On class numbers of positive definite binary
quaternion hermitian forms

By

Ki-ichiro HAsHIMOTO and Tomoyoshi IBUKIYAMA

Reprinted from the
JOURNAL OF THE FACULTY OF SCIENCE, THE UNIVERSITY OF TOKYO
Sec. IA, Vol. 27, No. 3, pp. 549-601
December, 1980



On class numbers of positive definite binary
quaternion hermitian forms

By Ki-ichiro HASHIMOTO and Tomoyoshi IBUKIYAMA

In this paper, we shall study the class numbers of positive definite binary
quaternion hermitian forms. Let B be a definite division quaternion algebra over
the rational number field @. Let V be the n-dimensional positive definite quater-
nion hermitian space over B. We denote by H the class number of the principal
genus of V. When n=1, H is nothing but the class number of the maximal
orders of B, whose explicit formula has been given by Eichler [4]. In this paper,
we shall give an explicit formula for H when n=2 (§5. Theorem 2). When the
discriminant of B is a prime number p, the result is given as follows:

H=1, when p=2 or 3, and in other cases,

H=(p—1)(p*-+1)/2%85+T(p—1)*/2°3*+(p—1)(1 —(%1));2*3
+( p—l)(l—(_Tg))ﬂ*l%‘—{—S{p— 1);253+(1—(_Tl))/25
+(1 w(_?S-))sfsur(l—(%3));22324-(;:—1)12- 3

Hu- (G5
1/6 - p=5
++ 0 - p=1, 2, 3 (mod. 5)
4/5 --- p=4 (mod. 5)
0 - p=1 (mod. 8)
-+4 1/4-- p=3, 5 (mod. 8)
1/2--- p=T (mod. 8)

0 - p=1 (mod. 6)
{ 1/6 - p=5 (mod. 6),
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where (%) is the Legendre symbol.

One of our motivations to the problem is Y. lhara’s paper [12]. There, he
studies the Dirichlet series defined by the Hecke operators of the binary quater-
nion hermitian group G of V acting on certain spherical functions, and their
Euler products. Though he assumed there that H=1, he has kindly shown us
how similar theory also holds without the assumption that H=1. So there is
some interest to compute H, which is also considered as the dimension of ‘auto-
morphic forms with weight zero’ of G. So we shall also give the dimension
formula of the space of ‘automorphic forms with higher weights’ (Theorem 3 in
§5) as a corollary to Theorem 2.

Now we outline the content of the paper. In §1, we give precise definitions
and review the arithmetic trace formula for H given in [9]. To obtain the
explicit formula for H, it is basic to classify conjugacy classes in G, which is
carried out in §2 for general n. In §3, some Mass formulae which we need are
calculated. In §4, we calculate local data, which is the most elabolate part of the
paper. In §5, we summarize them globally and obtain the formula for H (Theo-
rem 2). In §6, some numerical examples of the representatives of the lattice
classes are given. We also show that the ‘ type number’ of G coincides with the
class number of certain genus of quinary quadratic forms studied by T. Asai [2].

Now we explain some technical points in this paper. The class number
formula for positive definite quadratic forms over algebraic number fields has
been studied by several authors. For example, T. Asai has employed the Springer-
Steinberg classification of conjugacy classes, expressed the class numbers by the
products of masses of some groups and some hermitian lattices, and obtained
explicit formulae for some quaternary and quinary quadratic forms (cf. [17, [2]).
We preper to give a direct description of G-conjugacy classes by the method of
Hijikata [10], and in some cases, we give another parametrization suitable for
our purpose. The other point is the computation of local data c,=c, (g, M.(0,), 4,).
Roughly spoken, ¢, is the number of distinct ways to embed a certain (not neces-
sarily maximal) order A, optimally into a certain algebra, counted up to some
equivalence. As it does not seem known any standard way to calculate ¢, easily,
we need to calculate them case by case, which will be done in §4. Incidentally,
it turns out that ¢,=0, 1 or 2 in our case (when g is of finite order).

The authors sincerely express their hearty thanks to Professor Y. lhara for
drawing their attention to the arithmetic of quaternion hermitian groups and
related problems. They also thank to Professor H. Shimizu for his deep interest
in the problem and encouragement for us.

Notations We denote, as usual, by Z (resp. Z,), @ (resp. Q,), R, C the ring
of rational (resp. p-adic) integers, the field of rational (resp. p-adic) numbers, the
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real number field, the complex number field, respectively. For a ring 4, we
denote by GL,(A) the group of invertible elements in the full matrix ring M,(A),
and if n=1, we also write A*=GL,(A). For an algebra B or algebraic group G
over @, we write B,, G, for the set of @, rational points of B, G, and By, G4
for the adelized ring or group of them. We denote by £S or |S| the cardinality
of finite set S. For a group G and its subgroup H, we write g8 for g, g'€G,
if g'=h"'gh for some he H. We denote by G/4 the quotient set of G by this
equivalence relation. For a quaternion algebra B over F, we denote by x— %
(x= B) the canonical involution, and put Tr(x)=x+4+%, Nx)==x%.

§1. Lattices in quaternion hermitian space.

In this section, we review the definitions which we need and quote the
arithmetic trace formula for H given in [9] which is a starting point of this
paper. We note that a systematic treatment for the arithmetic of quaternion
hermitian forms has been given by G. Shimura [17], and certain Hecke theory
in the binary case has been given by Y. lhara [12].

1-1. Let B denote a quaternion algebra over @, and V be a left B-space of
rank n. Let f: VX V—DB be a non-degenerate quaternion hermitian form. By
definition, it satisfies:

(i) flax+by, 2)=af(x, 2)+bf(y, 2),

(i) flx, »)=5(3, x), and

(iii) flx, V)=0 implies x=0,
for all a, b= B, x, v, z€ V. We denote by G=G(V, f) the group of all similitudes
of f: namely

G=G(V, )
={geGL(V); flxg, yg)=nlg)fx, ¥), x, yEV},

where n(g)=@Q* is a scalar depending only on g.

We take and fix, once and for all, a maximal order O of B. Then an O-lattice
in V is defined to be a Z-lattice in V, which is at the same time a left O-module.
For an O-lattice L, the two-sided O-ideal generated by the elements f(x, y) for
x, ve L is called the norm of L, and denoted by N,(L). If L is maximal among
the O-lattices having the same norm N, (L), then it is called a maximal O-lattice.
We denote by £{0) the set of all maximal O-lattices. We put szV@Bp,

Lp:L(‘-;iOp, and denote by f, the continuous prolongation of f to V,. Two
7

maximal O-lattices L,, L, are said to belong to the same genus if for every
prime p, there exists g,=G, such that L,,=L,,g,. Here G,=G(V,, f;)is defined
by replacing V, /, Q by V,, f,, @Q, respectively in the above definition of G(V, f).
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Two lattices L, and L, are said to belong to the same class and written L,=L,,
if there exists g=G(V, f) such that L,=L,g. It is known by Shimura [17] that
if n=1, £(O) consists of a single genus, and if n>1, the genera in £(0) are in
one to one correspondence with the set of all two-sided O-ideals of the form
git--- g%, where g;’s are the prime O-ideals dividing the discriminant of B, and
;=0 or 1. If A=qf --- ¢g%* is as above, the genus in £(0) corresponding with %
is the one which contains a maximal O-lattice L with norm N (L)=%, and it is
denoted by £(O; ey, -, ;). Especially, £(0; 0, --, 0) is called the principal
genus. We shall write it simply by £(0; 0). Now it is known that each genus

consists of a finite number H(e,, ---, €;) of classes, which is independent of the
choice of 0. Moreover, it is known by [17], [18], that if (V, f) is indefinite, we
have always H(e,, ---, e;)=1. The purpose of this paper is to give an explicit

formula for H=H(0, ---, 0) in the case (V, f)=positive definite and n=2.

1-2. Throughout the following, we assume that (V, f) is positive definite (a
fortiori, B is definite). Then we can assume, by a base change of V over B,
that

Sx, y)= E x:¥: for x=(x,, <, xa), y=(y, =, ya)E€V=B*
(cf. [17]). Obviously, O" is then a maximal O-lattice belonging to the principal

genus L(0; 0). The adelized group G, of G=G(V, f) acts naturally and transi-
tively on £{0; 0): namely for L= £(0;0) and g=G,, we put Lg="\(L,g,n V).
r

Then Lg is again a maximal O-lattice in .£(0;0). We denote by Il the stabilizer
of O™ in Gu:
U={geG,; 0"g=0"}
=GX 1;1 Uy, Up=G,nGL(Op).
Then there is a natural bijection induced by g—0"g:
(D) NG 4/G =, £(0; 0)/=: the set of classes in £(0; 0).

The class number H=H(0) of .£(0, 0) is expressed as the trace of the Brandt
matrix, that is,

(2) H=tr B,(1), for p=trivial.

The general formula for tr B,(m) is given in [9], and applying it to our case,
we have:

THEOREM A

(3 H= 2% 3 My4) I;Icp(g, M(0y), 45),

cig) Lgih
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where the notations are as follows: put, for each element g of G,
Z(g)={2=Mu(B); zg=gz} and Zg(g)=Z(g)NG .

1) C(g) runs over the conjugacy classes represented by g, which satisfies the con-
ditions

(i) n(g)=l,

(ii) C(g) is ‘locally integral’,

i.e, C(@Ngi' M (0)gi+2

for some i, where {g;} is a complete set of representatives of U\G,/G and
0,=B.xII0,. ((ii) is equivalent to C.(g)"\M.(0.)+# @, where C,(g) is the con-
i

jugacy class in G, represented by g.)
2) Lg(A) runs over the ‘G-genera’ of Z-ovders in Z(g): the G-genus Lg(A) con-
taining A is the set of all Z-orders in Z(g) which ave conjugate in Zg(g),=
Z(g)p"Gp with A, where Z(g)p=Z(g)¢q®Qp: namely

Lo Dy={A"; Ay=x,4,x3" for some x,=2Z5(g), for all p}.

3) MglA) is the ‘G-Mass’ of the Z-order A of Z(g), which is defined as follows.
We decompose the adelized group Zg(ga of Zg(g) into disjoint union of double
cosets

I
Ze(g),.Z *I;Il Za(g)}’k(/i;ﬂcg) ’ AA:A§ZA »
and put Ay=y,Ayi'= Q(ykpApy;,!r\Z(g)). Then we define

Ml D=2 thine 11

4) We denote by c,(g, MA(Op), A,) the number of the optimal embeddings ¢ : Z(g),

S Mu(Bp) w.r.t. A, and M,(0O,), counted up to the equivalence by Zg(g)-conjuga-
tions. That is

colg Ma(0p), 45)=%Zs(2),\M (g, Mx(0y), 4,)/U5),
where Up=GpNGLa(0y), and
My(g, Mx(0p), Ap))={x,€G,p; x5°2%,E€ Mx(05),
Z(g)pNxpMa(0p) x5 ~ A},

Here, we write Ay,,~4s, to indicate that A,p=y,4,py3" for some y,€Z:g),.
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§2. Classification of conjugacy classes.

In order to evaluate more explicitly the right hand side of the formula in
Theorem A, we need to classify the conjugacy classes in G, and pick up those
which are ‘locally integral’ (i.e., C,(g)"\M,(O,)# @). As for the first problem,
we follow the method of Hijikata [10] and proceed as follows: First, we see
that the conjugacy classes C(g) correspond bijectively with equivalence classes in
Z(g)¥/= of ‘positive hermitian elements’ of the commutor algebra Z(g) (Lem-
ma 1). Then, we reduce the problem to the case when the algebra @[ g] is a
field (Lemma 2). Let p(x)? be the principal polynomial of g considered as an
element of M,(B), where p(x) is irreducible over Q. When ¢ is odd or Q[ g] is
real, Z(g)*/=~ is easily described (Prop. 1, 2). In the remaining cases, it is
parametrized by the isomorphism classes of certain division algebras (Prop. 3).
This parametrization has some advantages for our later use. After these case-
studies, we summarize them as Theorem 1 and we shall note as Corollary that
the Hasse principle holds for conjugacy classes in G. As for the second problem,
we shall see that the condition C,(g)"M.(0,4)+ @, is not equivalent to “the
principal polynomial of g is integral”, contrary to the case of n=1. In fact, in
some cases, there are infinitely many conjugacy classes having the same principal
polynomial, whereas the locally integral ones are finite in number. We shall
treat this problem in case n=2.

2-1. We begin by noting that M,(B) is a central simple algebra over @ of
degree 41, with an involution x—'%, which will be denoted simply by ‘T=x*
We note also that the involution * is positive: namely for all x& M,(B), we have
tr(xx*)=0, and tr(xx*)=0 if and only if x=0. We call an element z=z*€ M,(B)
positive, z>>0, if it defines a positive definite quaternion hermitian form in B*,
i.e., xzx*=0 for all x€B", and xzx*=0 only for x=0. Then it is well known
that, if z=z* M,(B) is positive, there exists an x£GL.(B) such that xx*=z,
and vice versa. Therefore the map x— xx* induces the bijection

@ GLn(B)/G =, Z¥/Qi={z€ Mx(B); 2=2*>0}/Q%.

For g=G, put g’'=x""'gx with x&GLn(B). Let Z(g) be the commutor algebra of
g in M,(B). Then a direct calculation shows that g’ G if and only if xx*eZ(g)".
We write Z(g)*={z€Z(g); z=2z*>0}. we define an equivalence relation = in
Z(gf by z=z'&z'=yzy* for some y=Z(g)". We also define an equivalence
relation = (mod. Q%) by z=z' (mod. Q)= z'=ayzy* for some a= QX and v Z(g)".
Then we have

LEMMA 1. The map x 'gx— xx* induces a bijection
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(5) {(g'€G; g 3,8 15 = Z@)t/=(mod. Q7),

where ~ means the equivalence by G-conjugation.

Proor. Injectivity is clear. Surjectivity follows form the bijection (4).
g.e.d.

