have

" N Z 0 AQRNG)
((DQI ® (Dng) <Dl,n1,n2En1+ng,k <O W>> = Dl,Q,n2E2+n2,k ( 1o} W> )

and therefore, by Remark 5.4, (3" @®7:2) (]Dl nl,w Erignsk(§ )) belongs to S, (e
M,,, (I'("2)). We note that &5 (F;) & S,,(I'?) for d +1 < j < dy. Hence we have
G;(W)(V)=0ford+1<j<dyand

7(2)
D1,2,n, Bty 1 ( ) Z f2.5(Z @G, (W) (V).

By Theorem 5.6, we see that

(fogs f2)0G;(W)(V) = c(0, p2) D(k, fo,5)[f251pa> (W)(V).

We note that D(k, fa ;) is real number, and hence

D(k, fa,5)
(f2,55 f2.5)

This proves the first part of the assertion. By using the same argument as above, we
have

G;(W)(V) = ¢(0, p2) [0£2,1052 (W)(V).
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Z(Z) O (2) 2 2 2 2
D12,2E4 k ( 0 W(2)> = f2,(ZP) U0 fo ;,( WD) (VD)
=1

where W) = pry*(Z) for W € H,,, and V@ = (vij)i<ij<2 for V = (vij)i<i<2,1<j<ni-
Let

L Sk+l(F(2)) — Sp2(F(2))

be the isomorphism stated before. Take an element go ; € Sk4;(I'®) such that fo; =
t(g2.)- Then {gs;}; forms a basis of Sg4;(I'®) and

D(k, f2.;) = D(k, g2.5)
and
(f255 f2.5) = (92,5, 92.5)-
We also note that
D20 = (det U® det VYD, 1y,
where Dy 41 = Prr11(97) with 7 e H,4. Hence we have

d(2)

z@ 0 > D(k, g2
Dy pi E = ¢(0, Dk, g2,4) (23 @ 0gy (W),
Y A Y Z ey, (29) & 090 (W)

Hence we have

* O
<g2’j’Dk’k+lE4’k (O —W(2)>> = ¢(0, p2) D(k, g2,5)92,;(W).

On the other hand, let ®} ; be the differential operator in [10, (1.14)]. Then by [10
Theorem 3.1] we have

o * 0 B
(gQ’j’ Dl B (O —W(2)>> =& D(k, g2,))92,;(W®)

3

with
JL(k+1—-1D)C(k+1-3/2)°T(k+1-2)
I'(k)T'(k—1/2)T'(k—1)T'(k —3/2)

Co = (71)k+l2672(k+l)
By page 71 in [37], we have

Dy = dyy D,



Harder’s conjecture I 1375

with

(2k+l21—5)

drg = —3 . ;
I (k+1—-2—4/2)(k+1-3/2—1i/2)

Hence we have ¢(0, p2) = dj,¢2, and by a simple computation we prove the assertion.
Next suppose that [ = 0. Then the assertion can be proved using the same argument as
above. O

REMARK 5.9. (1) The second part of the assertion can be also proved by the fact
that the differential operator is realized uniformly in Lemma 5.5 and its operation on the
automorphy factor is essentially the same as the case when U =V = 1,.

(2) If k > ny +ny + 1, then [f]5" (Z,U) and [f]5r? (W, V) are holomorphic modular
forms for any Hecke eigenform f in S, (I’ (), and we can get an explicit pullback formula
(cf. Theorems B.1 and B.13). However, if k& < ny 4+ ng + 1, it does not necessarily hold.
This is why we say that the formula in the above theorem is a weak type of pullback
formula. We note that it is sufficient for proving our main results in Section 8.

6. Congruence for Klingen—Eisenstein lifts.

To explain why Conjecture 4.5 is reasonable, we consider congruence for Klingen—
Eisenstein series, which is a generalization of [39]. For A = (k — I,k —1,0,0) with k >
and 2 < m < 4, let (pm r, Vin,a) be the representation of GL,,(C) defined in the previous

m—2 m—2

. ! —— —
section, and put p,, = det’' ®pm x and k), = (k—1,k—1,0,...,0) and k,,, = (k, k,[,...,1).
Let U and V' be 2 x n; and 2 X no matrices of variables, respectively. Then we recall that
Viix = ClUlk;, , Viox = C[V]i, | and that every element F' of M,, | (F("l))®Mpn2 (I(m2))
is expressed as

F(Zy,Z5) = > c(Ay, Ag; FY(U, V)e(tr(A1 2, + AaZy))
Aq GHnl (Z)Zo,AQEHn2 (Z)ZD

with C(Al,AQ;F)(U,V) S (C[U,V]k/

nq?

(M, (re) @ M,,, (I'"2)))(R) the submodule of M,,, (rmy M,,, (I"™2)) consist-

ing of all F’s such that ¢(Ay, A2; F)(U,V) € R[U, V]kizlvk%z for all A1 € Hp,(Z)>0, A2 €
Hn,(Z)>0. We also note that every element F' of M), (")) ®V,, » is expressed as

k, - For a subring R of C, we denote by

F(Zy)= Y c(AuF)U,V)e(tr(AZ)))
A1€Hn, (Z) >0

with ¢(Ay; F)(U,V) € C[U, V]k;L17k;L2. We then define a submodule (Z\lpn1 (rm)y @
Vg A)(R) of M, (I'™)) ® Vp, \ consisting of all F’s such that c(Ay; F)(U,V) €
R[U, Vi, 1, for all Ay € Ho, (Z) 0.

For positive integers n and [, put

(/2]
Z(n, 1) =¢1—1) [T ¢ +25 —20).

j=1
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We define En,l as

Eni(Z)=Z(n,)E, (2)

and we set

N\ —9(k— ~ Zy O
5(Z1,Zg) = gk7l,n1,n2(Z1’Z2) = (k - l)'(27T _1) 2k Z)Dk—l7n1)”2E”1+n27l (Ol Z2> .

Moreover, for positive integers m,! and a Hecke eigenform F € Sy, (I'(?) put

Cont(F) = ZZ((T’ZI))L(Z —2,F,St).

We also use the same symbol C,, ;(f) to denote the value ZZ((TZ’;)) L(l—2, f,St) for a Hecke

eigenform f € S, (I (2)). As stated before, we have the following isomorphism:

L Sp(I®) 3 F s F o= F(detU) !l e S,,(I'®), (1s)

where U is 2 x 2 matrix of variables. Then we note that C77L7l(ﬁ) = Cpn 1 (F) for a Hecke
eigenform F € Sy (I'®).
Now, for our later purpose, we rewrite a special case of Theorem 5.8 as follows.

PROPOSITION 6.1.  Let ny,no be integers such that 2 < ny < ng < 4 and let k,l be
even positive integers such that k > 1. Then we have

d(2)
Ertimrna(Z1, Z2) =72 Y Coy ot (F2) f2.5105 (Z0)(U)[0.f2,5105% (Z2) (V)

j=1

d
+ Y F(20)(U)G(Z)(V),

j=d(2)+1

Qhere Yo 18 a certain rational number which is p-unit for any prime number p > 2k, and
G;(Z3)(V) is an element of Mp"2(F("2)).

We write £(Z1, Z3) as

2, Z) = Y gg;;‘,ll?m)nZ%N(Zl)e(tr(NZg)). (%)
NeHn,

Then gg\?l) = gEZ’ll?nhng)’N belongs to M, (™)) ® V,,, . To consider congruence

between Klingen—Fisenstein lift and another modular form of the same weight, we rewrite
the above proposition as follows:

COROLLARY 6.2.  Under the same notation and the assumption as above, let N €
HTL2 (Z)>0' Then,
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d(2)
9v(21) =12 Y Cortnaid (o) e loa (Z)(U)a(N, [fa 51052 ) (V)
j—l
+ Z Ja(N, G)(V).
j=d(2)+1

Observe that the first term in the right-hand side of the above is invariant if we
multiply fo; by an element of C*.

To see the Fourier expansion of Emk(Z ), we review the polynomial F,(B,X) at-
tached to the local Siegel series by, (B, s) for an element B of H,,(Z,) (ct. [35]). We define
Xp(a) for a € Q) as follows:

+1 if Qp(\/a) = Qp,
xp(a) == ¢ -1 if Q,(v/a)/Q, is quadratic unramified,
0 if Qu(v/a)/Q, is quadratic ramified.

For an element B € H,(Z,)" with n even, we define &,(B) by

&(B) = xp((—=1)"? det B).

For a non-degenerate half-integral matrix B of size n over Z,, define a polynomial 7, (B, X)
in X by

(1= XT3 = p2 X2)(1 — p/26,(B)X)~1 if n is even,

’YP(B7X) = ( 1 /2 .
1-X)[[2 7771 —p*X?) if n is odd.

Then it is well known that there exists a unique polynomial F,(B,X) in X over Z with
constant term 1 such that

b:D(B7 8) = ’YP(va_S)FP<va_S)

(e.g. [35]). For B € Hn(Z)so with n even, let dp be the discriminant of
Q(v/(-1)"?det B)/Q, and xp = (22) the Kronecker character corresponding to
Q(+/(—1)"/2 det B)/Q. We note that we have xg(p) = &,(B) for any prime p.

We define a polynomial 5 (T, X) for any T' € H,,(Z;) which is not-necessarily non-
degenerate as follows: For an element T' € H,,(Z,,) of rank m > 1, there exists an element
T e Hon(Zyp)™ such that T ~z, T10,_m. We note that Fp(f,X) does not depend on
the choice of T. Then we put (T, X) = F,(T, X). For an element T € H,(Z)sq of
rank m > 1, there exists an element T ¢ Him(Z)so such that T ~y TJ_On,m. Then x 7
does not depend on the choice of T. We write X7 = X5 if m is even.

PROPOSITION 6.3. Let k € 2Z. Assume that k > (n + 1)/2 and that neither
k=(n+2)/2=2mod 4 nork=(n+3)/2=2mod 4. Then for T € H,(Z)>o of rank
m, we have
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a(T, En,k) — 9l(m+1)/2] H F; (T, pk—m—l)

pldet(2T)
ng/i]/%_l C(1+2i—2k)L(1+m/2—k,x}) if m is even,
HEZ/(i]zH)/Q C(1+ 2i —2k) if m is odd.

Here we make the convention Fj(T,p*~™~') =1 and L(1+m/2 — k,x}) = ((1 — k) if
m = 0.

To consider the integrality of (T, Enk), we provide the following lemma.
LEMMA 6.4. Let T € Hp(Z,)". Then, we have F,(p~lm+V/2AT, X) € Z[X].

ProOOF. The assertion has been proved in [32, Lemma 15] in the case m is even,
and the assertion for odd case can also be proved in the same manner. O

PROPOSITI~ON 6.5. Let the notation and the assumption be as in Proposition 6.3.
Then, we have E,, i, belongs to My(I'™)(Q). In particular, for any prime number p > 2k,
E, i belongs to Mk(F(”))(Z(p)).

