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Abstract: Suppose that a d-dimensional Hilbert space H ' Cd admits a full set of mutually
unbiased bases

{
|1(a)〉 , . . . , |d(a)〉

}
, where a = 1, . . . , d+ 1. A randomized quantum state tomography

is a scheme for estimating an unknown quantum state on H through iterative applications of
measurements M(a) =

{
|1(a)〉 〈1(a)| , . . . , |d(a)〉 〈d(a)|

}
for a = 1, . . . , d + 1, where the numbers of

applications of these measurements are random variables. We show that the space of the resulting
probability distributions enjoys a mutually orthogonal dualistic foliation structure, which provides
us with a simple geometrical insight into the maximum likelihood method for the quantum
state tomography.

Keywords: quantum state tomography; mutually unbiased bases; information geometry; dualistic
foliation; mixed coordinate system

1. Introduction

Quantum state tomography is a method of estimating an unknown quantum state represented on
some Hilbert spaceH, consisting of a fixed set of measurements that provides sufficient information
about the unknown quantum state, as well as a data processing that maps each measurement outcome
into the quantum state space S(H) on H [1]. A set of measurements that fulfils this requirement is
sometimes called a measurement basis. For mathematical simplicity, we restrict ourselves to Hilbert
spaces of finite dimensions.

To elucidate our motivation, let us treat the simplest case when H ' C2. It is well known that
there is a one-to-one affine correspondence between the qubit state space

S(C2) := {ρ ∈ C2×2 | ρ ≥ 0, Tr ρ = 1}

and the unit ball (called the Bloch ball)

B :=
{

x = (x1, x2, x3) ∈ R3
∣∣∣ ‖x‖2 := (x1)

2 + (x2)
2 + (x3)

2 ≤ 1
}

.

In fact, the correspondence is explicitly given by the Stokes parametrization

x 7−→ ρx =
1
2
(I + x1σ1 + x2σ2 + x3σ3),

where σ1, σ2, and σ3 are the standard Pauli matrices. Since Eρx [σi] := Tr ρxσi = xi for i ∈ {1, 2, 3}, the set
σ = (σ1, σ2, σ3) of observables is regarded as an unbiased estimator [2–4] for the Stokes parameter
x = (x1, x2, x3). This is the basic idea behind the standard qubit state tomography, which runs as
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follows: suppose that, among N independent experiments, the ith Pauli matrix σi was measured N/3
times, and outcomes +1 (spin-up) and −1 (spin-down) were obtained n+

i and n−i times, respectively.
Then a naive estimate for the true value of the parameter x = (x1, x2, x3) is

x̂ = (x̂1, x̂2, x̂3) :=

(
n+

1 − n−1
N/3

,
n+

2 − n−2
N/3

,
n+

3 − n−3
N/3

)
.

When the estimate x̂ ∈ [−1, 1]3 falls outside the Bloch ball B, it needs to be corrected so that the
new estimate lies in the Bloch ball B. The maximum likelihood method is a canonical one to obtain
a corrected estimate [2,5–10]. From the point of view of information geometry [11–13], the maximum
likelihood estimate (MLE) is the orthogonal projection from the temporary estimate x̂ onto the Bloch
ball B with respect to the standard Fisher metric along the ∇(m)-geodesic [14], (cf., Appendix A).

Now let us deal with a slightly generalized situation: suppose that the ith Pauli matrix σi
was measured Ni times and outcomes +1 and −1 were obtained n+

i and n−i times, respectively,
where {Ni}i=1,2,3 were random variables. Such a situation arises in an actual experiment due to
unexpected particle loss [15]. We shall call such a generalized estimation scheme a randomized state
tomography. A naive estimate in this case is the following:

x̂ = (x̂1, x̂2, x̂3) :=

(
n+

1 − n−1
N1

,
n+

2 − n−2
N2

,
n+

3 − n−3
N3

)
.

One may invoke the maximum likelihood method when x̂ falls outside the Bloch ball. It is then
interesting to ask if there is also a useful geometrical picture for the MLE even when the numbers Ni of
measurements are random variables.