Since G'={g=G; n(g)=1} is contained in the compact group GL=US,(n),
every element of G is semi-simple. Therefore the algebra Q[ g] generated by
g=G over Q decomposes into a direct sum of fields:

(6) Qel=& Fi.

LEMMA 2. [In the decomposition (6), each F; is stable under *. Moreover,
there 1s an x=G such that

; &, 0
rigr= 0 o |’ 8:EM,(B), gigt=n(g)l,,.
m

Proor. By g*=n(g)g™', Q[ g] is stable under *. If F; were not stable,
F{=F; for some j+1, and * induces the permutation of the components on
FBF; Then we have, for x=(1, 0)€ F{@F;, tr(xx*)=tr(0, 0)=0, a contradiction.
Therefore, each F; is *-stable. Now we write 1=¢,+ -+ +en, ¢, F;. Then e/s
form a set of orthogonal idempotents, and ef=e;. It is well known that there
exists an x=GL,(B) such that x 'e;x=d;, i=1, ---, m, where

0

I

P

0

By ef=e;, we have §;=(x*x)d;(x*x)"?, so x*x is of the form

x;_ 0
X*x= " » IQEMH‘.(B), xi=x?‘>0-
0 s

vy, 0
There exists y=[ ' ]EGL,,(B), such that y*(x*x)y=l,, i.e, xyG. Then

Ym
we see that (xy)~'ei(xy)=d; for i=1, ---, m. It is now easy to see that (xy) 'g{xv)
is of the required form. g.e.d.

According to Lemma 2, Z(g) splits as:
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) Zg)= 8 Z(o),
where xZ,(g)x™' is the commutor algebra of g; in M,,(B). Then we have a
bijection

) Zgyt/=~(mod. @) =, (& Z(g)t/=) (mod. Q%).

f=1

Thus we can say that the problem to classify the conjugacy classes in (D) is
reduced to the case where m=1, i.e.,, F=Q[g] is a field. In this case, the
principal polynomial f(x) has the form f(x)=p(x)? where p(x) is irreducible over
Q and Q[x]/(p(x))=F. Call p the degree of p(x). Then we see that Z(g) is a
simple algebra of degree pg* over @ with center F. As noted above, Z(g) has
the involution which is positive. Therefore F is either (a) totally real, or (b) a
totally imaginary quadratic extension of a totally real field F,.

2.2. First we consider the case (a).

PROPOSITION 1. Assume that F=Q[ g] is totally rveal. Then we have either
(i) F=Q, and Z(g)=M(B), Z5(g)=G, or
(ii) F is real quadratic, n==2n, (even), and

Z(g)=M,(Bg), BF=B§F,

Zo(g)={z= M, (Br); z'Z=scalar in Q"}.
In both cases, the number of G-conjugacy classes in (5) is one.
PROOF. Note that F=F,={z=F; z*=z} in this case. If g Z(G)=center of

G, it belongs to the case (i). If not, since g*=gg*=n(g)=Q:, F is real quadratic.
In this case, we see that Z(g)®R is a direct sum of two copies of a simple
Q

algebra over R of degree n? since FROR=RER. Therefore, it is isomorphic to
a@

either M (R)YEM,(R), or M, (H)DM,.(H), where H is the Hamilton quaternion
algebra over R. On the other hand, we have M,,(B)-%R:M,,(H), and Z(g)Q?R

is contained in it. It follows that Z(g)QR=M, (H)YPM, (H), n,=n/2. Now we
Q
can take an element g,=G(2)={he M,(B); hh*=n(h)l,, n(h)=Q"}, and put

|igu. } !
g= %y Mg
Lo !

The commutor algebra of g, in M,(B) is easily seen to be isomorphic to BRQ[ g,]
Q
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=B-Q[g,]. Therefore Z(g)=M, (BRQ[gl)=M, (Br), and we see that this iso-
qQ

morphism keeps the involution *. So we have Z;(g)={z= M, (Br); zz*=scalar
in @*}. Finally, if we note that the bijection (4) is valid for By/F, we can con-
clude that the right hand side of (5) consists of a single class. So we get the
last assertion. g.e.d.

Now we consider the case (b), where F,={x=F; x*=x} is totally real and
F is a totally imaginary quadratic extension of F,. Obviously p=[F: Q]=2p, is
even and pg=2n, p,g=n.

PROPOSITION 2. Assume that F is totally imaginary and q: odd. Then
(1) BRF=MJF), i.e., F splits B.
Q

(ii) There is an tsomorphism ¢: Z(g) =, M(F) and y=GL(F), such that y=
v¥>o0, ¢(z¥)=yd(z)*y™" for all z€ Z(g). Here, we mean by y>0 that y"€M/(C)
are positive definite for any embedding o: FS.C.
Therefore

Ze(g)={xe M(F); xyx*=n(x)y, n(x)EQ"}.

(iii) The map z—¢(2)y—det(d(2)y) induces the bijections
Z(g)*/~ (mod. Q%) =, M F)¥/~ (mod. Q%)
= Fo JQiNp1p (F¥)) .
Proor. By embedding F, in M, (@), and M, (B) in MM,(B))=MB)
diagonally, we see that the commutor algebra Z(F,) of I, in M,(B) is isomorphic
to M,(Bpr,), where B;-azBﬁ@Fa. Since Z(g) is contained in Z(F,), we have an

injection over F,:
Z(g)S My(Br,) .

On the other hand, since FQF=FEF, we have an injection
Fy
AOQF=Z)DZQ) = My Bp)@F=M(By).
0 []

It follows that Bp=M,(F) if g=o0dd, since Z(g) and Z(g)" are simple algebras over
F of degree g° In this case, we can assume, by taking some inner automorphism
if necessary, that the above inclusion is

Zg)
Zg)ybZlg)=

; ]LME(MQCF)PMN(F) :
0 Zg)

In particular, Z(g)< M,(F), and, by compairing the degree over F, it follows that
Z(gy=M,F). Now it is well known, and easy to show, that any positive involu-
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tion of My(F) which induces on F the conjugation over F, can be written as
z—y'z*y for some y=y*>o0, yEGL(F). (ii) follows from this. Finally it is
also well known, that the equivalence class of hermitian matrices in My (F) over
F, is determined by the determinant up to the factor Npp(F*). (iii) follows
from this and Lemma 1. q.e. d.

2-3. Now we assume that F is totally imaginary and ¢=2q,=even. As in
the proof of Prop. 2, we take a field K, in M, (@) which is isomorphic to F,,
and take an element

he My(Ko)T My(M (@) S My (Mo(M 5 (Q)))=MA(Q)
such that g=x"'hx for some x& M,(B), where the last inclusion is diagonal.

Then we have K=K, (h)=Q(g).

LEMMA 3. (i) There exists w,=GL,(Q) such that wo="w,>0, and ‘x=wyxwy;'
for all x=K,.
(ii) There exists weGL,(Q) such that w=‘w>o0, and ‘y=w(’yw™" for all ye K
=K,(h), where o denoles the conjugation of K over K.

PROOF. (i) Take a basis v,, - vy (k=p,) of K, regarded as a linear space

k
over @, and write xv;= iZE vizi;, 25=Q. 1f we denote by o, -+, o, the set of
all isomorphisms of K, into R, we get
[a,(x_} 0

. ]AzAZ, A=(a:(vy), Z=(zy).
0 gulx)

Then we have
o (x) 0 ai(x) O
— =tA- VP A=AZA,
0 oxlx) 0 oulx)
Z=(PAAZ(*AA).

Since x—Z defines an isomorphism of K, into M, (@)=M, (Q), we can identify
them and take w,='AA., It is easy to see that w,=M,(®), and w,="w,>0. (ii)
We may assume that & is of the form

0 1
h= , a,b=K,.
—b —a

wy, 0\/2b a

Then we take w= , and see that it satisfies the required condi-
0 wy\a 2

tions. g.e.d.
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We fix h and w as in the above proof, till the end of 2-3. We note that
b=Ng g (h)=n(g)EQ:.
First we shall show that the problem reduces to the case g,=1. By a direct
calculation, we see that g=x"'hxeG=xx*we Z(h)=M,(Bg), where Bx=B; QK
Ko

=B-K. We extend ¢ to an automorphism of Z(h) over K, in such a way that
it induces the identity on Bk, and denote it again by ¢. Then “z=w"'(‘z)w for
all z= Z(h), where we put ‘z=(‘z;) for z=(zy;), z;;€ M,(B).

LEMMA 4. (i) By the isomorphism ¢: Z(g)>z—xzx'€Z(h)=M,(By), the
involution * of Z(g) corresponds with the invelution Int(v™")-e-* of M, (Bk);
namely

G(2)=vi(g(2)*)v" for z€Z(g),

where in the right hand side, v=xx*w and * denotes the involution ¢(z)*="'¢(z) as
a matrix in M, (Bg), where — is the canonical involution of By over K.
(ii) “v*=v, where * is '— of M, (Bg).

Proor. (i) is a direct consequence of the above remark. As for (ii), we
note that (x 'vx)*=x"'vx. Then by (i), v?v*v =y, so “v¥t=u. g.e.d.

For simplility, we write “y*=3y® for y= M, (Bg). Note that it is an involution
of M, (Bg) of the second kind. Now put

M, (Bx)®={ve M, (By); v®=v, v>0},

where v>0 means that the reduced trace of zvz® (over K) is totally positive for
all z&e M (Bg), z#0. If ¢,=1, v>0 is equivalent to Tr(¥)>0 and N()>0. We
define an equivalence relation =(mod. @) in My (Bx)¥®: v=v’ (mod. Q%)= v'=axvx®
for some a=Q% and x=GL,(Bg). Then, we get a bijection induced from the
map x ‘hx—xx*w:

(9) (6€G; g s WM 1w = M, (Bx)®/= (mod. Q).
In fact, injectivity is clear. Surjectivity can be proved by next Lemma 5 and
the last part of the proof of Lemma 7.

LEMMA 5. The reduced norm of M,(Bg) over K induces the following bijec-
tion :
(10) My (Bx)®/= (mod. Q%) ==, K§:/Nkx(K*).

Proor. Although this is known by W, Landherr [13], Ramanathan [14], we

give here an outline of the proof for the convenience of the readers. First note
that, if ve=v, for two ®-hermitian matrices, then v,=xv,2® for some x=GL, (Bx),
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so that the reduced norm of v, is N(vg)zN(x)N(v;)A-’(x@')szKn(N(x))N(v,). So
the map is well defined. Note also that any ®_hermition matrix is equivalent to
a diagonal matrix. Therefore we may assume that v=0v®is of the form

(7"1. U)
- 0 -vqu '

Put u=(v+v)/2, w=(—"v)/2+/m, where m is a totally negative element of K,
such that K=K,+/m). Then we see that v=u-++'muw, usM,(Bg,) and we
M,(Bg,) is a quaternion skew hermitian matrix with respect to the canonical
involution of Bk, If we write x,€Bx as x;=y,++vmz;, yi, 2:€Bg, we have

[0 =xvx®=f\(y, D+vVmfy, 2);

iy, DKoy, [z, y)=—fLy, 2),

where f.(y, z) is a quaternion skew hermitian form of rank 2¢, corresponding

with the matrix
w —u)
w —muw

Now it is known that any quaternion skew hermitian form of rank 4 represents
0 non-trivially (cf. [13]). Therefore, if ¢,>1, there exists x=(x;)€ BL, x#0 such
that fo(y, 2)=0, y=(¥), z=(z;). By taking an orthogonal basis containing this x,
we see that v is equivalent to

! N
Vg Vg,

By continuing this process, we see that any ve Mq‘,(BK}(f' is equivalent to a matrix
of the form

' y  hy=1v,€ Bg.
0 1
Uy

Now it suffices to prove the case g,=1. In this case, the space V' consisting of
all ®hermitian elements in By can be regarded as a quadratic space over K,, by
the restriction of the reduced norm of By. Since the even Clifford algebra of 1V
is Bg, the proper similitude of V is given by v—axv’% for a=Kj, x€Bg. The
injectivity of the map in our lemma follows from this fact and the Witt theorem.
Since dimy,V=4, surjectivity is clear. g.e. d.
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We assume that ¢,=1, so that Z(h)=DBy.

LEMMA 6. Let v;€ Bx, i=1, 2, be ®-hermitian elements. Then
(i) ;=Int(vi":o is an automorphism of By over K, of order 2. The fixed
subalgebra of z;:

(an Z,(v)={2€ B ; v:"2vi'=2z}

is a quaternion algebra over K, Conversely, any quaternion subalgebra of Bg
over K, is associated with a ®-hermitian element of By in this way.
(i) Z,(v)=Z,(v)ev,=v, (mod. K7).

We omit the proof of this lemma, since it is easy and found in [8].

LEMMA 7. Let g=x"'hxeG, v=xx*we Z(h) be as above. Then the quaternion
algebra Z,(v) defined by (11) is totally definite. Conversely, for any totally definite
quaternion algebra Z over K, contained in Z(h), there exists x&€ GL,(B) such that
x hxeG, and Z,(v)=Z for v=xx*w.

Proor. Obviously, — induces the canonical involution of Z,(v), and N(z)=
zze K, for all z=Z,(v). On the other hand, we have, for any we K;, w*N(z)=
¢(yy*), y=¢ '(wz) by Lemma 4. Then, there exists a positive constant ¢ such
that Trgq(w?N(2))=c Tr(yy*). So N(z) is a positive element of K,, that is, N(z)
is totally positive, which proves that Z,(v) is totally definite. Conversely, let Z
be any such one in Z(h). By Lemma 6, we can find v€Z(h)* such that v="7,
Z=Z,r). Here we note that, in the correspondence of LLemma 6,

Z,(v)=totally definite= N(v)=totally positive,

which is easily proved (cf. [8]). We can choose a= K; so that the reduced trace
Tr(av) over K is a totally positive element of K,. So we can assume that v is a
positive ®_hermitian element. If we put z=wvw™!, then the remark preceeding
Lemma 4 shows that z=z*. We shall show that z>0. By the following Lem-

2b a
ma 8, we can find x,€GL.(Bg,) such that x,‘f.( 2)=v. Then, by Lemma 3
a

) 2b a w, 0

(i), we have z=vw '=xyw;'x], where w=w, , W= , since 'T,=
a 0w,

wi'x¥fw,. Again by Lemma 3 (i), we have w,, wi'>0, and so z>0. Then there

exists x=GL,(B) such that xx*=z, so v=xx*w and x 'hx=G.

