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Let D = G/K be a Hermitian symmetric domain with G a real semisimple
Lie group andK a maximal compact subgroup of G. For an arithmetic subgroup
Γ of G, which has a finite covolume vol(Γ\G) with respect to the Haar measure
of G, the quotient Γ\G is a complex algebraic variety, thanks to C. L. Siegel,
I. Satake, and W. Baily-A. Borel.

Given a Lie subgroup H of G, and a point x of D, the orbit Hx in Γ\D
defines a reasonable topological chain in the quotient Γ\D, if the subgroup H
is the real point of some algebraic subgroup of G defined with respect to the
rational structure specified by Γ. Such a chain, which is sometimes extendable to
a cycle on some good compactification of Γ\D, is called a (generalized) modular
symbol.

Though there was some prototype investigation even by E. Hecke, a system-
atic investigation of this subject was initiated by Yu. Manin [Mn72], [Mn73]
(and B. Mazur-P. Swinnerton-Dyer [MzSw74]) in early ’70’s, for the case: G =
SL2(R), Γ a congruence subgroup of SL2(Z), and H ∼= Gm,R. As already
shown by a paper of the T. Shintani [Sh75], the periods of modular forms along
these modular symbols appears as Fourier coefficients of elliptic modular forms
of half-integral weight, and sometime later this was extended to the case of theta
correspondence for SL2(R)× SO(2, q) by the author [Od77].
Remark There are other people, Kudla, Rallis-Schiffman, Kudla,Vigneras, who
discussed ”lifting” of modular forms. However only the author seem to inves-
tiagte the ”converse”, i.e. the adjoint of the lifting at this time. The ”periods
integrals” appear as Fourier coefficients of elliptic modular forms. Later this was
found to be very important to investigate periods of Hilbert modular surfaces
(cf. [Od82]).

The author has to refer to the important result of J. Millson [Ml76] and the
begining of the work of A. Ash [As77] on higher-dimensional modular symbols.
Though the author’s interest shifted slightly to the direction of quotients of
Hermitian symmetric spaces and the Hodge structures of cohomology groups of
discrete subgroups, general results on modular symbols expanded in 80’s. One
good reference on these developement might be found in [LbSc89].

The purpose of this note is to review the recent two results by the author
and his coauthors. After some review of fundamental results of the cohomol-
ogy groups of discrete subgroups in Section 1, we discuss a new type vanshing
theorem of specified Hodge components of the Poincaré dual of certain modular
symbols in Section 2 ([KO98]). This is a joint work with Toshiyuki Kobayashi.
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In Section 3, we discuss the construction of Green current for certain modular
divisors, which is a joint work with Masao Tsuzuki ([TsO00]). Some of the
results are overlapped with a recent paper of Bruinier [Br00].

1 Cohomology of dsicrete subgroups

In this section, we recall basic facts on cohomology groups of discrete subgroups
in real semisimple Lie groups. A good reference is a survey artilce by A. Borel
[Brl76]. The book [BrWl80] of Borel-Wallach also has been a very important
reference, though this is a bit difficult to penetrate since it is not written as
a textbook. The original paper about this theme is Matsushima’s [Mt62]. In
the case when G/K is Hermitian, there is a paper by the author which is more
specialized to the Hodge theoretic aspect of the problem [Od85].

1.1 Shift to the relative Lie algebra cohomology groups

Given an arithmetic discrete subgroup Γ in a semisimple real Lie group G, we
consider its Eilenberg-Maclane cohomology group Hi(Γ,C). Or more generally
if a finite dimensional rational representation r : G→ GL(V ) of G is given, we
may regard its as Γ-module by restriction, and we can form cohomology group
Hi(Γ, V ).

Fix a maximal compact subgroup K of G to get a Riemannnian symmetric
space X = G/K. For simplicity assume that we have no elements of finite order
in Γ, then Γ acts on X from the right side without fixed point, and the quotinet
Γ\X becomes a manifold. In this case Γ is isomorphic to the fundamental group
of this manifold (X is contractible to a point), and the Γ-modules V defines a
local system Ṽ on this quotient manifold. Then we have an isomorphism of
cohomology groups: H∗(Γ, V ) ∼= H∗(Γ\X, Ṽ ).

