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A certain good relation between modular forms of one variable of half integral
weight and Jacobi forms was given by Maass [5], Zagier [14], Eichler-Zagier [1],
and used to prove the Saito-Kurokawa conjecture on the lifting of modular forms
of degree one to Siegel modular forms of degree two. Some general theory of Jacobi
forms of general degree has been developed in A. Murase [6], [7], G. Shimura [9],
T. Yamazaki [13] and Ziegler [15]. In this paper, we shall give a bijection between
some C-valued Siegel modular forms of half integral weight and Jacobi forms of
general degree preserving the action of Hecke operators. More precisely, first, we
shall show that the space of Jacobi forms of degree n of weight k with index 1 with
respect to the symplectic full modular group is linearly isomorphic to some explicitly
described subspace of the space of C-valued Siegel modular forms of degree n of
weight k—1 with respect to the discrete subgroup I'y(4) = Sp(n, Z). This subspace is
a generalization of the plus space introduced by Kohnen [4] when n=1. This is a
kind of refinement of a part of the results of Shimura [9] on isomorphisms between
vector valued Siegel modular forms and jacobi forms. Also, a similar kind of
correspondence is known by Ziegler ([15] p. 210, 211), but our results are slightly
different from his.

Secondly, we shall compare the action of Hecke operators on both spaces. We
shall state our main results Theorems 1 and 2 in §1, and prove them in §2, 3.

1. Main results

In this section, after reviewing several definitions and notations, we shall state
our main results.

1.1. Linear isomorphisms.
For any natural integer n, we denote by H, the Siegel upper half space of genus
n defined by:

H,={X+iYeM/(C);'X=X,'Y=YeM,R), Y>O0 (Y: positive definite)} .

t A part of the results in this paper was obtained while I was supported by SFB 40 and Max Planck
Institute fiir Mathematik in Bonn in 1982-1984
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110 T. IBUKIYAMA

We denote by Sp(n, R) the usual real symplectic group of size 2n:
Sp(n, R)={ge M,,(R); gJ,'9=1,} ,

J,,=<0 _1">.
1, 0

The group Sp(n, R) acts on H,x C" as usual by:

‘where

g(t, 2)=(g7, (ct+d) " '2)=((az+ b)ct+d) "%, (ct+d) " 12),

for any
(r,z)eH,x C" and g=(a Z)eSp(n,R) (a,b,c,de M (Z)) .
c

Let k be a natural integer. We assume throughout this paper that k is even. For any
such k and any holomorphic function F(r, z) on H, x C", we consider the following
conditions (1), (2):

(1) F(z,z+1x+y)=e(—("xtx + 2'x2))H1, 2)
for all the column vectors x, ye Z".

(2) F|[gli=F for all g=< Z Z)GSP(’% Z),
-‘where we write
(F|[g1u)(x, z)=F (g, (ct+d) " 'z) det(ct +d) “*e(—'z(ct+d) 'cz),

and ¢(x) =e*™™. The mapping F— F|[g], defines an action of Sp(n, Z) on holomorphic
functions on H, x C". If F satisfies the above (1) and (2), then it is easy to see that
F has the Fourier expansion of the following form:

Az, 2)=}, a(N, r)e(tr(N7))e('rz),
N,r

where N runs over zn by n symmetric half integral matrices, r over all the elements of Z".
We say that F is a Jacobi form (resp. Jacobi cusp form) of weight k with index .
1, if F satisfies the above conditions (1), (2) and besides its Fourier coefficients satisfy
N

(3) a(N,r)=0, unless <

. r/l ) is positive semi-definite (resp. positive definite).
.

N r/2
Incidentally, <: P r/ ) is positive semi-definite (resp. definite), if and only if N—4r'r
r

1

is positive semi-definite (resp. definite). We denote by J{", =J, ;, or J$4F the whole
space of the Jacobi forms, or Jacobi cusp forms, of weight k with index 1, respectively.
Now, we shall review some facts on Jacobi forms. For any column vectors m’, m” € Z*,
we define theta functions 8,,(t, z)=6,, (1, z) of characteristic m="("m’, 'm”) as usual
as follows:
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1 t m' ml t m' m//
em’,m"(‘c’z)_pszz"e<7 <P+ ) )‘L’(P‘i‘ 2 >+ <p+ > ><Z+ 2 >>

For each vector ue Z", we set
3,1, 2)=0, 4(27,22) .