LEMMA 8. For any positive ®-hermitian element v in Z(h), there exists x,&

2b a 2b a
GL(Bg,) such that v=x{%, 5 where . is as in the proof of Lemma 3.
a a
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PrOOF. Put N(v)=deK;.. First, we show that there exists x=GLy(Bx,)

2b
such that N|x‘z
a

Traxomu(s)=0}, and ¢ over K, we get a totally indefinite quadratic form N(s, {)
=N(s")—bN(s)=((a*—4b)N(s)+ N())/4 of four variables over K, where we put
s’=(as+1)/2. Then the equation N(s, {)=n has a solution. Replacing s, 1, d, by
us, ut, u*d (u= K;) if necessary, we can assume that { is totally positive and
N(s, ) edNgx,(K*). Then we define c€ K, e Bk, by

a
))Ed.MK,xo(K"). If we let s vary over Bk ={s€Bg,;

2bc+as=s’
ac+2e=s,
and see that e+&=—ac. Then we can find d= B, such that N(d)=bc, and see

that ¢— N(B)=(be?— N(¢))/bc>0, where f=e6~'. So we can find @€ By, such that

a
N(a)=c—N(p). Now put x=(0

-

(4]

2b a 2be+ae  acH2e
ve=x'% =
a 2 blac+28) 2bc+ai

o 2)
= €Z(h),

=

bs §

), then we have

N(vy)=NQ2bc+ae)—bN(ac+2e)=N(s")—bN(s)EdNg,x [ K*),

and vP=uv,. By virtue of Lemma 5, there exists y= By such that yuu_v@):r.'. Then,
it is easy to show that v=yv,y®=yx'F'Fw=1x'%,w, x,=yx. qg.e.d.

We shall write, for g=x"'hxeG and v=xx*w,
(12) Z( @)= NZ,(v).
This Z,(g) does not depend on the choice of x.

PROPOSITION 3. Assume that F is totally imaginary and q: even. Then there
is a canonical bijection induced by Clg)—Z,(v):

isomorphism classes of totally
{e=G; g(;a-a;)h}f»; .4 definite quaternion algebras
over K, contained in Z(h)=Bx

and we have
Zo(@)={z= My(Bx); zv2®=n(2)v, n(2)=Q}}.

In particular, when q=2 and F,=@Q,
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Zg(g)=F"-ZS(g)"={abe Z(g); acF*, b= Z(g)}.

Proor. The first two assertions follow from Lemma 5,6,7. To prove the
last one, we first note that, by Lemma 4 (i), the canonical involution of the
quaternion algebra Z(g)/F is written as z— z'=v,’(z*)v;!, where we put v,=x"'vx,
and we carry ¢ to an automorphism of Z(g) over F, by ¢. Then it is easy to
show that z*=z'&z=Z7,(g). So the right hand side of the above equality is
contained in Zs(g). Conversely, let z be any element of Z;(g). Then, since
zz*=n(z)eQ*CF*, we have z*=cz’ for some c=F*. By using Lemma 3 and 4,
we can prove “z=cv; 'zvy, 80 that z="("2)=Npr(c)V:°vs) 2V vy)=Npr(c)z and
Npire)=1. By Hilbert’'s theorem 90, there exists d€F " such that ¢c=d"d™'. It
follows v,°(dz)=(dz)v,, s0 that dze Z,(v)=Zg), zE F*-Z,(g)". q.e.d.

COROLLARY. The following map induced by the inclusion map of G into G4
is injective:

(13) {8€G; germmh 5 = (8€Cas geim it e

and the tmage is the set of all (g,),=G4 such that the number of p's for which

Zo( gph=division is congruent to [Fy: Q] mod. 2, where we put Zy( gp)p= GIB'Zg(g,,),
pp

(b is a prime ideal of F,).

2-4. Now we summarize the above results on classification of conjugacy
class in G. We also give the condition for a polynomial to be the principal
polynomial of some element of G.

REMARK 1. Let f(x) be a polynomial of degree 2n which decomposes to the
product of irreducible factors over @Q: f(x):-f[ pi(x)%. Then, by virtue of Lem-
=1

ma 2, f(x) is the principal polynomial of some element of G if and only if p,(x)%
is the principal polynomial of some element of G(n,) for all i and whose similitudes
are the same, where 2n;=p,q;, p;=deg(p,(x)). We also note that GL,(B)-conjugacy
class of an element g of M,(B) depends only on the principal polynomial of g.

THEOREM 1. Let fix)=p(x)* be a monic polynomial of degree 2n, where p(x)
is an irreducible polynomial over Q. Then, a necessary and suficient condilion
for f(x) to be the principal polynomial of some element of G is:

(i) plx) is linear, or

(ii) plx)=x*—c, c=Q%, and n is even, or

(iii) Q[x]/(p(x)) is a totally imaginary quadratic extension F of a totally real
field Fy, and p(x) is of the form I;I(.t”-{-"ax-i-c), where c=Q%, a=F,, and ¢ runs

through all embeddings of Fy into R, and besides, F splits B if q is odd.
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In the case (i), (ii), the elements of G whose principal polynomials are f(x) form
a single G-conjugacy class (Prop. 1). In the case (iii), the G-conjugacy classes in
the GL,(B)-conjugacy class whose principal polynomial is f(x) are classified by
Prop. 2 (iii), or Prop. 3, for g=odd or evenm, respectively. By virtue of (8) and

Remark 1, the case when f(x)=ii!_‘l1 plx)%, or QLg]l is not a field, reduces to the

above cases.
Next Corollary seems to be generally known by [10]:

COROLLARY. The Hasse principle holds for conjugacy classes in G: namely
the map in (13) is injective for each heG.

Proor. In the case (iii), ¢: even, this has been already shown in Corollary
to Prop. 3. In the other cases, this is easily shown by virtue of Prop. 1, 2.

2-5. Now we consider the second problem to characterize the “locally inte-
gral 7 conjugacy classes in G, namely the ones that satisfy C,(g)\M.(O)=2.
Since this problem seems difficult in general, we shall restrict ourselves to the
case n=2. By what we have seen, there are 7 cases to be distinguished, accord-
ing to the decomposition (6) of Q[ g]: namely we have

(I) QLgl=Q, Z(g)=MyB),
(1) QLgl=QDR, Z(g)=BDB,
() QLegl=QDF, Z(g)=BPBF, F=imaginary quadratic field contained in B,
(14) (IV) Q[ gl=F=imaginary quadratic, Z(g)=Bp,
(V) QLgl=FBF.=Z(g), Fy=imaginary quadratic field contained in B,
(VI) Q[gl=F=Z(g)=totally imaginary quadratic extension of a real
quadratic field F,

(V) Q[ g]=F=real quadratic, Z(g)=2B.

In the cases (1), (1), (M), and (VI), the conjugacy class C(g) depends only on
the principal polynomial f(x) of g, so it is always locally integral as long as f(x)
is integral. Other cases will be explained below.

First we consider the case (IV). By Prop. 3, if we fix the principal polynomial
flx)=(x*+ax+b)*, C(g) correspond bijectively with definite quaterq_jon algebras
Z,(g) contained in Bp. 4

ProOPOSITION 4. Let g=G belong to the case (IV). Assume that f(x) is inte-
gral. Then we have an equivalence

C(g)=locally integrale= IXZ(g)| D(Z[ g])IX(B),
where we denote by D(Z[g)), D(Z(g), DF), D(B) the discriminant of Z[ g],
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Z\(g), F, B, respectively.

ProoF. We use the notations of 2-3. We may assume that i is of the form

0 1 2b a
h= = MyZ), and w:( 4
—b —a a 2

Let p be a prime such that p|D(Z,(g)), p{ D(F)D(B), and assume that Z,[g] is
maximal in F,. Then K,=F, is the unramified quadratic extension of @, and
B,=M)Q,). We can assume: O,=M,Z,). Take any x=GL.(B,) such that
g=x""hxeG,AM,(0;). By multiplying an element of Z(h); from the left, we

a f§ p™ 0

can assume that x is of the form x= U, a= e Bj;, m=zn, ue
0 1 0 p»

GL,(0,). Then it is not difficult to see that p|D(Z,(g)) is equivalent to N(a)=

prt7eE N prep(Kp), i€, nt+m=odd. We have

-1 -lb -1 b 2 l
(a' ﬁ) h(a’ ﬁ)z(a bfa a'(bf+af+ })eMz(Op).
0 1 0 1 —ba —(a+bp)

X Y
Then we can write bﬁz(z W)E 0,=My(Z,), and see that a™'(bf)a= 0, implies

Y=0 (mod. p™"). On the other hand, from (b8)*+a(bB)+b<baO, we see that
X2+aX+bebp™Z, But bas0,, so bp*, bp™eZ, and bp™epZ, because m—n
=o0dd>0. So we see that X*+aX-+bh=0 (mod. p), which is impossible by the
assumption that g is a root of x*+-ax+b and Z,[g] is the maximal order of
F,=K,. Thus, we have proved: =. The converse assertion can be proved by
giving an example of g,€G, which is p-integral, i.e., g,=G,NM,(0,): If F,=
Q,PQ,, g, can be always taken to be p-integral. If F, is a field, the following
two elements form a representatives of G,-conjugacy classes correponding to
J()=(x*+ax+b)%

(i) (m 0)
i =
£p 5 i

Split if —1e AVFJQ(FF),
division, otherwise,

i (w 0 )
i -
Ep 0 pwy

division if —1& Ngo(F,)
split, otherwise,

Z48)=1

Zo(g);i‘z{
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where w0, is a root of x*4ax+0b0=0, and p=B; is any element such that
N(p)& Npjo(Fp). In (ii), we can assume 7 'ewps0, if B, is division or F, is
ramified or Z,[g,] is not maximal. Then we see, by Corollary to Prop. 3, that
85:8» for all p, i.e.,, g is locally integral. g.e.d.

Now let g=G belong to the case (V) in (14). By (8) and Prop. 2, we have
the following diagram :

{8'€GC; & 55558 5 = Q1/(Npya(Fi)Nr,o(Fi)

(15) L 6 !

{g’€Ga; &' Gm,g} /5‘; = Qi 4/ (Npy o FiaNF,o(Fi4)) .

PROPOSITION 5. Let geG belong to the case (V), and assume that F,#F,.
Then the vertical maps in (15) are surjective, hence bijective.

The proof is easy and will be omitted. By this proposition, we see that,
given any (g,),€G,, there exists g&G such that 85;8r for all p. Then C(g) is
locally integral if and only if g,’s are p-integral. Thus our problem reduces to
the purely local ones, which will be treated in 4-5.

PROPOSITION 6. Let g=G belong to the case (V), and assume thal F,=F,.
Then the image of ¢ in (15) is a subgroup of index 2.

The proof is easy and will be omitted.

2-6. Finally we consider the case (VI) in (14): F is a totally imaginary
quadratic extension of a real quadratic field F,. As is well known, only three
cases can occur: F/Q is either a cyclic extension of degree 4, an abelian exten-
sion of type (2, 2), or a non-Galois extension of degree 4 whose normal closure
has the Galois group isomorphic to the dihedral group of order 8. We have a
diagram ;

(8'€C; &' gt~ T8 Fii/(QiNpie (F™)

(16) r .;;r

lg'€Cui g~ g}/ Z== F§a/(QiaNrir(F3) -
GLyCB ) 64 o

PropPoSITION 7. Let g=G belong to the case (VI). Assume that F/Q is a
cyclic or non Galois extension. Then the vertical maps in (16) are surjective,

hence bijective.

On the other hand, if F/Q is an extension of type (2, 2), then the images
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are subgroups of index 2. More precisely, the image of ¢: Fi./Npp (F*)Qi—
@F‘;,,f.-\’pp,apop(}“;)@; is those (x,), such that x,& Ng,r,(F}) for even number

of p’s. The proofs of these facts are tiresome exercises of class field theory,
and we omit them.

ProposITION 8. Let g=G belong to the case (V1), and assume that F/Q is of
type (2, 2). Let F,, F, be the quadratic subfields of F=Q[g] other than F,. Then
(1) ge=Npr(g) is an element of Zs(g) and belongs to the case (IV). Moreover,
if g'—gi is another such correspondence, we have the equivalence

85898 y8CE 8.

(ii) Tne image of the vertical map of (16) 1is those (g,)p,=G4 such that
% inv Zy(g:15)p=0.

(iii) Assume that Z[g] is maximal in F. Then we have an equivalence
Clg): locally integral =C(g;): locally integral
for i=1 and 2.

Proor. When g,rgi, we can assume g:=gi. S50 g, g’ €Zs(g)=F1-Z(g)-
Of course, we have assumed that g, g” have the same principal polynomial. Then
we can write g=ah, g'=ah’ (asF;{, h, heZ(g,)"), and h, b’ have the same
principal polynomial over Q. So 7hy-'=h’ for some y=Z, g, and ygr'=g'.
The converse is obvious. So we have (i). As for (ii), the necessity is clear.
The sufficiency easily follows from the structure of image of ¢ and above (i).
(iii) is a consequence of explicit presentations of local conjugacy classes, and we
omit the proof because we do not use the fact any after. q.e.d.

§3. Explicit formula of M;(A1)

In this section, we shall give a formula for Mz(1) which appears in our trace
formula in theorem A. Our method of calculation is essentially based on the
theory of Tamagawa numbers of semisimple algebraic groups, which is treated
in Tamagawa [19], Weil [20].