The above mentioned problem is naturally extended to quantum state tomography on an arbitrary
Hilbert space that admits a full set of mutually unbiased bases [16,17]. In a d-dimensional Hilbert
spaceH ' Cd, k orthonormal bases{

|α(1)〉
}

α∈{1,...,d}
,
{
|β(2)〉

}
β∈{1,...,d}

, . . . ,
{
|γ(k)〉

}
γ∈{1,...,d}

are called mutually unbiased if they satisfy∣∣∣〈α(a)
∣∣∣ β(b)

〉∣∣∣2 =
1
d

for all a, b ∈ {1, . . . , k} with a 6= b, and α, β ∈ {1, . . . , d}. It is known that the number k of mutually
unbiased bases (MUBs) is at most d + 1 [18]. If there are d + 1 MUBs, the Hilbert space H is said to
admit a full set of MUBs. For example, when the dimension d ofH is a power of a prime,H admits
a full set of MUBs [19]. Whether or not any Hilbert space admits a full set of MUBs is an open
question [16].

In what follows, unless otherwise stated, we assume that the Hilbert space H ' Cd under
consideration admits a full set of MUBs. As demonstrated in Appendix B (cf., [17,20]), each density
operator ρ ∈ S(H) can be uniquely represented as

ρ = ρ(ξ) :=
d+1

∑
a=1

{
d−1

∑
α=1

ξ
(a)
α M(a)

α +

(
1−

d−1

∑
β=1

ξ
(a)
β

)
M(a)

d

}
− I, (1)

where
M(a) :=

{
M(a)

1 , . . . , M(a)
d

}
=
{
|1(a)〉 〈1(a)| , . . . , |d(a)〉 〈d(a)|

}
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is the projection-valued measure (PVM) associated with the ath orthogonal basis in the MUBs, and

ξ :=
(

ξ
(a)
α

)
(a,α)∈{1,...,d+1}×{1,...,d−1}

is a (d2 − 1)-dimensional real parameter that is chosen so that ρ(ξ) ≥ 0. A simple calculation shows
that, if the ath measurement M(a) is applied to the state ρ(ξ), one obtains each outcome α ∈ {1, . . . , d}
with probability

p(a)
α = Tr ρ(ξ)M(a)

α =


ξ
(a)
α , for α = 1, . . . , d− 1,

1−
d−1

∑
β=1

ξ
(a)
β , for α = d.

(2)

This implies that the parametrization ξ 7→ ρ(ξ) establishes an affine isomorphism between the
quantum state space

S(Cd) :=
{

ρ ∈ Cd×d
∣∣∣ ρ ≥ 0, Tr ρ = 1

}
and the convex set

B :=
{

ξ ∈ Rd2−1
∣∣∣ ρ(ξ) ≥ 0

}
.

Incidentally, the Stokes parametrization x 7→ ρx for the qubit state space S(C2) is regarded as
a special case of the above parametrization ξ 7→ ρ(ξ) for S(Cd). In fact, the eigenvectors of the Pauli
matrices σ1, σ2, σ3 form a full set of MUBs on C2, and the Stokes parametrization x = (x1, x2, x3) is
related to the above parametrization ξ = (ξ

(1)
1 , ξ

(2)
1 , ξ

(3)
1 ) as

ξ
(a)
1 =

xa + 1
2

, (a = 1, 2, 3).

Now that a standard affine parametrization ξ 7→ ρ(ξ) has been established on an arbitrary Hilbert
spaceH ' Cd that admits a full set of MUBs, the scheme of randomized state tomography is naturally
extended to H as follows. Suppose that the ath measurement M(a) was applied N(a) times and
the outcome α ∈ {1, . . . , d} was obtained n(a)

α times, where
{

N(a)
}

a=1,...,d+1
were random variables.

Then, due to (2), a naive estimate for the parameter ξ
(a)
α is

ξ̂
(a)
α =

n(a)
α

N(a)
.

