
MOTIVES AND SIEGEL MODULAR FORMS

By Hiroyuki Yoshida

Introduction

This report is an informal resumé of [Y2], though I add a little new material
in §3. The main theme is the notion of the fundamental periods of a motive and
it’s interplay with automorphic forms. I would like to develop more comprehensive
theory on a future occasion.

§1. Critical values

We list major historical events concerning critical values of zeta functions.

1− 1/3 + 1/5− 1/7 + · · · = π

4
, Leibnitz, around 1670.

ζ(2) =

∞∑
n=1

1

n2
=
π2

6
, Euler, 1735, discovered experimantally.

ζ(2n)/π2n ∈ Q, 1 ≦ n ∈ Z, Euler, 1742.∑
z

z−4n/ϖ4n ∈ Q, 1 ≦ n ∈ Z, Hurwitz, 1899,

where z extends over all nonzero Gaussian integers and ϖ = 2

∫ 1

0

dx√
1− x4

.

L(n,∆)

(2πi)nc±(∆)
∈ Q, 1 ≦ n ≦ 11, ±1 = (−1)n, Shimura, 1959,

where

∆(z) =
∞∑

n=1

anq
n = q

∞∏
n=1

(1− qn)24, q = exp(2πiz)

is the cusp form of weight 12 with respect to SL(2,Z) and c±(∆) ∈ R×. Similarly
for a Hecke eigenform f ∈ Sk(Γ0(N), ψ) and σ ∈ Aut(C),

(
L(n, f)

(2πi)nc±(f)
)σ =

L(n, fσ)

(2πi)nc±(fσ)
,

1 ≦ n ≦ k − 1, ±1 = (−1)n, Shimura, 1977,

where c±(fσ) ∈ C× ([Sh1]).
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By these results, it was expected that the critical values of zeta functions are
related to periods of integrals. Here the notion of critical values, which is generally
accepted now, can be defined as follows. Suppose that a zeta function Z(s) mul-
tiplied by its gamma factor G(s) satisfies a functional equation of standard type
under the symmetry s→ v− s. Then Z(n), n ∈ Z is a critical value of Z(s) if both
of G(n) and G(v − n) are finite.

In 1979, Deligne ([D]) published a general conjecture which gives a prediction
on critical values of the L-function of a motive. For a nice concise exposition of
the theory of motives, we refer the reader to a paper of Jannsen [J]; for more
comprehensive information, see [JKS].

Let M be a motive over Q with coefficients in an algebraic number field E.
Put R = E ⊗Q C. We have E ⊂ R canonically and R ∼= CJE , JE being the set
of all isomorphisms of E into C. Let λ be a finite place of E. From the λ-adic
realization Hλ(M), we have the λ-adic representation of Gal(Q/Q) on Hλ(M). By
this represention, we can define the L-function L(M, s) in the usual manner, which
takes values in R.

Next letHB(M) be the Betti realization ofM . We put d = d(M) = dimE HB(M).
We call d the rank of M . Let F∞ denote the complex conjugation; F∞ acts E-
linearly on HB(M). We have

(1.1) HB(M) = H+
B (M)⊕H−

B (M)

where H±
B (M) denotes the eigenspace of HB(M) with the eigenvalue ±1. We put

d± = d±(M) = dimE H
±
B (M). Furthermore HB(M) has the Hodge decomposition:

(1.2) HB(M)⊗Q C = ⊕p,q∈ZH
pq(M),

where Hpq(M) is a free R-module. If Hpq(M) = {0} whenever p + q ̸= w, M is
called of pure weight w.

Remark. The Hodge decomposition determines the gamma factor of the conjec-
tural functional equation of L(M, s). Conversely, the gamma factor of the functional
equation of L(M, s) determines the Hodge decomposition if M is of pure weight.

We shall assume hereafter that M is of pure weight. We can define Deligne’s
periods c±(M) ∈ R× (see below). Deligne’s conjecture states that

L(M,n)/(1⊗ 2πi)d
±(M)nc±(M) ∈ E

for critical values L(M,n). Here ±1 = (−1)n.

§2. Fundamental periods of a motive

It is important to know the change of Deligne’s periods for various algebraic
operations for motives; for example M ⊗N , the tensor product of two motives. For
this purpose, we are going to introduce fundamental periods.

Let HDR(M) be the de Rham realization of M which is a d-dimensional vector
space over E. There exists a spectral sequence

(2.1) Ep,q
1 = Hq(M,Ωp) =⇒ Hp+q

DR (M).
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The Hodge filtration {F p} is the filtration on Hp+q
DR (M) given by this spectral

sequence. Since Hw
DR(M) = HDR(M), we have

F p(Hw
DR(M))/F p+1(Hw

DR(M)) ∼= Ep,w−p
∞ , p ∈ Z.