3-1. First, we shall show how the calculation of Mg(A) is related to the
theory of Tamagawa numbers. Let b be an algebraic number field and G be a
semisimple algebraic group over k. Then the Tamagawa number «(G) of G is
defined by
a7 {O)=| D)= w,,

A
GAIG
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where, D(k) is the discriminant of %, @ is an invariant algebraic differential
form of G of degree dimG, and w, is the Tamagawa measure of G, associated
to @. It is known, by Weil [20] Th. 4.4.1, that if G is the special unitary group
of a hermitian form, or a quaternion hermitian form, then z(G)=1.

Now let G be our group, g€G, and put, according to (7),

(18) Hg)= @ Z5(2),

Zhg)={z:€ Z(g)* NG ; niz)=1, Ni(z))=1},

where N,(z;) is the reduced norm of z;=Z,(g) over F;, the center of Z,(g). As
we have seen in §2, each ZL(g) is a semisimple algebraic group over @, and it
is either one of the two types noted above, with the only exception for the case
treated in 2-3. Therefore, if Z%(g)'s do not contain the exceptional case, we

have

(19) (Z4(@)=I1 «(Zb(g)=1.

Let A be a Z-order of Z(g) of the form A= QE A;, where A, is a Z-order

of Z,(g). Put
Ai=lzi€ s ;z2F=1}).

LEMMA 9. Assume that 1(Z4(g)=1, and n(Zg(g)=Q", m(A3)=Z3. Then
m -1
o[l o o]

This follows immediately from the definition. g.e.d.

3-2. Let g Z(G)=the center of G, so that Z(g)=M,(B). We shall now give
a formula for Mgz(A) for A=M_,(0), which will constitute the main term of our
trace formula. For the convenience of the later use, we shall give a more
general form: namely we assume that 2 is a totally real number field whose
class number in the narrow sense is one, B is a totally definite quaternion
algebra over k, and O is a maximal order of B.

PrOPOSITION 9.9 Let A=M,(0). Then

niEn+1)/2 - 2
(20) M 4y=12E) 2 m"?;fij‘:s_(‘i})mg x2n)

1131 - 2n—1)1

11, IL(ND*H(=1)Y)

1tD(BI k) i=

1 We learned this formula and the proof from Prof. Y. lhara.
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where Ci(s) denotes the Dedekind zeta function of k.
Proor. We prove the case k=@, since the general case requires nothing

more than a careful change of notations. By Lemma 9, it suffices to evaluate

the integral SAlw“' First we note that the Lie algebra g of G! is:
A

a={xEMn(B); x+x*=0}.
We can write

B=Q+Qa+Qp+Qap, a’=—m, f*=—q, af=—fa,

where m, g Z are such that m=D(B), (m, ¢)=1, ¢>0. We can take, as a basis
of g over @, the following set of n(2n-+1) elements

0:0
I;s:‘ﬁ[fo](l, EZG, .Bn ﬂ'.B; lélén’

0:
0 0:0) .
..... ....'u)‘?... (1 . )
Xijg— Xjiy=| 0 i 0:0 ‘ b o=l a B af, 1=i<j=n.
ronf vesh s (0
0:0:i0)

Then we can take, as an invariant form on G', the following
= Ndxuzilnldxij,—dxiy,)
W= {.§ .5 e n (@ Xij g Xjigls

where dx.. denotes the dual of the vector field which takes the value x.. above
at the origin 1, of G
(i) The integral at co:

We can express g.. in M,,(C):

X Y _
g,.,:{.t:( _)EME,,{C); tX=—X, ‘Y:Y},
e e

and define a volume element " of GL=USp(n), which is induced from the
Riemannian metric defined by the Killing form multiplied by —1:

—B(x, y)=—tr(adx-ady)=—2(n+1)tr(xy).
Then a straight forward calculation shows that we have

W=(mq)* TV (4nt-4)-neEntiggcan - and

E w&an=(4n+4)n(2n+l)!22ncn-1) I"I2,E2i/(2£_1)! y
USPCR‘J i=1

This is found, for example, in Gelfand-Neumark [7].
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(ii) The integral at p, B,=MyQ),):
We have G,=Sp(2n, @,). By this isomorphism, we can identify : A,=5p(2n, Z,).
We express g, in M;,(@,):

X Y
Gp={x=( )EMiﬂ(Qp); Y=*Y, Z=‘Z},
Z —tX

and define a Haar measure o™ of Sp(2n, @,) by the similar way as o, from
the Chevalley basis:

(Eii 0 ) (0 EU+E}£) ( 0 0) (0 Eﬂ) 0 0)
0 —Eu/'\0 0o J\E,+E, 0/ \0o o/ \E: 0/
l=si=j=n Isi<j=n l=i=n

Then by a straight forward calculation, we have

S 2n2(qm)n(n+1uz

=1
.
» b

Following equality is well known:

.

wcpnn:p-n(ﬂn+l)§(5p(2n, FP))’ FP:ZK!(;)) .

}Spczn.zp)

Therefore we have

1 N

2n’(qm)n(u+1uz i 1 (l_p-zi)_

P i=1

W, =
AP

(ili) The integral at p, B,: division:

If p#2, we may assume that a, S were so chosen that 1, @, 8, aff form a basis
of 0, over Z,. We then put 3"=w,. If p=2, we take a basis of O, and define
5™ as above. Then an easy calculation shows that

wp=|2| 3w,

which is valid also for p+#2. Now we have
LI wgr=p eV E AL/ {ze A} ; z=1 (mod. p)}).
b

If we note that AL/{z= A} ; z=1 (mod. p)} is isomorphic to

X —
{( 9; X, Ye M. (Fp), 'XX=1,, ‘XY—')’X:O}»,
0

we have, since #(Uy(Fye)=p"™=27* IT (p'—(—1)"),
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—n? 71 —eny| T ol bt

| por=1215"* ILa—p~] [T A+=D'p 9] .

A, = -

Multiplying these integrals and applying Lemma 9, we get the required
formula of Mg(A). q.e.d.

REMARK 2. (i) If g=Z(G), the only G-genus of Z-orders of Z(g)=M.(B),
which appears in our trace formula is the one containing M,(0), since
cplg, My(Op), Ap)=0 if Ap»*My(0y).

(ii) In some cases, we can conclude that H=1, by Prop.9. To be more precise,
we have, by the definition of Mg(A),

H 1
By Prop. 9, we have Mg (M,(0)=1/1152, 1/288, 1/82944, 1/28800, according as
(n, b, D(B)=(2,Q, 2), (2,Q, 3), (3, Q, 2), (2, Q(+/5), 1). Since the denominators
are equal to |O'|®-n!=(the order of the unit group of O™), we conclude that the
class of O® is the only maximal O-lattices in the principal genus.

3-3. Now we assume that n=2. Let g=G belong to the case (II) of (14).
Then Z(g)=B®B, and any Z-order A of Z(g) is contained in a maximal one, so
we may assume that 1<0OH0.

ProposiTION 10. Notations being as above, we have

@n MG(A}z[% NDI{IBJ(i—l)]Zl;I [0 *NG,: A5Gl

ProoF. By Theorem 3, for n=1, we have the Maj formula of B:

1
(22) AIG(O)—ﬁ “le(i—l),
which has been known by [4]. Then we apply Lemma 9, and get the formula
for A=0° The general case follows from this, if we note the equality:

(]
rd
x x
(Jpnop) rz_,,_,

o(Zs(8)/Q")=2Mg( A)(Szacgnmm“am)l;ls

@Pp

mm)]'lg
® 2.4
Zg(8ralR P JOPINGRIZy

—2 MG(O’*)(S

where @ is the Tamagawa measure on the semi-simple group Zg(g)/Q".
Let g&G belong to the case (1), so that Z(g)=B@OF, F=imaginary quadratic
field in B. Let © denote the ring of integers of F.
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PROPOSITION 11. Notation being as above, let A be a Z-order of Z(g) such
that ge ACODE. Then we have

h(F)

(@) Mo D)= gror 17 u8%,

II (— l)H[ (0D ;NGp: A3NGypl
where WF) denote the class number of F.

PrROOF. If we write

‘ h{F)
.4= I.I.F ﬂ{@_{,

we have a disjoint decomposition :

h{F)
Za(g)a= ‘_l;II((B", FYNGX Bhas, a)(0F 00NGa) .
Therefore we have

Z5(@\Zo(8)a/(AING )= H Z5(gN\Z5(8)alas, ai)/ Ak,

for A=0P0. Then we can apply Lemma 9 and proceed in the same way as in
Prop. 10. q.e.d.

Now let g€ G belong to the case (IV). By Prop. 3, we have Z(g)=Bp, and
Zo(g)=F~*-Z(g)*, where F=Q[ gl=imaginary quadratic field, and Z,(g) is the
definite quaternion algebra over Q. Let /A be a Z-order of Z(g) such that g= A,
and put:

Au=/1r\zo(g) .

Then we see that /, is an order of Z,(g), so it is contained in some maximal
order Ay .. of Zi(g).

ProrosiTioN 12. Notatlions being as above, we have

___h©oy o
@ Maiy= 12[0*:1] umzrulcm( 2 I} da( /e D,
where
d A): Aﬂ.ma.x 7 H A“ OR : Z " ¥
25) p{ [( }p up] L P p[g] ]

"’:a(/l):[A;ﬁGp : Zp[g]xAﬁcp] ‘

ProofF. First we assume that A=/, ... Since the elements of F* anc
Zs(g)* mutually commute, we have

Ze(@\Ze(2)a/(AAING)=(F\F /00 (Z &) \Z(£)i/ Ai4) -
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Therefore we have a bijection

(Fy hiZglagd

J
ZHNZHQ W =TT T (F* 022, AL,

=1

where

hOF)
F;: J_-[l F”ﬂ{@; ’
hiZoglgd)
Z(g)h= j]=11 Zy(8)'byAia

From this, we get the formula of Mg(A) for A=A, ,.,®0O. In the general case,
we have, as in the proof of Prop. 10,

o(Z(8)/@")=2M o An,0ax@0)|

Weo 5 «Lp
Zet@wlR* P Ay g BV NG /2
=2M( )] @11 @y
ZGCg)clR ] A;;"GDIZ;
from which the assertion follows. g.e.d.

§4. Calculation of c¢,(g, My(0,), 4,) for g: torsion element.

We shall now evaluate the factor c¢,(g, M.(0,), 4,), which appeared in the
trace formula, in the case where g has a finite order. This is sufficient for the
calculation of the class number of G, since C(g) locally integral implies that it
is of finite order: in fact, the locally integral g's with n(g)=1 form a discrete
subgroup G' 1! of the compact group 1. As we defined in §1, ¢,(g, M(0,), 4,)
is the number of distinct ways to embed A, optimally into M.,(0,), up to some
equivalence relations. In this section, we denote the set {x=G,; x 'gx=U,} by
M(g, Up).

4-1. First, let g=-+1. As noted in §3-2, Remark 2, the only G-genus of
Z-orders of Z(g)=M.(B) which takes part in the trace formula is the one con-
taining M.(0). In this case we have obviously, Z,(g)=G, so ¢,(g, M0,), MAO,))
=1

Let now g belong to the case (1) in (14). We see that g*=1, and by the

1 0
result of §2, g is conjugate to (0 1) in G.

0

1
PrOPOSITION 13. Let g:(o ) Then
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1eif Ap~A(k)y, 0=k=ord, (2),
(26) cp(gr iws(op)s Ap):{ .

0 --- otherwise,
p(p+1) - if By=division,

LAY, : A(I);]:{ ' ]
ppr—1) - if By=split,

a 0
where A(k)p:{(o 5)62(g)p; a=d (mod. p*), a, BEO;,}.

B 0 x 0
Proor. First we note that Z(g)z(o B)’ and Zc(g):l(o ); Nszyth}.
¥

We shall write x,~x, for x,€G,, if Zyg),x,U,=Zs(g),x:U,. Now, given an
element xe M,(g, U,)={xG,; x'gxeU,}, we can assume that it is of the

1
form xz( = ): in fact, by multiplying an element of I/, from the right, we
—8
a a 0\
have x~ , a#0, then we multiply " =Z(g), from the left and
¥ a

1 *

* *

1 B 1 0\ 1 8 1 B

_ ): ~ . Moreover, we see that 8 can be taken
—df a 0 d/\—8 1 -5 1

arbitrary from O}80}, because of the following equality :

O N T
0 d/\=g 1/\o &) \—aps 1

Now, we assume that B, is division. We multiply, if necessary, x by some

see that xw( ) Since the last element belongs to G, it is of the form

a B
power of p and make it of the form ( _ ), a=p", BEQ,—p0,. If n(x)=
_ﬂ a
a*+NBe Z;, we have x~1. If n(x)epZ,, and a< pZ,, then f=xj3, where « is
a prime element of O, such that NzepZ; and S,=0j;. Then we see that

r 0\
(0 ) xeU,, so that x~1. Thus we can assume, if x-1, that it is of the
T

form x:( f), BE0,, n(x)=14+Np=p*u, k=1, ucZ;. Now we have
a 0 a+pBidf: afe— i

o x;:( )h: . ( BB b )
0 4 PP \Ba—dF, FiaB.to

1
for x¢=( B ﬁi).
—;S: 1
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If we put f=p,=8, a=1, 6=—1, then we see that the condition x=M,(g, U,)
is equivalent to 283=0 (mod. p*). Since we have assumed that 3=0j, k=1, this

1

B
occurs if and only if p=2, k=1. Moreover, if x.-:( ; , 1=1, 2, satisfy

these conditions, we can find an element e=0, such that e=1 (mod. p*) and
Ne=N(8.81"), since N(B:57")=1 (mod. p*). Then if we put a=Fj, =7 we

a 0
have, in (27), x;‘(n 6)x2€ U, so that x,~x,. So we have M,(g, U,)=

1
Za(g)p{l*( B 'S)}Up, where =1 if p=2, and 8=0 otherwise. We put 4,=
-5 1
Z(2)pNxMy(0,)x7", for each xeM,y(g, U,). From (27), we see easily that 4,=
i
A0)p, if x=1, and A,=A(1),, if x=( ; 1). We have A(0)L/A(1),=0%/{z=05;

X
z=1 (mod. p)} g{(o
pHp+1).