This function 3,(t, z) depends only on u mod 2. The following fact is known (cf. [1],
[5], [10], [13].) For each element FeJ, ,, there exists a set of 2" numbers of
holomorphic functions F,(t) (1€(Z/2Z)") on H, such that

Ar,z)= ), F (19,12 (1.1

pne(Z/2Z)n

and the function F,(7) is uniquely determined by F and u.

Next, we review on Siegel modular forms of half integral weights. As usual, we
denote by 6,,,(7) the theta constant of characteristic ‘(‘'m’, 'm"): 6, (T) = 0,y (T, 0).
To define an automorphy factor of half integral weight, put

0(z)=000(27, 0)= Y. e(pp).

peZn

We denote by I'(4) the subgroup of Sp(n, Z) defined by

F0(4)={g=<z Z)eSp(n, Z); =0 mod4}.

It is well known and easy to see that

0(g7)?/0(t)? = sgn(det d) det(ct +d)
for any geI'o(4). (cf. Zhuravrev [11]) For any natural integer k, any function 4 on
H,, and any g e Sp(n, R), we write
6(gr)
6(z)

This defines an action of I'y(4) on holomorphic functions on H,. As we have assumed
that & is even, we get

hl[g]k_1/2=h(g‘c) det(ct+d)7*.

det(ct +d)t.

( 6(gr) )2"' ' 0@
6(z) 6(g7)
In this paper, for any even natural integer k, we say that a holomorphic function 4
on H, is a Siegel modular form of half integral weight k — 4, if 4 satisfies the following
conditions (1), (2):

1 h |[g]k —12="h(z)for any g € I'y(4), and hence 4 has the Fourier expansion:

h(z)= ; AT)e(tr(T1)) ,



112 T. IBUKIYAMA

where T runs over all the symmetric half integral matrices.
(2) The above Fourier coefficients ¢(T)=0, unless T is positive semi-definite.
If ¢(T)#0 only when T is positive definite, we say that 4 is a cusp form. We denote
by My._1/5(I'o(4)), or S;_1,2(I'¢(4)), the space of Siegel modular, or Siegel cusp forms
of weight k—4, respectively. Now, we define the analogue of ‘Kohnen’s plus space’
in our case. We define a subspace M_,,,(I'o(4)) of M, _,,(I'o(4)) by:
M, (To(4)={h(r)e M, _, 12(I'o(4)); the coefficients ¢(T) =0,
unless 7= — y'umod 4L} for some pe Z"},
where we denote by L} the set of all half integral symmetric matrices of size n. We
also define S;_,,,(I'¢(4)) by:
A 12(0e@)=M, pal 1/2(T"0(4) N S~ 1/2(T'o(4)) -
These are analogues for general degree n of the ‘plus space’ defined when n=1 by
Kohnen [4].

THEOREM 1. For any FeJ, ; and pe(Z|2Z)", we define F, as in (1.1), and define
the function o(F)(t) on H, by:

oF\D)= ¥ F7).

ne(Z/2Z)n

Then,> we get 6(F)e M{_,,(I'y(4)). Besides, the mapping o: F-a(F) induces the
following linear isomorphisms over C. v

S =M 12(Fo@)
and .
TP =S4 ,(To(4) .

1.2. Hecke operators.

In this subsection, first we shall review on Hecke operators both on J, ; and
"M}~ ,,2(T'y(4)), and then we shall state Theorem 2 on comparison of their action on
both spaces. For any field K< R, we define GSp™ (n, K) by:

GSp*(n, K)={ge M,,(K); gJ,,'g=n(g)J, for some n(g)e K*, n(g)>0} .
According to Murase [6], the Hecke operators on J, , are defined as follows: For \
any odd prime p and any natural number 8, we denote by T(p?%) the subset of
GSp*(n, Q) defined by: '

TN(p*)={geGSp*(n, Q) " M,(Z); 9J,'g=p*],} .