Since this spectral sequence degenerates at E1-terms, we have

(2.2) F p(HDR(M))/F p+1(HDR(M)) ∼= Ep,w−p
1 = Hw−p(M,Ωp), p ∈ Z.

We write F p(HDR(M)) as F p(M) or simply as F p. Let

I : HB(M)⊗Q C ∼= HDR(M)⊗Q C

be the comparison isomorphism. We have

(2.3) I(⊕p′≧pH
p′q(M)) = F p(M)⊗Q C.

Now we are going to define a period matrix of M . Let {v+1 , v
+
2 , . . . , v

+
d+} (resp.

{v−1 , v
−
2 , . . . , v

−
d−}) be a basis of H+

B (M) (resp. H−
B (M)) over E. We write the

Hodge filtration as

(2.4) HDR(M) = F i1 ⫌ F i2 ⫌ · · · ⫌ F im ⫌ F im+1 = {0}

so that there are no different filtrations between successive members. The choice of
numbers iµ may not be unique for F iµ . For the sake of simplicity, we assume that
iµ is chosen, for 1 ≦ µ ≦ m, so that it is the maximum number. Put

sµ = rank(Hiµ,w−iµ(M)), 1 ≦ µ ≦ m

where rank means the rank as a free R-module. Then we have

(2.5) ic + im+1−c = w, 1 ≦ c ≦ m, sµ = sm+1−µ, 1 ≦ µ ≦ m.

We also have a partion of d:

(2.6) d = s1 + s2 + · · ·+ sd, sµ > 0, 1 ≦ µ ≦ m.

By (2.3), we have

sµ = dimE F
iµ − dimE F

iµ+1 , dimE F
iµ = sµ + sµ+1 + · · ·+ sm, 1 ≦ µ ≦ m.

We take a basis {w1, w2, . . . , wd} ofHDR(M) over E so that {ws1+s2+...+sµ−1+1, . . . , wd}
is a basis of F iµ for 1 ≦ µ ≦ m. Writing

(2.7) I(v±j ) =
d∑

i=1

x±ijwi, x±ij ∈ R, 1 ≦ j ≦ d±,
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we obtain a matrix X± = (x±ij) ∈ M(d, d±, R). Let PM be the lower parabolic

subgroup of GL(d) which corresponds to the partition (2.6). Then the coset of X±

in
PM (E)\M(d, d±, R)/GL(d±, E)

does not depend on the choices of basis. We put X = (X+X−) ∈ M(d, d,R) and
call it a period matrix of M . The coset of X in

PM (E)\M(d, d,R)/(GL(d+, E)×GL(d−, E))

is well defined. Here GL(d+, E) × GL(d−, E) is embedded in GL(d) as diagonal
blocks.

Thus we are interested in a polynomial function on M(d, d) rational over Q,
which satisfies

(∗) f(pxγ) = λ1(p)λ2(γ)f(x) for all p ∈ PM , γ ∈ GL(d+)×GL(d−).

Here λ1 and λ2 are characters of PM and GL(d+)×GL(d−) respectively given by

λ1



p11 0 . . . 0
∗ p22 . . . 0

∗ ∗
. . .

...
∗ ∗ ∗ pmm


 = det(p11)

a1 det(p22)
a2 · · · det(pmm)am ,

where pii ∈ GL(si),

λ2

((
a 0
0 b

))
= (det a)k

+

(det b)k
−
, a ∈ GL(d+), b ∈ GL(d−).

We call f to be of the type (λ1, λ2) or of the type {(a1, a2, . . . , am); (k+, k−)}. All
of such an f generate a graded algebra over Q.

Theorem 1. The graded algebra of all f satisfying (∗) is isomorphic to a poly-
nomial ring with explicitly given generators. Each graded piece is at most one
dimensional.

Let f(x) = det(x), x ∈ M(d, d). Then f(x) is of the type {(1, 1, . . . , 1); (1, 1)}
and f(X) is Deligne’s period δ(M). Assume that s1 + s2 + · · · + sp+ = d+ for
some p+. Let f+(x) be the determinant of the upper left d+ × d+-submatrix of

x ∈ M(d, d). Then f+(x) is of the type {(
p+︷ ︸︸ ︷

1, 1, . . . , 1, 0, . . . , 0); (1, 0)} and f+(X)
is Deligne’s period c+(M). Similarly if s1 + s2 + · · · + sp− = d− for some p−, let
f−(x) be the determinant of the upper right d− × d−-submatrix of x. Then f−(x)

is of the type {(
p−︷ ︸︸ ︷

1, 1, . . . , 1, 0, . . . , 0); (0, 1)} and f−(X) is Deligne’s period c−(M).
Either one of the above conditions is equivalent to that F∓(M), hence also c±(M)

can be defined (cf. [D], §1, [Y1], §2). We have F∓(M) = F ip±+1(M); F±(M) can
be defined if M has a critical value.

