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HIRAGA, KAORU

This is a brief summary on endoscopies corresponding to GSp(4) 1.

1. Introduction

In this article, F will be a number field or a local field of characteristic
0. We write WF for the Weil group. Let

G̃ = GL4 × GL1

defined over F . Then the dual group of G̃ is

ˆ̃G = GL4(C) × C×.

Since G̃ is split over F , the action of WF on ˆ̃G is trivial, and the L-

group LG̃ of G̃ is ˆ̃G × WF . We define an outer-automorphism θ of G̃
by

θ(g, z) = (J tg−1J−1 , det g · z), (g, z) ∈ GL4 × GL1,

where 2

J =


1

−1
1

−1

 .

Then θ is defined over F . We define an outer-automorphism θ̂ of ˆ̃G by

θ̂(g, z) = (J tg−1J−1 · z , z), (g, z) ∈ GL4(C) × C×.

Then θ̂ is the dual automorphism of ˆ̃G preserving the standard splitting

of ˆ̃G. We put

Ĝ = ˆ̃Gθ̂ = {(g, z) ∈ ˆ̃G| θ̂(g, z) = (g, z)},

1Arthur’s good article [Art04] on this subject is available from“Arthur archive”:
http://www.claymath.org/cw/arthur/index.php

2This formulation might be different from the one in the other articles in this
book.
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2 HIRAGA, KAORU

and we make WF act on Ĝ trivially. Then Ĝ = GSp(4, C) and it is the
dual group of GSpin(5) = GSp(4) (split over F ). We put3

G = GSp(4) = {(g, z) ∈ G̃| (J tg−1Jz , z) = (g, z)}.

(This automorphism of G̃ is defferent from θ). Then we may regard Ĝ

as the dual group of G 4. The L-group LG of G is Ĝ × WF .
By the above formulation, we may regard G as a twisted endoscopic

group of G̃. More precisely, the group G is the first component of

twisted endoscopic data (G, LG, 1, ξ) for (G̃, θ), where 1 ∈ ˆ̃G is the
identity element and ξ is the natural embedding of LG to LG̃. (See
[KS99, §2.1] for the definition of the endoscopic data).

2. Standard endoscopy for GSp(4)

We put

T0 =





x1

x2

x−1
2 z

x−1
1 z

 , z


 ⊂ G

B0 =





∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 , z

 ∈ G


Then T0 is a split maximal torus of G and B0 is a Borel subgroup of G.
The standard parabolic subgroups of G are G, B0, PS, and PJ , where

PS =





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 , z

 ∈ G

 ,

PJ =





∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

 , z

 ∈ G

 .

3We could define GSp(4) by putting J =
(

0 12

−12 0

)
, but in order to avoid the

confusion, we use the same J for G and Ĝ.
4We have to keep in mind that the correspondences between G and G̃ (in the

theory of endoscopy) are defined through the dual groups.
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The Levi factors of PS and PJ are

MS =

{((
A 0
0 J2

tA−1J−1
2 z

)
, z

)∣∣∣∣ A ∈ GL2, z ∈ GL1

}
,

MJ =





a 0 0 0
0 b11 b12 0
0 b21 b22 0
0 0 0 a−1z

 , z


∣∣∣∣∣∣∣∣ z ∈ GL1, det

(
b11 b12

b21 b22

)
= z

 ,

where J2 =

(
0 1
−1 0

)
.

The Levi factors T0, MS, MJ , and G are standard endoscopic groups
of G. There exists one more standard endoscopic group for G. Let

s =




1
−1

−1
1

 , 1

 ∈ Ĝ.

Then

Cent(s, Ĝ) =





a11 a12

b11 b12

b21 b22

a21 a22

 , z

 ∈ Ĝ

 .

(This matrix is contained in Ĝ if and only if

det

(
a11 a12

a21 a22

)
= det

(
b11 b12

b21 b22

)
= z ∈ C×).

We put

Ĥell = Cent(s, Ĝ).

and make WF act on Ĥell trivially. Then

LHell = Ĥell × WF

is the L-group of

Hell = GL2 × GL2/{(x, x−1)|x ∈ GL1},

and

(Hell,
LHell, s, ξ)

is a set of elliptic endoscopic data for G, where ξ is the natural embed-
ding of LHell to LG.
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3. Transfer

In this section, F will be a local field of characteristic 0. We say
that γ ∈ G(F ) is strongly regular semisimple if T = Cent(γ,G) is
a connected maximal torus of G. We write G(F )sreg for the set of
strongly regular semisimple elements in G(F ). For γ ∈ G(F )sreg and
f ∈ C∞

c (G(F )), the orbital integral J(γ, f) and the stable orbital inte-
gral Jst(γ, f) are defined by

J(γ, f) =

∫
G(F )/T (F )

f(gγg−1) dg

Jst(γ, f) =

∫
G/T (F )

f(gγg−1) dg.