We also denote by ¢ a fixed group homomorphism of Q7 into C*. For any Fe Jia
and any Sp(n, Z)-double coset U in T(p?%), we write

FlkU= ¢(P6) Z Z F“:g]k[x]k ,

xe(Z/p°Z)*" geSp(n, Z)\U
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where, for any function G on H, x C", we put
Fllgli=e(—"z(ct +d) ™ *cz)p?®" det(ct +d) *F(gr, p*(ct+d)~'z)
and
- F|[x]i=e("AtA+2'22)F (1,2 + tA+p) (x = (A, p), A, pe(Z/p°2)").

We shall call ¢(p?) the normalizing factor of the Hecke operators. It is easy to see
that this definition does not depend on the choice of the representatives in the
summation. It is also easily seen that, for any FeJ, ,, the function F| U belongs again
to J, ,. For integers i,j>0 with i+j=n, define Sp(n, Z)-double cosets T; ;(p?) in
T(p?) as

T.,/(p*)=Sp(n, Z)eli, j: P)Sp(n, Z) ,

where we put

, 0 0 0°

. lopy; 0o o
e(l’],p)_ 0 0 lei 0
0 0 0 pl

Next, we review on Hecke theory on M, _,,(I'¢(4)), according to Zhuravrev
[12]. We denote by GSp*(n, R) the universal covering group of GSp* (n, R). Then,
it is known that we can embed I'y(4) into GSp™(n, R) by

Fo@ey-(y, 0(y1)0(x)")eGSp*(n, R) .

We denote by Iy(4) the image of I'y(4) by this mapping. For any “upper triangular”
matrix

a b
= eGSp*(n, R),
g <0 d> p”(n, R)
we define an element je GSp*(n, R) by
g=(g, n(g)™™*|detd |'?) .
We decompose the I*(4)-double coset U= Iy(4)§I,(4) into disjoint union:
d
U= ]__[1 o@)g; -
We fix a homomorphism  of QX into C*. For any he M, _, 5(I'y(4)), we write

d
(hle-120YE) =¥/ nlg) . &)™ higiv)

where we put

§i=9: &()) .
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Zhuravrev [11] has shown that this is well defined and gives an action of the Hecke
operators. We put

Ti, j(Pz) =I odé(, j; P)f o .
THEOREM 2. For any even natural number k, the space M;}_ (I o(4)) is stable
under the action of the above Hecke operators. Besides, assume that Fe J, , and o(F) = h.

Then, for any integers i,j>0 with i+j=n, any odd prime p, and any normalizing
Jactors @, Y in the definition of the Hecke operators, we get

(d(p)~ IP_ an_j/ZG(FlkTi,j(p 2)) =W(p)~ 11’ k=2 |k— 1/2 Ti,j(pz) .

2. Proof of Theorem 1

2.1. In this subsection, we shall show that, for any FeJ,,, o(F)(t)=
Zue(l/ll)" F,(47) belongs to M,’_,5(I'o(4)). In order to show that o(F) is automor-
phic, we must calculate o(F)(gr) at least for a set of generators geI'y(4). So, we
first give the following Lemma.

LemMMA 2.1.  Thegroup I ((4) is generated by the following three kinds of elements:

1, 0 1 !
v<4s)=<4; 1>, u(s')=<0" f) and z(a)=(g ,a‘L),

where s and s' run over any symmetric matrices in M(Z), and a over GL,(Z).