PrROOF. The first assertion is well known. We prove the second assertion. Let
T € Hn(Z)>o of rank m. Since we have k& > (n + 1)/2, by Lemma 6.4, the product
Hp‘ det(27) Fy(T, pF~™=1) is an integer. Moreover, since we have p > 2k, by the theorem
of von Staudt—Clausen, the value {(1—k) and {(1+2i—2k) for a positive integer i < [n/2]
belong to Z,, and by [6, (5.1), (5.2)], the value L(1 +m/2 — k, x7) belongs to Z, if
m > 2 is even. Thus the assertion follows from Proposition 6.3. O

PROPOSITION 6.6.  Let the notation and the assumption be as in Proposition 6.1.
Then

Ektinyna (21, Z2) € (M), " e M,,, (F(n2)))((@)7
and more precisely
Etinima (21, Z3) € (M, (™)) M, - (F(M)))(Z(p))
for any prime number p > 2k.
Proor. ForT) € H,, and 15 € H,,, put

€(T17 TQ)(U7 V) = €k,l,n1,n2 (Tla TQ)(U7 V)

el A

REMy, ny (Z)

X Qk,l,nl,ng ((té}Q I;/j> U, V> s (E)

where QQx_i n, n, i the polynomial in Section 5.1.2. Then we have



Harder’s conjecture I 1379

gk,l,nl,nz (Zl,ZQ) = Z 6(T1,T2)(U7 V)e(tr(T1Z1 +TQZQ))
T1€H, (2)50,T2€Hny (Z)>0

Hence the assertion follows from Proposition 6.5. O

COROLLARY 6.7.  For each N € H,,,(Z)<¢ let g%”) be that defined above. Then

95 o (Z0) € (M, (D) @ Vi, 2)(Q)

and moreover

9w (20) € (M, (TT) © Vi ) (Zi)

for any prime number p > 2k.

(n1)

PROOF. g7 ) n(Z1) is expressed as

G sy (Z1) = Z( i (T, N)(U.V)e(tr(TZ1)).
TEH, (Z

Hence the assertion directly follows from the above proposition. O

PROPOSITION 6.8. Let the notation and the assumptions be as in Theorem 5.8,
and let 2 < m < 4. Then for any Hecke eigenform f in S,,(F@)(Q(f)), [flir €

M, (I"™)(Q(f))- [

PROOF. The assertion in the case k = [ has been proved by Mizumoto [50], and
the other case can also be proved by using the same method. 0

PROPOSITION 6.9.  Let the notation and the assumption be as in Proposition 6.1.
Let f be a Hecke eigenform in Sp(I'®). Then, for any N € Hy,(Z)so and Ny €

Ha(Z)s0, the value Coy21()a(N, [f15:2)(V)a(N1, f) belongs to QF)[Vlig, where f is
that in (IS).

PROOF. The value in question remains unchanged if we replace f by cf with
¢ € C*. Moreover we can take ¢ € C* so that cf € Sy, (I'®)(Q(f)). Thus the assertion
follows from Proposition 6.8 remarking that a(Ny, [f]22) = a(Ny, f)(det U)*~L. O

P2

The following lemma can be proved by a careful analysis of the proof of [36,
Lemma 5.1].

LEMMA 6.10.  Let Fi, ..., Fy be Hecke eigenforms in M), (™)) linearly indepen-
dent over C. Let K be the composite field Q(F1)---Q(Fyq), O the ring of integers in K
and p a prime ideal of K. Let G(Z,U, V) € (M,, (L") @ Vo, \)(D(py) and assume the
following conditions

(1) G is expressed as

G(2,U,V) =} e(V)F(Z)(U)

i=1
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with CZ‘(V) S an’)\.

(2) ecs(V)a(A1, FA)(U) € (Vo 2@ Vi, A)(K) and ordy(c1(V)a(Aq, F1)(U)) < 0 for some
A € Hy, (Z)

Then there exists i # 1 such that
F; =o F1 mod p.

THEOREM 6.11.  Let k and [ be positive even integers such that k > 1 > 6 and put
k = (k,k,1,1) and My (I'®) = M,,(I'™). Let F € Si.(I'®) be a Hecke eigenform, and
p a prime ideal of Q(F). Suppose that p divides |a(A1, F)[?L(l — 2, F,St) and does not
divide

Cg’l(F)a(Al, F)G(A, [F]k)

for some Ay € Ha(Z)wo and A € Hy(Z)o, where [F]¥ = [ﬁ]gg as stated in Section 1.
Then there exists a Hecke eigenform G € Mk(F(‘U) such that G is not a constant multiple

of [F]*
G =ev [F]* mod p.
PROOF. The assertion in the case k = [ has been proved in [39] in more general
setting and the other case can also be proved using the same argument as in its proof.
But for the sake of convenience, we here give an outline of the proof. Suppose that k& > [.

Take a basis {F}}1<j<q of Mk(F(4)) such that Fy = [F]¥. Then, by Corollary 6.2, for
any A € Ha(Z)~o we have

9((kz 4)A ZCJAV 21)(U),

where ¢1(A,V) = 7Cs,(F)a(A, [F]¥)(V) and ¢;(A,V) = a(A,CNY'j)(V) for some éj €
Mk(F(4)) for 2 < j < d. We have

S 1) CotF)al A LF) ()AL T T)
_ (Z(S,l))2 L(l — 2, F,St)a(Ay, F)a(A, [F]%)(U)L( — 2, F,St)a(Ay, F)a(A, [F]%) (V)
Z(4,1) la(Ar, F)EL(l — 2, F, St) ‘

We note that the reduced denominator of ggig is not divisible by p by the theorem of

von Staudt—Clausen. Hence we have

ordy (y2Cs i (F)a(N, [F]*)(U)a(N, [F]¥)(V)) < 0.

Hence the assertion follows from Lemma 6.10. O
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PROPOSITION 6.12. Let k and | be even integers such that 6 <1 < k. Let f be
a primitive form in Sak_o(SLo(Z)). Suppose that a prime ideal p in Q(f) satisfies the
following conditions (1), (2), (3):

(1) pp > 2k — 2.
(2) p divides L(k+1—4, f)/L(k, f).

(3) p divides neither © ¢ nor ((3 —2k), where ®y is the ideal of Q(f) defined in Propo-
sition 3.4.

Then for any N € Ha(Z)>o such that p {dx, we have
ordy (la(N,J2(f)) P LI — 2,92(f),St)) > 0.
Here, 0 is the discriminant of Q(v/— det N)/Q as defined before.

ProOOF. Let g be a Hecke eigenform in the Kohnen plus space S,;tl/g (Ib(4)) cor-
responding to f under the Shimura correspondence (cf. [41]). For any N € Ho(Z)~o we
have a(N,J2(f)) = ba([on]|,g) with b € Z. Hence

L(l — 2,95(f), St)[a(N, Ja(f)) > = b2A27k,z2ﬂzlf+(§zj9?33?}{)7ﬂszt()f)>

with Ag k12 € Zp,) (cf. Remark 3.5). By definition, we have

la([on], 9)I?

L(1—2,95(f),8t) = C(l = 2)L(k +1—3, /)L(k + 1 — 4, ).
Moreover, by [42], we have
(92(£),92(f)) = 2°7%(g, 9)Tc(2)¢(2)Te (k) L(k, f),
and by [43] we have

la(Pnl 9)I> _ 2" N[ 2 Pe(k — DLk — 1, f, ()
(9:9) (£, ) '

We note that 7((2%)) = /=1 [on]"/2, and 72~*¢(I — 2) and 72¢(2) belong to Zp,)-
Hence, by a simple computation, we have

L(I — 2.95(f),8)[a(N, D(f))[* = ek,NWL (k Bk L fiL (”))

where €j n is a p-integral rational number. Since p divides neither D ;o5 nor ¢(3 — 2k),
by Proposition 3.4, the value L(k-+1—3,k—1; f; 1, (22)) is p-integral. Thus the assertion
holds. (|

The next theorem clarifies what we need to look at to try to prove Conjecture 4.5.
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THEOREM 6.13. Let k and [ positive even integers such that 6 < I < k, and put
k = (k,k,1,1). Let f be a primitive form in Sak_2(SL2(Z)) and p a prime ideal of Q(f)
such that

1) pp > 2k — 2.

(1)

(2) p divides L(k+1—4, f)/L(k, f).

(3) p divides neither ® ¢ nor ¢(3 — 2k).

(4) p divides neither Cs;(J2(f))a(A1,I2(f))a(A, [92(f)]K) nor 24, for some A; €
HQ(Z)>O and A S H4(Z)>O.

Then there exists a Hecke eigenform G in Mk(F(4)) such that G is not a constant multiple
of [Jo(f)]* and

G =ev [J2(H)]* mod p.

PROOF. The assertion follows from Theorem 6.11 and Proposition 6.12. O

7. Fourier coefficients of Klingen—Eisenstein lift.

Let k = (k, k,1,1) with k,[ positive even integers such that k¥ > I. To confirm the
condition (4) in Theorem 6.13, we give a formula for computing L(I — 2, F, St)a(T, F)
a(N, [F]¥) for a Hecke eigenform F in Si(I'®), T € Ho(Z)>o and N € Hy(Z)~o. For
T € Ho(Z)so and N € Ha(Z)so, let €,124(T,N)(U,V) be as in (E) and put gy =
g((i317274),N. Recall that U and V are 2 x 2 and 2 x 4 matrices, respectively, of variables.

We note that € 2.4(7, N)(U,V) can be expressed as
er1,24(T, N)(U,V) = (det U)F e (T, N)(V)

with ek (T, N) = ex x (T, N)(V) € C[V](x—1,k—1,0,0)- Then gn is expressed as

gv(W) = > (det U)*ex w(T, N)e(tr(TW)).
TeH2(Z)

Now, for a positive integer m, let T'(m) be the element of Lo defined in Section 3. For
a positive integer m = py - - - p, with p; a prime number, we define the Hecke operator
T = T(py)---T(p,). We make the convention that T(!) = T(1). We note that
Tm = T(m) if p1,...,p, are distinct, but in general it is not. For each m € Z-o and
N € Hy(Z)so, write gn|T™ (W) as

gn|T (W) = > (det U)egp(m, T, N)e(tr(TW))
T€H2(Z)>O

with ex x(m, T, N) € C[V]—1,k-1,0,0)-
Let My, = My (I'®) or Sg(I'®) according as k = [ or not, and let {Fj}?zl be a
basis of M}, ; consisting of Hecke eigenforms. Furthermore write
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Fi| T (2) = AjanFj(2).

Then the following proposition is a consequence of applying T(m) to the formula in
Corollary 6.2 with n; = 2 and no = 4.

PROPOSITION 7.1.  Notation being as above, we have
exx(m, T, N) Z)\]maTF B(Fj)

for any N € Ha(Z)so, T € Ho(Z)>o and m € Zsq, where B(F}) is a certain element of
ClV](k=1,k—1,0,0), and in particular we have

B(F;) = 72Ce.1(Fj)a(N, [F}]¥)
if Fy € Si(I'®). Here, 5 is the rational number in Proposition 6.1.