We write D(G) for the space of invariant distributions on G(F ). We
say that J ∈ D(G) is stable if

J(C∞,0
c (G(F ))) = 0,

where

C∞,0
c (G(F )) = {f ∈ C∞

c (G(F ))| Jst(γ, f) = 0, ∀γ ∈ G(F )sreg},

and denote the space of stable distributions on G(F ) by Dst(G). Sim-
larly, we define D(Hell), Dst(Hell), D(MS), Dst(MS), . . . .5 If π is an
irreducible admissible representation of G(F ), we write the distribution
character of π by J(π, · ).

We say that γ ∈ G̃(F ) is strongly θ-regular θ-semisimple if

Gγθ = {g ∈ G̃| gγθ(g)−1 = γ}

is an abelian torus, and write G̃(F )θ−sreg for the set of strongly θ-

regular θ-semisimple elements in G̃(F ). For γ ∈ G̃(F )θ−sreg and f ∈
C∞

c (G̃(F )), we define the twisted orbital integral by

Jθ(γ, f) =

∫
G(F )/Gγθ(F )

f(gγθ(g)−1) dg.

If π is an irreducible admissible θ-invariant representations of G̃(F ), we
denote the twisted character of π by Jθ(π, · ). We write Dθ(G̃) for the
space of θ-invariant distributions on G̃(F ). Then Jθ(γ, · ), Jθ(π, · ) ∈
Dθ(G̃).

5We have D(H) = Dst(H) for H = Hell,MS ,MJ , T0.
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We want to define the endoscopic transfer of distributions

TranG̃
G : Dst(G) −→ Dθ(G̃),

TranG
H : Dst(H) −→ D(G), for H = Hell, T0, MS,MJ , G.

For H = T0,MS,MJ , G, the endoscopic transfer TranG
H is defined by

the parabolic induction6. So it remains to define TranG̃
G and TranG

Hell
.

Let

AG/G̃ : Clss(G) −→ Clss(G̃, θ),

AHell/G : Clss(H) −→ Clss(G),

be the map defined in [KS99, Theorem 3.3A], where Clss(G̃, θ) is the
set of θ-conjugacy classes of θ-semisimple elements in G(F ) and Cl(G)
(resp. Cl(Hell)) is the set of conjugacy classes of semisimple elements
in G(F ) (resp. Hell(F )). We say that γG ∈ G(F )sreg is a norm of

γG̃ ∈ G̃(F )θ−sreg if γG̃ is contained in the image of the G(F )-conjugacy
class of γG under AG/G̃. Similarly, we say that γHell

∈ Hell(F )sreg is a

norm7 of γG ∈ G(F )sreg if γG is contained in the image of the Hell(F )-
conjugacy class of γHell

under AHell/G. We say that γG ∈ G(F )sreg is

strongly G̃-regular semisimple if γG is a norm of some γG̃ ∈ G̃(F )θ−sreg,
and γHell

∈ Hell(F )sreg is strongly G-regular semisimple if γHell
is a norm

of some γG ∈ G(F )sreg. We write G(F )G̃−sreg for the set of strongly G̃-
regular semisimple elements in G(F )sreg, and Hell(F )G−sreg for the set
of strongly G-regular semisimple elements in Hell(F )sreg. In [LS87],
Langlands–Shelstad defined the transfer factor ∆(γHell

, γG) for γG ∈
G(F )sreg and its norm γHell

∈ Hell(F )G−sreg, and in [KS99, Chap.4–
5], Kottwitz–Shelstad defined the transfer factor ∆(γG, γG̃) for γG̃ ∈
G̃(F )θ−sreg and its norm γG ∈ G(F )G̃−sreg. If γG ∈ G(F )G̃−sreg is not

a norm of γG̃ ∈ G̃(F )θ−sreg, then we put ∆(γG, γG̃) = 0, and if γHell
∈

Hell(F )G−sreg is not a norm of γG ∈ G(F )sreg, then we put ∆(γHell
, γG) =

0.
In order to define the endoscopic transfer, we need the following

conjectures.