b
Proof. Foreach g= <:c d)el" o(4), we denote by q;; etc. the (i, j)-component

so on. First, we shall show that the last row of ¢ is replaced by the 0-vector. In fact,
if the last row of ¢ is not the 0-vector, denote by cy(g) the greatest common divisor
of the components of the n-th row of ¢. Replacing g by g- u(s’) for some s’ ='s’ € M,(Z),
we can assume that | d,,(g9) | <2cq(g). Replacing g by g'=g-t(a) for some ae GL,(Z),
we can assume that the last row of d(g")is (0, - - -, 0, d,(g")). Since d,,,(g’) is the greatest
common divisor of the components of the last row of d(g), still we have
| dunl9) | <| dun(9) | <2¢o(g’) =2co(g). By replacing g’ by g”=g'-v(ds) for some
s='se M,(Z), we can assume that |c,(g9")|<}|d,.(g')| for every i=1, -+, n. As g is
unimodular, 4,,(g9') must be odd, and we get c,{g"") <co(g). If the last row of c(g”) is
not the 0-vector, this means that cy(g9”) < co(g). Repeating the same procedure several
times, the last row of ¢ becomes 0. Now, we can assume that c,(g)=0 (1 <i<n) and
that the last row of d(g)is (0, - - -, 0, 1). As g € Sp(n, Z) and hence c(g)'d(g) is symmetric,
the n-th column of ¢(g) is also the 0-vector. Hence, repeating the same procedure as
above for the first (n—1, n—1)-block of c(g) and d(g), we can assume that c(g)=0.
Then, g=t(a)u(a™'b) and Lemma was proved. q.e.d.

Now, we shall see that 6(F)|[g],- ,,=0(F) for any geI'o(4).
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By direct calculation, we get

Fu(syt, z)=Y. F (u(s))9,(t +s5, z)

= e<_41f 'ysu) MF, W(u(s)0)3,(z, 2)

and on the other hand, as Fe J, ;, we get
F(u(s)t, z)=F(z, 2) .

Hence, by the uniqueness of F,, we get

F(4(u(s)r)) = e(‘usp)F (47)
=F,(47)

for each ue(Z/2Z)". Hence, as O(u(s)t)=0(t) for any s='se M (Z), we get
a(F)|[u(s)]k_ 1)2=0(F). In the same way, we get

F(at'a, az)=(deta) *H(, z)

=) F,-1at'a)d, (1, 2),
n

and we get

o(F)#(a)r)=(deta) *o(F)(x) .

As O(t(a)r)=0(z), we see cr(F)|[t(a)]k_1 ;2=0(F). Now, the proof for the generators
v(4s) is remained. For these generators, we need some formula for F,(4v(4s)t)0(v(4s)r).
But, as 4v(4s)t=41(4st+1,) " =v(s)47), and O(v(4s)(z/4))=0((v(s)r)/4), all we need is
a formula for F,(v(s)t)0((v(s)r)/4). This can be obtained by using the theta
transformation formula, which we shall quote from J. Igusa [3] pp. 227 below.
For any n by n matrix M, we denote by (M), the column vector of degree n
whose i-th component is the (i, {)-component of M for each i=1, ---, n. For any

’

b
g=<a d)eSP(n,Z) and m=(m”)eZZn (m/, muezn)x we denote by g-m the
¢ m

(5 2ol

g-m= m+ .

—b a (a'b)o

This is not an action on Z2", but-it induces an action of Sp(n, Z) on (Z/2Z)" by m
mod 2—g-+m mod 2. Now, for each ge Sp(n, Z), we fix, once and for all, a branch

of the square root of det(ct+d), and denote it by det(ct+d)'/?. (As H, is simply
connected, this is a well defined holomorphic function on H,.)

following vector in Z>";
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ProrosiTioN 2.2 (Igusa [3]). For any ge Sp(n, Z) and me Z*", there exists an
eighth root k(g) of unity such that

0,.m(g7, (ct+d) ™ '2)=kK(g)e(¢,(g)) det(ct + d)*/ 2e<-;— “zlct+d)” 1cz)l),,,(r, z)

for all te H, and ze C", where
, 1
0..(9)=— N ('m"bdm’ +'m" acm” —2'm""bem” —2%(a’b)o(dm’ —cm")) .

The constant x(g) depends only on g and not on m.

Here, we note that there remains ambiguity on signs of x(g), which depends on
the choice of the branch of automorphy factor of weight 4. But, we can escape from
this ambiguity in our case, because we used det (ct +d)*6(z)/0(g7) as an automorphy
factor of the functions in M, _, ,(I',(4)), and such ambiguity will be absorbed in this
automorphy factor, as we shall see later. Now, applying the above theta
transformation formula to the functions 0(t)=000(27), and 9,(z, z)=0, ¢(27, 2z) for
each pe(Z/2Z)", we get the following corollary:

COROLLARY 2.3. For any symmetric matrix se€ M,(Z), put
1, 0
v(s)= < ) .
s 1,
0(% . v(s)r)S,,(v(s)‘r, ‘(st+1,)"'z)=2""det(st + 1,)e("z(st +1,) " 's2)

(IR ()

where v and k run over all the elements of (Z/2Z)" .