Let σ : X → Γ\X be the canonical map, by pulling back differential forms
with respect to σ we have a monomorphism of de Rham complexes σ0 : Ω∗

Γ\X →
Ω∗

X . Moreover on the target complex, Γ acts naturally. Let (Ω∗
X)Γ be the

invariant subcomplex. Then it coincides with the image of σ0, and by the de
Rham theorem, we have an isomorphism of cohomology groups:

H∗(Γ, V ) = H∗(Γ\X, Ṽ ) = H∗(ΩX(V )Γ).

The last complex in the above isomorphims is identified with the complex of
differentail forms on G as follows.

Let π0 be the pull-back homomorphism of differential forms with respect
to the canonical map π : Γ\G → Γ\X. Then a form ω ∈ Ωd

X(V )Γ defines a
differential form ω0 on G by

x ∈ G 7→ r(x)−1π0(ω)(x),

and denote by A∗
0(G,Γ, V ) the image of this homomorphism. Then since σ0 is a

monomorphism, we have an isomorphism of complexes Ω∗
X(V )Γ ∼= A∗

0(G,Γ, V ).
Here the last complex is identified with the right K-invariant subcomplex

of the de Rham complex Ω∗
Γ\G(V ) = Ω∗

Γ\G ⊗ V , which is defined over Γ\G and
takes values in V .
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Since the tangent space at each point ofG/K is identified with the orthogonal
complement p of k in g with resepect to the Killing form, the module of the i-th
cochains becomes HomK(∧ip, C∞(Γ\G) ⊗ V ). Therefore, the cochain comlex
defined in this manner gives the relative Lie algebra cohomology groups. When
G is connected we have an isomorphism:

H∗(Γ, V ) ∼= H∗(g,K;C∞(Γ\G), V ).

1.2 Matsushima isomorphism

Let G be a connected semisimple real Lie group with finite center.　 Assume
that the discrete subgroup Γ is cocompact, i.e. the quotinet Γ\G is compact.

Let L2(Γ\G) be the space of L2-functions on G with respect the Haar mea-
sure on G, on which G acts unitarily by the right action. By assumption the
space C∞(Γ\G) is a subspace of this space.
Proposition (1.1)（Gelfand-Graev,Piateskii-Shapiro) If Γ is cocompact, we
have the direct sum decomposition of the unitary representation L2(Γ\G) into
irreducible components:

L2(Γ\G) = ⊕̃π∈Ĝm(π,Γ)Mπ,

with finite multipicities m(π,Γ). Here Ĝ is the unitary dual of G, i.e.the unitary
equivalence classes of irreducible unitary representations of G, and Mπ denotes
the representation sapce of π.

By the above proposition, one has a decomposition

C∞(Γ\G) = ⊕̃π∈Ĝm(π,Γ)M∞
π

of topological linear spaces. Here M∞
π is the subspace consisting of C∞-vectors

in the representation space Mπ.
Theorem (1.2) For a finite dimensional rational G-module V over the complex
number field, we have an isomorphism:

H∗(Γ, V ) = ⊕π∈Ĝm(π,Γ)H∗(g,K,M∞
π ⊗ V )

= ⊕π∈Ĝ{HomG(Mπ, L
2(Γ\G)⊗C H∗(g,K,M∞

π ⊗ V )}

The key point of the proof here is the complete direct sum ⊕̃ is replaced by a
simple algebraic direct sum by passing to the cohomology (cf Borel [Brl76]).

We can equipp a K-invaraint inner product on V . By using this, we may re-
gard Hm(g,K,M∞

π ⊗V ) as a space of a kind of harmonic forms, i.e. the totality
of cochains vanishing by the Laplace operator. Thus we have the following.
Proposition (1.3) Let (r, V ) be an irreducible G-module of finite dimension.
For any π ∈ Ĝ we have the follwing.
(i) If χr(C) = χπ(C), there is an isomorphism

HomK(∧m,Mπ ⊗∞ ⊗V ) = Cm(g,K,M∞
π ⊗ V ) = H∗(g,K,M∞

π ⊗ V )

(ii) If χr(C) ̸= χπ(C), there is an isomorphism

Hm(g,K,M∞
π ⊗ V ) = {0}.
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Here C denotes the Casimir operator.
In particular, when V is the trivial G-module C, the above theorem is

no other than the original formula of Betti numbers of Γ\X by Matsushima
([Mt62]).