We note that Cg ;(F) = ¢(9— 21)Cs,(F) for a Hecke eigenform F in Sj,(I"®)). Hence
by the above proposition, we have the following formula:

PROPOSITION 7.2.  For Ny € H3(Z)>o, N € Ha(Z)>o let e, = €xx(m, N1, N).
Let F be a Hecke eigenform in Si(I'®) and {F;}4_, a basis of My, consisting of
Hecke eigenforms such that Fy = F. For positive integers mq,...,mg put A =
A(ml, . ,md) = dEt()\j,mi)lgi,jgd' Then,

el )\1,2 .. )\1,d
Ay2Csi(F)a(Ny, F)a(N,[F]¥) = (9 — 21)

€q /\d,2 )\d,d

COROLLARY 7.3. Let the notation and the assumption as above. Let p be a
prime ideal of Q(F) such that p, > 2k. Suppose that p divides neither ((9 — 2l) nor

e1r A1,2 ... A1,d

. Then, p does not divide Cs ;(F)a(Ny, F)a(N, [F]¥).

€d Nd,2 - Nd,d

PrROOF. By Proposition 3.2, A is an algebraic integer, and by the assumption, 7o
is a p-unit. Thus the assertion holds. O

The following lemma will be used in the next section.

LEMMA 74. Let N € Hy(Z)>o. Then for any T € Ha(Z)so and a prime number
p, we have the following recursion formula for ey x(m,T, N):

ek,k(laTa N) = ek,k(Ta N))
and for m > 1,

exx(m, T, N) = e x(mp~*,pT, N) + p** e x (mp~*,T/p, N)
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+ph? > era(mp~", T[D]/p,N),
DEGL1(Z)U,GLa(Z) /GLa(Z)

where p is a prime factor of m and U, = (§9).
PROOF. The assertion follows from [1, Exercise 4.2.10]. O

Let U and V be the matrices of variables stated above.

THEOREM 7.5. For Ay € Ha(Z)s0, A1 € Ha(Z)>o and R € My 4(Z), put r(R) =

r(Ap, A1, R) = rank(t;;;z }?4/12) and

(= tx( a0 mz)) ¥ 1o AL R) =6,
A A ‘R/2 Ay
Z2(Ao, A, B 1) = 4 7 _ oy if r(Ag, A1, R) =5,

C(7T—2)LG3 —1,xa,) if (Ao, A, R) = 4.

Moreover, put

(i - T S ()

a,b,c>0
a+2b+2c=k—1
c

Ay R1'/2

X |R VIH([VALV | Ao])° VIR2 VA

Then
A R/2
(o, (V)= DT Wz A A RIP ((tR/O2 H )) V)
ReM> 4(Z) '
A, RJ2
(‘R/2 Ay >ZO

(A R/2\ . m—1
Xl}Fp((tR/z W) |

PROOF. Let QQi—;,2,4 be the polynomial in Section 5.1.2. Then, by Lemma 5.5, we

have
(i, )0 - (1, )0

Thus by (E) in the proof of Proposition 6.6, Lemma 5.5, and Proposition 6.3, we prove
the assertion. g

We have an explicit formula for F),(T, X) for any nondegenerate half-integral matrix
T over Z, (cf. [35]), and an algorithm for computing it (cf. Lee [48]). Therefore, by
using Proposition 7.2 and Theorem 7.5 we can compute the Fourier coefficients of the
Klingen—Eisenstein series in question.
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8. Main results.

For | = 12,16, 18,22,26 let ¢; be a unique primitive form in S;(SLy(Z)), and for
l = 24,28,30,32,34,38 let ¢li be a unique primitive form in S;(SLy(Z)) such that
a(2,¢%) = a £ bWD with a € Q,b € Qs¢, where D is the discriminant of Q(o™%).
For each (k,j) = (10,4), (14,2), or (4,24) let Gy ; be a Hecke eigenform in Sy, ) (I"®)
uniquely determined up to constant multiple, and {GY, 4, G1, 4} is a basis of S(15 14)(I"?)
consisting of Hecke eigenforms.

(1) Let f = ¢paa. Put k = (12,12,6,6). Then, by Taibi [56] and the numerical table
in [57], we have

Si(TD) = (AP (Gro,))c,
5(12,12,6)(F(3)) = {0}7
S12(I'®) = (Ja(p22))c-

Hence we have My (I'™) = ([J5(¢22)]¥, AELI)(GMA))C. Then 41 is the only prime num-
ber which satisfies the assumptions in Conjecture 3.9, and it divides L(14, f)/L(12, f).

0 0 1 1/2
/2 0 1/2 1
Theorem 7.5, by a computation with Mathematica [60]

1 1/2 0 1/2
Let N = (1/2 Lo 0 ) and Ny = (§9). Then, substituting V for (1949) in

—20874
612,k(N17N)(<} (1) (1) g)>—087555_11 mod 41.

28
Hence, applying Corollary 7.3 to d = 1 and A1 = 1, we see that p does not divide
Cs.6(J2(P22))a(N, [J2(d22)¥)a(N1,I2(¢a2)), and by Theorem 6.13 we prove the following
theorem.

THEOREM 8.1.  There exists a Hecke eigenform G in 5(14,10)(F(2)) such that
ALN(G) Zev [D2(F)]F mod 41.
COROLLARY 8.2.  Conjecture 3.9 holds for (k,j) = (10,4).

We note that Harder’s conjecture for (k,j) = (10,4) has been already proved by
Chenevier and Lannes [12].
(2) Let f = ¢3, and f’ = ¢3, and put

o = 4320 + 96151349 and o = 4320 — 961/51349.
Then
a(2, f) = «a, a(3, f) = —552a — 99180
and

a(2, ) =d/, a(3, f) = —552a’ — 99180.



1386 H. ATOBE, M. CHIDA, T. IBUKIYAMA, H. KATSURADA and T. YAMAUCHI

We also have
Ay (5)(T(2)) = o + 49152, Ay, () (T(2)) = o + 49152,
and
A1, (1) (T(3)) = —=552a + 19032696, Ay, (s (T'(3)) = —552a" + 19032696.

(2.1) Let (k,j) = (14,4). Then the prime number 4289 divides Ngy)/o(L(18, f)/
L(16, f)) and it splits in Q(f). Hence there exists prime ideals q,q" of Q(f) such that
(4289) = qq’ and q divides L(18, f)/L(16, f). The prime ideal q is the only prime ideal
which satisfies the assumptions in Conjecture 3.9. Put k = (16, 16, 6,6). Let N and N; be
as those in (1). For V.= (1939), put €16x(N1, N) = €16 x(N1, N)(V), €16x(2N1, N) =
616’1{(2]\71, N)(V), and €; = 6167k(i, Nl, N) (Z = 1, 2) Then

e1 = e16x(N1, N), e2 = e16x(2N1, N) + 2M€16 1 (N1, N)

and

€1 1
() )‘Jz(f’) (T(Q)) ’

a16k(N1, N) =
By a computation with Mathematica [60], we have
€16,k (N1, N) = 1744286277555/28672, €16k(2N1, N) = 309108562779375/112,
and hence
a16,k(N1, N) = 405(—1114174584071 + 12920639093v/51349) /896.
Using Theorem 7.5, by a computation with Mathematica [60] we have

NQ(f)/Q(alﬁ,k(Nl, N)) = 2206 mod 4289.

Hence, by Corollary 7.3, p does not divide Cs ¢(J2(f))a(N, [J2(f)]¥)a(N1,I2(f)). More-
over, by Taibi [56] and the numerical table in [57], we have

Si(I@) = (AL (GF, 0, AP (Graw)e,
5(16,16,6) (F(B)) = {0}7
S16(I') = (92(835), I2(d30)) .-

The prime ideal q does not divide D, and [Ja(¢ay)]* # [J2(¢30)]¥ mod q. Hence, by
Theorem 6.13 we prove the following theorem.

THEOREM 8.3.  There exists a Hecke eigenform G in 5(1&14)(F(2)) such that

AD(G) =ov [J2(f)]< mod g.
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COROLLARY 8.4. Conjecture 3.9 holds for (k,j) = (14,4).

(2.2) Let (k,j) = (4,24) and put k = (16, 16,16, 16). Then the prime number 97
divides Ng(f),0(L(28, f)/L(16, f)) and it splits in Q(f). Hence there exist prime ideals
q,q" of Q(f) such that (97) = qq’ and q divides L(28, f)/L(16, f). The prime ideal q is
the only prime ideal which satisfies the assumptions in Conjecture 3.9. We have

Myg(I'®) = (E2,16, [¢16](16’16),JQ(f)vjz(f/»C-

Let N be as that in (1), Ny = (1}2 1{2), and No = ((9). Put e; = e16x(i, N1, N) (i =
1,2,3,4). Then

€1 = €16 k(Nla )7

€2 = €16 k(2N17 )7

e3 = €16k (3N1, N) + 3" €16 (N1, N),
(4N

€4 = €16,k N) + 216 (N1, N) + 3 - 2616 1 (N2, N)

and

€1 1 1

1
o _ | €2 )‘32(.7“)( (2)) )\[¢16](16’16)(T(2)) >‘E2,16(T(2))
wkVEN) =1 A (TB)  Apgeea (TG)  Ama(T(3))

er (Aa(1)(T(2)))7 Agyeasa0 (T(2))* (Ak, 16(T(2)))?

Then, by Lemma 7.4, we have e; = €(i, N1, N) for ¢ = 1,2,3,4. Using Theorem 7.5, by
a computation with Mathematica [60], we have

€16,k (N1, N) = 38740804007974226508744800778240/6232699579062017,
€16,k (2N1, N) = 8035873503466715618094093067152998400/6232699579062017,
€16,x(3N1, N) = —29430266109700665036971047394543222568960/6232699579062017,
€16,k (4N1, N) = 7060754204175435666580204417230810153615360/6232699579062017
and
€16,k (N2, N) = 337608542664093039037162829831689850880,/6232699579062017.

We also have

Apro 610 (T(2)) = a(2, d16)(1 + 2M) = 216(1 + 2'*),
A6 (T(3)) = a(3, ¢16) (1 + 3') = —3348(1 + 3'),
)\E2,16 (T(q)) = (1 + q14)(1 + q15) for q = 273.

Hence by a simple computation we have
Noes)o(erk(N1,N)) £ 0 mod 97.

Hence by Corollary 7.3, p does not divide Cs 16(J2(f))a(N1,T2(f))a(N, [J2(f)]¥). The
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prime ideal q does not divide ® ;. Hence, by Theorem 6.13, there exists a Hecke eigenform
F in My(I'™®) such that

F = [32(]()]1( mod q-

To show that F is a lift of type A, we classify the Hecke eigenforms in Myg(I'4)
following [52] and [30].

