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Introduction

M : homogeneous Kahler manifold
L1, Ly : real forms of M
i.e. Jo; : anti-holomorphic involutive isometry of M (i = 1,2)
st. L; = FiX(O’i, M)O
totally geodesic Lagrangian submanifold

Problems
@ Is the intersection L1 N Ly discrete?

@ If so, count the intersection number #(L; N Ls), and describe
the geometric meaning of #(L; N La).

Moreover, study the structure of the intersection Ly N L.
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Introduction

Problems
@ Is the intersection L1 N Ly discrete?

@ If so, count the intersection number #(L; N Ls), and describe
the geometric meaning of #(L; N Ls).
Moreover, study the structure of the intersection L1 N Ls.

M =CP!
Ly =RP!, L, ~RP!

#(LlﬂLQ) =2= dimH*(Ll,ZQ)

L1 N Ly : antipodal points
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Theorem (Tanaka-Tasaki 2012)
M : Hermitian symmetric space of compact type
Li,Ly C M : real forms, Lyt Lo

—> L1 N Ly is an antipodal set of Ly and L.

In addition, if Ly and Lo are congruent to each other,
= L1 N Ly is a great antipodal set of Ly and Ls.

Theorem (lkawa-Tanaka-Tasaki 2015)

A necessary and sufficient condition for two real forms in a

compact Hermitian symmetric space to intersect transversally is

given in terms of the symmetric triad (3, %, W).

A

Theorem (Iriyeh-S.-Tasaki 2013)

© Lagrangian Floer homology of two real forms in irreducible

Hermitian symmetric spacecs

@ Volume estimate of real forms under Hamiltonian deformations |

Takashi Sakai The intersection of two real flag manifolds



Antipodal sets of a compact symmetric space

M : compact Riemannian symmetric space

Sz . geodesic symmetry at x € M

Definition (Chen-Nagano 1988)

Q@ A C M : antipodal set Lt sx(y) =y forall z,y € A

Q@ #oM := max{#A| A C M : antipodal set} 2-number

© A C M : great antipodal set L, H#HA=H#sM

Theorem (Takeuchi 1989)

M : symmetic R-space ~—> #oM = dim H,(M, Zs)
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Example
RP" Cc CP™

A:={Rey,...,Rep11} CRP™ great antipodal set
Forue U(n+1), RP" h uRP™ in CP"

RP" NuRP"™ = {Cey,...,Cept1} C CP"
#(RP" N uRP"™) = n + 1 = #,RP" = dim H.(RP", Z»)

Aim of our work

Generalizing the results on Hermitian symmetric spaces, study the

intersection of two real forms in a complex flag manifold.
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Complex flag manifolds

G : compact, connected semisimple Lie group
zo(#0) € g

M = Ad(G)xg C g
G/G,, = GY/PC

: complex flag manifold

I

Gz = {9 € G | Ad(g)zo = zo}
o = {X €g ‘ [:Bo,X] = O}
w : Kirillov-Kostant-Souriau symplectic form on M defined by

w(X3 V) = (X,Y],z) (zeM, X,Y cq)

)T

J : G-invariant complex structure on M compatible with w

(+,+) :=w(+,J-) : G-invariant Kahler metric



Antipodal set of a complex flag manifold (1/2)

For x € M and g € Z(Gy,), define s, 4 : M — M by

S2.9(Yy) = Ad(g299; )y (y € M),

where g, € G satisfying Ad(g,)zo = x.

Fix(sz, M) :={y € M | s;4(y) =y (Vg € Z(Gq,))}

Definition

A C M : antipodal set L, y € Fix(sy, M) for all z,y € A

Note: This definition is equivalent to the notion of an antipodal
set of M defined using k-symmetric structure on M. When M is a
Hermitian symmetric space, it is also equivalent to the notion of an

antipodal set introduced by Chen-Nagano.



Antipodal set of a complex flag manifold (2/2)

For any z € M,

Fix(sy, M) ={y € M | [z,y] = 0}.