When the estimate ξ̂ :=
(

ξ̂
(a)
α

)
∈ [0, 1]d

2−1 falls outside the parameter space B, one may invoke the
maximum likelihood method to obtain a corrected estimate.

The objective of the present paper is to clarify that the ∇(m)-projection interpretation for the
MLE is still valid for the randomized state tomography by changing the standard Fisher metric into
a deformed one depending on the realization of the random variables N(a), which might as well be
called a randomized Fisher metric. Such a novel geometrical picture will provide important insights
into the quantum metrology.

The paper is organized as follows. In Section 2, we first introduce a statistical model on an
extended sample space Ω that represents the randomized state tomography. We then clarify that the
probability simplex P(Ω) is decomposed into mutually orthogonal dualistic foliation by means of
certain ∇(m)- and ∇(e)-autoparallel submanifolds. In Section 3, we give a statistical interpretation
of the above-mentioned dualistic foliation structure. In particular, we point out that the MLE is the
∇(m)-projection with respect to a deformed Fisher metric that depends on the realization of the random
variables N(a). These results are demonstrated by several illustrative examples in Section 4. Finally,
some concluding remarks are presented in Section 5. For the reader’s convenience, some background
information is provided in Appendices A and B, including information geometry of the MLE and
affine parametrization of a quantum state space S(H).
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2. Geometry of Randomized State Tomography

We identify the randomized state tomography onH ' Cd with the following scheme [21]: at each
step of the measurement, one chooses a PVM M(a) at random with probability s(a), (a = 1, . . . , d + 1),
and applies the chosen PVM to yield an outcome α ∈ {1, . . . , d}. The sample space Ω for this statistical
picture is

Ω = {(a, α)| a ∈ {1, . . . , d + 1}, α ∈ {1, . . . , d}} .

Suppose that the unknown state ρ is specified by the coordinate ξ ∈ B as (1). Then the corresponding
probability distribution on Ω is represented by the d(d + 1)-dimensional probability vector

p(s,ξ) :=

(
s(1)

(
ξ
(1)
1 , . . . , ξ

(1)
d−1, 1−

d−1

∑
α=1

ξ
(1)
α

)
, . . . , s(d)

(
ξ
(d)
1 , . . . , ξ

(d)
d−1, 1−

d−1

∑
α=1

ξ
(d)
α

)
,(

1−
d

∑
a=1

s(a)

)(
ξ
(d+1)
1 , . . . , ξ

(d+1)
d−1 , 1−

d−1

∑
α=1

ξ
(d+1)
α

))

where the parameter s := (s(1), . . . , s(d)) belongs to the domain

D :=

{
s ∈ Rd

∣∣∣∣∣ s(a) > 0 for a ∈ {1, . . . , d}, and
d

∑
a=1

s(a) < 1

}
.

Note that the family {
p(s,ξ)

∣∣∣s ∈ D, ξ ∈ Ξ
}

with

Ξ :=

{
ξ ∈ Rd2−1

∣∣∣∣∣ ξ
(a)
α > 0 for (a, α) ∈ {1, . . . , d + 1} × {1, . . . , d− 1},

and
d−1

∑
α=1

ξ
(a)
α < 1 for a ∈ {1, . . . , d + 1}

}

forms a (d2 + d − 1)-dimensional open probability simplex P(Ω), and the parameters (s, ξ) form
a coordinate system of P(Ω). Since we are only interested in estimating the parameter ξ ∈ Ξ,
the remaining parameter s ∈ D is understood as a set of nuisance parameters [2,12]. In what follows,
we regardP(Ω) as a statistical manifold endowed with the standard dualistic structure

(
g,∇(e),∇(m)

)
,

where g is the Fisher metric, and ∇(e) and ∇(m) are the exponential and mixture connections [12].
Let us consider the following submanifolds of P(Ω):

M(s) :=
{

p(s,ξ) | ξ ∈ Ξ
}

for each s ∈ D, and

E(ξ) :=
{

p(s,ξ) | s ∈ D
}

for each ξ ∈ Ξ. Since M(s) and E(ξ) are convex subsets of P(Ω), they are both ∇(m)-autoparallel.
In addition, we have the following.