PROPOSITION 8.5.  We have dim Ms(I"®) = 14 and dim S15(I"') = 7, and we
have the following:

(1) We can take a basis {h;}I_, of Si6(I'D) such that

34(@%) i =1,
j4(¢58) i=2,
AL (68, Gran) =3,
hi = AELH)(%:O, Gup2) 1=4,
M (B, 2(639)) i =5,
MD (o6, 92(¢39)) i =6,
AP (Gy4) i=7

Moreover we have

12960(67989 + 443+/18209) i = 1,
12960(67989 — 4431/18209) i =2,
—230400(1703 + 9v/18209) i =3,
A (T(2)) = { —230400(1703 — 94/18209) i = 4,
1175040(557 + v/51349) i=5,
1175040(557 — +/51349) i=6,
230400000 i=T

2) We can take a basis {h;}}¢ of Sig(I')L such that
=8

Ey 16 1=38,
[p16]* =9,
MU (16, 35)]* i = 10,

hi = IMD (g6, )< i = 11,
[
[
[

H i=12,
J2(¢30)]* i =13,
Ja(¢go)]* i=14,

where H{g) 18 a unique tempered Hecke eigenform, up to constant multiple, in
S16(I'). For the definition of tempered forms, see Appendiz A.
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Moreover, we have

18022646021156865 i =8,

118797996294360 i=9,

4097 (4414176 + 23328+/18209) i = 10,
An (T(2)) = { 4097(4414176 — 233281/18209) i = 11,
—471974400 i =12,
33566721(53472 — v/51349) i =13,
33566721 (53472 + v/51349) i = 14.

REMARK 8.6.  We have M) (¢og, T2(¢,)) = MUD (¢, Io (g ).

By Proposition 8.5, we have

Ani(T'(2)) # Ay (npe(T(2))  mod q

for any 1 <14 < 13 such that ¢ # 7. Hence F' coincides with h7; up to constant multiple.
Hence we have the following theorem.

THEOREM 8.7.  There exists a Hecke eigenform G in S(os 4 (I'®) such that
A(G) = [22(M)]F mod q.

COROLLARY 8.8.  Conjecture 3.9 holds for (k,j) = (4,24).

Appendix A. Proofs of Theorems 4.2 and 4.3.

In this appendix, we will give proofs of Theorems 4.2 and 4.3. These theorems are
a simple application of Arthur’s endoscopic classification [3] to Siegel modular forms as
in the book of Chenevier-Lannes [12, Section 8.5.1].

First we recall the explicit multiplicity formula for Sp,,(Z). The following theorem
is just a reformulation of [12, Theorem 8.5.2, Corollary 8.5.4].

THEOREM A.1 (explicit multiplicity formula for Sx(Sp,,(Z))). Letk = (ki,...,kn)
be a sequence of positive integers such that ky > -+ >k, > n+ 1.

(1) We can associate each Hecke eigenform G in Sx(Sp,,(Z)) with its A-parameter Vg
which is a formal sum

Y = Bioymldi,
where © and d; satisfy the following conditions (a) to (f):

(a) M = @y is an irreducible unitary cuspidal automorphic self-dual represen-
tation of PGL,,(Ag);

(b) d; is a positive integer such that Zle n;d; =2n+1;
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(c) mip is unramified for any prime p < 00;

(d) if we denote the infinitesimal character of m; oo by ¢i 00 Which is a semisimple
congugacy class of sl,,,(R), and if we set

d—1 d—-3 d—1

eq = diag (2, s —2> € sly(R),

then the eigenvalues of the semisimple conjugacy class

¢
Deicea
i=1

in slon41(R) are the distinct integers
kh—1>-->k,—n>0>—(k,—n) > > —(k1 — 1);

(e) there exists 1 <ig <t such that d;, = 1, n;, = 1 mod 2, and n;d; = 0 mod 4
for any i #ig;
(f) the sign condition

n;d;
min{d;,d; <_1)# Zf dz =0 mOd 27
H e(m; x mj)mintdndit = o
1<j<t (=)™ 4f d;=1 mod 2

J#i
holds for any i # iy, where K; is the set of odd indices 1 < j < n such that
kj — 7 is an eigenvalue of ¢; .

The A-parameter 1V is characterized by

t d; )
L(s,G.st) = [T [] £~ <s+ d”;1 —dm) :
i=1d=1

where the right-hand side is a product of the finite parts of the Godement—Jacquet
L-functions.

(2) Conversely, for any formal sum v = BY_ 7;[d;] satisfying (a)—(f) above, there exists
a Hecke eigenform G such that ¥ = Yg.

(3) For two Hecke eigenforms Gy, G2 in Sk(Sp,,(Z)), the following are equivalent:
e G1 and Gy are constant multiples of one another;
e L(s,G1,St) = L(s,G2,St);
* Yo, =va,-
Here, a formal sum means that it is an equivalence class defined so that B!_, 7;[d;] ~

B¢, 7/[d}] if t = ¢’ and if there exists a permutation o € &, such that 7/ 2 m,(;) and
dj = dy(;) for any 1 <i <.
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REMARK A.2. (1) In [12, Theorem 8.5.2], Chenevier and Lannes assumed [12,
Conjecture 8.4.22]. As is written in the postface in that book, this conjecture has
been proved by Arancibia, Moeglin and Renard [2].

(2) Theorem A.1 (3) is a multiplicity one theorem. In [12, Corollary 8.5.4], not to use
[12, Conjecture 8.4.22], the stronger assumption k1 > - -+ > ky, > n+1 is assumed.
Using [2], the same proof is available even when ky > --- >k, > n+ 1.

(3) By condition (d), 7; is an irreducible regular algebraic cuspidal self-dual automor-
phic representation of PGL,,,(Ag) ([12, Definition 8.2.7]). As explained in [12,
Theorem 8.2.17], thanks to numerous mathematicians, one can prove that such
a representation satisfies the Ramanujan conjecture. Namely, for any p, all the
eigenvalues of the Satake parameter of m; , have absolute value 1. In particular, a
Hecke eigenform G in Sk(Sp,,(Z)) satisfies the Ramanujan conjecture if and only
if its A-parameter is of the form ¢ = H!_;m;[1]. In this case we call G tempered.

(4) By the purity lemma of Clozel [12, Proposition 8.2.13], the Langlands parameter
of m; oo is completely determined by the eigenvalues of the infinitesimal character
Ci,0- In particular, one can compute the Rankin-Selberg root number e(m; X 7;)
explicitly in terms of the eigenvalues of ¢; o and c¢;j by

1 if 4,5 # io,
lmoxcm) = [ J] 0@l o T ™8 i i 25— 4o,

w; >0 wj >0

w; >0

where w; (resp. w;) runs over the positive eigenvalues of ¢; - (resp. ¢j o). Note that
w; and w; are in (1/2)Z and that 2w; = d; — 1 mod 2 for any (positive) eigenvalue
w; of ¢ co.

(5) By [3, Theorem 1.5.3], we know that e(m; x ;) = 1 if d; = d; mod 2. This is easily
checked when i, 7 # ig.

(6) Theorem A.l is an existence theorem. To construct a modular form G from a
parameter v is a different problem.

(7) If we were not to assume that k, > n, the statement of theorem would be much
more difficult. At least when the scalar weight case, i.e., when ky =--- =k, =k
with k£ < n, a similar theorem, in particular a multiplicity one theorem, would
follow from a result of Moeglin-Renard [51].

To obtain several lifting theorems, we need the following proposition which comes
from accidental isomorphisms.

PropPOSITION A.3. (1) Suppose that k > 0 is even. For any primitive form f in

Sk(SLa(Z)), there exists an irreducible unitary cuspidal automorphic self-dual represen-
tation w; of PGL2(Aq) such that

L <5+ l€21,f> = L*(s,7y)
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and such that the eigenvalues of the infinitesimal character of w5 o are £(k—1)/2.

(2) Suppose that j > 0 is even and that k > 4. For any Hecke eigenform F in
S(kt4.k) (SP2(Z)), there exists an irreducible unitary cuspidal automorphic self-dual
representation mp of PGL4(Ag) such that

2k+35—-3
L(S-Fg,F,Sp) :LOO(S?TFF)

and such that the eigenvalues of the infinitesimal character of mp o are £(j + 2k —
3)/2,£( +1)/2.

(3) Suppose that k1 > ko > 0 are even. For any primitive forms fi; € Sk, (SL2(Z)) and
f2 € Sk, (SLa(Z)), there exists an irreducible unitary cuspidal automorphic self-dual
representation g, 5, of PGL4(Ag) such that

ki 4 ko —2 -
L<8+122,f1®f2> = L%(s,75,.1,)

and such that the eigenvalues of the infinitesimal character of Ty, r, 0o are (k1 +
k‘g — 2)/2 and :l:(k‘l — k2)/2

Proor. (1) is well-known (see, e.g., [12, Proposition 9.1.5]). (2) is [12, Proposi-
tion 9.1.4]. (3) can be proved in a way similar to [12, Proposition 9.1.4]. O

Now we explain Theorems 4.2 and 4.3.

PrROOF OF THEOREM 4.2 (1). Let G be a Hecke eigenform in Sk (Sp,,(Z)), and
e = BE_ m;[d;] be its A-parameter. Here we make the convention that g = lar, (ag) (1]
if n = 0. Let ' € S(44;,k) (Sp2(Z)) be a Hecke eigenform with k£ > 4 and j > 0 even, and
7 be the irreducible unitary cuspidal automorphic self-dual representation of PGL4(Ag)
associated by F' by Proposition A.3 (2). It suffices to show that under the assumptions
of Theorem 4.2 (1), the parameter

Y =g Brp[2d]

satisfies the conditions (a)—(f) of Theorem A.1 (1) with respect to k' = (k1,..., k; 44) €
Z"+44 defined in Theorem 4.2 (1). The conditions (a), (b), (c) and (e) are obvious. The
condition (d) follows from the definition of k’. To check the sign condition (f), we will
compute €(m; X 7r). By Remark A.2 (5), we have e(m; X ) = 1 if d; is even. When
d; is odd, any positive eigenvalue w; of ¢; o belongs to {k; — 1,...,k, — n} so that
j+1<2w; < j+2k—3. Hence when d; is odd and i # iy so that n; = 0 mod 4, we have

min{d;,2d}
6(,”1_ « WF)min{diQd} _ < H (_1)max{2wi,j+2k3}+max{2wi,j+1}>

w; >0

min{d;,2d}
_ ( H (_1)j+2k—3+2w7¢> _ (_1)%(j+2k—3) min{d;,2d} _ |

w; >0
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Since the cardinality of the set K; for 1’ is the same as the one for g, we obtain the
sign condition for 7;. Also,

e(rp x 7rj)min{zaz,dj} = e(mp x ﬂ.io)min{2d,di0}

1

t
Jj=

nig—1 . - 1+(j+2k—3) | 1+(j+1
= (=1)" 5 U+2=3)+ e ):(71)n+k

since n;, = 2n+ 1 mod 4 and j = 0 mod 2. Hence the sign condition for 7 is equivalent
to k =n mod 2. g

The proofs of Theorem 4.2 (2) and Theorem 4.3 are similar. Let G and f be as in
the statements, ¢ = B!_,m;[d;] be the A-parameter of G. and 7 be the irreducible
unitary cuspidal automorphic self-dual representation of PGL2(Ag) associated to f. We
have to check the conditions (a)—(f) in Theorem A.1 for

Y = e @ mr[2d]

with 2d = n — 2 in the proof of Theorem 4.2 (2). Only the condition (f) is non-trivial.