Then, we get

'y
2

Proof. 1Tt is easy to see just from the definition that ‘

0t/ =000(t/= Y 040(27).

qe(Z/2Z)"

Hence, if we put /= —(v(s)t) 1= —(st+ 1), we get
@)= Y 0,0J,7'[2)).
9e(Z22Z)"
By Proposition 2.2, we get

020(Jo(t'/2)) =w(J,) det(t'/2)' 0, _(x'/2) -

It is easy to see that
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Bo,—4T'/2= ). e(—'vq/2)0,0(27))

ve(Z/2Z)"
and
2% -if v=0,
) e(—'vq/2)={ . .
ae(Z/2Z)" 0 ---if v#0in(Z/22)".
Hence '

B((v(s)r)/4) =2"1(J,) det(t'/2)!2000(21") -

It is trivial that 6,0(27")=000(—2t7'), and repeating the same argument for
Ooo(—2171), we get

B((v(s)7)/4) = 2"K(J,)? det(c’[2)V/2 det(r/2)}/20(z/4) .

Here, the branch of the square root is taken as follows: first, we fix a branch of
det(r)*/? on H,, and substitute T by t/2 or t’/2. In the above calculation, we used
Proposition 2.2 twice, and «(J,) has the same meaning in both cases. Next, if we put
z'=—1"1z, and 1’ as before, we get

3,(v(s)(z, 2)=0,,0(Ju(t/2, 2')
=x(J,) det(t'/2)2e('z'(¢') " '2)0,, - ('[2, Z') .

By easy calculation, we get

Oo,-u(1'/2,2")= Z e(—'vu/2)0, (27", 22"),

ve(Z/2Z)"
0,,027", 2z")=e(—"vsv[4)0, o(J\(/2, —2)),
and

0y,0(Ju(t/2, —2))=1x(J,) det(t/2)8,, - (1/2, 2)e('zt ™ "2)

=k(J,)det(1/2) Pe(zt ') x ). e('kv/2)0, 021, 22).

ke(Z/2Z)"

Summing up, we get

9,(v(s)(z, 2)) =K(J,)* det(r/2)"/* det(t’/2) *e('z(sT + 1,) " 52)

x Y e(="vu/2)e(—"vsv/4)e(kv/2).(z, 2) .

x,ve(Z/2Z)"

It is known by Igusa [3] that x(J,)*=(—1)", and we also get det(r’)det(r)=
(—1)" det(st+1,). Thus, we get our Corollary. q.ed.

Now, if FeJ, ;, then
Fu(s)(z, z))=det(st + 1,)*e("z(st + 1,) " 's2)F(z, 2) ,
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and

Aois)w, 2)= ), F(s)0)9,00s)T, 2) -

ne(Z/2Z)n
Hence, by Corollary 2.3, we get
6(z/4)
0((v(s)r)/4)

v A WASS
8 u,ve(;/ZZ)"e< 2 >e< 4 >e< 2 >Fu(U(S)‘t) ’
o(F)(t) det(dst+1,)~ 10(%-1;@)(41))9(1)- v

t t t
pe(Z2Z)y v,k e(Z/2Z) 2 4 2

=a(F)(v(4s)t) .
So, we proved that o(F)|[g]i— /2 =0(F) for any geI'y(4).
Now, we must show the conditions on the Fourier coefficients of o(F). We have

F(40)= % a(N, we(tr((4N — p'p)7)) ,

F(r)det(st+1, )k 1=2""

and hence,

where a(N, p) is the Fourier coefficients of F, and N runs over » by n symmetric half
integral matrices. Hence, it is obvious that if FelJ,; (resp. Ji{F), then
o(F)e My, 5,(I'o(4)) (resp. Si—1,2(I'o(4))). So, we proved the first half of Theorem].