Also there is a variant of this type vanishing theorem shown by D. Wigner.
But it is omitted here.

We recall here that the relative Lie algebra cohomology group Hm(g,K,M∞
π ⊗

V ) is isomorphic to the continuous cohomology group Hm
ct(G,M

∞
π ⊗ V ) if G is

connected. This is shown by using differential cohomology and van Est spectral
sequence.

1.3 ”Classical” vanishing theorems

A number of vanishing theorems were found in ’60’s: Calabi-Vesentini, Weil
etc. In their proof, the same type of computation of ”curvature forms” is done,
which is similar to a proof of Kodaira vanishing theorem.

Firstly, Matsushima’s vanishing theorem of the 1-st Betti number of Γ\X
was also proved by such method ([Mt62]).

This type of vanishing theorem is vastly improved by representation theoretic
method. Probably the best resut of this category is the following result by
Zuckermann ([Zkrm78]) (see also [BrWl80], Chapter V, §2－ §3 (p.150–155)).
Theorem(1.6) Let G be a simple real algebraic group, (π,H) a nontrivial
irreducible unitary representation of G, and (r, V ) a finite dimensional repre-
sentation of G. Then for k < rankRG,

Hk
ct(G,H

∞ ⊗ V ) = {0}.

Corollary(1.7) Given a cocompact discrete subgroup Γ of G, for k < rankRG,
the restriction homomorphism

Hk
ct(G,V ) → Hk(Γ, V )

is an isomorphism.

1.4 Enumeration and construction of unitary cohomolog-
ical representations

We shortly review the state of arts on the cohomological representations defined
below.
Definition(1.8) An irreducible (unitary) representation (π,Hπ) ∈ Ĝ is called
cohomological, if there is a finite dimensional G-module F such that

Hi(g,K;H∞
π ⊗C F ) ̸= {0}

for some i ∈ N. The set of equivalent classes of cohomological representations
is denoted by Ĝcoh.

Enumeration of such cohomological representations was done for the case
trivial F = C by Kumaresan [Km80], and for general case by Vogan-Zuckermann
[VgZm84 ]. This was originally described by susing the cohomological induction
functor Aλ(g) first. And later a global realiztion of this Zuckermann module
was obtained by H.-W. Wong [Wng95].
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Recently Tosiyuki Kobayashi is developping a theory of branching rule for
such cohomological representations when they are restricted to a large reductive
subgroup H of G ([Kb93],[Kb94],[Kb98a,b]).

2 A new vanishing theorem

2.1 Formulation of problem

Firstly we recall the construction of generalized modular symbols associated
with redutive subgroups of G. Given a double coset space V = Γ\/K, which is
compact. Let ι : H ⊂ G be a reductive subgroup of G, such that
(a) H ∩K is maximally compact in H;
(b) H ∩ Γ is cocompact discrete subgroup of H.
Then we have a natural map of double cosets:

ι̃ : (H ∩ Γ)\H/(H ∩K) → V.

Set d = dimRW = dimRH/(H ∩ K), N = dimRV = dimRG/K. Then the
fundamental class [W ] ∈ Hd(W,C) mapped naturally by ι to

ι∗([W ]) ∈ Hd(V,C) ∼=P HN−d(V,C) ∼= HN−d(Γ,C)

∼= ⊕π∈Ĝ,χ∞(pi)=χ∞(1){HomG(Hπ, L
2(Γ\G))⊗HN−d(g,K;H∞

π )}.
Here the first isomorphism denoted by P is the Poincaré duality. According to
the last decomposition in the above formula, we have a decomposition

P · ι∗([W ]) =
∑

π∈Ĝ,χ∞(π)=χ∞(1)

M(π)(W ),

where M(π)(W ) denotes the π-th component of the Poincaré dual of [W ].
Problem (2.1) Describe M(π)(W ), using the special values of automorphic
L-functions etc, · · ·

Dually speaking, it is to consider the restriction map:

Hd(V,C) = ⊕π∈Ĝ{HomG(Hπ, L
2(Γ\G)⊕C Hd(g,K;Hπ)}.