Now we assume that B, is split. As above, we can start with x=

a B
( 3 ) where a=p", f=0,—p0,, and any J in OLBOL=SL.Z,)BSLAZ,)
a

y
_); x, yEFp, xf=1], and therefore, [A(0)}: A(1)}]=

X

gives an equivalent x. By the theory of elementary divisors, we can assume

v 0 v 0
that 8 is either one of the forms (0 0)' (0 ), where veZ;. For x;=
p!‘l
a B v 0
_ y Bi= , we have
~{3¢ a 0 0

o 0 1 pzma‘+ﬂ|5)§g p’"(aﬁg—ﬁzﬁ)
(28) .":J._l Xo= YTy - - - .
0 o P\ p™(Bia—08fFs) Frafetpt™o

Therefore, we see that x;= M,(g, U,) implies 20=0 (mod. p™), so m=0, x,~1, if
p#2, or m=1, p=2. In both cases, we see that x,~x, if /3, is as above and

vy, 0 vy, 0 a 0 v 0
B= or , n>2m, since xi! xeU, for a= , 0=
0 pn 0 @ 0 v,

0 0 v
vy 0 a 0 ™ B v 0
. Also, we have 17! €U, for x,=1, x.= » B= i
0 v 0 @ -5 0 p
1 0 p-"
1=n=m, with a= i s 5:( i i , so that x,~1. Finally, assume that
p—ﬂ.

m<n=2m for x. in the last expression. Then a direct calculation similar to (28)
shows that x,e M (g, U,) if and only if n=2m, and 2p™=0 (mod. p*™(1+v)). If
p+2, this happens only if n=m=0, 1+v=Z}, so that x,~1. If p=2, then either
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p B
m=0, 1+vepZ;, or m=1, 1+ve Z}. In the first case we have x,~x1=( 1),

_ﬁl P

), and in the second case we have also
_pv

I 0 b
Xy~ xy, With a=6= ) Thus we have M,(g, Up)=Za(g)p{1, ( _ ﬁ)}U.u.

—v

1 0
‘81:( ), by (28) with a=é=
0 0,

1 0\ /p B 11
where 5=0 if p#2, and = ; ( )~< ) if p=2. In the latter
0 0/ \=8 p/ \—-1 1

case, we see that A,=Z(g),NaM0,)x'=A(1),. We have AW,/ Ay =
0p/1z€0}; z=1 (mod. p)} =SLy(F,), and therefore, [A(0),: A(1)L]=p(p*—1).
g.e.d.

4-2. Let g be an element of G of finite order that belongs to the case (1)
0

1
in (14). Then we see that g is conjugate in G to i( ) where w# +1 is

w
an element of B of finite order. As is well known, the order of w is either 4,
or 3, 6, and we can assume that w=0. We put F=Q[w], 0=Z[w].

0

1
PROPOSITION 14. Let g:i( ) w=0. Then,

(1]
(i) If (%):1, then B, is split and
1 if Apy~0,60,,

cx(g, MyO0,), 4 )Z{
" e ! 0 otherwise,

(i) If (-E-):o,
1 if Adp~0,80,,

c(g, ML0,), Ap)z{
0 - otherwise,

F
Gii) If (p—):—l,
2 if Ap~0,50,, By,=division,
calg MoOy), Ap)=1 1 if Ay~0,E0, B,=split,
0 - otherwise.
? |
eZ(g); Nx=Ny+#0;.
¥ J
As in the proof of Prop. 13, we shall write x,~ux,, if x,—zx,u for some z< Zs(2)p
u€U, Then we see, as in the proof of Prop. 13, that any x=G, can be

1 0\/1 B 7 0\/1 §
deformed to x~ _ or ) _ , where 7 is an element
0 6/\=5 1 0 %d/\—§ 1,

B 0 %
Proor. We note that Z(g)= 57 , and Zg(g)=[(
0
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of B} such that Nye&N(F}), and d=F}\B}, f0}\B;/0}. First assume that
B, is division. Then we have

1 0\/ 1

so that xm( _ ﬁ), or (7? )( _ ‘B). If (f—)z(}, then we can assume
—~# 1 0 n/\—§ 1 p

that Ny=Zj}, and

- =t b , el,,
0 »/\=8 1/ \—=(Bp™" 1 0 7/ \0 7

1
so by changing the notation we have always xn-r( _ 1). Then we can proceed

; z F ;
in the same way as in Prop. 13. If (?)=—1' we can take as z, a prime element
of 0, such that Int(») induces on F, the nontrivial conjugation. Then it is easy

n 0
to see that x= M,(g, U,) if and only if (0 )xeMp(g, U,), and they determine

7 0 » 0\"!

the same order of Zs(g), :Z(g),,an,(Op}x-lzz(g)pn(0 )xMz(Op)I"(O ) .
7 7

Therefore we get our assertion from the above result. Now we assume that B,

1 0\/1
is split, and so B,=M.(@Q,), O,=My(Z,;). We see that, if x=(0 6)( F "18)

1 B 1 0 1 1
eMy(g, Up) then - can be reduced to g i or i 1) by the

proof of Prop. 13, and that we have 6 'wé=0,. Then we see, by the following
well known lemma, that the last condition is equivalent to d& F -0}, hence
aeF},-0}. It follows easily that x~1, if xe M,(g, U,). g.e.d.

LEMMA 10. Let F be a subalgebra of M)Q,) such that [F: Qp]=2 and
FNMy(Z,)=0, is a maximal order of F.

2 0
(i) If F=Q,5Q,, we assume that F:(Q{} Q ) Then

1 0
GLAQ,)= IIF( 1 pn)GLs(Zp) :
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0 1 0 1
(i) If F is a field, we assume that F=Qp+Qp( 5 ), where 1, w=( i )

—b —a = —dad
is a basis of @, Then

1 0
GLAQ,)= EOF“( s pn)GLg(Zp) .

ProoF. Although this is well known, we give here a proof, for the sake of
convenience. Any x&GL,(Q,) is reduced, by a right multiplication of an element
pm 0 "
of GL.(Z,), to a-( = , where a=Qj}, m, n=0 and c€ Z,/(p"). (i) follows from
c p*

w0 c %
this. Assume, in (ii), that n>0 in xz( ) Then e=Z}, and wx=( )
c p" L

Therefore x is reduced to an element of the form( n). We have x~
b

¢
b+ac e\/1 O ctHac+b cp™ . .
= . We note that ¢*+ac+0b divides ¢p®, since

—be b/\c¢ p" 0 bp™
c*Hac+b 0 1 0
x*+ax-+b is the equation of w. So we have x~ ~ . The
0 bp™ 0 p™
) 1 0 1 0\ )
disjointness is clear if we note that F i MJ(Z,) § =Z,+p 2w is
pr p"
the order of F of conductor p*, which is also true in (i). g.e.d.

4-3. In order to make some part of calculation in the remaining cases easier,
consider, instead of G,, an isomorphic group

0 1 0 1
Gi= {ge My(B;); g( )g*=n(g)( )} ;
1 0 1 0

t r
LEMMA 11. Let (_ )EM,;(BP) be a hermitian matrix such that t, s€Z,,

F s
r€0, and ts—rFeZ}. Then there exists an element x€GLy(0,) such that xx*=

e 3

ProorF. If either ¢ or s is in Z}, we can assume, by taking the conjugation

. | = ==
by (1 0), that s=Z;; take a, b, d=0, such that dd=s, bd=r, aa=(ts—rP)/s.

b

a
Then x=
0 d

) satisfies the condition. Assume that s, f=pZ,. Then
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(1 0)(: r)(l E) ( t r+1é )
¢ 1\F s/\N0 1) \ct47 cet4+Tricr+s/

we can find ¢=0, such that Tr(cr)eZ}, hence cét+Tr(cr)+seZ%  So the
problem is reduced to the first case. g.e.d.

Now it is clear that there exists an isomorphism ¢: G, =, G% such that

0 1
(U)=G*NGL0,)=U%; in fact take x=GLy0,) such that xx*— and
P P P 1 0

put ¢=Int(x™"): g—zxgx'. In G% the Iwasawa decomposition takes a simpler
form : namely
nat' g
(29) Gi=11 U u( )U;,
nea; ae’;B; i 1 o
where § runs over the set Bla)={fB; Tr(@f)=0} (c.f. Satake [15])

Now let g belong to the case (IV) in (14). Then g generates over @ an
imaginary quadratic field, so if it is of finite order, its order is either 3, 6, or 4.
By Prop. 3, the conjugacy class of g is determined by the structure of Z(g)
which depends only on Q(g). First we treat the case where Z,(g), is split.

w 0
Then we can take, as a representative of the conjugacy class, g:( )EG’L
0 o

where we0, is a root of unity of order 3, 6, or 4 if Q,[g] is a field. We have
Q QFP
‘?PP _Qp
ment such that p*=@;, so we can put p=+/—3, v/ —1, according as F=@Q,(~—3),
Q,(v—1). We denote by @, the ring of integers of F.

Z(g)p,=My(F), F=Q,(0)=Q,(g), and Zg(g):( ) where peF is an ele-

PROPOSITON 15. Notations being as above, we have:
; By
(i 1r (5)=1
1o if Ap~My(Cy

¢ (g: JME(O )I A )z‘l
: g ! 0 otherwise, '

dp=e,=1, for A,=M0,).
= F
Gy If (5-)=-1 |
2 if Ay~M(O,), By=division,
eolg MO,), A)={ 1. if Ay~My(0,), By=split,

0 - otherwise,
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dp=e,=1, for A,=My0,).
Gii) If (i;—)=0, and F=Q,(~—=3), (p=3)
1--if Ap""M‘z(gp}:Ah
1-if A (1 P_IE)M(O )(1 ‘0_15)_] My(F)
e 1 ~ m 2
"No 1 /770 1

=U,, and B,=division,

cp(g, MZ(OP)- Ap)—_-

0 - otherwise,
d(A)=4, e)(A)=2, dp(4:)=6, ex(4s)=1,
where ¢ is an element of O such that e*=—1, ep=—pe.

Giiy  If (?):0, and F=Q,(~— 1), (p=2)

1 %% 1 =z e\
| B MO NM(F)=4,,
0 1 0 1

1--- If Ap"‘Mg(Op)=Ag,

(g, My(0,), 4,)= 1 /2 1 &/2\*
Gk e 1 if A”N(o El )Mg(op)(o sl) NMy(F)= 4,

and B,=division,

0 -+ otherwise,

d}‘("‘il)::al ep(Al}=2; d‘p(A‘z):ep(A!)=1; dp(As}:?), ep(dsjzl, w&e?’e € f.S an
element of O} such that e*=—1, ep=—pe if B, is division, : e*=1, ep=—peTif
B, if split, and #=1+p is a prime element of F.

ProoF. (i) Note first that this case occurs only if B, is split. We can

G @h 0
B,=M,Q,), and g= i

Q,
assume that F=
P

), Wy, Gb‘zEZ;- BY (29), any

W3

na!
element x of G} is reduced to xw( ), in the coset Zg(g)xU%, where Zz(g)
(44

n 0
=the centralizer of g in G}. Since (0 I)EZG(gJ, we can replace n by 1. By

0

1
Lemma 10 (i), af=y(1 )u for some yeF* and u=0;=GLyZ,). Then by

n

atp 1 0
changing the notations, we see x~( ) a=( ) Writing down the
0 «a 1 p"
condition x~'gx< U}, we see that it implies a 'was0,, hence c(@w,—wy)=0 (mod.
p™. From this we have n=0, so we can replace a by 1, since w,—w,EZ7.
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® wi—fw

w

1
Then we have xm(o f) Tr(5)=0, and x 'gx= ) We write f=

r s 0 —(wy—ay)s
, and see wf—Pw= )E O,, hence s, te Z,. Thus we
i —=r ((!Jg_"{l.h]r 0

lg ¥ 0 ]_g 0 S
1 g (
have x~ = 0 —r t 0/|~L
0 1
0 1; 0 L,
(ii) First assume that B, is division. We have B;=F"0;\JF*z0;, where « is

1
a prime element of O, Then, as in (i), we can reduce x=G%} to , or
0

(R_ ﬁ)ﬂ«n(l 'B). For xz(l ﬁ), we have x"gx=(w wﬁ—ﬁw)l We can
1 0 1 0

1 = 0 @
take, as a prime element = of O, one such that =*=p, rw=dax, so that we can
write B,=F+4Fr. We write f=ap+yr, a=Q,, yEF, and see wf—po=y(w—a)r.