2.2. We shall prove now that ¢ is a bijection. For each given he M, ,(I'¢(4))
such that

h(x)= ; A(T)e(tr(T))

(where T runs over n by n symmetric half integral matrices), and for each pe(Z/22)",
we denote by 4,(t) the following holomorphic function on H,:

h(t)= Y (4N — y’u)e(tr((N - i u'u)‘c)) ,
N 4

where N runs over n by #n symmetric half integral matrices such that N= — p‘umod 4.
If FeJ, ;, then it is clear that o(F),= F,. Hence, we get the injectivity. Now we shall
show the surjectivity. For each he M;"_,,,(I'¢(4)), define a function G on H, x C" as

follows:

Gt,2)= Y, h(1)3,(t, 2) .

ne(Z/2Z)n
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We shall show that GeJ, ;. By definition of §,, it is trivial that G(z, z+1tx+y)=
e(—"xtx—2'x2)G(1, z). It is well known that Sp(n, Z) is generated by u(s), v(s), and t(a)
(s='se M,(Z), and aeGL,(Z)). By direct calculation, we can easily show that
G|[t(@)]x=G and G|[u(s)],=G. We must also calculate G|[1(s)],. To do this, first we
shall investigate h,(v(s)7).

LEMMA 2.4. For any he Mi_,,(['((4)) and pe(Z|2Z), define h,(z) as above.
Then, for any symmetric integral matrix s and any k e(ZJ2Z)", we get

h(t)0(z/4) det(st +1,)*

_9-n v tysv Ky 1 .
=2 v,ue(zz/zz)ne<_ ) )e(-— 4 >e<7>h,,(v(8)‘r)0<—4— _v(s)t) .

Proof. To use the condition that he M;"_, ,(I'y(4)), first we shall show the

following relation:
t
h@=2-" T e( KSK )h< T+2s, ) ,
s1ed 2 4

where s; runs over the set 4 of all diagonal matrices such that each diagonal
component is 0 or 1. In fact, for s, € 4, it is easy to see that

h( ”423‘ )=Zhu(r+2s1>=ze<— t";"‘ )h,m ,

‘Ks1K ‘s p _ _‘(K_#)SI(K—/")
§e<_ 2 )"(" 2 )"Ee( 2 )

{2"---if K=pu ,
0 ---otherwise .

and

Hence, we get the above relation. Now, for any s, € 4, put

1,+2s;5 —5,85, )
o(51)= .
%ds) < 4s 1,—2ss,

Then, itis easy to see that y,(s,) € I'o(4), and (v(s)t + 2s,)/4 =y (s, )(z + 25,)/4). So, we get

h< v(s)T +2s, >0< v(s)yT +2s, >=det(sr+1,,)"h<r+zsl >0< T+42s, >
4 4 4 4

But, it is obvious from the definition that

2 t
0<T+ S )= Z e(_ qs1q>eqo(21),
4 qe(Z22Z) 2

and by the similar argument as in the proof of Corollary 2.3, we get
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t
y e(— 414 )9q0(2v(s)t)=2"‘x(J,,)2 det(st+1,)12
qe(Z22)" 2

t t. t. t
qs1q vg VsV uv
X el — )e| — el — el —— 10,0(27) .
u,v,qe(zznz)" ( 2 ) < 2 > < 4 ) ( 2 ) bol27)

In the above summation, we first fix u and v, and the summation over g does not
vanish only when v=g¢, where we put e=(s,),: the diagonal vector of s, defined in
§1. As we get e(—"ue/2))=e(—"us,u/2), we get

0( v(s)T +2s, >0<rf2s1 )'1=0( u(s)t >0<i)_1e<~— 'sse) '
4 4 4 4 4

Hence, we get

h{©)0(c/4) det(st + 1,Y0((u(s))/4) ™!

t t
_2r Y e(__ 8313)e< KS1K >h<v(s)t+2s1>
si1ed 4 2 4

lese ke fep
=2" _ AT .
W(;/me< 4 >e< 2 )e< 2 > AAs))

Thus, we proved Lemma. - q.e.d.