→ Hd(W,C) = C.

This is done by invetigation of the period integrals
∫
W
ω for elements ω in the

π-component

Hd(V,C)(π) = {HomG(Hπ, L
2(Γ\G)⊕C Hd(g,K;Hπ)}.

of Hd(V,C).
A nice situation is when the retriction π|H of π ∈ Ĝcoh is admissble, i.e.

(a) π|H decomposes discretely as H-modules;
(b) π|H = ⊕̃σ∈Ĥm(π, σ)σ has finite multiplicity m(π, σ) <∞.

For cohomological representations π = Aλ(q), Koybayashi obtained certain
sufficient condition for the admissibility of π|H, which is described geometrically.

As an application, under the same condition as the above criterion of admis-
sibility, the restriction to

Hd(W,C)×Hd(V,C)(π)
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of the natural pairing:

Hd(V,C)×Hd
dR(V,C) → C

vanishes. Here d = dimW .

2.2 Example

Let G = SO(2n, 2) × compact factor such that there is an algebraic group G
over Q with G = G(R). Then we may form an algebraic subgroup H of G
such that H = H(R) is isomorphic to SO(2n, 1)× compact factor and there is a
maximal compact subgroup K of G with H ∩K being maximal compact in H.

Set X = G/K and XH = H/(H∩K). Then XH is a totally real submanifold
ofX. This means that for some holomorphic local coordinates (z1, z2, · · · , z2n) at
each point ofXH , it is defined locally by the equalities Im(z1) = 0, · · · , Im(z2n) =
0.

Now for a cocompact arithmetic discrete subgroup Γ of G, we can define a
generalized modular symbol:

ι :W = (H ∩ Γ)\XH → V = Γ\X.

In this case the fundamental class [W ] ∈ H2n(W,C) mapped to

H2n(V,C) ∼= H2n
dR(V,C) = ⊕p+q=2nH

p,q

by ι∗. Here the last isomorphism is the Hodge decomposition. Hence we have
the Hodge decomposition of M(W ):

M(W ) =
∑

p+q=2n

M(p,q)(W ).

Its (n, n)-type component M(n,n)(W ) has further decoposition:

M(n,n)(W ) =
∑

π∈Ĝ,Hn,n(g,K;H∞
π )̸={0}

M(π)(W ).

Here Hn,n(g,K; H∞
π ) is the (n, n)-type component of H2n(g,K;H∞

π ). In this
case we have the following.
Proposition (2.2) If π ̸= ∞, M(π))(W ) = 0 for π satisfying Hn,n(g,K;H∞

π ) ̸=
{0}. This means that M(n, n)(W ) is a consatnt multiple of a universal coho-

mology class η ∈ H
(n,n)
dR (V,C), which is one of two natural generators of

Hn,n(g,K;∞) = C ∧n κ⊕Cη,

where κ is the Kaehler class. Moreover the constant is vol(W )/vol(V ).
Remark In place of the pair (SO(2n, 2), SO(2n, 1)), we can consider the pair
(SU(2n, 2), Sp(n, 1)) for example.

3 Construction of Green functions for modular
divisors on arithmetic quotients of bounded
symmetric domains

This part is a joint work with Masao Tsuzuki.
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3.1 Logarithmic Green functions

Given a (smooth, for simplicity) submanifold Y of codimension d in a smooth
quasi-projective complex algebraic variety X of dimension n, a current δY , i.e. a
differential forms with coefficients in distributions, of type (d, d) on X is defined
by associating the values of the integral∫

Y

i∗(ω)

for every (n− d, n− d)-type C∞ form ω on X. Here i : Y ⊂ X is the inclusion
map. This is a closed form.