Proposition 1. For each ξ ∈ Ξ, the submanifold E(ξ) is ∇(e)-autoparallel. Furthermore, for each s ∈ D and
ξ ∈ Ξ, the submanifolds M(s) and E(ξ) are mutually orthogonal with respect to the Fisher metric g.
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Proof. Let us change the coordinate system (s, ξ) into (η〈a〉, η〈b,α〉), where

η〈a〉 := s(a)

for a ∈ {1, . . . , d}, and
η〈b,α〉 := s(b)ξ(b)α

for (b, α) ∈ {1, . . . , d + 1} × {1, . . . , d− 1}. With this coordinate transformation, the probability vector
p(s,ξ) is rewritten as

pη =
d+1⊕
a=1

(
η〈a,1〉, . . . , η〈a,d−1〉, η〈a〉 −

d−1

∑
α=1

η〈a,α〉

)
. (3)

Here, η〈d+1〉 is a function of {η〈a〉}a∈{1,...,d} defined by

η〈d+1〉 := 1−
d

∑
a=1

η〈a〉,

and is not a component of the coordinate system η := (η〈a〉, η〈b,α〉). We see from the representation (3)
that the coordinate system η is∇(m)-affine. The potential function for η is given by the negative entropy

ϕ(η) := ∑
ω∈Ω

pη(ω) log pη(ω)

=
d+1

∑
a=1

{
d−1

∑
α=1

η〈a,α〉 log η〈a,α〉 +

(
η〈a〉 −

d−1

∑
β=1

η〈a,β〉

)
log

(
η〈a〉 −

d−1

∑
β=1

η〈a,β〉

)}

and the dual ∇(e)-affine coordinate system θ is given by

θ〈a〉 =
∂ϕ

∂η〈a〉
= log

s(a)(
1−

d

∑
b=1

s(b)
) + log

(
1−

d−1

∑
β=1

ξ
(a)
β

)
(

1−
d−1

∑
β=1

ξ
(d+1)
β

)

for a ∈ {1, . . . , d}, and

θ〈b,α〉 =
∂ϕ

∂η〈b,α〉
= log

ξ
(b)
α(

1−
d−1

∑
β=1

ξ
(b)
β

)

for (b, α) ∈ {1, . . . , d + 1} × {1, . . . , d − 1}. Thus, fixing ξ is equivalent to fixing the coordinates(
θ〈b,α〉

)
(b,α)∈{1,...,d+1}×{1,...,d−1}

, and the submanifold E(ξ) is generated by changing the remaining

parameters
(

θ〈a〉
)

a∈{1,...,d}
. This implies that E(ξ) is ∇(e)-autoparallel, proving the first part of

the claim.
To prove the second part, let us introduce a mixed coordinate system [11](

η〈a〉; θ〈b,α〉
)

a∈{1,...,d}, (b,α)∈{1,...,d+1}×{1,...,d−1}

of P(Ω). Since η〈a〉 = s(a), the submanifold M(s) is rewritten as

M(s) =
{

p(s,ξ)

∣∣∣∣ (η〈a〉

)
a∈{1,...,d}

are fixed and
(

θ〈b,α〉
)
(b,α)∈{1,...,d+1}×{1,...,d−1}

are arbitrary
}

.
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On the other hand, the submanifold E(ξ) is rewritten as

E(ξ) =
{

p(s,ξ)

∣∣∣∣ (θ〈b,α〉
)
(b,α)∈{1,...,d+1}×{1,...,d−1}

are fixed and
(

η〈a〉

)
a∈{1,...,d}

are arbitrary
}

.

Thus, the orthogonality of M(s) and E(ξ) is an immediate consequence of the orthogonality of
the dual affine coordinate systems θ and η with respect to the Fisher metric g.