End of the proof of Theorem 1. Using Corollary 2.3, we can replace the term
3,(v(s)yr) in G|[v(s)]; as follows:

G | [v(s)],=2""det(st+1,) 0 <% . v(s)r)@ <%) -

v _‘f_u _ tysy
x xe(ZZ/ZZ)" 9.(t, 2) (ME(;ZZ)" h(v(s)yr)e (T) e< 5 )e( 7 )) .

So, by Lemma 2.4, we get Gl[v(s)]k= G. Hence, Ge J, ;, and if he S;_, 5(I'o(4)), then
GeJ“P. By definition, it is clear that ¢(G)=h, and hence ¢ is surjective. Thus,
Theorem 1 is completely proved.

3. Proof of Theorem 2

We shall prove Theorem 2 by writing down the action of Hecke operators in
terms of the Fourier coefficients. First, we treat Jacobi forms. Denote by U any
Sp(n, Z)-double coset in T(p?%), and take a left Sp(n, Z)-coset decomposition:

t
v=11 5ol 2)g.,

where
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_<ai bi)
9=\o 4

For any FelJ, ,, denote by a(N,r) the Fourier coefficients of F as in §1, and by
a(N, r; U) those of F|,U.

LemMA 3.1. Notations being as above, we get

a(N, r;- U)=d(p%) 2, thpz""” det(d) ~*a(N{2), r{(A))e(tr(N,(Db;d; 1) ,

Ae(Z/p2oZ)yn i=1

where
1 o1 t
N,(AH)= F dil:N——4— + T (f— 20 (r— 21)] d;,

and

-1

r{d)=—5di(r— 22),

p

and we regard a(N;(4), r;(1))=0, if N;(4) is not half integral, or ifr,(4) is not an integer

vector.

Proof. As we have chosen the upper triangular representatives of Sp(n, Z)-coset
in U, we can write down the action of U by using the Fourier coefficients. Hence,
the proof is straight forward, and the details will be omitted here. g.ed.

Now, we quote here some results of Zhuravrev [12]. For any integers /, m with
1<l,m<n and /[+m<n, put

ln—l—m 0 0
d1m= 0 Pll 0 J .
0 0 pi,

We denote by M, ,(p° a complete set of representatives of matrices of M, .(Z)
modulo p® and put M,(p%)=M,,(p®). We also denote by B the following set of
matrices:

00 O
B'_‘[(O a; p'b, )§ a,="'a; € My(p), bIEMl,m(p)a and b2=tb2€Mm(p2)J .
0 b, b,

Then, a complete set R;; of representatives of the left I'o(4)-cosets in T ;( p?)is given by:

P ()
0 4, 0 u)’

where [, m run over integers with 1 <m, j</, and /+m <n, the matrix b, runs over
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all the elements of B such that rank(amodp)=/—j, and the matrix u over
representatives of (GL,(Z) N d},,' GL(Z)d,,,)\GL,(Z). Besides, the set of representatives

of the left [y(4)-cosets in T ,(p?) is given by:
g=(g, elg)p 2"~

where g runs over R;; and

—1y@ ’
=y (S0,

p

where r(g) =rank(a,), &,=1 or i according as p=1, or 3mod 4, a/ is a regular matrix

!

0
such that ‘vav=<[:)l 0) for some unimodular matrix v, and <i> is the Legendre
p

symbol. These are due to Zhuravrev (loc. cit.). By using all these, it is fairly easy to
calculate the action. For any he M’ ,(I'o(4)) and any symmetric half integral matrix
T, denote by ¢(T) the Fourier coefficients of 4 as in §1, and by «(T; T;, i(p?) those
of h|k-— 1/2 Ti,j(PZ)-

LemMMA 3.2. We get

AT; T, {(p) =(p)p" >+~ V2 Y, p= ¢+ 2m@k=1i2, ("1-2 dT'd )e (tr<i2 T"”’))S(g) ,
g V4 p

where g runs over

pth—l b)
= eRi"
g < o 4) M

and we regard c(*)=0, if * is not half integral.

Proof. This is proved by straight forward calculation from the definition and
the details will be omitted here. q.e.d.