1 ap\/1 y=m
Therefore, if x'gx=U%, we have ye Fn0,=0,, hence ,1;:(0 1)(0 l)ml,

It is easy to see that x= M,(g, U%) if and only if zxeM,(g, U%), and they
determine the same order of Z(g)=M,(F). So we have proved our assertions.

a'l
Now assume that B, is split. As in (i), we can start with x=( ) By
0 «
0

n

‘@ B 1 0 awa™ dwf— Pwa
the notation, that xw( " , = . We have x 'gx= ;

@ 0 p" 0 a'wa
so n=0, a=1, if x& M, (g, U%). From this, we deduce x~1, in the same way
as above.
(iii) The case when B, is split can be proved by exactly the same way as (ii).
So we assume that B, is division. Since B;=F*0j, we can start with x=

1
Lemma 10, (ii), a:y( B )u for some ye F*, usGLy(Z,), so we see, by changing

(0 l)' Tr(8)=0. If ¢ is as in the assertion, we can write B,=F-+Fe, so

1 ap
B=ap-+tye, a=Q,, y=F. Since (0 I)EZG(g), we can assume a=0, S=ye. If

xeMy(g, U}), we have as above wf—pfo=yw—d)s=yp:=0,, y€p 'O, where
e=+~/—3 is a prime element of ©,. If y=0O,, then x€U¥%, x~1. So we assume
y=p~'u, u=0;. Then we can write u=av®, ac€Z;, ve0;, since 0;,=Z;(0;)%

{1 avip~le av 0\/1 o7\ [fa"'v~! O 1 pte
We have .r=( 4 ):( )( € )( )w( £ ) It x=l,
0 1 0 #7Y\0 1 0 ] 0 1
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Z, pZ, (1 0\
then A,=Z(g),\M(0p)=My0,), and A.=ANZ(g),= :( )
pZy, Z,] \0 p

Z, Z)\{1 0 1 0\ 1 0
, and so, by taking A, .= ) MJ(Z,) , We see
32, Z,)\0 p 0 p 0 p

0 1
dp(A4)=4, ey (A)=2: in fact, we have A;NGi= fo.O;,U(l 0) 1000y In

1 p7le 0 pte\"t /1 O
the same way, we have A,=2Z(g),n My(0,) =
0 1 11 0 p

s £ I Rt 1 0
{( )e My (0p); s=w, r=—1 (mod. (p))} ( ) , and so Aguz( )
row 0 p 0 p

0\

-1
) . From this, we see easily

a b 1
{( )EMQ(Z,,); a=d, b=—c (mod. 3)} (
c d 0

dp(Az):G; ep(A2>:1-
(iii)’ We omit the proof in this case, since it can be proved in the same way as
in (iii). g.e.d.

14

Secondly we assume that Z,(g) is division. In this case, the representative
of the conjugacy class which is p-integral does not take a simple form, so we
work again in G,, if @,[g] is a field. Let w=0, be as above, and F=Q ,(w).

If (-iF—)=—l, we take p=0, such that N(y)=—y*=—p, and pw=d&7n. Then we
w 0 o 0 1

can take g= = , and see Z(g)=h"'M,(F)h, h=
0 7 'wy 0 @ 0

x ¥ w 0
=[( 75?); £ yEF}. If (i)zl), we can take gz( ) and see Z(g)=
7y X p 0 o
0

0
). Zu{gJ

7

)eG;

X y F [0
MyF), Zg)= s x, yeFb If (—):1, then we take g—
x p 0wy

as in Prop. 15.

ProposITION 16. Notations being as above, we have:

F
(i) If (—— =1,

j2
Lo if Ap~Z(g)pnMa(05),

cpf ,M{O),A)=%
piln S = 0--- otherwise,

dp(-"lp):&’p(dpjzl for Apzz(g)pﬁMz(op)~

(i) If (%):—l, then B, is division, and
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Lo if Ap~Z(g)yMyO,),

cp(g, Mi(0p), /Ip)=‘l ;
0-- otherwise,

d(dy)=ep(A;)=1 for Ay=2Z(g)pNMy(0p).

(iii) If (-g-)=0 and F=Q,(v/—3), (p=3)
1. if prz(g)pmMz(Op}!

ex(g, MA0,), Ap)={
0 - otherwise,

dptAp)zl’ e,(A,)=2 for Ap:Z(g)pﬁMz(op)-

Giiy 17 (5-)=0 and F=Q,(v'=T), (p=2

1w if Ap~Z(g)pnMy(0,)=4,,
1 ¢ I =\7

1. if A;,NZ(g}pﬁ( )MZ(OF)( ) =4,
e 1 €

and By=division,

Cp(g. A{zcop): A,n}‘:

0 - otherwise.
dp(4)=3, e,(d)=2, d(A))=ey(A:)=1,

where ¢ is an element of O, such that e*=—1, sw=—we.

We omit the proof of this proposition, since it can be proved in the same
way as Prop. 15.

4-4. Here, we quote a theorem of Chevalley(-Hasse-Noether) from Chevalley
[3]. Let & be a local field of characteristic 0, and let B be a division algebra,
central over k.. We consider a commutative semisimple algebra Z over k, which
is contained in K=M,.(B) and maximal in K. Let O, @, be maximal orders of
K, Z, respectively such that 0D0z. We call a right O-ideal A “optimal to 0",
if the left order of A contains Og, i.e. if @zAC A.

We note that, we can write A=a0, a= K", and that A being optimal to O,
is equivalent to ZnaOa '=0,. Thus the classification of the optimal embeddings
of @, to O is equivalent to the determination of all right O-ideals optimal to @,
which has been solved in Chevalley [3].

Following Chevalley [3], we can reduce the problem to the case where Z is
a maximal commutative field in K=M,.(B). In fact, Z is a direct sum of fields:
Z=Z,% - £Z,. We write the orthogonal idempotents corresponding to the de-
composition of Z by &, ---, ¢®, Then we have:

LeMMA 12. (Chevalley [31) (i) If A is a right O-ideal, optimal to Oy, then
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Ay=eD Ae® is an optimal right O;=e"0eP-ideal to Oz, for i=1, -, g, and
vice versd.

Now we assume that Z is a maximal commutative field in K. We denote by
d, e, the relative degree, and the ramification index of Z/k, respectively. We
write [B: kl=p*, d=(d, p)=g-¢c-d. of d, p. Then B contains the unramified
extension of degree p, Z contains the unramified extension of degree d over k.
We may assume, by applying an inner automorphism of K*, that

a 0
Lz{({}'-_ )EK; ac B}m(the unramified extension of % of degree d)
a

is the unramified extension of % of degree 4. Moreover we may assume that
0zCM,.(0p)=0. Let k, be the unramified extension of degree p over % and O,
its ring of integers. Then K&k, is isomorphic to M,(k,), where we put n=n"p.
We can assume, by taking a suitable isomorphism, that O is contained in M,(0,),

" 0 1 0
® :
and a prime element = of Oz has the form (0 ), 7= 0 1 |=M,(0,),
o
b 0--0

and that an element w of the unramified extension contained in B has the form
‘@ 0 ‘@ 0

( ) 6:( )EM’P(kP), where o is a generator of Gal(k,/k). Then
0 @ 0 o Yw)

ZX)yk, decomposes into a sum of fields Z,5--@Z; and the corresponding

orthogonal idempotents has the form

0o . 0

o i o

LEmMA 12. (Chevalley [3]) Notations and assumptions being as above, the
necessary and sufficient condition for an O-ideal A to be optimal to Oz is:

Fi
(ii) A'=AM\0,) is of the form F@%P“’&M,,(OP),

where P is the prime ideal of Oz and €2, 1, =x,= - =x;5 and x5—x,=n'd/d.

In particular,

(iii) if o=1, (ii) is equivalent to: A=P*0, ac Z.

(iv) if d=n'a, (ii) is equivalent to: A=y, where p is the prime ideal of O and
=y



Positive definite binary quaternion hermitian forms 585

4-5. Now we assume that g=G belong to the case (V) in (14). Then Q[ g]
=F,@QF,, F, being imaginary quadratic fields contained in B. First we consider
the case F,,#F,,. Then, by the result of §2, all elements in G, having the
same principal polynomial as g are conjugate in G, to g. We can take g=

w, 0

(0 ) as a representative, where w;=@;, ©; being the ring of integers in F,.
Wy

We assume that Z,[ g]=0,,40,,. If g is of finite order, this assumption is satisfied

(when F,,#F,,).
PROPOSITION 17. Notatlions being as above, we have:
(i) If (%)zl, (%)=—1, then B, is split and

I"'i:f A 201 @Og ’
c.(g MiO,), Ap):{ . T

. 1 F
i 11 ()0 (B)m,
2 if A4,=0,,D0:, and B,=division,

co(@ Ma(0p), A= 1. if A,=0,,00.,, and B,=split,

-+ otherwise.

0 otherwise.

Proof. We prove only (ii), since (i) is easier. We note that if M (g, M.(0,), 4,)
+&, then we have g€4,. So by the assumption, ¢,(g, Ms(0,), A,)=@ only for
A;,=0,,80;,. Then we can apply the theorem of Chevalley : x& M,(g, M.(0,), 4,)
if and only if xMy(0,) is a right M,0,)-ideal, optimal to A, 1t B, is split,
we see that, for F,, p=1, n'=2, d=1, é=1, and for F, p=l, n'=2, d=2, é=1,

71 0
¢, e=GLy(0,),
0 p=

where © is a prime element of F,,. Since x=G,, we have xx*=ac @},

in the notation of lemma 12. Then x can be written as x:(

Nr=a ()

a . “):ES*EGLz(Op). It follows that e,—2e,, and x~p %xl,, so x~I,
p" 2

Next assume that B, is division. Then we see that for F), p=2, n'=1, d=1,

d=1, and for F, p=2, n'=1, d=2, §=2. By Lemma 12, we can write

% 0
x:(o )5, e=GL,(0,), where = is a prime element of F,, (and B,). Since
bt

x=G,, we have

(Nrr“l 0
a

=ee*€GLA0,), 0€Q;.
0 Ng-¢2
0"

¢
So we have e;=e,, and x~1, or 7. If 7~1, we can write ; =( U, uel,,
0 d



586 Ki-ichiro HasuimMoTo and Tomoyoshi IBUKIYAMA

Ne™' 0

0 Nd!
is unramified. So we have M, (g, My(0,), 4,)=Z4(g)- {1, 7} - Up, and cp( g, My(0y), 4;)
=2, for 4,=0,,/80:,. This proves (ii). g.e.d.

ceF{, d=F;,. Then Nfr-( ):uu*EZ;, which is impossible, since Fj,

We omit the case when both F, p and F,, ramify, which does not appear if
g is of finite order.

Next we consider the case Fy,=F,, (=F,). In this case, there are two
G,-conjugacy classes for each principal polynomial, except for the case F,=
Q,PQ,. If we take, as one of the representative of the conjugacy classes,

w0 ‘w, 0
glz( ), ®;= 0, then the other can be taken as g,:(

W, 0 a‘'wsa
is any element of B} such that N(a)é&NF,10,(F;). We assume that geG is of
finite order.

), where a€ B}

PROPOSITION 18. Notation being as above, we have:
H Fp o
(i) If (5-)_1.
1ewif A,=0,00,,
co(g, Mi(0,), Apjz{ SR

0 otherwise.

& Fpy
(n) If (?)_ 1, and p#2,
2 if A,=0,80, and B,=division,
Cp(gh JME(OP); Ap)= 1. 1f AP=O},@0P and Bp:b‘})ffi,
0 - otherwise,

el g, MLO,), A,) - if B,=division,
el g M0, Af"l o B et By
0 Ur Bp':Sp!{lt.

Gi) 17 (£2)=—1, ana p=2
2 if Ap=0,80, and B,=division,
2 if Ay=A(1), and Bp=division,
¢p(gu My(0p), Ap)=1{ 1+ if A,=0,B0, and B,=split,
l 1 if Apy=A(1), and By=split,
0 --- otherwise,
co(@y, My(0,), Ap) -+ if A,=0,850, and B,=division,
co(ge Mi(O,), Ap)={ Op 1 AUp » p P P P

- otherwise,

where A(1),={(x, »)€0,86,; x=y (mod p)}.
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av) 17 (22)=0
L if 4;=0,005

e g, Mi(0,), A }={
pEn . 0 -+ otherwise. for 1=1, 2.

Proor. If A, is maximal in Z(g),, then we proceed in the same way as in
Prop. 17, making use of the theorem of Chevalley. Since g&G is of finite order,
we see that Z,[g] is not maximal only if F,=F,=Q(~/—3) and p=2. In this
case we proceed as in Prop. 14, 15. We omit the details. q.e.d.

4-6. Finally, we assume that g=G belong to the case (VI) in (14). If g is
of finite order, its order is either 5, 10, 8, or 12, since the principal polynomial
of g has degree 4. As in §2, we write F=Q[g], F;=Q[g-+g*]. Then the
number of the conjugacy classes of the elements in G,, having the same principal
polynomial, is equal to [F5,: Q;Ngr,(F};)] which is 1 or 2. We note also that
Z [ g] is always maximal in F,, if g is of finite order. Therefore, c,(g, M:(0,), 4;)
=0 for 4,#0r,=Z,;[g]. In the following propositions, we shall use the simplified
notations :

t=LF3p: QeNpirFp)], cp(g)=cp(g, Mo(Op), Zp[ g1

First we treat the case where g has order 5 or 10.
ProposiTION 19. Notation being as above, we have:

(i) If p=1 (mod. 5), then B=split, t=1, and c,(g)=1.
(ii) If p=2, 3 (mod. 5), then t=1, and
1.+ if Bp=split,
co(8)=
0 -+ if Bp=division.
(iii) If p=4 (mod. 5), then t=2, and
1 0. if B,=split,
colg)={ , elgn={ g
2 2 .+ if B,=division.
(iv) If p=5, then t=1, and c,(g)=1.