Let P = P(M) denote the set of integers p such that s1 + s2 + · · · + sp <
min(d+, d−). Put q = m−p. Then p < q and s1+ s2+ · · ·+ sq = d− (s1+ · · ·+ sp)
by (2.5).
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Theorem 2. For every p ∈ P, there exists a non-zero polynomial fp of the type

{(
p︷ ︸︸ ︷

2, . . . , 2,

m−2p︷ ︸︸ ︷
1, . . . , 1,

p︷ ︸︸ ︷
0, . . . , 0); (1, 1)}. Every polynomial satisfying (∗) can be written

uniquely as a monomial of det(x), f+(x), f−(x), fp(x), p ∈ P.

We put cp(M) = fp(X). We call δ(M), c±(M), cp(M), p ∈ P the fundamental
periods of M . By Theorem 2, any period invariant of M can be written as a
monomial of the fundamental periods.

Deligne’s conjecture states that L(M, 0)/c+(M) ∈ E if 0 is critical forM . Other
period invariants are hidden for the relation with L(M, 0) but will manifest them-
selves when we make various algebraic operations onM (tensor products with other
motives, exterior powers, etc.). Deligne showed c±(M) ∈ R×. We can prove that
other period invariants are also invertible elements of R. Hereafter we understand
the equality between period invariants mod E×.

Let us explain a general principle concerning the variation of fundamental periods
of motives under algebraic operations, taking the case M =M1⊗M2⊗· · ·⊗Mn as
an example. Here all motives are defined over Q, and with coefficients in E. Let
Xi be a period matrix of Mi for 1 ≦ i ≦ n and X be a period matrix of M . We see
that:
(i) Every entries ofX can be written as a polynomial of entries ofXi with coefficients

in Q.
(ii) If we replace Xi by a matrix in PMi

(E)Xi(GL(d
+(Mi), E) × GL(d−(Mi), E)),

then X is replaced by a matrix in PM (E)X(GL(d+(M), E)×GL(d−(M), E)).
We see that (i) and (ii) hold even when we regard Xi as a variable matrix. Now
let p ∈ P(M) and let cp(M) = fp(X) be a fundamental period of M , where fp
is a polynomial on M(d(M), d(M)). By (i), we have cp(M) = fp(g(X1, . . . , Xn))
with a polynomial g. We regard Xi as a variable matrix on M(d(Mi), d(Mi)). By
(ii), we see that fp(g(X1, . . . , Xn)) is, as a polynomial of Xi, a polynomial fi of
some admissible type. By the one dimensionality (Theorem 1), we conclude that
cp(M) = cf1(X1) · · · fn(Xn) with c ∈ Q×. The same argument can be used also
for c±(M), δ(M). Therefore every fundamental period of M is a monomial of
fundamental periods of Mi, 1 ≦ i ≦ n.

§3. Siegel modular forms

We are interested in the nature of the critical values of L-functions attached to
Siegel modular forms and related period invariants.

Let Γ be a congruence subgroup of Sp(m,Z). Let S
(m)
k (Γ) denote the space

of Siegel modular cusp forms of weight k with respect to Γ. We normalize the
Petersson norm so that

⟨f, f⟩ = vol(Γ\Hm)−1

∫
Γ\Hm

|f(z)|2(det y)k−m−1dxdy,

where Hm denotes the Siegel upper half space of degree m and z = x+ iy with real

symmetric matrices x and y. We take a non-zero Hecke eigenform f ∈ S
(m)
k (Γ).

Then we can define two L-functions Lst(s, f) and Lsp(s, f) called standard and
spinor respectively.
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For simplicity, we assume Γ = Sp(m,Z). Put w = mk−m(m+1)/2. For a prime
number p, let α0, α1, . . . , αm be the Satake parameters attached to the eigenform
f . Then α2

0α1 · · ·αm = pw. The Euler p-factors of Lst(s, f) and Lsp(s, f) are

[(1− p−s)
m∏
i=1

(1− αip
−s)(1− α−1

i p−s)]−1 and

[[(1− α0p
−s)

m∏
r=1

∏
1≦i1<...<ir≦m

(1− α0αi1 · · ·αirp
−s)]−1

respectively. We assume that the Fourier coefficients of f are contained in a totally
real algebraic number field E. We assume the existence of motives Mst(f) and
Msp(f), which are defined over Q with coefficients in E and which satisfy

L(Mst(f), s) = (Lst(s, f
σ))σ∈JE

,

L(Msp(f), s) = (Lsp(s, f
σ))σ∈JE

.

Considering the degrees of the Euler products, we have

rankMst(f) = 2m+ 1, rankMst(f) = 2m.

Conjecture. If one of two motives Mst(f) and Msp(f) is not of pure weight, then
the associated automorphic representation to f is not tempered. Furthermore f can
be obtained as a lifting from lower degree forms.