End of the proof of Theorem 2. Finally, we compare the action of T; ;(p?) on
FeJ, , and the action of T; j( p?) on o(Fye M;_, 2(T'o(4)). By definition, we have the
following relation between the Fourier coefficients a(N, r) of F and (T) of o(F):

c4N—r'r)=a(N, r).
By applying Lemma 3.1 and the above relation to the case U=T;;(p?), we get

a(N,1; T; (p2)=(p9) . [ p"det(d) k¢ (;1—2— d(dN— r‘r)‘d> e(tr(;lz— <N ——-—}4— r’r)tdb>

X ; e< 411) 5 {(r—2A)db(r— 2/1))] ,
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b .
where g=<g d> runs over R; ;, and A runs over representatives of (Z/pZ)" such

that d(r—21)e(pZ)". Now, we calculate the exponential sum over A in the above
summation. If d=d,u (ue GL,(Z)), and b=byu for b, e B, then we have

u(r—2)e(pZy "t mx Z'*tm,

and
0 0 0
‘db="u| 0 pa, p?b, |u,
0 P.2b1 P2b2
where
00 O
bo=|0 a; pb,
0 b, b,

Hence, for a fixed g, we get

1 1
Y e( 5 (r—2A)db(r— 2/1)> =p™ Y e <— ‘xa1x>
i 4p xe(Z/pZ)! P

_ o[ deta;
=pi+m '(g)(sp\/_;) (g)( ) 1)

= p“""_(’(g)/z)s(g) .

i I+2
Asl—r(g)=j, we get [+ m— r(zg) =%+ +2m . Hence, comparing the above formula

and Lemma 3.2, we proved Theorem 2.

References

[1] EicHLER, M. and ZAGIER, D. B.; Theory of Jacobi Forms, Progress in Math. 55, Birkhauser,
Boston-Basel-Stuttgart, 1985.

[2] IsukivaMa, T.; Construction of half integral weight Siegel modular forms of Sp(2, R) from
automorphic forms of the compact twist Sp(2), J. reine angew. Math., 359 (1985), 188-220.

[3] Icusa, J,; On the graded ring of theta-constants, Amer. J. Math., 86 (1964), 219-246.

[4]1 XKounen, W.; Modular forms of half integral weight on I'y(4), Math. Ann., 248 (1980), 249-266.

[5] Maass, H.; Uber die Spezialschar von Modulformen zweiten Grades ), L), (A1), Invent. Math.,
52, 53, 53 (1979), 95-104, 249-253, 255-265.

[6] Murasg, A.; L-functions attached to jacobi forms of degree n. Part I. The basic identity, J. reine
Angew. Math., 401 (1989), 122-156.

[7] Murasg, A.; L-functions attached to jacobi forms of degree n. (II) Functional equation, Math.
Ann., 290 (1991), 247-276.

[8] SumMURA, G.; On modular forms of half integral weight, Ann. of Math., 97 (1973), 440-448.



124

[9]
[10]
[11]
[12]
[13]
[14]
[15]

T. IBUKIYAMA

SHIMURA, G.; On certain reciprocity laws for theta functions and modular forms, Acta math., 141
(1978), 35-71.

TaL Y.; On the Kodaira dimension of the moduli space of abelian varieties, Invent. Math., 68 (1982),
425-439.

ZHURAVREY, V. G.; Euler expansions of theta transforms of Siegel modular forms of half integral
weight and their analytic properties, Math. Sbornik, 123 (165) (1984), 174-194.

ZHURAVREV, V. G.; Hecke rings for a covering of the symplectic group. Math. Shornik, 121 (163)
(1983), 381-402.

Yamazaki, T.; Jacobi forms and a Maass relation for Eisenstein series, J. Fac. Sci. Univ. Tokyo
Sect. IA Math., 33 (1986), 295-310.

ZAGIER, D. B.; Sur la conjecture de Saito-Kurokawa (d’aprés H. Maass). Séminaire de Théorie
des nombres, Paris 1979-80, Progress in Math. 12, 371-394, 1981.

ZIEGLER, C.; Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg, 59 (1989), 191-224.

Department of Mathematics
College of General Education
Osaka University
Mackikaneyama-machi 1-1
Osaka, 560 Japan