PROOF' ( i ) Since FP = QF@QJJ@QP@QJJ’ Fap=Qp{B Qp, we have =
[(Q,5Q,)": (Q,DQ,)*]=1, and we can take

ay 0
[
g= » W EQy, ww.=wyw, .
]

0 W,
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By the theorem of Chevalley (Lemma 12), any x= M,(g, U,) can be written as
pr 0
p*
x=a e, a=Qj; e=GLyO,).

p
0 P

Then since x=G,, we have

p-(é;{-zg) 0
p-(eﬁ-ez)
=ec*eGLA0,), beQj

p-{es+e‘)

0 p- (egtey)

S0 ¢,+e.=ey+e,=ord,(b). Therefore x=Zz(g)U, x~1.
(ii) F, is the unramified extension of degree 4 over @,. So we have (=
[Fip: Fipl=1, since Q;Np/r(F;)=F;,. We assume first that B, is split. Then
we have, p=1, d=1, in the notation of Lemma 12. So any x& M,(g, Up) can be
written as x=n%¢, e=GL,0,), where = is a prime element of F,,. Then
(XN pipy(m) P =8s*EGLA0,) N Fop =05, Since F,/F,, is unramified, we have
O, =Nrip,(OF,), se*=Ngir(a) for some a=0f,. Then a'e€U,, so x=(za)(a™"¢)
€Zs(g)U, x~1. Now we assume that B,=division. We shall show that the
conjugacy class of g is not p-integral. We take a prime element = of O, such
that ra=4ar for all a=F,,. We take w=0, which has the same principal poly-
0 —1

nomial over @, (in B,) as g+g*=F,, and put ;:(1 ) Then { has the same

w
principal polynomial as g, so we can write g=x"'{x for some x=GL(5,). It is
0 —a
a 0
then xM,(O,) is an optimal M,(0O,)-ideal to Z,[{], and we can apply the theorem
of Chevalley: p=n'=2, d=4, 6=(2, =2, so n’d=d in the notation of Lemma 12,
and x can be written as x=n‘%,=¢xn% &, e=GL,(0,), since (x) is two-sided.

0 —a
)A"(:r)"rr"EGLs(Op), which is impossible, since Fy,=
0

easy to see that b= G,,Mxx*z( )7:'1 for some a=Q(w)=F,,. If g M.(0,),

Then we have se*:(
a
Q,(w) is unramified.

(iii) We have F,,=Q,5Q,, and F,=K,BK,, where K, is the unramified quad-
ratic extension of @,. The principal polynomial of g splits as f(x)=(x*+ax+1)
(x*+bx+1), a, b=Q,. Therefore our assertion can be reduced to the case where
£ belongs to the case (V) (Prop. 18). We omit the details.

(iv) We can preceed in the same way as in (ii), so we omit the details. g.e.d.

Now we assume that g has order 8 or 12. Then F=Q[g] is an abelian
extension of type (2,2) of @, and it has two imaginary quadratic subfields Fy, Fy:
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F,=Q(v/—1), F,=Q(~/—2) if g has order 8, and F,=Q(~/—1), F,=Q(+/—3) if g
has order 12. As we have seen in § 2, they correspond to the quaternion algebra
Zohy), Z,(hy) over Q, where h; denote a generator of F;. In the following two
propositions, we shall give the structure of Z,(h;), which will be necessary in §5.

ProprosITION 20. Assume that g has order 8.

(i) If p=1 (mod. 8), then Bp=split, i=1, e,(g)=1, and Z,h)),=split, Zy(h:)p
=split.

(ii) If p=3 (mod. 8), then t=l, and c,(g)=1 (resp. 2), Z,(h)p=split, Z,(hs)p=
split (resp. division) if By=split (resp. division).

(i) If p=5 (mod. 8), then t=1, and c,(g)=1 (resp. 2), Zylhy),=split (vesp. divi-
sion), Zy(h:)p=split, if Bp=split (resp. division).

(iv) If p=T7 (mod. 8), then t=2, and we denote by g, g' the two representatives
of the conjugacy classes in G,. Then we have:

{ 1 7 {—i—l 7 {—Fl = if Bp=+1
— ’ o(h1)p= » he)p=
c(g) g (hi)p o o(ha)p Cleeif By=m1,
0 =z . |
cp(g’}:[ ; z.,(;m:{ ; Zuthzaz{ ‘
2 — 41 vif Bp=—1.
(v) If p=2, then t=2, and we have:
1 =1 —1.if By=+1
Cp(g)z{ » ZD(hI)p:{ f Zo(hz)p-—_{ ;
1 +1 +1 - if By=—1,
(@) {1 20D {— ZhD {—]—1 if Bp=++1
4 — N h! — M h, f o
C\8 1 ol /1) p L o fl2)p =1 viif Bp:—l

where, for simplicity, we write B,=+1 (resp. —1) s B, is split (resp. division),
and similarly for Zy(hi)p.

ProPOSITION 21. Assume that g has order 12.

(i) If p=1 (mod. 12), then B,=split, t=1, c¢,(g)=1, Z\(h,)),=split, Z,(hs),=split.
(ii) If p=5 (mod. 12), then t=1, and c,(g)=1 (resp. 2), Zy(hy),=split (resp. divi-
sion), Zo(hs)p=split, if B,=split (resp. division).

(i) If p=7 (mod. 12), then (=1, c,(2)=1 (resp. 2), Zy(h,),=split, Z,(hs),=split
(resp. division) if Bp=split (resp. division).

(iv) If p=11 (mod. 12), then t=2, and we denote by g, g’ the two representatives
of the eonjugacy classes in G,. Then we have:

41 if Bp=+1

()—{1 Z()—{l Z()—{
=1 5 Zkhde=1 _ ; Zlhdy=
WET]gr T g BT b Bk
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0 - —1-if By=+1
cp(g")=l ) Za(hi)={ 5 ZD(}I;)pz{
2 = +1-if By=—1.
(v) If p=2, then t=2, and we have:
1 +1 +1-if By=+1
Cp(g):! y Zo(hl)p: ’ Z:J{hs)p: i
2 — +1:if By=—1
0 - —1:if Bp=+1
Cp(g'3=| N Za(hi}p=| y Zo(hd)p= -
1 +1 —1 . if By=—1
(iv) If p=3, then t=2, and we have:
l +1 —1-if By=+1
cp(g)Z{ , Zn(f'h)p={ ) Zu(hz)pZ{
2 +1 41 if By=-—1,
0 —1 +1 if By=+1
cp(g)= » Zu(h{)p: , Zo{héjz{
1 -1 — if By=—1

We omit the proof of the above two propositions, since they can be proved

in the same way as in Prop. 19.

§5. Explicit formula for the class number of the principal genus.

Gathering together all data in §3 and §4, we shall finally get the explicit
formula for the class number of the principal genus £(0; 0) in the guaternion

hermitian space (B?, f).

5-1. The principal polynomials of conjugacy classes that take parts in the

formula of Theorem A, are the following:

Hlx)=(x—1), fr(—x)
fol0)=(x—1)*x+1)
Fa(x)=(x—1)*x*41), fo(—x)
fux)=(x—1Y(x*+x+1), fu(—2x)
fu()=(x—1)*x*—x+1), fs(—x)
f=(x2+1)*
F(0)=(x4-x+1), fo(—x)
Fl)=(x*+1)x+x+1), fol—x)
Folx)=(x*+x+1)(a2—x+1)
Fron)=0*+x*+x2+x+1), fio(—x)
f11(x):(-1'4+ 1
Frel®)=(x'—x2+1)

..case (1)
..case (1)
..case (II)
..case (IM)
....case (I)
....case (IV)
..case (IV)
soeniase (V)
....case (V)
....case (VI)
..case (VI)
..case (VI)
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We denote by [; the total contribution to the formula in Theorem A, of
those conjugacy classes whose principal polynomials are of the form fi (£x).
Note that, the contribution of g and —g are equal, and H,=H; by Prop. 14.

THEOREM 2. The class number H of the principal genus of the positive
definite binary quaternion hermitian forms over B is given by

where H; are as follows:

Hi= e I (p—1Xp*+1),

2°3%5 pinim
i 7 --if 2} D(B),
ng T H —1)
293% pibesy ) { ~1f 2| D(B),

Hy= 2}3 pﬂw) (p— IJ( (—))

et g B 0-90-(52).

e B-é}w, 23 AL(P _Umgw-(lr(—Tl))
3 - if 2/ D(B), 2 | D*
5--if 2| D(B), 2| D*
5 -if 2)D(B), 2 )y D*
11--if 2 | D(B), 2 } D*,

where D* runs through the set of divisors of 2D(B) which are product of odd
number of primes.

o=, 3 T o-D 1 (1-(52))

pibeBy 2°3° pior PI3DID b
~if 3| D*
X{ 4 - if 3 D(B), 3} D*
6---if 3| D(B), 3} D*,

where D* is as in H,.

Hy= '223 plg([m( _(_Tl))(l“(?))
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H,= I;?plg.clm(l _(__13_3))3+2_13_FI£2B>(1 _(‘:pg—))!
X{ 2--if 2| D(B)

1--1if 2) D(B)
0"'?:f Ui, D(i; B+

2x1{ 1-if Ui, DG; 5)=g, 5/ D(B)

2 - otherwise,

Hm: E PID(EB) peED(-1;B)
where we put D(i; j)={p|D(B); p=i (mod. j)}.
1 0---1f D(1: 8)#@
Hn:? H 2 IT .
BDE pEDL-1;8) 1 .- otherwise
Hy,=0 if D(1; 12)#@. In other cases, it is as follows:

(i) if 6/ D(B),
(0---1f D(—1; 12)=@, $D(5, 12)=even

2X1 1-if D(—1; 12)#@
 2-if D(—1; 12)=0, $D(5, 12)=o0dd

1

T 2°3 ppim  pebi=i;am

le

(ii) if 2}y D(B), 3| D(B),
2-if D(—1; 12)=0, £D5; 12)=cven
1

Ho=—+ TII 2 ITI 2X4 3.if D(—1; 12)#@
2'3 pid®  peD(=1; 113
4--if D(—1; 12)=g, £D(5; 12)=o0dd

(i) if 2|D(B), 3} D(B),
4 if D(—1; 12)=@, £D(5; 12)=cven
1

Hoy=—= I1 2 TI 2X{ 3-if D(—1; 12)+@

2‘3 pID(BY pED(-1;12)
2. if D(—1; 12)=@, $D(5; 12)=odd
(iv) if 6/ D(B),
10 - if D(—1; 12)=, $D(5; 12)=cven

2x{ 9 --if D(—1; 12)#@
L 8 - if D(—1; 12)=g, $D(5; 12)=0dd

1

- 263 PIDCB) pED(-1;12)

HJE

(The formula for D(B)=prime has been reproduced in Introduction).

5-2. PROOF oOF THEOREM 2.

H,: The formula for H, is a direct consequence of Prop. 9 and Remark 2.

H,: We see from Prop. 13, that the G-genera which appear are Lg(A,),
1=1, 2: Aip=A(0), for p#2, and A,,=A(0),, A:,=A(1), for p=2. From theo-
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rem A, we have
Hs:iwc(/ii)l;[ cp(g, Mz(op), Alp)+MG(A2)I;[ f-'p(g, Mz(op). Aep)
:MG(A1}+MG(A2) '

since, by Prop. 13, ¢,(--) is always 1. Then from Prop. 10, we get our assertion.
H,: We see from Prop. 14 that only one G-genus appears: Lg(A), A=0&F0.

We have by Prop. 14 that c,(g, My(O,), 4,)=1 if B,=split, and :1—(_71) if

B,=division. Then we have by Prop. 11,

Ha:ZMG(A)FEB)(l—(_Tl))= 1L, —(_Tl)) :

H,=H,: We can proceed in the same way as in H,, and omit the details.

H;: By Prop. 4, the set of locally integral conjugacy classes are in one to
one correspondence with the set of isomorphism classes of definite quaternion
algebras over @ whose discriminant divide 2D(B). Take one such g, Z.,(g), and
put D*=D(Z,(g)). From Prop. 15, 16, we see that the G-genera which appear
to the contribution of C(g) are:

Lg(A); dofes=3/2, Le(Ay); dafe.=1, La(Ay); dofe.=3,
dples=1 for p+2, Ay Aiy, Asp,

where /A, appears if and only if B,=division or Z,(g).=split, and A, appears if
and only if B,=division, Z,(g).,=split. By the same propositions, we have
ex(g, M0,), Ai)=1 if B,=split or Zy(g),=division, and cp(---J=1—(_Tl) if

B,=division and Z,(g)=split. Thus the contribution of C(g) is:

i:él* i“'fG{Ai) 1;[ Cp(g; Jn"fz(op:'r Aip)' d}J(Atp)/ep(Aip)
3/2 --if 2} D(B), 2| D*

1 : -1 IR i *

_4—83”0_(;;—1)%?{;](1—(T))x 2L i 2| D2 DY or
3/24+143--if 2 | D(B), 2} D¥,

where 3 * indicates that the term for { appears according to the remark above.

This proves our assertion.

H,: This is proved in the same way as H,. The details are omitted.

H,: We see from Prop. 17, 18 that for each locally integral conjugacy class,
the only G-genus appears: Lg(d), 4 =0p ®Op,. Moreover, the values
e(g, M(0p), A,) are independent of the conjugacy classes in Gy, if they are
integral. Therefore we have, by Prop. 17, 18,
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HS:ZMG(A)CCJ): Iw§y integral ].;Icp(gﬂ) MZ(Oﬁ)! AP)
2
24 p:gm (cp(81, Mi(0)), Ap)+cy(gs Mi(0y), Ap))Xcog, ++)eslg, )
e

=12, 35,0-(GN0~(5).

since the map ¢ in (15), § 2 is surjective. (Note that A(F\)=h(F,)=1).

H,: We see from Prop. 18, (iii), that two G-genera Lg(A,), Lg(A,) appear:
Aip=0,B0, for p#2, and A,,=0% A,,=A(1), for p=2. For Ls(A,), we can
proceed in the same way as H; except that the image of ¢ in (15) is now a
subgroup of index 2. However, since c¢,(---) does not depend on the conjugacy
class in G,, we have only to multiply 1/2 to the value above. As for Lg(A.), it
is easy to see that A;NG={(x, y); x, yEO©*, x=y (mod. 2)} has order 12, and
Mg(A)=1/8(A3 "G). Then we get our assertion.

H, H,y: We see from Prop. 19, 20, that c,(g,)=c,(g:) if g, g. are both
p-integral. Therefore we can prove our assertion in the same way as H; or H,,.
So we omit the details.