Hereafter we assume that Mst(f) and Msp(f) are of pure weight, expecting that
the problems can be reduced to lower degree cases otherwise. (This is in fact the
case if m = 2.) Then the functional equations of the L-functions ([A], [Boc2]; still
conjectural for Lsp(s, f) for m > 2) forces the Hodge types of motives. We have to
assume that

∧2m+1Mst(f) ∼= T (0),

HB(Mst(f))⊗Q C =H0,0(Mst(f))

⊕m
i=1(H

−k+i,k−i(Mst(f))⊕Hk−i,−k+i(Mst(f))).

We further assume that F∞ acts on H0,0(Mst(f)) (the first factor of the right hand
side) by (−1)m. For Msp(f), we assume:

∧2mMsp(f) ∼= T (2m−1(mk − m(m+ 1)

2
)),

HB(Msp(f))⊗Q C = ⊕p,qH
p,q(Msp(f)),

where (p, q) extends over all pairs such that

p = (k − i1) + (k − i2) + · · ·+ (k − ir), q = (k − j1) + (k − j2) + · · ·+ (k − js),

r + s = m, 1 ≦ i1 < . . . < ir ≦ m, 1 ≦ j1 < . . . < js ≦ m,

{i1, . . . , ir} ∪ {j1, . . . , js} = {1, 2, . . . ,m},

including the cases r = 0 or s = 0. We further assume that if w = mk−m(m+1)/2
is even, then the eigenvalues +1 and −1 of F∞ onHpp(Msp(f)) occur with the equal
multiplicities.
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Proposition 3. Assume Deligne’s conjecture. If k > 2m, then we have

c±(Mst(f) = πmk(⟨fσ, fσ⟩)σ∈JE
.

This proposition can be proved by comparing critical values Lst(n, f) predicted
by Deligne’s conjecture with results of Böcherer [Boc1], Mizumoto [M] and Shimura
[Sh5].

We are interested how many independent periods exist forMst(f) and forMsp(f).

Let JE = {σ1, σ2, . . . , σl}, l = [E : Q] and write x ∈ R ∼= CJE as x = (x(1), x(2), . . . , x(l)),
x(i) ∈ C so that x(i) = xσi for x ∈ E.

Theorem 4. Let the notation be the same as above. We assume that two motives
over Q having the same L-function are isomorphic (Tate’s conjecture). Then there
exist p1, p2, . . . , pr ∈ C×, 1 ≦ r ≦ m + 1 such that for any fundamental period

c ∈ R× of Mst(f) or Msp(f), we have c(1) = απApa1
1 p

a2
2 · · · par

r with α ∈ Q
×

and
non-negative integers A, ai, 1 ≦ i ≦ r.

We have the relations of the L-functions:

(3.1) L(Msp(f)⊗Msp(f), s) =
m∏
j=0

L(∧j Mst(f), s− w),

(3.2) L(∧2Msp(f), s) =

m−1∏
j=0

L(∧j Mst(f), s− w)ϵj ,

(3.3) L(Sym2Msp(f), s) =
m∏
j=0

L(∧j Mst(f), s− w)δj ,

where ϵj = 1 if j ≡ m−1 or m−2 mod 4 and ϵj = 0 otherwise, δm = 1, ϵj+δj = 1
for 0 ≦ j ≦ m− 1. By the method of §2, we can compare the fundamental periods
of Msp(f) with those of Mst(f) using (3.2) and (3.3). In this way, Theorem 4 can
be proved.

By this theory, we can get some more insight for the zeta functions of symplectic
Shimura varieties. Let us describe the result in the simplest case. It is generally
believed, but proved very little when m > 2, that the zeta function of Γ\Hm can
be written using the spinor L-functions of automorphic forms:

ζ(s,Γ\Hm) ≒
∏
f

Lsp(s, f).

Put M = Msp(f). The weight of M is w and the deepest filtration of HDR(M) is
Fw, which is one dimensional. By (2.2), we have

Fw(HDR(M)) ∼= H0(M,Ωw).

Let
⟨ , ⟩ :M ⊗M −→ U

be a polarization of M , where U denotes a motive of rank 1. Take 0 ̸= ω ∈
Fw(HDR(M)). Then we can show that

⟨ω, F∞ω⟩ = c1(M)δ(M)−1.

The left hand side can be interpreted as the norm of the differential form ω. We
can prove the following proposition which is consistent with this picture.
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Proposition 5. With the same assumptions as in Theorem 4, we have

(c1(M)δ(M)−1)2 = (πmk⟨fσ, fσ⟩)2σ∈JE

when k > 2m.

Remark. It is possible to refine Theorem 4 replacing mod Q
×

by mod E×. In
Proposition 5, it is probable that we can drop the square factor from both sides.
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