Now, if there is a current g of type (d− 1, d− 1) on X such that

ddcg + δY

is a smooth differential form of type (d, d) on X, then g is called a Green current
for Y . Here dc = (∂− ∂̄)/2π

√
−1 if we write d = ∂+ ∂̄ as a sum of holomorphic

part and antiholomorphic part. The form g is not unique.
In the intersection theory of Arakelov type for higher dimensional cases,

Gillet-Soulé [GlSl92] defined Green current of logarithmic type. When the codi-
mension d > 1, this is defined by using the resolution of singularities of Hironaka,
but when d = 1, i.e. when Y is a divisor, it is done more directly.

If one defines a Hermitian metric ∥ ∥ on the holomorphic line bundleL =
OX(Y ) by putting ∥f∥ = e−g|f | for local section f of L, then the Chern form
of L with respect to this metric is given by ddcg + δY . Conversely, if (L, ∥ ∥) a
holomorphic line bundle with Hermitian metric, then its Green current is known
by the following theorem of Poincaré-Lelong.
Proposition (3.0) For a meromorphic section s of L, −log∥s∥2 is a locally
integrable function X and gives a logarithmic Green function for for Y = div(s).
Moreover the right hand side of

ddc(−log∥s∥2) + δY = c1(L, ∥ ∥)

is the Chern form for the metric line bundle (L, ∥ ∥).
Existence of logarithmic Green currents are guaranteed in general, but littel

is known about their concrete construction.
From now on, when X and Y are arithmetic quotients and Y is a divisor of

X, we show one way to construct the logarithmic Green current of Y .

3.2 The secondary spherical functions for affine symmet-
ric pairs (G,H) of rank 1

For our construction, we need a pair (G,H) of real reductive Lie groups satis-
fying the follwoing ”axioms”:
(i) G, a connected real semisimple (algebraic) Lie group such that the quotient
G/K by a maximal compact subgroup K is Hermitian symmetric (K = Gθ with
θ a Cartan involution);
(ii)H, a reductive subgroup of G, such that there exists an involution σ : G→ G
satisfying θσ = σθ and (Gσ)0 ⊂ H ⊂ Gσ. Moreover H\G is a semisimple sym-
metric space of real rank 1.
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Then for the Lie algebras g = Lie(G), h = Lie(H) we have

g = gσ ∩ gθ ⊕ g−σ ∩ gθ ⊕ gσ ∩ g−θ ⊕ g−σ ∩ g−θ

and a maximal abelian subalgebra a in the last factor g−σ ∩ g−θ is of dimension
1.

By the classification table of symmetric spaces, we have two cases:

(U− type) : g = su(n, 1), h = s(u(1)× u(n− 1, 1))

(O− type) : g = so(n, 2), h = so(n− 1, 2).

We choose a generator Y0 ∈ a such that λ(Y0) = 1 for the short root λ in the root
system Ψ = Ψ(a, g). Set U = exp(gλ + g2λ) and 2ρ0 = tr(ad(Y0)|Lie(U)). Also
we normalize the Casimir operator Ω such that it corresponds to the bilinear
form

X,Y =
1

B(Y0, Y0)
B(X,Y ) (X,Y ∈ g).

Set A = exp(a) = {at = exp(tY0)|t ∈ R}, then G = HAK.
Now we can consider a left H-invaraint and right K-invariant spherical func-

tion ϕ
(1)
s (g) ∈ C∞(H\G/K) satisfying

ϕ(1)s (g) ∗ Ω = (s2 − ρ20)ϕ
(1)
s (g) (s ∈ C).

This function generates class one principal series representation ofG in C∞(H\G)
by right translation under G, which has H-invariant. This ordinary spherical
function is not necessarily good one to define Poincaré series. In place of this,
we consider the secondary spherical functions ϕ(2)(g) ∈ C∞(G −H ·K) which
has logarithmic singularities along H ·K.

Proposition (3.1) Let s ∈ C,Re(s) > ρ0. Then there exists the unique
function satisfying the conditions (a)-(d) below:

(a) ϕ
(2)
s is C∞ on G−H ·K, and left H-invaraint and right K-invariant;

(b) ϕ
(2)
s satisfies the diferential equation:

ϕ(2)s ∗ Ω = (s2 − ρ20)ϕ
(2)
s on G−HK;

(c) For sufficiently small δ > 0,

ϕ(2)s (at)− log(t) is bounded in (0, δ);

(d) ϕ
(2)
s (at) is rapidly decreasing for t→ +∞.