6Endoscopic transfer TranG
H does depend on the fourth component ξ of the en-

doscopic data. For H = T0, MS ,MJ , G, we take ξ to be the natural embedding,
then TranG

H matches with the transfer defined by the parabolic induction.
7Usually, the term ”image” is used.
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Conjecture 3.1 (Transfer conjecture for (G̃, G)). For any function

f G̃ ∈ C∞
c (G̃(F )), there exists fG ∈ C∞

c (G(F )) which satisfies

Jst(γG, fG) =
∑
γG̃

∆(γG, γG̃)Jθ(γG̃, f G̃), ∀γG ∈ G(F )G̃−sreg,

where the sum runs over the θ-conjugacy classes in G̃(F )θ−sreg.

If f G̃ and fG satisfy the above equation, then we say that f G̃ and
fG have matching orbital integrals.

Conjecture 3.2 (Transfer conjecture for (G, Hell)). For any function
fG ∈ C∞

c (G(F )), there exists fHell ∈ C∞
c (Hell(F )) which satisfies

Jst(γHell
, fHell) =

∑
γG

∆(γHell
, γG)J(γHell

, fG), ∀γHell
∈ Hell(F )G−sreg,

where the sum runs over the θ-conjugacy classes in G(F )sreg.

If fG and fHell satisfy the above equation, then we say that fG and
fHell have matching orbital integrals.

For F = R, C, the transfer conjecture for standard endoscopy is
proved by Shelstad (see [She82]), and the transfer conjecture for twisted
endoscopy is proved by Renard [Ren03]. If F is a p-adic field, then the
transfer conjecture for (G,Hell) is proved by Hales [Hal89], and the
transfer conjecture for (G̃, G) is essentially proved by Hales [Hal94]
(see [Walpp] for descent).

By using the transfer conjecture, we can define the endoscopic trans-
fer by

(TranG̃
G JG)(f G̃) = JG(fG), JG ∈ Dst(G),

where f G̃ and fG have matching orbital integrals, and

(TranG
Hell

JHell
)(fG) = JHell

(fHell), JHell
∈ Dst(Hell),

where fG and fHell have matching orbital integrals.8

4. Local A-packets

In this section, we still assume that F is a local field of characteristic
0. We put

LF =

{
WF , F = R, C,

WF × SU2, F = p-adic field.

8For H = T0, MS ,MJ , G, we can also define TranG
H by using the functions with

matching orbital integrals, and this matches with the definition using the parabolic
induction.
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We fix a 1 dimensional character

χ : LF −→ C×.

We say that a semisimple representation9

ψ : LF × SL2(C) −→ GLn(C)

is χ-self dual if
tψ−1 · χ ' ψ,

and χ-self dual representation ψ is called symplectic (resp. orthogonal)
if there exists A ∈ GLn(C) such that

Atψ−1χA−1 = ψ,
tA = −A (resp. tA = A).

If

ψ : LF × SL2(C) −→ LG

is an A-parameter such that

LF
ψ−→ LG −→ LG̃

pr2−→ C×

is equal to χ, where pr2 is a projection of LG̃ = GL4(C)×C× ×WF to
C×, then

ψ0 : LF
ψ−→ LG −→ LG̃

pr1−→ GL4(C)

is a χ-self dual symplectic semisimple representation of degree 4, where
pr1 is a projection of LG̃ = GL4(C) × C× × WF to GL4(C).

Lemma 4.1. If ψ and ψ′ are A-parameters on G = GSp(4), then ψ
and ψ′ are equivalent as A-parameters if and only if ψ0 and ψ′

0 are
equivalent as 4 dimensional representations of LF × SL2(C), where ψ0

and ψ′
0 are defined as above.

Remark 4.2. Although the existence of the global Langlands group
is still hypothetical, we can prove the global analogue of Lemma 4.1
under the assumption that the Langlands group exists.

By Lemma 4.1, we may identify A-parameters on G with 4 dimen-
sional semisimple χ-self dual symplectic representations. In the foll-
wing, we will identify A-parameters with 4 dimensional semisimple
χ-self dual symplectic representations.

For an A-parameter

ψ : LF × SL2(C) −→ LG,

9In this article, we always assume that the restrictin of ψ to SL2 is algebraic.
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we put

Sψ = {s ∈ Sp(4, C)| Int s ◦ ψ = ψ},
Sψ = Sψ/S0

ψ,

where · 0 means the identity component. We denote by Zψ the image
of the center {±I4} of Sp(4, C) in Sψ. For s ∈ Sψ, we put

LHs = Cent(s, Ĝ)0ψ(WF ) ⊂ LG.