Proposition 1 implies that the manifold P(Ω) is decomposed into mutually orthogonal dualistic
foliation based on the submanifolds M(s) and E(ξ), as illustrated in Figure 1. We shall exploit this
geometrical structure in the next section.

Figure 1. Mutually orthogonal dualistic foliation of P(Ω) based on M(s) and E(ξ). Each section M(s)
is affinely isomorphic to the parameter space Ξ. The greyish cylindrical area indicates the subset
B = {p(s,ξ)|s ∈ D, ξ ∈ B} of P(Ω). In particular, for each s ∈ D, the intersection M(s) ∩ B is affinely
isomorphic to the physical domain B that corresponds to the state space S(H).

3. Estimation of the Parameter ξ

Let us proceed to the problem of estimating the unknown parameter ξ using the randomized
tomography. Suppose that, among N independent repetitions of experiments, the ath measurement
M(a) was applied N(a) times and outcomes α ∈ {1, . . . , d} were obtained n(a)

α times. Then temporary
estimates (ŝ, ξ̂) for the parameters (s, ξ) are given by

ŝ(a) :=
N(a)

N

for a ∈ {1, . . . , d}, and

ξ̂
(b)
β :=

n(b)
β

N(b)

for (b, β) ∈ {1, . . . , d + 1} × {1, . . . , d− 1}. If ξ̂ has fallen outside the physical domain B, one may
seek a corrected estimate by the maximum likelihood method. Observe that, due to (2), the empirical
distribution q̂N ∈ P(Ω) is represented as

q̂N = p(ŝ,ξ̂). (4)
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On the other hand, the physical domain B in the parameter space Ξ corresponds to the subset

B := {p(s,ξ) | s ∈ D, ξ ∈ B}

of P(Ω), (see Figure 1). The MLE p∗ in P(Ω) is then given by

p∗ = arg min
p∈B

D(q̂N‖p), (5)

where D( · ‖ · ) is the Kullback-Leibler divergence (cf., Appendix A). A crucial observation is
the following.

Proposition 2. The minimum in (5) is achieved on M(ŝ) ∩ B.

Proof. Let us take a point p(s,ξ) ∈ B arbitrarily. It then follows from the mutually orthogonal dualistic
foliation of P(Ω) established in Proposition 1 that

D(q̂N‖p(s,ξ)) = D(p(ŝ,ξ̂)‖p(s,ξ))

= D(p(ŝ,ξ̂)‖p(ŝ,ξ)) + D(p(ŝ,ξ)‖p(s,ξ))

≥ D(p(ŝ,ξ̂)‖p(ŝ,ξ)).

In the second equality, the generalized Pythagorean theorem was used. Consequently,

min
ξ∈B

D(p(ŝ,ξ̂)‖p(s,ξ)) ≥ min
ξ∈B

D(p(ŝ,ξ̂)‖p(ŝ,ξ))

for all s ∈ D, and the right-hand side is achieved if and only if s = ŝ.

The geometrical implication of Proposition 2 is illustrated in Figure 2. The MLE p∗ = p(ŝ,ξ∗) is the
∇(m)-projection from the empirical distribution p(ŝ,ξ̂) to B, and is on the section M(ŝ) specified by the
temporary estimate ŝ.

Figure 2. The maximum likelihood method in the framework of randomized tomography.
Given a temporary estimate (ŝ, ξ̂) with ξ̂ /∈ B, we can restrict ourselves to the section M(ŝ) as the search
space for the MLE p∗, and p∗ = p(ŝ,ξ∗) is the ∇(m)-projection from the empirical distribution p(ŝ,ξ̂) to B
on the section M(ŝ).
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Now we arrive at a geometrical picture behind the parameter estimation based on randomized
state tomography. Suppose we are given a temporary estimate (ŝ, ξ̂) with ξ̂ /∈ B. Due to Proposition 2,
we can restrict ourselves to section M(ŝ) as the search space for the MLE p∗. Since each section M(ŝ) is
affinely isomorphic to the parameter space Ξ, we can introduce a dualistic structure (g̃, ∇̃(e), ∇̃(m)) on
Ξ in the following way. Firstly, we identify the metric g̃ with the Fisher metric g restricted on M(ŝ),
that is,

g̃(ŝ,ξ)