Theorem 1 (Iriyeh-S.-Tasaki)
A C M : maximal antipodal set

—> Jt C g : maximal abelian subalgebra s.t.
A=Mnt

Hence A is an orbit of the Weyl group of g with respect to t.

Maximal antipodal sets of M are congruent to each other by G.
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Real flag manifolds in a complex flag manifold

(G, K) : symmetric pair of compact type

6 : involution of G s.it. Fix(0,G)y C K C Fix(0,G)

=tP
ro(#0) € p gy
L := Ad(K)zy C p :real flag manifold, R-space
N N N

M = Ad(G)zy C g :complex flag manifold, C-space

= G/Gyy = G5/PE
g =t++—1p non-compact real form of g©

o : complex conjugation of g€ w.r.t. ¢’
anti-holomorphic involution on M.

L=Mnp=K/K,, =G /(G NP
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The intersection of real flag manifolds

(G, K1), (G, K3) : symmetric pairs of compact type
01,05 : involutions of G

g="=0 +p1 =8t +po,
wo(# 0) € p1 NP2

Ly = Ad(Kl)l‘O, Ly = Ad(K2)$0 Cc M:= Ad(G)J}Q
For g € G, we consider the intersection of L; N Ad(g)Ls in M.

a : maximal abelian subspace of p; N po containing zg

A:=expa C G : toral subgroup
Then G = K1AKy, ie. g=giags (g1 € K1,92 € Ka,a € A)

L1 N Ad(g)Ls = Ly N Ad(giage)Ls = Ad(g1) (L1 N Ad(a)Lg)
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Symmetric triads

Hereafter we assume 6105 = 656;.
g= (&1 NE)+ (p1Np2) + (81 Np2) + (p1 NE2)

Then ((?1 N 32) + (Pl N pg), (El N fg), db; = d@g)
is an orthogonal symmetric Lie algebra.

ForA€aCpinps
pri={X epiNpz | [H [H X]] =—(\H)?X (H €a)}
VWwi={Xepnt|[H[HX]=—-\H?X (Heca)}

Yi={Area\{0} [ pr#{0}}
W={Xea\{0} | V) #{0}}
Y =YUW

(3,2, W) : symmetric triad with multiplicities  (Ikawa)
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The structure of the intersection

Qreg 1= ﬂ {Hea

AED
acW

O\ H) ¢ 7Z, (o, H) ¢ g n wz}

W () : Weyl group of the root system 3 of a

a; : maximal abelian subspace of p; containing a (i =1,2)

W(R;) : Weyl group of the restricted root system R; of (g, ;)
w.r.t. a;

Theorem (lkawa-Iriyeh-Okuda-S.-Tasaki)

Fora =exp H (H € a), the intersection Ly N Ad(a)Ly is discrete

if and only if H € ayeg. Moreover, if Ly N Ad(a)Ls is discrete, then

LiNAd(a)Ly = W(X)zg = W(Ry)zo Na=W(Rz)ze Na,

in particular, L1 N Ad(a)L2 is an antipodal set of M.
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Hermann actions

Oreg 1= ﬂ {Hea

AED
aceW

P : cell, a connected component of ayeg

O\ H) & 72, (o, H) & g + WZ}

K2 X K1 ~ G
71;1/ \7‘1‘2
Ko~ G/K; Ks\G ~ Ky Hermann actions

NS

K)\G/K, =P

Proposition (lkawa)
For a =exp H (H € a), orbits KsaK, C G, Komi(a) C G/Kjq,
mo(a) K1 C K2\G are regular if and only if H € acq.
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(G, K1, K32) = (SU(2n), 50(2n), Sp(n))

o I,

01(9) =G, 02(9)=JngJ,! (9€G) where J,:= o

pmm_{[ Vo1X /-1y

’ X,Y € My(R), traceX =0 }

—/—-1Y /-1X X=X,V =-Y
Fix a maximal abelian subspace a in p; N ps as
i vV—-1X (@) ‘ X = diag(ty,...,tn),
a= =
O V=1X tH,oo o tn €R, t1 4+ +t, =0

Then
N=S=W={%(ei—¢;) | 1<i<j<n}

where e; —e; € a (i # j) is defined by (e; —e;, H) =t; — t;.



v—1X (0]
O v—1X

where X = diag(z1/pn,, ..., %r411n,,,) and x; are distinct real

xo = ca

numbers satisfying njx1 + - + npp12,41 = 0.