Then LHs is isomorphic to the dual group of a quasi-split reductive
group Hs

10. Since ψ factors through LHs, we can define an A-parameter

ψHs : LF × SL2(C) −→ LHs.

If F is a p-adic field, we define a homomorphism α : LF −→ LF ×
SL2(C) by

α(w × t) = w × t ×
(
|w| 12

|w|− 1
2

)
, w × t ∈ WF × SU2.

Similarly, if F = R, C, we define α : LF −→ LF × SL2(C) by

α(w) = w ×
(
|w| 12

|w|− 1
2

)
, w ∈ WF .

For an A-parameter ψ, we put

φψ = ψ ◦ α : LF
α−→ LF × SL2(C)

ψ−→ LG.

Then φψ is an L-parameter. Similarly, we get an L-parameter φψHs

from ψHs . By the Local Langlands correspondence for GLn [HT01,
Hen00], the L-parameter φψ defines an irreducible admissible represen-

tation π̃ψ of G̃(F ), since φψ defines an L-parameter LF

φψ−→ LG −→ LG̃.
Similarly, if Hs 6= GSp(4), in other words s 6= ±I4, the L-parameter
φψHs

defines an irreducible admissible representation πψHs
of Hs(F ).

We put Πψ(G̃) = {π̃ψ}. If Hs 6= GSp(4), we also put ΠψHs
(Hs) =

{πψHs
}.

Conjecture 4.3 (Conjecture for GSp(4)). For an A-parameter

ψ : LF × SL2(C) −→ LG,

there exists a finite set Πψ(G) of irreducible admissible representations
of G(F ) satisfying the following conditions.

(1) There exists a non-zero stable virtual character J(ψ) which is con-
tained in the subspace of D(G) spanned by {J(π)| π ∈ Πψ(G)}.

10Since G = GSp(4), this holds.
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(2) There exists a non-zero constant c ∈ C× such that

TranG̃
G J(ψ) = c · Jθ(π̃ψ).

(3) There exists a map

Πψ(G) −→ Π(Sψ/Zψ),

where Π(Sψ/Zψ) is the set of equivalence classes of irreducible rep-
resentations of Sψ/Zψ. We write 〈 · , π〉 for the irreducible char-
acter of Sψ/Zψ which is defined by π ∈ Πψ(G) through the above
map.

(4) For s ∈ Sψ, there exists a non-zero constant c ∈ C× such that

TranG
Hs

J(ψHs) = c ·
∑

π∈Πψ(G)

〈ssψ, π〉J(π),

where sψ = ψ

(
1 ×

(
−1

−1

))
, (1 ×

( −1
−1

)
∈ LF × SL2(C)),

and J(ψHs) = J(πψHs
) if Hs 6= GSp(4).

(5) The conjectural L-packet Πφψ
(G) of φψ is contained in Πψ(G).

(6) There exists a unique πgen in Πφψ
(G) whose associated standard

representation is generic11.
(7) The irreducible character 〈 · , πgen〉 is the trivial character of Sψ/Zψ.

Remark 4.4. The condition (4) implies that∑
π∈Πψ(G)

〈sψ, π〉J(π)

is a stable distribution.

In the following, we assume that χ is trivial. It is easy to see that
an A-parameter ψ is elliptic if and only if ψ is a 4 dimensional irre-
ducible χ-self dual symplectic representation or the direct sum of two
2 dimensional irreducible χ-self dual symplectic representations ψ1, ψ2

such that ψ1 6' ψ2. If ψ is a 4 dimensional irreducible χ-self dual sym-
plectic representation, then Sψ/Zψ = {1}. If ψ is the direct sum of two
2 dimensional irreducible χ-self dual symplectic representations ψ1, ψ2

such that ψ1 6' ψ2, then Sψ/Zψ ' Z/2Z.