 ∂

∂ξ
(a)
α

,
∂

∂ξ
(b)
β

 =
∂η〈a′ ,α′〉

∂ξ
(a)
α

∂η〈b′ ,β′〉

∂ξ
(b)
β

g(s,ξ)

(
∂

∂η〈a′ ,α′〉
,

∂

∂η〈b′ ,β′〉

)∣∣∣∣∣∣
s=ŝ

= s(a)s(b)
∂2 ϕ(η)

∂η〈a,α〉∂η〈b,β〉

∣∣∣∣∣
s=ŝ

= δab ŝ(a)

(
1

ξ
(a)
d

+
δαβ

ξ
(a)
α

)
,

for a, b ∈ {1, . . . , d + 1} and α, β ∈ {1, . . . , d− 1}, where ŝ(d+1) and ξ
(a)
d are formally defined as

ŝ(d+1) := 1−
d

∑
a=1

ŝ(a), ξ
(a)
d := 1−

d−1

∑
α=1

ξ
(a)
α .

Secondly, the mixture connection ∇̃(m) on Ξ is defined through the natural affine isomorphism
between M(ŝ) and Ξ. Finally, the dual connection ∇̃(e) is defined by the duality

g̃(∇̃(e)
X Y, Z) := Xg̃(Y, Z)− g̃(Y, ∇̃(m)

X Z).

Thus, the MLE ξ∗ in the parameter space Ξ is interpreted as the ∇̃(m)-projection from ξ̂ to the
physical domain B with respect to the metric g̃.

4. Examples

In this section, we present some examples that demonstrate the implication of Proposition 2 as
well as the general diagram given in Figure 2.

4.1. When dimH = 2

Let us first study the simplest case whenH = C2. A full set of MUBs is given by

{
|1(1)〉 , |2(1)〉

}
=

{
1√
2

(
1
1

)
,

1√
2

(
1
−1

)}
,

{
|1(2)〉 , |2(2)〉

}
=

{
1√
2

(
1
−i

)
,

1√
2

(
1
i

)}
,

{
|1(3)〉 , |2(3)〉

}
=

{(
1
0

)
,

(
0
1

)}
.

With these bases, the parameter representation (1) becomes

ρ =
1
2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
,

where x = (x1, x2, x3) is the standard Stokes parameter, which is related to ξ = (ξ
(1)
1 , ξ

(2)
1 , ξ

(3)
1 ) as

xa = 2ξ
(a)
1 − 1 for a = 1, 2, 3.
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Figure 3 demonstrates how the ∇̃(m)-projection is realized. Here, the trajectories of
∇̃(m)-projections that gives the MLE p∗ are plotted only on the x1x2-plane. The left and right panels
correspond to the cases when N(1) : N(2) = 1 : 1 and N(1) : N(2) = 5 : 1, respectively. The change
of ξ1-coordinate relative to the change of x2-coordinate along each trajectory is less noticeable in the
right panel than in the left panel. This is because a tomography with N(1)/N(2) = 5 provides us with
more information about x1-coordinate, relative to x2-coordinate, as compared with the case when
N(1)/N(2) = 1.

-1.0 -0.5 0.5 1.0
x1

-1.0

-0.5

0.5

1.0
x2

-1.0 -0.5 0.5 1.0
x1

-1.0

-0.5

0.5

1.0
x2

Figure 3. The trajectories of ∇̃(m)-projections on the Stokes parameter space when N(1) : N(2) = 1 : 1
(left) and N(1) : N(2) = 5 : 1 (right). The greyish disk represents the Bloch ball B.