For our later purpose, it is better to introduce a vector-valued spherical
function ψs. Recall the Cartan decomposition and its complexification:

g = k⊕ p, gC = kC ⊕ p+ ⊕ p−.

Here the subpace p± is the ±i-eigenspaces with respect to the given complex
structure in the complexification p⊗C.

For a function F ∈ C∞(G/K) we can define the gradient ∇F = ∇+F +
∇−F ∈ C∞(G) ⊗ pC. Then we have ∇−∇+F : G → p+ ⊗ p−, which is K-
equivariant under the right K-action on G and the tensor product of the adjoint
representation Adp± . The K-module p+ ⊗ p− is a direct sum of the trivial
representation and the other irreducible representation V11. We denote by pr
the projection to V11 from p+ ⊗ p−

Definition (3.2) ϕs = pr · ∇−∇+ϕ
(2)
s .

8



3.3 Poincaré series

We can now define Poincaré series.

Definition (3.3) For s ∈ C with Re(s) > ρ0, set

Gs(z) =
∑

γ∈(Γ∩H)\Γ

ϕ(2)s (l, γ(z)) (g ∈ G)

and
Ψs(z) =

∑
γ∈(Γ∩H)\Γ

ψ(2)
s (l, γ(z)) (g ∈ G).

Both converges s currents for Re(s) > ρ0 real analytic except for on the image
of

(Γ ∩H)\H/(K ∩H) → Γ\G/K.

We can show
· a criterion for Gs ∈ Lp(Γ\G) in particulra Gs ∈ L2(Γ\G),
· the analytic continuation, when Gs ∈ L2(Γ\G), (this is a kind of functional
equation for Gs and G−s.
· Gs(g) has a simple pole at s = ρ0 with residue

vol((H ∩ Γ)\H)

vol(Γ\G)
1

2ρ0
.

3.4 ∂∂̄-formula

Let d = ∂ + ∂̄ be the decompostion of the exterior derivative on G/K into the
holomorphic part and the antiholomorphic part.

Theorem (3.4) We have

(a) 4
√
−1∂∂̄Gs + δ̃D0

= −c(g)
2

2n
(s2 − ρ20)Gs ∧ ωΓ\G/K −

√
−1Ψs

(b) ∆Ψs = c(g)2(s2 − ρ22)(
1

2
Ψs −

√
−1

2
δ̃D0

+

√
−1

2n
δD0

∧ ωΓ\G/K

Here Ψs is the Poincaré series of (1,1)-form, δ̃D0 the current associated with the
divisor

(H ∩ Γ)\H/(H ∩K) → Γ\G/K,

c(g) a constant gievn by c(g) = 1 (U-type), = 2, (O-type), and ωΓ\G/K the
Kaehler form on Γ\G/K.
Theorem (3.5)
(i) The (1, 1)-type current Ψs is holomorphic at s = ρ0, and Ψρ0

is harmonic
C∞-form of (1, 1)-type on Γ\G/K.　
(ii) Put G = lims→ρ0(Gs − 1

s−ρ0
Ress−ρ0Gs). Then

4
√
−1∂∂̄G + δ̃D0 = −κωΓ\G/K −

√
−1Ψρ0 .

(cf. [TsO01,Chapter 7, Theoem (7.6.1)] and its application).
Here is the meaning of the last formula. There is the subspace of square-

integrable forms H2
(2)(Γ\G/K,C) in H2(Γ,C) = H2(Γ\G/K,C). There are two
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irreducible unitary representation of G which contribute to the (1,1)-type Hodge
component of H2

(2)(Γ\G/K,C): one is the trivial representationC and the other
is a certain infinite dimensional representations, which we denote by π1,1. Both
representations π have H1,1(g,K;H1,1) ∼= C. Hence

H1,1 = HomG(1, L
2(Γ\G))⊕HomG(π1,1, L

2(Γ\G)).

The first factor of the right hand side is generated by the Kaehler form κ. The
right hand side of the statement (ii) of the last theorem is compatible with this
decomposition.
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