Example 4.5 (Yoshida lift type). Let ψ = ψ1 ⊕ ψ2, where ψ1 and ψ2

are irreducible 2 dimensional χ-self dual symplectic representations of
LF such that ψ1 6' ψ2. (Therefore ψ(SL2(C)) is trivial). Then Πψ(G)
should consist of two square integrable representations πgen, πh, where

11Because there exists a only one regular unipotent orbit in GSp(4, F ), it is not
necessary to choose a generic character.
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πgen is a generic representation. (If F = R then πh is a holomorphic dis-
crete series representation). The irreducible character 〈 · , πgen〉 should
be trivial, and 〈 · , πh〉 should be the other (non-trivial) character of
Z/2Z. If the image of s ∈ Sψ in Sψ/Zψ is not the identity element,
then Hs ' Hell and ψHs defines an irreducible square integrable repre-
sentation πψHs

of Hs(F ). The virtual character

J(πgen) + J(πh)

should be stable, and

TranG
Hs

J(πψHs
) = J(πgen) − J(πh)

for a suitable choice of the scalar factor of the transfer factor.

In the following, we take a suitable scalar factor of the transfer factor
so that the above equation holds.

Example 4.6 (Saito–Kurokawa lift type). Let ψ = ψ1 ⊕ ψ2, where ψ1

is a 2 dimensional irreducible χ-self dual symplectic representation of
LF and ψ2 is the 2 dimensional irreducible (algebraic) representation
of SL2(C). Then Sψ/Zψ ' Z/2Z, and Πψ(G) should consist of two
irreducible admissibile representations of G(F ). First, we consider the
L-packet Πφψ

(G). Since φψ factors through LMS, the L-parameter φψ

determines an irreducible essentially square integrable representation
πM of MS(F ). Then the Langlands subquotient πSK of IndG

PS
πM should

be the unique element in Πφψ
(G). Hence

{πSK} = Πφψ
(G) ⊂ Πψ(G).

What is the other representation in Πψ(G)? Let ψ′
2 be the irreducible 2

dimensional representations of LF which corresponds to the Steinberg
representation of GL2(F ) if F is a p-adic field, and the weight 2 discrete
series representation of GL2(F ) if F = R. Put ψ′ = ψ1 ⊕ ψ′

2. Then
Sψ = Sψ′ . Since ψ′ is of Yoshida lift type, we should have Πψ′(G) =
{πgen, πh}. Let s ∈ Sψ be an element whose image in Sψ/Zψ is not the
identity element. Then, as in the case of Yoshida lift type, we have
LHs ' LHell, and ψ′ (resp. ψ) determines an irreducible representation
πψ′

Hs
(resp. πψHs

). Since

TranHs
MS

(πM) = J(πψHs
) + J(πψ′

Hs
),

TranG
MS

J(πM) = J(πSK) + J(πgen),
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should hold, we should have12

TranG
Hs

J(ψHs) = TranG
Hs

J(πψHs
)

= TranG
Hs

(
TranHs

MS
J(πM) − J(πψ′

Hs
)
)

= TranG
MS

J(πM) − TranG
Hs

J(πψ′
Hs

)

= J(πSK) + J(πgen) − (J(πgen) − J(πh))

= J(πSK) + J(πh).

Because the image of sψ in Sψ/Zψ is not the identity element, this
means that

Πψ(G) = {πSK , πh}
and 〈 · , πSK〉 should be the trivial representation of Sψ/Zψ ' Z/2Z
and 〈 · , πh〉 should be the other (non-trivial) representation of Sψ/Zψ.
(If F = R, this follows from the result of Shelstad [She82]).

5. Global multiplicity formula

In this section, F will be a number field. Let LF be the conjectural
Langlands group. We fix a 1 dimensional character χ of WF . Then χ
determines a 1 dimensional character of the center of G(F ), which we
also denote by χ. We denote by rdisc the right regular representation of
G(AF ) on L2

disc(G(F )\G(AF )), χ), where L2
disc(G(F )\G(AF )), χ) is the

subspace of L2(G(F )\G(AF )), χ) consisting of the discrete spectrum.
Let

ψ : LF × SL2(C) −→ LG

be an elliptic A-parameter such that pr2◦ψ matches with the character

LF −→ WF
χ−→ C×, where pr2 : LG̃ −→ C× is the projection from

LG̃ = GL4(C) × C× × WF to C×. We denote by Ψell(G,χ) the set
of equivalence classes of such elliptic A-parameters. As in the case of
the local A-parameters, we define Sψ/Zψ. For any place v of F , the
A-parameter ψ should give a local A-parameter

ψv : LFv × SL2(C) −→ LG.