When G is in Theorem 4.2 (2), we claim that ¢g is of the form mg[1] for some
irreducible unitary cuspidal automorphic self-dual representation 7¢ of PGL5(Ag). If
not, by the condition (e) and by n > 2, we would have ¢ = 71 [1] 8 1gr, (ag)[1]- In this
case, the sign condition fails since |K;| = 1. Since

e(ny x ) = (71)(1+max{2k:fnfl,2(k71)})+(1+max{2kfn71,2(kfn)})+w

_ (_1)2(k—1)+(2k—n—1)+k—g _ (_1)k_w52 _ (_1)k+%ﬂl7
the sign condition for v holds if and only if k is even.
When G is in Theorem 4.3, since
e(my x Wj)mi“{zd’dj} ={ (-1 if j =i in case (1),

(=)™ if j =iy in case (2)

and the right-hand side of (f) for m;[2d] is (—1)?, we can check the sign conditions. This
completes the proofs of Theorems 4.2 and 4.3.

Appendix B. An explicit pullback formula.

Suppose that & > n; +ng + 1. Then for any r < min(nq,n9) and a Hecke eigenform
f €8, ('), the Klingen-Eisenstein series [f]pr! (Z,U) and [f]pr? (W, V) become holo-
morphic modular forms, and we obtain more explicit results. The proof of the following
theorem is independent of Bocherer’s argument. The proof here is a brute force but we
still believe this way of calculation would be useful in some cases. For more conceptual
description of a complete general exact pullback formula, see [28].
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THEOREM B.1. Notation being as in Theorem 5.6, suppose that | > 0. Then we
have

Z 0
(D)\-,nl,nQEnl‘i‘nka) <0 W>

min(ni,ne

)
=Y .
r=2

where ¢, 1s a certain constant depending on Dy n, n, -

k fr,] Pny Png
; G el YON6 Sl W)V,

d(r)
J

This has been already proved by Kozima [45] in more general setting. However
he does not give explicit values of ¢, in general. He gave in [45] one strategy how to
calculate the constant ¢, in the formula. Actually this calculation is difficult to execute
in general, but in the next section, we explain how to do this when Dy = Q;(0z,U, V),
where Q) is defined by (2) before Lemma 5.5. Though this calculation is not necessary for
proving our main results, it is interesting in its own right, and may have an application
for computing exact standard L-values for f € S, (I'™).

B.0.1. Calculation of the constant. To calculate the constant c,., we follow
Kozima’s formulation in [45]. We fix g = (4 B) € Sp,,, ., (R) and put § = det(CZ+D).
To obtain ¢, for our differential operator D we need, it is a key to calculate D(57F)
explicitly. For Z € H,,, 1,, we write

Z= (2" 22 ith 2y, € Hy,, Zos € Hyy, Z1s € M, 1y (C).
Zia i ’

For an m x nq matrix U and m X ny matrix V of variables, define U as before and we
write

UZu'U UZip'V
U 11 12
du,z = (0) =UZ'U = ( )

VIiZ1s'U VZypp'V
We put A = (CZ + D)~1C and
AV = (A;;) =U(CZ + D) 'C'U.
It is well-known and easy to see that this is a symmetric matrix. We write blocks of A

by

AU A1) AQ02) ’
tA(12)  A(22)
where A7) are m x m matrices. We consider a differential operator D = P(dz) which
satisfies Condition 1. The following proposition is the same as Proposition 4.1 in page 241
in [45] except for the point that the realization of the representation is slightly different.

PROPOSITION B.2.  There exists a polynomial Q(X) in the components of m x m
matriz X such that
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D~ F) =6*Q(a!).

The key point is that the polynomial does not contain components of AMY and
AR2),

Since the realization of our polynomials and Kozima’s are different, we explain the
relation. We fix A = ({,...,,0,...,0) with depth(A) = m. We denote by u; and v;
the i-th row vector of U and the j-th row vector of V respectively and write U = (u;),
V = (v;). Our polynomial is a polynomial in components of T', U and V. We write
this as P(T,U,V) to emphasize its dependence on U and V. We define polarization
of P for each rows u;, v; in the usual way as follows. We prepare ml row vectors &;,
(1 <i<m,1<v <) and other ml vectors 7, (1 <j <m,1 < pu <1I) of variables. We
write £ = (&) and n = (;,,) for short. For P we define P* by

P(T,&,m)

1 1 !
o o
=172 PT, (D et | [ D dimy
o dciy - -~ Ocy Odyy - - Odj, ( 7( civ >a<u_1 Jlmz))

v=1

Cip=dj,=0

In other words, replacing u; and v; by u; = ¢;1&1 +- - - +cuq and v; = djin+- - -+dns
respectively in P(T, U, V) and take coefficients of

m l
H H Ciydj'u.

ij=1 v,p=1

Here by definition, the polynomial P* is a multilinear polynomial in &,7T11 %,
ISHAT tnj#, Niv oo tn]-“ and it is homogeneous in the sense of Kozima. Since the po-
larization P — P* commutes with A;;(X) and A;;(Y"), the polynomial P* is also pluri-
harmonic. The action of 4; € GL(ny,C) and Az € GL(ng,C) is the same as P since we
have u; A1 = 25:1 CivTiy Ay and v; Ay = ZLZI djunjpAsz. So if we use P* instead of P,
our formulation becomes Kozima’s formulation. So we can use Kozima’s Proposition 4.1
in [45], and the interpretation in our case is given in Proposition B.2 above.
Our next problem is to obtain ) in Proposition B.2.

For any row vector z, y of length n, we write

0z
ij

Oz, yl =20z'y= Y

1<ij<n

The following formulas are given in Kozima [45]. (See also [24] for a precise proof.) For
any row vectors up, us, ug, ugq of length n and any functions f, g of Z, we have

(D1)  Olu1,u2](fg) = (Olur,u2]f)g + f(Ou1, u2]g),
(DQ) 6[U1,U2](57k) = —ké’kulAtug,

(D3)  Olut,us](ugA'tuy) = —%((ulAtu;;)(ugAtw;) + (w1 A fug) (ua A tug)).

By iterate use of these formulas, we can calculate the action of P(Udz 'U) for any poly-
nomial P. But actual calculation is a bit complicated. For our case, we have a following
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result. The rest of this section is devoted to prove this theorem.

THEOREM B.3. We assume that m = 2 and we define differential operator D; =
Qi(0z,U,V) from det* to det” Prir ® det” Pnax for X = (1,1,0,...,0) by (2) before
Lemma 5.5. We write U(CZ + D)~'C*'U = (Ai;)1<ij<a. Then we have

1

Dy(57F) = 27“(

2k — 3)1(2k — 1)a1(A13A0s — A1gAgs)?.

In the notation before, we have det(A(12)) = A13A94 — A14A03.

A simple theoretical proof of Theorem B.3 is given in [28], but here we give an
original proof prepared for the present paper. This proof consists of complicated combi-
natorial brute force calculations, and we believe such alternative proof is not useless.

To make it readable, we first explain rough idea of calculation, and then we give
actual calculation. Define F;(T,U, V) as in Lemma 5.5. We also define

Fy(T,U,V) =det(UTy;1 'U), F5(T,U,V) = det(VI'V),
where T;; are defined by (1) in Section 5. Then of course we have Fy = FyF5. We write
Fi=F1(0z,U0,V), 1=1,2,3,4,5.
Here Fi, F4, F5 are differential operators of order 2 and F3 of order 4. We put

AY=U(CZ+ D)"'C'U = (Ay), Cr = A13824 — A14As3,
C4 = A11A22 - A%27 Cs = A33A44 — A§4, CQ = 04057 03 = det(AU).

Now our strategy of calculation is as follows.

(1) For any a, b, ¢, we see easily that FF5F5(6%) is written as a product of 6% and
a polynomial in A;; by virtue of the formulas (D1), (D2), (D3). But in fact, more
strongly, we can show that it is a product of =% and a polynomial in C;, Cs, Cs
that is a weighted homogeneous polynomial of total degree a + 2b + 2c¢ if we put
deg(Cy) =1, deg(Cs) = 2, deg(C3) = 2.

(2) Here we can show that Cy, Cy and Cj are algebraically independent for generic g
and AU, so by virtue of Lemma B.2, we need only the coefficient of Cf+2b+2c in
FoFYF3(67%) to describe D;(67%). So we calculate these coefficients for all (a, b, ¢)
and sum them up according to the explicit definition of ;.

Now we execute these calculations.
LEMMA B.4.  For any non-negative integer, we have

k+r—1)(k+r)(2k+2r—3)(2k+2r—1)
4

Fy(5key) = | 5-ECrt.

PrOOF. The operator F3 is a differential operator of order 4. There are many
ways to prove Lemma B.4. One way is to use computer directly. Actually, by (D1),
(D2), (D3), it is clear that
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F3(67FCE) = 677057 x P(r, Ayj),

where P(r,A;;) is a polynomial in r of degree 4 whose coefficients are polynomials in
A;; that do not depend on 7. So the calculation for r = 0,...,4 is enough and executing
these we obtain the above formula. An alternative way is to specialize A to the case
ni=ng=2and U =15, V =1y, C =14, D = 04. Then we have AU = Z~1 for Z € H,.
Then under this specialization on AV and F3, we have

F3(67FC%) = det(0z)(det(Z) k™)
=(k+r) <k+r+ ;) (k+r+1) (k;-i—r—i— 2) det(z)~F—r—1

_ (k+r)2k+2r+1)(k+r+1)(2k+2r+ 3)5—’“05“
1 :

The second equality is nothing but the Cayley type identity for symmetric matrices
([11]). Since the calculation is formally the same, we get Lemma B.4. 0

Next we consider F; and Fo = F4F5. Since Fy, F4, F5 are differential operators
of order 2, the operation of these on products of functions can be calculated if we have
several fundamental operations on factors. To explain this, we assume that F is a
differential operator of homogeneous order 2 and define a bracket {4, B} by

F(AB) = F[A]B + AF|B] + {A, B} r.

We have {B, A} = {A, B}x. For the operator 010> where 07 and 0, are differential
operators of the first order, we have

{A, B}o,0, = (014)(02B) + (024) (91 B),
so for general F of order 2 and functions A, B, C, we have
{Aa BC}]" - {Aa B}}'C + {Av C}J:B

So for example, the operation of F on a product A; --- A, of functions A; can be calcu-
lated if we have F(A;) and {A;, A;}». More generally, for d~F, any functions A, B, C,
and non-negative integers p, g, r and for a differential operator F of second order, we
can give the following general formula by repeating the above consideration.

LEMMA B.5.