Ly = Ad(K1)zo = Fay,, o, (R?")

Ly = Ad(Ky)zo = Fy, . (H")

M = Ad(G)ao = Fa, o, (C*")
K=R,CorH
n,ni,...,n, satisfying n,41 :=n—(n1+---+n,) >0

Vj is a K-subspace of K",
FE o ®) =L (Vi V) | dimg V=g + -+ +ny,
icWwec---CcV,CcK"
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vV—-1Y @)

@) vV-1Y
where Y = diag(t1,...,t,) and t1,...,t, € R which satisfy
ty +---+t, =0. By our theorem,

a=expH, H= €a

Li N Ad(a)Ls is discrete

= Heareg:{Hea‘(ei—ej,H>§ZgZ(1§z‘<j§n)}

LiNAd(a)Ly = W(X)zo = W(R1)zo Na=W(Ra)zoNa

In this case, a maximal abelian subspace a in p; Np2 is also a

maximal abelian subspace in po, i.e. a = as and X = R».
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The case of n = 3

St =3 =

Qreg = {HG a

W:{ei—ej|1§i<j§3}

<ei—ej,H)¢gZ (1§i<3§n)}
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The case of n = 3

2+:2:W:{6i—ej|1§i<j§3}

s = {H € @ <ei—ej,H)¢gZ(1§i<3§n)}

A L

<€i - €j,H>€ .

-4 X
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The case of n = 3

2+:2:W:{6i—ej|1§i<j§3}

areg:{HGa‘<ei—ej,H)¢gZ(1§i<3§n)}

¢ Bt

FiS
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We shall express the intersection in the flag model Fﬁcm,...gnr (c2m).

V1, ..., U9y, : standard basis of C2"
Wi i= (vi, vnti)e = (viym (1 <i<n)

Proposition

For a =exp H (H € tycg),

R 2 H
F2n1,...,2nr(R n) maFnl,...,nr(Hn)
Z{(Wil@'”@Winl,Wil@"'@WinlJrnQ,...
e Wy @@ W
|1 <i) <+ <ipy <0y 1L <lipy41 <o <lpygng S Myeen

n1+-~~+nr)

L <ldpygotne 141 <00 <lpggogn, <N,

#{il, 000 7in1+"'+n,~} =N + .o+ nr}’

which is an antipodal set of Fé%hmgnr (c2m).

o’
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Theorem (Sanchez, Berndt-Console-Fino)

For a complex flag manifold M and a real flag manifold L,
#1(M) = dim H, (M, Zs), #1(L) = dim H. (L, Zs)

holds.
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For g € SU(2n), if F} (R*") and gFy; . (H") intersect

2n1,...,.2np
transversally in Fy,, o, (C?"), then

#(Fon,...on, R™) N gFy o, (HT))
= #I(FE,...,nT (Hn)) = dim H*(FE,...,nT (Hn)a ZQ)
n!

nl!ng! s nr+1!

< #1(Fa,,.. o0, (R?™)) = dim Hy (Fyy, 5, (R*"), Zo)

= #1(Fan,,...20,(C*")) = dim Hy(Fgy,, 2y, (C*"), Zo)
(2n)!

(an)'(2n2)' tee (2nr+1)! ’
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Further problems

@ Study the intersection of two real flag manifolds in the case
where 9192 7'5 0291.

@ Calculate Lagrangian Floer homologies of pairs of real flag
manifolds in complex flag manifolds.

© Determine Hamiltonian volume minimizing properties of all
real forms in irreducible Hermitian symmetric spaces, more

generally, in complex flag manifolds.
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Thank you very much for your attention
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