Let πv ∈ Πψ(G). Then, since there exist natural homomorphisms

Sψ −→ Sψv ,

Sψ/Zψ −→ Sψv/Zψv ,

we can define 〈s, πv〉 for s ∈ Sψ. For each place v of F , we take
an irreducible admissible representation πv of G(Fv) so that πv are

12Since TranHs

MS
matches with the parabolic induction, we have TranG

MS
=

TranG
Hs

◦TranHs

MS
. In general, we cannot composite the endoscopic transfers.
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unramified for almost all places v of F . Then, for π = ⊗′
vπv and

s ∈ Sψ, we put

〈s, π〉ψ =

{∏
v〈s, πv〉, if πv ∈ Πψv(G) for all places v of F ,

0, otherwise.

As in [Art90, (4.5)], we define a character

εψ : Sψ/Zψ −→ {±1}.

Conjecture 5.1. The multiplicity of π = ⊗′πv in rdisc is∑
ψ∈Ψell(G,χ)

1

]Sψ/Zψ

∑
s∈Sψ/Zψ

εψ(s)〈s, π〉ψ.

Remark 5.2. Since Sψv/Zψv are abelian groups, Remark 4.2 and Con-
jecture 5.1 imply that rdisc is multiplicity free.

Remark 5.3. By conjectural correspondence between the irreducible
n dimensional representations of LF and the irreducible cuspidal auto-
morphic representations of GLn(F ), we can formulate Conjecture 5.1
without using the conjectural Langlands group LF .

In the following, we assume that χ is the trivial character.

Example 5.4. If ψ is an 4 dimensional irreducible χ-self dual symplec-
tic representation of LF × SL2(C), then Sψ/Zψ = {1}. Therefore any
irreducible representation π = ⊗′πv of G(AF ) such that πv ∈ Πψv(G)
for all places v of F should appear in rdisc.

Example 5.5 (Yoshida lift type). Let ψ = ψ1 ⊕ ψ2, where ψ1 and ψ2

are 2 dimensional irreducible χ-self dual symplectic representations of
LF such that ψ1 6' ψ2. Then

Sψ/Zψ ' Z/2Z,

and the character εψ is the trivial character of Sψ/Zψ. Assume that
there exist two places v1, v2 such that ψv1 , ψv2 are elliptic. Then for
i = 1, 2, we have Sψvi

/Zψvi
' Z/2Z and Πψvi

(G) = {πgen,vi
, πh,vi

}.
Moreover, we assume that Sψv/Zψv = {1} for v 6= v1, v2. Then for
v 6= v1, v2, the A-packet Πψv(G) consists of a single representation πv.
For such an A-parameter ψ, Conjecture 5.1 says that

πgen,v1 ⊗ πgen,v2

⊗
⊗′

v 6=v1,v2
πv,

πh,v1 ⊗ πh,v2

⊗
⊗′

v 6=v1,v2
πv
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appear in rdisc and

πgen,v1 ⊗ πh,v2

⊗
⊗′

v 6=v1,v2
πv,

πh,v1 ⊗ πgen,v2

⊗
⊗′

v 6=v1,v2
πv

do not appear in rdisc.

Example 5.6 (Saito–Kurokawa type). Let ψ = ψ1 ⊕ ψ2, where ψ1 is
a 2 dimensional irreducible χ-self dual symplectic representation of LF

and ψ2 is the 2 dimensional irreducible (algebraic) representation of
SL2(C). Then

Sψ/Zψ ' Z/2Z,

and

εψ =

{
trivial character, if ε(1

2
, ψ1) = 1,

non-trivial character, if ε(1
2
, ψ1) = −1.

We assume that ψ satisfies the similar conditions in Example 5.5.
Hence ψv1 , ψv2 are elliptic, and

Sψv/Zψv =

{
Z/2Z, if v = v1, v2,

{1} otherwise,

and

Πψv(G) =

{
{πSK,v, πh,v}, if v = v1, v2,

{πv}, otherwise.

In this case, Conjecture 5.1 says that

πSK,v1 ⊗ πSK,v2

⊗
⊗′

v 6=v1,v2
πv,

πh,v1 ⊗ πh,v2

⊗
⊗′

v 6=v1,v2
πv

appear in rdisc if and only if ε(1
2
, ψ1) = 1, and

πSK,v1 ⊗ πh,v2

⊗
⊗′

v 6=v1,v2
πv,

πh,v1 ⊗ πSK,v2

⊗
⊗′

v 6=v1,v2
πv

appear in rdisc if and only if ε(1
2
, ψ1) = −1.
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