F(07kAPBICT) = F(67*)APBIC™ 4 pAP~'BIC" {67 %, A} 5 + qAPBT1C" {67 B} r
+rAPBICT Nk Oy + 677 <pAp1BqC’TF(A) + qAPBT'C"F(B)
+rAPBICTIF(C) 4 pgAP ' BII1C"{A, B} 5 4+ qrAPBT1C" "B, C}»

+ pgAPLBICT A, C) £ + @AHBQCT{A, A1 gopaorip gy,

2
+ @A”BQCT*Z{C, 0}f>.
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So for 7%, Cy, Cs, C3 (and Cy4, Cs when necessary), and F = Fy, Fy, Fs, we list
up all these fundamental data below. For i = 1, 4, 5, we write {x,x}x, = {x,*},.
Next we consider F; and Fp. We give fundamental formulas below.
k(2k — 1)
2

{67k C1}1 = §(3Cl2 +Cy —C3)67F, {07F, Cy}y = 4kC1Cy07F,

Fi(07F) = Ci167F, Fi(Ch) = %Cm Fi1(Cq) =3C1Cy, Fi(Cs) = %Clc&

(6%, Cahy = 26CL O30, {Ch, i)y = %(20% +2Ch — ),

1
{C1,C}1 = Co(3CF + Cy — C3), {C1,03} = 503(3012 + Cy — (),

{CQ, 02}1 = 801022, {CQ, Cg}l = 4010203, {03, 03}1 = 201032,
E(2k —1)
2
Fi(C3) = %0403, {67F, C1}a = 2kC,C167F, {07F,Cy)y = KC4(C? 4 3Cy — C3)67F,
{67k, Cs}y = 2kC4C367F,  {C1,Cr}a = 2C4C3, {Ch,Co}ty = C1C1(CE +3Cy — C3),

{01, 03}4 = 2040103, {Cg, 02}4 = 20402(2012 + 202 — 03),

1 1
Fi(67F) = Cu6™F,  Fu(Ch) = 5CiC1, Fa(Co) = 5CL,L(4012 +2C, — Cs),

k(2k — 1
{Cq,C3}4 = C4C5(CE +3Cy — C3), {C3,C3}4 =2C,C2, Fs(67F) = %05,

1 1 1
F5(Ch) = §C’5C1, F5(Cs) = 505(4012 +2Cy — C3), F5(Cs) = 50503,

F5(Ca) = 520~ G+ Cy), {57,015 = 2hCsCr6,

{67F Co}s = kC5(C? +3Cy — C3)67F, {07F,C3)5 = 2kC5C307F,

{677, Cu}s = k(CE 4 Cy — C3)67F,  {C41,C1}s5 = 2C5CE,

{C1,Co}s = C5C1(CE+3Cy — C3),  {C4,C3}5 = 20501Cs,

{Cy, Co}s = 205Co (202 + 205 — C3),  {Ca,C3}s = C5C3(C? +3C, — C3),
{C3,C3}5 = 2C5C2,  {C1,C4}5 = C1(CF + Cy — C3),

{Cy,Cy}ys = Ca(3C2 + Cy — C3), {C3,C4}s = C3(C? + Cy — C).

LEMMA B.6.  For a generic g, U, V such that A;; are algebraically independent,
three variables C1, Co and C5 are algebraically independent.

PROOF. Assume that

> Clp,q,r)CECICE =0

p,q,r

for some constants C(p, ¢, ) where the degree of C is the smallest among such relations.
If we put A4 = Aoy = 0, then we have C; =0, and C5 = A%3A22A44 + - -. Then, since
Cy does not contain any Ajs, this means that C(0,q,7) = 0 for any ¢, r. So we may
assume that
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C1 Y Clp.g.r)Cy ' CiCs =0.

p>1,q,r

Since the polynomial ring in A;; is UFD, we have »° -, C(p,q,r)CP~rCicy = 0.
This contradicts to the assumption. O

LemMAa B.7.  For any integers a,b,c,p,q,7 > 0, there exists a polynomial
P(Cy,Cs,C3) such that

FiFF5(67%) = 6 P(C1, Cs, Cs).

ProoF. By Lemma B.4, it is enough to assume that the left-hand side is
FeFy(6~+C5t). Here we have F, = F3Fy. By the fundamental formulas, we see
that for i, j with 1 <i < j < 3, any of F4(67%), Fu(C), {67%,Ci}a, {Ci, Cj}4 are §7*Cy
times a polynomial in C7, Cs, C3, so by Lemma B.5, we see that

Fa(6~kCPcics) = 675 CyPi(Ch, Cs, C3)
for some polynomial P;(z,y, z) in three variables. We have
F5(6FCyP1(Cy, Ca,C3)) = CuFs5 (57" P1(Cy, Ca, C3)) + F5(Ca)6~* Py (Ch, Ca, Cs)
+{C4,67*P1(C1, C2,C3)}5.
Here by the same reason as before, the first term is equal to
CyC56 " Py(Cy, Ca, C3) = 6 FCaPy(Cy, Cs, Cs)

for some polynomial Py(x,y, z). Since 6*{Cy, 6 *}5, {Cy4, C;}5 for i = 1,2,3 and F5(Cy)
are polynomials in Cy, Cy, C3, we see that Fo(§~*CTCJC%) is 6% times a polynomial
in Cy, Cy, C3. We can show inductively that the same is true for 7} and F{F35, so we
prove the lemma. O

By Lemma B.2, we need only the power of C; part in the polynomial in Cy, Cs, Cj,
so we will study that.

We denote by Q:g = Cg(C[ChCQ,Cg] and @23 = (02703)([:[01702,03} the ideals of
C[Cy, C3, C3] generated by Cs, and by Cy and Cj, respectively. We have the following
result.

ProprosSITION B.8. (i) If ¢ > 1, then we have
SFFOFYFS(67F) € ¢5.

(ii) When ¢ =0 in the above, we have

1 1
SFFIFR TR = 52 Pl (k)2t <k - 2) (k + 2b)4(2k + 2b — 1),C¥*2* mod €y3.
b

To prove Proposition B.8, we prepare several lemmas.
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LEMMA B.9. (i) For any integer r > 1, we have
SEFFy(67FCPCiCs) € ¢,

(ii) For any integer b > 0, we have

b 2
b 1 1
krbrs—k\y — 2 b—
SEFL(6F) = ;:ij! <p> (k)ap (k - 2)b (k +p— 2>bp C?PC57P mod €.

PROOF. We have
Fa(67FCYCICE) = 6 FCYCIFA(Cy) + CiFa(674CYCE) + {6+ CTCY, C3 }a.

Since .7:4(03) € C,C3, {C“ 03}4 € Cy€zfori=1,2,3,and {5_k, 03}4 S (S_kC4Q:3, we see
that F4 (6 *CYC4C%) € 67%C4€3. In the same way, we can show that F5(6*Cy€3) C €3.
So we prove (i). Next we prove (ii) by induction. By direct calculation, we have

k(2k —1)(k + 1)

oFFa(57F) = 5 Ct +

k(2k — 1)2(k + 1)0 k(2k —1)?

- Cs.
4 2 4 3

This is nothing but the case b = 1 of Lemma B.9 (2). Next we calculate F»(6~*CYCY)
in order to calculate F5(6*) inductively. We have
Fy(671CYCH) = Fa(67M)CTCY + {07F, CYC3}a + 07 Fu(CTCF)
= Fy(07F)CPCy + pCY O3 F, Ci}a + qCYCYH{07F, Ca 4
+07F(Fu(C])C3 + {CF, C}a + CTFu(C9)
= Fy(67")CC + pCY 167", Cr}a + qCLCEH{o7F, Cola

_ -1 B
+6’“<pF4(01)Cf ey + X2 Vie, oy
+pgC 04O, Cota + qCLCY Fy(C)

alg—1) CPCI2{C, 02}4) .

M

So by the fundamental formulas, we have

(k+p+29)(2k+2p+2¢—1)
2

Fy(67*crcd) = 6~FC 0P x (q(k +p+29)CF + Cy
_ %q(2k+2p+2q— 1)03>. (@)
In the same way, we have
Fs(6~*c,cPcd) = s7*cred x ((q +1)(k+p+2¢+1)CF

(k+p+2¢g+1)(2k+2p+2¢—1) (g+1)(2k+2p+29—1)
+ 2 Gz - 2

cg). (5)
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By applying (4), we have

SFFy(67RCPCY) = q(k + p+ 2¢) Fs (6 FC,cPt2ed™)

k 2q)(2k + 2 2g—1
L (k4 p+ 20) 2+ P+20= 1) p 50, cPCS) mod €5, (6)

and by (5), we have
FFy(67RCPC) = 2 (k4 p+2¢)(k + p+ 2¢ + 1)CP !
1
+(k+p+2¢)(k+p+2¢+1) ((4p+2)+ <2p2+pq+p+q2>)cf+203
1 2 ~p ~g+1
+Z(k+p+2q)(k+p+2q+1)(2k+2p+2q—1) ciCcy. (7)

Now assume that the claim (ii) holds for b — 1. Then applying (7), we have (ii).
This is of course a straight forward calculation, but this is a bit complicated so we give
a precise proof. For the sake of simplicity, we put

Zpy = ! (Z)(k) (- ;) = ;)

To see the coefficient of Clzngfp in Fo(F~1(67*)), we should see the linear combination
of =kCPACL P 5RCPT2CL P and 6 FCPCY TP in FUL(67F) and apply F, on it
and see the coefficient at C2* CS"’ . We compare each term with z,, ;. First the coefficient
at CIPCL™P of 6F Fy(6~FCP~*CY P is given by

(k420 —2)(k+2b—1)(b—p+1)%

We must multiply z3—1 5,2 to this. The product is given by

= €1l'p,b

where we put

o PNk +p—5)(k+p-3)
' b2(k+b— 3)2 '
Secondly, the coefficient at CZPC5™P of 68 Fy (6 *CZP~2CE™P) is given by
1
(k20— 2)(k+2b— 1)(2(2b — 2p + 1)k + (46> — 6b — 4p® + 10p — 5)).

We must multiply z4—1 -1 to this. The result is epxy ;,, where we put

. ~p(k+p—3)((20—2p+ 1)k + (26 — 3b — 2p> + 5p — 3))
a b2(k+b— 3)2 '
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Finally, the coefficient at CZ*CY ™ of 6% Fo (5~ CPC5 ™' 7P) is given by

1

Z(k +2b — 2)(k 4+ 2b — 1)(2k + 2b + 2p — 3)2.

Multiplying x,—1,, to this, we have esxp ,, where we put

(b—p)*(k+b+p—3)?
b2 (k+b—3)2

€3 =

Since we easily see ¢; + ¢z + ¢35 = 1, we prove (ii). O
LEMMA B.10. (i) For any integer r > 1, we have
sEF(67RCPCics) € ¢s.
(ii) For any integer ¢ > 1, we have
SFFL(CPCY) € Cas.

(iii) For any non-negative integers a, p, we have

2k -1 2 -1
(SkFl((Sika) _ (k +p)( 5 +p )Cf-i-l + wcf—lcé _ %C{)_lc&
2 -1
g Fp(o-tcp) = LRl e )2 7 mod €,

PROOF. Since F1(C3), 6°{67% C3}1, {C;,C3}1 are in €3 for any i = 1, 2, 3, the
assertion (i) is clear. Since JF1(Csq), 6*{67%,Ca}1, {C;, C2}1 are in €o3 for any i = 1, 2,
the assertion (ii) is clear. For (iii), the first assertion is obtained by direct calculation.
The second assertion is shown by induction by using (i) and (ii). O

PROOF OF PROPOSITION B.8. The assertion (i) is clear from Lemma B.4 and
Lemmas B.9 (i), B.10 (i). The assertion (ii) is obvious by Lemmas B.9 (ii) and B.10 (iii).
So Proposition B.8 is proved. O

In order to prove Theorem B.3, we fix a non-negative integer [. In order to give
D;(6~%), we must sum up each contribution of F¢FeF5(5~F) such that a + 2b + 2¢ = .
By Proposition B.2 and Proposition B.8 (i), the term with ¢ > 1 does not contribute to
the final sum. So we assume ¢ = 0 and a + 2b = [. We put

b = (—al!)b (k)1(2k + 2b — 1), (k: - ;)b (k — ;)M.