Hy;: In this case ¢,(g) does depend on the conjugacy class, if p=2 or 3,
even in the assumption that they are p-integral. We have

H,,= b3 Ms(OF) ];I (&)

€(g): locally integral
1
= IIes(@)+c,(g)
P

where, IT* indicates that the product is taken over all combinations of G,-con-
jugacy classes (g”),, g”"=g or g, such that the number of p's for which Z,(g?),
=division is odd. Then we can easily get to the assertion, by distinguishing the
cases according as whether 2| D(B), 3| D(B), or not. This completes the proof of

Theorem 2.
As a corollary to the above investigation, we have:

COROLLARY. The number C; of the locally integral conjugacy classes in G
whose principal polynomial is fi(x) is given as:
C1=C2=Cs=ci:c:5=1 ¥
1 9 1

a _Z—pm)[m
G

(
c=1,20-(GN0-(5):

Cs
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&=, 1, 70-(5N0-(5).

c=, 11, (1-(5°

Ci= 1II 2}<<l
pID(-1; &) 1 a0

Cu: H 2)({
piDC-1; 8) 1--

1
Clzz I

5-3.
Numerical examples

2 pide-1; 1302, 1NDCBY)

1---1if 3/ D(B)

))x{ 2-1f 3] D(B),

if Ula D(i; 5#2
otherwise,

if D1, 8)+@

- otherwise,

0if DU; 12)#@ D(—1; 12)J({2, 3}
ND(B)=g, $D(5; 12)=cven

ND(B)=@, $D(5; 12)=0dd
1+ otherwise.

The values of H for small discriminants are as follows:

(i) 7 D(B)=prime
D(B) 2 3 5

7 11 13 17 19 23 29 31 37

H 1 1 2 2 5 4 8 10 16 24 26 37
(ii) ™ D(B)# prime

D(B) 235 237 2311 2313 2317 257 2511

H 12 2 69 94 203 75 283

D(B) 2513 357 3511 3513 3711 5711

H 432 255 1014 1601 2760 13956

595

23f DA; 12)=@, and D(—1; 12)U({2, 3}

REMARK 3% The fact that H=1 for D(B)=2 and 3 has been proved by Y.
Ihara and used in [12]. He proved it in two different ways; one by using Mass
formula (cf. Remark 2 in §3), and the other by using modular forms of one

variable with weight 4,

5-4. For the convenience of the later use, we give here the formula for the

dimension of the space ‘é%i}}tf defined in [9], where (p, M) is the irreducible

representation of GL=USp(2) corresponding to the Young diagram :
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(cf. [12]).

THEOREM 3. Let g; j=l1, -+, 12, be any element of G having the principal
polynomial fi(x). Then

H 12
dim gﬁ: M= f«Ex tr p(gyH;,
where H; is as in Theorem 2, and tr p(g,) is given as follows:

tr p(g,)=dim M=(k+1)(k+2)(2k+3)/6,
tr p(g2)=(—1)*(k+1)(k+2)/2,

B2 - k=0
1 ) e4t o=t
e 3 —(k+2) - k=2 b
] —(k+41}) - k=3
26+3 - k=0
tr plg)=5 x| —(k+2) - k=1 (mod. 3)
—(k+1) - k=2
1 e k=0
B2 k=1
k+1 k=2
wolgd=y (mod. 6)
—(k+2) - k=4
—(k-+1) - k=5
- p(gn}=% x{ k42 - k=0 .
B+1 k=l
2k+3 - k=0
tr p(gv)Z%x 2k+4 - k=1 (mod. 3)

BE4D o p=?
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1 wk=0,12 3

tr p(ge)=q 0 - k=4,5,10,11 (mod. 12)
—1--£k=6,7,8,9
1 - p=0

tr p(ge)=1 0 - k=1,2,45 (mod. 6)
—1- k=3
1 k=0

tr p(gi)=y 0 - k=1,3,4 (mod. 5)
=1 k=2
1 k=0

tr plgw)=] —1 - k=1 (mod. 4)
0 k=273
1 - k=0
—_2 e =1

tr o(gie)=1{ 2 - k=2 (mod. 6)
—1 . =3
0 - k=4,5

Proor. The first formula is a direct consequence of Theorem A. The
formula for tr p(g,) is easily calculated by the character formula of Weyl [21].

§6. Concluding remarks.
6-1. Construction of maximal lattices.

We shall give a method of finding all maximal O-lattices in B? belonging to
the principal genus £(0Q;0), where O is a maximal order of B. It is well known
that the class number of M,(B) is one, since the strong approximation theorem
holds. Therefore any O-lattice in B? can be written as

L=(0, O)x, x=GLB).

ProposiTION 22. (i) L=(0, O)x belongs to £{0;0) if and only if x satisfies
the condition :
t r

(30) xx*-——m(
Foos

); t,5>0, €Z, re0, ts—Nr)=1, meQ:.
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(ii) If L is as in (i), then the norm Ny (L) of L is N (L)=mO.
(iii) L,=(0, O)x;, L,=(0, O)x,= £(0; 0) belong to the same class if and only if
there exists y= GLy(0) such that

(31 yahy*=nx.x¥, ne@:.

Proor. (i) If L=(0, O)x=L(0;0), then there exists, for each prime p, an
element g€ G, such that (O, 0,)x=(0,, Op)g. Then g=ux for some uc GL(0p),
and u(xx®u*=gg*eQ;, (W u)'=(gg*)'xx* GL:(0,), so the condition is necessary.
Sufficiency is easily shown by using Lemma 11.

(ii) It is easy to show that N (L,)=mO, for all p, hence N (L)=m0O. g.e.d.

We see, in particular, that if N,(L)=0, then the class of L=(0, O)x depends

t r

only on (_

. So we write,
r 5

£ r
(32) L=L(t s, r) for L=(0, O)x, x.t*=( B )

F s
We note here that, if , s, » satisfies the condition in (30), there always exists an

t r

x=GL,(B) such that xx*:( ) Since any maximal O-lattice in £(0; 0) is

T §
equivalent to a maximal O-lattice with norm O, we can reduce our problem to

find all representatives of the classes in .£(0; 0), to the problem to find all

I r
( ) satisfying (30), up to the equivalence by GL,(0).
F s

t r

LEMMA 13. (i) The equivalence class of( ) depends only on r mod s

for fixed s.

R t arb
(ii) If a, b=0*, then and | ___ are equivalent.
S arb s

t r s
(iii) ( )and( )are equivalent.
F s r i
1 uyv/t r\yl O * r4su
Proor. (i) We have for uEO,( )( ( = )
0 1/\F s/\@& 1 Fsil
) (r arb)
5) \arb s/

0
0D 1 r\/0 1 i 7

(iii) ( )( B )( ):( ) q.e.d.
1 0/\F s/\1 0O SR

]

i 1]
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By using the basis of O over Z, we can thus find all triples (¢, s, r) satisfy-
ing the condition in (30), in the following steps:

1) Let s=1, 2, 3, -

2) To each s, find all r€0/(s0) such that N(r)+1=0 (mod. s).

3) Let t=(N(r)+1)/s.

We give here an example of a basis of a maximal order O(g, ¢) which is
given in [11]:

(38) Olg, o)=Z+Z(1+ )2+ Za(1+8)/2+ Z(c+a)B/q,

where, we write B=Q+Qa+Qj+Qaf, a*=—m=—D(B), f*=—q, af=—pa, and
q, c satisfy

(i) ¢ is a prime such that ¢=3 (mod. 8), and (;;—):~1 for all primes p|m,

Il:ﬁz,
(ii) ¢*+m=0 (mod. g).

Examples of lattices: In the notations of (32), (33), following two lattices
form a set of representatives of classes in £(0O; 0).
(i) D(B)=5, H=2, 0=0(3, 1);

L,=L({,1,0), L.=L(2, 2, 1+(1+a)8/2).
(ii) D(B)=7, H=2, 0=0(11, 2);
Li=L{1, 1,0), Ly=L@, 2, (1+5)/2).

6-2. The relation between G and O(5).

We have a natural question about how our results are connected to that of
T. Asai [2], since the two grougs G' and O(5) are isogenous.

Let (V, @) be a quinary quadratic space over @. Assume that it is non-
degenerate. Then it is well known that the even Clifford algebra C*(V) of (V, @)
is a central simple algebra over @ of degree 16, with the main involution. It is also
easy to see that C*(V)=M,(B) as algebras with involutions, if and only if V is
similar to a quinary space spanned by an orthogonal basis e,, -, e; of the form:

(34) ei=mq, ei=m, ef=q,
where m, ¢ are as in (33). Then we see that (V, Q) is realized in M,(B), as a
subspace :

t
(35) V:{( r); teQ, reB, Q(( ))~12+N(r)}
po=f

Note that the discriminant of (V, Q) belongs to (@)%
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PROPOSITION 23. Notations being as above, assume that the discriminant D(B)
=m of B is prime to 2. Then we have,
(i) SOV, Q) is isomorphic (as an algebraic group) to

G/Q ={g=MyB); gg*cQ"} /Q"={gcsMB); g'Vg=V}/Q",

(ii) Let O be a maximal order of B. and put

t r
Ly=l( ); teZ, ?’EO}.
F—t

Then Ly is a maximal lattice in V with reduced discriminant 2m® in the sense of
Eichler [6].
(iii) The number of the classes in the genus containing Ly is given by:

T=#{g'M0)g ; g= G4}/ 5)=#Ls(M0))/ %) -

PrRoOOF. (i) and (ii) are proved by direct calculations. Besides, we can show
that the ring generated by Ly in My(B) is M,(0). Then (iii) follows immediately
from (i), (ii). q.e.d.

Thus the class number of the genus of Ly in (V, @), whose explicit formula
has been given in T. Asai [2], can be interpreted in our terminology as the
number of G-conjugacy classes in the G-genus Lg(M.(0)) of maximal orders con-
taining M.,(O) (the ‘type number’ of G). Note that the same relation between
the type number of B and the class number of some ternary quadratic forms is
well known.

Finally we give a formula, which expresses T as a sum of traces of some
modified Brandt matrices. Let L,, ---, Ly be a complete set of representatives
of the classes in the principal genus £(0; (), and let R; be the right order in
MB) of L;: Ri={zeM,B); L;zSL;}. For each n|D(B), we define an element
T*(n) of Hecke algebra H, of G:

T*(n):(Tt‘)l;L_ﬁsH »
TH={gsC; n(g)=n, gR=R;g, L;gSLy}.

Then we have the following formula, which can be proved by the same way as
in Eichler [5], Satz 11.

PROPOSITION 24. Let t be the number of the primes dividing D(B). Then
we have

T=21 = trB*m),

2‘ niD{B)
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where B*n) 1s the modified Brandl matrix defined by T*(n) in the similar way as
in [9], with p: trivial.

References

[1] Asai, T., The Conjugacy classes in the unitary, symplectic, and orthogonal groups
over an algebraic number field, J. Math. Kyoto Univ. 16 (1976), 325-350.

[2] Asai, T., The class number of positive definite quadratic forms, Japan. J. Math.
3 (1977), 239-296.

[ 31 Chevalley, C., Sur certains idéaux d’une algébre simple, Abh. Math. Sem. Univ.

Hamburg, 1934, 83-105.

] Eichler, M., Uber die Idzalklassenzahl total definiter Quaternionenalgebren, Math.

Z. 43 (1938), 102-109.

[ 51 Eichler, M., Zur Zahlentheorie der Quaternion-Algebren, J. Reine Angew. Math.

195 (1955), 127-151.

] Eichler, M., Quadratische Formen und Orthogonale Gruppen, Springer-Verlag, 1952.
1 Gelfand, L.M. and M. A. Neumark, Unitire Darstellungen der klassischen Gruppen,

Akademie-Verlag, Berlin, 1957.

[ 8] Hashimoto, K., On the arithmetic of the quadratic extension of quaternion algebras
(in Japanese), Master thesis, Univ. of Tokyo, 1977.

[9] Hashimoto, K., On Brandt matrices associated with the positive definite quaternion
hermitian forms, J. Fac. Sci. Univ. Tokyo Sect. 1A, 27 (1980), 227-245,

[10] Hijikata, H., Hasse principle for the conjugacy classes of the orthogonal group
(in Japanese), Reports of the symposium on algebraic groups held at Yamanaka-
Kyodo-Kensyujo, 1973.

[11] Ibukivama, T., A basis and maximal orders in quaternion algebra over the rational
number field (in Japanese), Sugaku 24 (1972), 316-318.

{121 Ihara, Y., On certain arithmetical Dirichlet series, J. Math. Soc. Japan, 16 (1964),
214-235.

131 Landherr, W., Lie Ringe vom Typus A iiber einem algebraischen Zahlkérper,
Abh. Math. Sem. Univ. Hamburg 12 (1938), 200-241.

[14] Ramanathan, K.G., Quadratic forms over involutive division algebras, J. Indian
Math. Soc., 20 (1956), 227-257.

[15] Satake, I., Theory of spherical functions on reductive algebraic groups over p-adic
fields, I.H.E.S. Publ. Math. No. 18, 1963, pp. 5-69.

[16] Shimizu, H., On zeta functions of quaternion algebras, Ann. of Math. 81 (1965).
166-193.

[17] Shimura, G., Arithmetic of alternating forms and quaternion hermitian forms, J.
Math, Soc. Japan 15 (1963), 33-65.

[18] Shimura, G., Arithmetic of Unitary Groups, Ann. of Math. 79 (1964), 369-409.

[19] Tamagawa, T., Adeles, Proc. Sympos. Pure Math. Vol. 9, Amer. Math. Soc., 1966,
pp. 113-121.

[20] Weil, A., Adeles and algebraic groups, Lecture Notes, Institute for Advanced
Study, Princeton, 1959-60.

[21] Weyl, H., Classical groups, Princeton Univ. Press, 1939.

(Received October 15, 1979)

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo

113 Japan



	On_class_numbers_of_positive_definite_binary_quaternion_hermitian_forms_By_Ki-ichiro_HASHIMOTO_and_Tomotoshi_IBUKIYAMA