By Proposition B.8, we see that this is the contribution from F¢FS(6~F) times the
coefficient of F*FY in the definition of I;, noting that

(k)2p(k +2b)q = (k);.
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What we want to calculate is qo = >, 5,—; ¢a,b- Denote by [I/2] the maximum integer
which does not exceed /2. To calculate @) inductively, for any integer b such that
0 <b<[l/2], we put

Qb = Z 41—2b0,bo -

0<b<bo<[1/2]
LEMMA B.11.  The notation being as above, for any b with 0 < b < [1/2], we have

2k +b—1)(2k + 20 — 26— 3)
b= T ok —2)(2k+1—3) I~ ®)

PrROOF. We prove this by induction from b = [[/2] to b = 0. First we show this
for b = [l/2]. By definition, we have ¢, = ¢—254, so the problem is if the coefficient of
the right-hand side of (8) is 1. For even I, we have [[/2] = [/2 and for odd ! we have
[1/2] = (I —1)/2, and in both cases we have

2k +[1/2] — 1)(2k + 21 — 2[1/2] — 3) = (2k + 1 — 2)(2k + 1 — 3).

So the assertion is clear for b = [[/2]. Now assume that the claim holds for some b < [1/2]
and we calculate g,—1. Calculating the ratio ¢q5/gq+2,—1, we have

o B L U=2b+1)(I—2b+2)
-1 = @ T Gat2b-1 = Gat2,b-1 (2k +1—2)(2k +1—3)
_ 2(k+b—2)(2k+21—2b—1)

2k +1—2)(2k +1—3) q1—2b+2,b—1-

So the claim holds also for b — 1. O
Proor or THEOREM B.3. By Lemma B.11, we have

2k -1)2k+20-3) _ (kJ(2k—1)(k—3)
©= Gk +l-2)2k+1-3) I '

Here we have
(k) (k‘ — z> (2k+201—-3) = 2_21(214; —3)(2k — 1)q,
!

and

(2k — 1),

2<k_1)(2k+l—2)(2k+l—3)

= (2k — 2)(2k — 1);_o,

where we define (z)_1 =1/(z — 1) and (z)_2 = 1/(x — 1)(z — 2). So we have

1
qo = 2271”(2]6 — 3)[(2k — 1)21.

So we prove Theorem B.3. O
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B.0.2. Explicit pullback formula. Based on the results in the last subsection,
we can write down the pullback formula for the differential operator I); in general for any
n = nj+ng with 2 < min(ny,ng) and A = (1,1,0,...,0). We use Kozima’s formula in [45,
p.247]). We define Q(X) as in Proposition B.2 and Theorem 3.2. Then by Theorem B.3,
we have

QAT = goCF.
For an n x n symmetric matrix, we write a block decomposition as
Ty T
= <tT12 Tzz) ’
where 7171 and T59 are ny X ny and ny X ny matrices, respectively. We define a polynomial
Q(T) in t;; by
Q(T) =QUT2"V).

Then we have Q((CZ 4 D)~*C) = Q(A(?). For any r < min(ny,ny), we define nq x ny

matrix by ( 10T 8), and by abuse of language, we denote this also by 1,.. As in Kozima, we

are allowed to write Q(7T') for T3 = 1, as

* 1,
not specifying *, since this does not depend on * part by definition. Now we put

Ry = Z (uriug;j — u1ju2i)(V1ive; — v15v2:)-
1<i<j<r

Then for A = (1,1,0,...,0), we have
}3(* 1T>:qOXR,l,‘.
* *

We consider two isomorphic realizations of the representation det” pr.x, one is on the
space generated by bideterminants in u;; with ¢ = 1, 2, j < r and the other is on the
space generated by bideterminants in v;; with ¢ = 1, 2, 7 < r. We denote the former
representation space by V" and the latter by V,,.. We identify these representation spaces
of GL,(C) on U variables and V' variables by mapping u;; to v;;. For v, € Vi,, we denote
by v* the corresponding element in V,*. Now we define

S, ={S€M(C)|S="51,—55>0},

where * > (0 means that the matrix is positive definite. We define a linear map from V.,
to Vi by

V(v = /ST<pT(1T _ 35Sy, 0 (j 1*7") > det(1, — 58)~"1dS,
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where p, = det”p, \ and dS = [Th<;danjdyn; for S = X +4Y with X = (25), ¥ =
(yn;) € M,(R). Then we know that ¢)(v.) = v, for some constant ¢. Then by the
result of [45] in page 247, we have

P 2r(r+1)+17(rk+2l)irk+2l .
=

®.

Here ¢ obviously depends on the inner product. We can explicitly calculate the inner
product (*,*)o defined before for the necessary quantity.

LEMMA B.12.  We have
(v*,RLY = (14 1)1,

PROOF. For the proof, we quote [11, Theorem 2.16]. Let X = (z;;) be an m x r
matrix of variables with m < r, and let 0 = (3%) Let A and B be r x m constant
matrices. Then that theorem gives the following general formula.

det(d x B)(det(X A))* = det(*AB)(s)m, det(X A)*~1.

So if we put m = 2 and assume X and ‘A to be 2 x r matrices consisting of the first r

columns of U and V respectively, and B = (OT{Z ,), then the above formula means

2Rl 92R!

- =1l 1 — Rl_l,
Ou110uss  Ouia0us; (14 1)(vi1ve2 — vigva1) Ry,

In the same way we have

9R.  OR.
6U1p8UQq 3U1Q6UQ;D

1

=1(l + 1)(v1pv2g — Ulq“%)Rf«_

So iterating these operations [ times, we have the assertion. O

By the above results, it is natural to use here the inner product
(e, %1 = (rx)o/ (14 DL (9)

The remaining part is the following integral

I = / po(Ly — SS) det(1, — S5)~"1ds,

r

where p, = det” Pr.x, to which a dominant integral weight (k + 1,k + 1, k,..., k) corre-
sponds. By Kozima [44, Lemma 2] (and also by [19], [7], [9], [58]) we have

2r7rr(r+1)/2
Hi=2(2k +20—v) Hi=1 HZ:3(21€ +l—p—v) H3§M§ygr(2k —p— V).

THEOREM B.13.  We assume that k is even with k > n + 1. Assumption being the
same as above, taking the inner product (x,x); as in (9), the constants ¢, for 2 < r <
min(ny, ng) in Theorem 5.6 are given by

I, =
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2(r+1)27(rk+2l)(71)rk/2+l7rr(r+1)/2(2k _ 3)[(2k _ 1)2l
T 2N, (2k 20— ) [Ty TTo s 2k 4+ 1= = 1) e ey (2 — i — v)

In particular, we have

1]
[2]
[3]
[4]
[5]
6]
[7]
8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

(17]

(18]
(19]

20]

29—2(k+2l)(_1)k+lﬂ.3(2k _ 3)l(2k _ 1)2l—3
! '

Co =
We note here that since we assumed that k is even, the number rk/2 is an integer.

References

A. N. Andrianov, Quadratic Forms and Hecke Operators, Grundlehren Math. Wiss., 286, Springer-
Verlag, Berlin, 1987, xii4+-374 pp.

N. Arancibia, C. Mceglin and D. Renard, Paquets d’Arthur des groupes classiques et unitaires,
Ann. Fac. Sci. Toulouse Math. (6), 27 (2018), 1023-1105.

J. Arthur, The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups,
Amer. Math. Soc. Collog. Publ., 61, Amer. Math. Soc., Providence, RI, 2013, xviii+590 pp.

H. Atobe, M. Chida, T. Ibukiyama, H. Katsurada and T. Yamauchi, Harder’s conjecture II, in
preparation.

J. Bergstrom and N. Dummigan, Eisenstein congruences for split reductive groups, Selecta Math.
(N.S.), 22 (2016), 1073-1115.

S. Bocherer, Uber die Fourierkoeffizienten der Siegelschen Eisensteinreihen, Manuscripta Math.,
45 (1984), 273-288.

S. Bocherer, Uber die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modul-
gruppe, J. Reine Angew. Math., 362 (1985), 146-168.

S. Bécherer, Uber die Fourier—Jacobi—Entwicklung Siegelscher Eisensteinreihen II, Math. Z., 189
(1985), 81-110.

S. Boécherer, T. Satoh and T. Yamazaki, On the pullback of a differential operator and its appli-
cation to vector valued Eisenstein series, Comment. Math. Univ. St. Pauli, 41 (1992), 1-22.

S. Bocherer and C.-G. Schmidt, p-adic measures attached to Siegel modular forms, Ann. Inst.
Fourier (Grenoble), 50 (2000), 1375-1443.

S. Caracciolo, A. D. Sokal and A. Sportiello, Algebraic/combinatorial proofs of Cayley-type iden-
tities for derivatives of determinant and Pfaffians, Adv. in Appl. Math., 50 (2013), 474-594.

G. Chenevier and J. Lannes, Automorphic Forms and Even Unimodular Lattices, Ergeb. Math.
Grenzgeb. (3), 69, Springer, Cham, 2019, xxi+417 pp.

P. Deligne, Formes modulaires et repréntations ¢-adiques, In: Séminaire Bourbaki: Vol. 1968/69:
Exposés 347-363, Lecture Notes in Math., 179, Springer, Berlin, 1971, exp. no. 355, 139-172.

N. Dummigan, Lifting puzzles and congruences of Ikeda and Ikeda—Miyawaki lifts, J. Math. Soc.
Japan, 69 (2017), 801-818.

N. Dummigan, T. Ibukiyama and H. Katsurada, Some Siegel modular standard L-values, and
Shafarevich—Tate groups, J. Number Theory, 131 (2011), 1296-1330.

J. A. Green, Polynomial Representations of GL, Lecture Notes in Math., 830, Springer-Verlag,
Berlin-New York, 1980, vi+118 pp.

G. Harder, A congruence between a Siegel and an elliptic modular form, manuscript, 2003, repro-
duced In: The 1-2-3 of Modular Forms, (eds. J. H. Brunier, et al.), Universitext, Springer, Berlin,
2008, 247-262.

G. Harder, Arithmetic aspects of rank one Eisenstein cohomology, In: Cycles, Motives and Shimura
Varieties, Tata Inst. Fund. Res. Stud. Math., 21, Tata Inst. Fund. Res. Mumbai, 2010, 131-190.

L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains,
Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1963.

T. Ibukiyama, On differential operators on automorphic forms and invariant pluri-harmonic poly-
nomials, Comment. Math. Univ. St. Pauli, 48 (1999), 103-118.


https://doi.org/10.5802/afst.1590
https://doi.org/10.1090/coll/061
https://doi.org/10.1007/s00029-015-0211-0
https://doi.org/10.1007/s00029-015-0211-0
https://doi.org/10.1007/BF01158040
https://doi.org/10.1007/BF01158040
https://doi.org/10.1515/crll.1985.362.146
https://doi.org/10.1007/BF01246946
https://doi.org/10.1007/BF01246946
https://doi.org/10.14992/00009960
https://doi.org/10.5802/aif.1796
https://doi.org/10.5802/aif.1796
https://doi.org/10.1016/j.aam.2012.12.001
https://doi.org/10.1007/978-3-319-95891-0
https://doi.org/10.1007/978-3-319-95891-0
https://doi.org/10.1007/BFb0058810
https://doi.org/10.1007/BFb0058810
https://doi.org/10.2969/jmsj/06920801
https://doi.org/10.2969/jmsj/06920801
https://doi.org/10.1016/j.jnt.2011.01.012
https://doi.org/10.1007/BFb0092296
https://doi.org/10.1007/BFb0092296
https://doi.org/10.1007/978-3-540-74119-0_4
https://doi.org/10.1007/978-3-540-74119-0_4
https://doi.org/10.14992/00009868

(21]

[22]
23]
[24]
[25]
[26]
[27]
28]
[29]
[30]
[31]
(32
[33]
[34]

(35]
(36]

[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]

(48]
[49]

Harder’s conjecture I 1407

T. Ibukiyama, A conjecture on a Shimura type correspondence for Siegel modular forms, and
Harder’s conjecture on congruences, In: Modular Forms on Schiemonnikoog, Cambridge Univ.
Press, 2008, 107-144.

T. Ibukiyama, Lifting conjectures from vector valued Siegel modular forms of degree two, Com-
ment. Math. Univ. St. Pauli, 61 (2012), 87-102.

T. Ibukiyama, Conjectures of Shimura type and Harder type revisited, Comment. Math. Univ. St.
Pauli, 63 (2014), 79-103.

T. Ibukiyama, Topics in Modular Forms (in Japanese), Kyoritsu Shuppan Co., Ltd., 2018,
x+467 pp.

T. Ibukiyama, One-line formula for automorphic differential operators on Siegel modular forms,
Abh. Math. Semin. Univ. Hambg., 89 (2019), 17-43.

T. Ibukiyama, Explicit pullback formulas and a half-integral version of Harder conjecture on
congruences for Siegel modular forms, Oberwolfach Rep., 16 (2019), 3544-3547.

T. Ibukiyama, Generic differential operators on Siegel modular forms and special polynomials,
Selecta Math. (N.S.), 26 (2020), no. 5, paper no. 66, 50 pp.

T. Ibukiyama, Differential operators, exact pullback formulas of Eisenstein series, and Laplace
transforms, Forum Math., 34 (2022), 685-710.

T. Ibukiyama, T. Kuzumaki and H. Ochiai, Holonomic systems of Gegenbauer type polynomials
of matrix arguments related with Siegel modular forms, J. Math. Soc. Japan, 64 (2012), 273-316.
T. Ibukiyama, H. Katsurada, C. Poor and D. S. Yuen, Congruences to Ikeda—Miyawaki lifts and
triple L-values of elliptic modular forms, J. Number Theory, 134 (2014), 142-180.

T. Ibukiyama and S. Takemori, Construction of theta series of any vector-valued weight and
applications to lifts and congruences, Experiment. Math., 28 (2019), 95-114.

T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. of Math.
(2), 154 (2001), 641-681.

T. Ikeda, Pullback of the lifting of elliptic cusp forms and Miyawaki’s conjecture, Duke Math. J.,
131 (2006), 469-497.

H. Ishimoto, Proofs of Ibukiyama’s conjectures on Siegel modular forms of half-integral weight
and of degree 2, Math. Ann., 383 (2022), 645-698.

H. Katsurada, An explicit formula for Siegel series, Amer. J. Math., 121 (1999), 415-452.

H. Katsurada, Congruence of Siegel modular forms and special values of their zeta functions,
Math. Z., 259 (2008), 97-111.

H. Katsurada, Exact standard zeta values of Siegel modular forms, Experiment. Math., 19 (2010),
65-77.

H. Katsurada, Boundedness of denominators of special values of the L-functions for modular forms,
Comment. Math. Univ. St. Pauli, 70 (2022), 29-48.

H. Katsurada and S. Mizumoto, Congruences for Hecke eigenvalues of Siegel modular forms, Abh.
Math. Semin. Univ. Hambg., 82 (2012), 129-152.

H. Klingen, Zum Darstellungssatz fiir Siegelsche Modulformen, Math. Z., 102 (1967), 30-43.

W. Kohnen, Modular forms of half-integral weight on I'g(4), Math. Ann., 248 (1980), 249-266.
W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of
degree two, Invent. Math., 95 (1989), 541-558.

W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip,
Invent. Math., 64 (1981), 175-198.

N. Kozima, Standard L-functions attached to alternating tensor valued Siegel modular forms,
Osaka J. Math., 39 (2002), 245-258.

N. Kozima, Garrett’s pullback formula for vector valued Siegel modular forms, J. Number Theory,
128 (2008), 235-250.

N. Kozima, Pullback formula for vector valued Siegel modular forms and its applications,

arXiv: 2109.11753.

R. P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in
Math., 544, Springer-Verlag, Berlin-New York, 1976, v+337 pp.

C.-h. Lee, computeGK, 2018, https://github.com/chlee-0/computeGK.

I. Miyawaki, Numerical examples of Siegel cusp forms of degree 3 and their zeta-functions, Mem.
Fac. Sci. Kyushu Univ. Ser. A, 46 (1992), 307-339.


https://doi.org/10.1017/CBO9780511543371.010
https://doi.org/10.1017/CBO9780511543371.010
https://doi.org/10.14992/00008609
https://doi.org/10.14992/00008609
https://doi.org/10.14992/00010879
https://doi.org/10.14992/00010879
https://doi.org/10.1007/s12188-019-00202-x
https://doi.org/10.1007/s00029-020-00593-3
https://doi.org/10.1515/forum-2021-0162
https://doi.org/10.2969/jmsj/06410273
https://doi.org/10.1016/j.jnt.2013.07.013
https://doi.org/10.1080/10586458.2017.1353454
https://doi.org/10.2307/3062143
https://doi.org/10.2307/3062143
https://doi.org/10.1215/S0012-7094-06-13133-2
https://doi.org/10.1215/S0012-7094-06-13133-2
https://doi.org/10.1007/s00208-021-02232-4
https://doi.org/10.1353/ajm.1999.0013
https://doi.org/10.1007/s00209-007-0213-5
https://doi.org/10.1080/10586458.2010.10129062
https://doi.org/10.1080/10586458.2010.10129062
https://doi.org/10.14992/00022410
https://doi.org/10.1007/s12188-012-0069-4
https://doi.org/10.1007/s12188-012-0069-4
https://doi.org/10.1007/BF01110283
https://doi.org/10.1007/BF01420529
https://doi.org/10.1007/BF01393889
https://doi.org/10.1007/BF01389166
https://doi.org/10.1016/j.jnt.2007.01.001
https://doi.org/10.1016/j.jnt.2007.01.001
https://doi.org/10.48550/arXiv.2109.11753
https://doi.org/10.1007/BFb0079929
https://doi.org/10.1007/BFb0079929
https://doi.org/10.2206/kyushumfs.46.307
https://doi.org/10.2206/kyushumfs.46.307

1408 H. ATOBE, M. CHIDA, T. IBUKIYAMA, H. KATSURADA and T. YAMAUCHI

[50] S. Mizumoto, Poles and residues of standard L-functions attached to Siegel modular forms, Math.
Ann., 289 (1991), 589-612. Corrections: Ibid., 378 (2020), 1655-1660.

[61] C. Moeglin and D. Renard, Sur les paquets d’Arthur de Sp(2n, R) contenant des modules unitaires
de plus haut poids, scalaires, Nagoya Math. J., 241 (2021), 44-124.

[52] C. Poor, N. C. Ryan and D. S. Yuen, Lifting puzzles in degree four, Bull. Aust. Math. Soc., 80
(2009), 65-82.

[63] G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure
Appl. Math., 29 (1976), 783-804.

[54] G. Shimura, On the periods of modular forms, Math. Ann., 229 (1977), 211-221.

[65] G. Shimura, Arithmeticity in the Theory of Automorphic Forms, Math. Surveys Monogr., 82,
Amer. Math. Soc., Providence, RI, 2000, x+302 pp.

[56] O. Taibi, Dimensions of spaces of level one automorphic forms for split classical groups using the
trace formula, Ann. Sci. Ec. Norm. Supér. (4), 50 (2017), 269-344.

[57] O. Taibi, Tables for dimensions of spaces of automorphic forms, 2017,
https://otaibi.perso.math.cnrs.fr/dimtrace.

[58] H. Takayanagi, Vector valued Siegel modular forms and their L-functions; Application of a differ-
ential operator, Japan. J. Math. (N.S.), 19 (1993), 251-297.

[59] R. Weissauer, Four dimensional Galois representations, Formes automorphes. II. Le cas du groupe
GSp(4), Astérisque, 302 (2005), 67-150.

[60] Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL, (2020).

Masataka CHIDA
School of Science and Technology for Future Life

Hiraku ATOBE

Department of Mathematics

Hokkaido University

Kita 10, Nishi 8, Kita-Ku, Sapporo
Hokkaido 060-0810, Japan

E-mail: atobe@math.sci.hokudai.ac.jp

Tomoyoshi IBUKIYAMA

Department of Mathematics

Graduate School of Science

Osaka University

Machikaneyama 1-1, Toyonaka

Osaka 560-0043, Japan

E-mail: ibukiyam@math.sci.osaka-u.ac.jp

Tokyo Denki University

5 Senju Asahi-cho, Adachi-ku
Tokyo 120-8551, Japan

E-mail: chida@mail.dendai.ac.jp

Hidenori KATSURADA
Department of Mathematics
Hokkaido University

Kita 10, Nishi 8, Kita-Ku, Sapporo
Hokkaido 060-0810, Japan

Muroran Institute of Technology
Mizumoto 27-1

Muroran 050-8585, Japan

E-mail: hidenori@mmm.muroran-it.ac.jp

Takuya YAMAUCHI

Mathematical Institute

Tohoku University

6-3, Aoba, Aramaki, Aoba-Ku

Sendai 980-8578, Japan

E-mail: takuya.yamauchi.c3@tohoku.ac.jp


https://doi.org/10.1007/BF01446591
https://doi.org/10.1007/BF01446591
https://doi.org/10.1007/s00208-020-02056-8
https://doi.org/10.1017/nmj.2019.15
https://doi.org/10.1017/S0004972708001317
https://doi.org/10.1017/S0004972708001317
https://doi.org/10.1002/cpa.3160290618
https://doi.org/10.1002/cpa.3160290618
https://doi.org/10.1007/BF01391466
https://doi.org/10.1090/surv/082
https://doi.org/10.1090/surv/082
https://doi.org/10.24033/asens.2321
https://doi.org/10.4099/math1924.19.251