4.2. When dimH = 3

The spaceH = C3 admits a full set of MUBs; for example,

{
|1(1)〉 , |2(1)〉 , |3(1)〉

}
=


1

0
0

 ,

0
1
0

 ,

0
0
1


 ,

{
|1(2)〉 , |2(2)〉 , |3(2)〉

}
=

 1√
3

1
1
1

 ,
1√
3

 1
ω

ω2

 ,
1√
3

 1
ω2

ω


 ,

{
|1(3)〉 , |2(3)〉 , |3(3)〉

}
=

 1√
3

ω

1
1

 ,
1√
3

 1
ω

1

 ,
1√
3

 1
1
ω


 ,

{
|1(4)〉 , |2(4)〉 , |3(4)〉

}
=

 1√
3

ω2

1
1

 ,
1√
3

 1
ω2

1

 ,
1√
3

 1
1

ω2


 ,

where ω = (−1 + i
√

3)/2 is a primitive third root of unity. With these bases, the parameter
representation (1) becomes

ρ =

 ξ
(1)
1 a12 − ib12 a13 − ib13

a12 + ib12 ξ
(1)
2 a23 − ib23

a13 + ib13 a23 + ib23 1− ξ
(1)
1 − ξ

(1)
2

 ,
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where

a12 =
1
2

(
1 + ξ

(2)
1 − ξ

(3)
1 − ξ

(3)
2 − ξ

(4)
1 − ξ

(4)
2

)
,

a13 =
1
2

(
−1 + ξ

(2)
1 + ξ

(3)
2 + ξ

(4)
2

)
,

a23 =
1
2

(
−1 + ξ

(2)
1 + ξ

(3)
1 + ξ

(4)
1

)
,

b12 =

√
3

6

(
1− ξ

(2)
1 − 2ξ

(2)
2 + ξ

(3)
1 − ξ

(3)
2 − ξ

(4)
1 + ξ

(4)
2

)
,

b13 =

√
3

6

(
−1 + ξ

(2)
1 + 2ξ

(2)
2 + 2ξ

(3)
1 + ξ

(3)
2 − 2ξ

(4)
1 − ξ

(4)
2

)
,

b23 =

√
3

6

(
1− ξ

(2)
1 − 2ξ

(2)
2 + ξ

(3)
1 + 2ξ

(3)
2 − ξ

(4)
1 − 2ξ

(4)
2

)
.

The physical domain B that corresponds to the state space S(C3) is a compact convex subset of
the parameter space Ξ (⊂ R8), and the extreme points of B form an algebraic variety with respect to
the parameters

ξ = (ξ
(1)
1 , ξ

(1)
2 , ξ

(2)
1 , ξ

(2)
2 , ξ

(3)
1 , ξ

(3)
2 , ξ

(4)
1 , ξ

(4)
2 ).

A numerical example of a ∇̃(m)-projection that gives the MLE is illustrated in Figure 4, where no
probe particle is lost, that is, when

ŝ =
(

1
4

,
1
4

,
1
4

,
1
4

)
.

In Figure 4, the dot laid outside the greyish region indicates the empirical distribution, i.e.,
the temporary estimate

ξ̂ = (0.100, 0.100, 0.066, 0.333, 0.333, 0.333, 0.333, 0.333),

and the corresponding MLE is

ξ∗ = (0.122, 0.122, 0.108, 0.329, 0.299, 0.327, 0.327, 0.299).

0 2 4 6 8

-6

-4

-2

0

2

s

t

0 2 4 6 8

-4

-2

0

2

4

s

t

Figure 4. A trajectory of ∇̃(m)-projection displayed on randomly chosen two-dimensional affine
subspaces of Ξ to which both the empirical distribution (marked as a dot) and the MLE belong.
The greyish region represents the physical domain B.
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Furthermore, the greyish region represents the physical domain B cut by a two-dimensional affine
subspace of Ξ specified by the equation

ξ = (1− s) ξ̂ + s ξ∗ + t v.

The vector v was chosen randomly under the condition that

v ⊥ ξ̂ − ξ∗ and ‖v‖ = ‖ξ̂ − ξ∗‖,

where the orthogonality ⊥ and the norm ‖ · ‖ are understood relative to the standard Euclidean
structure of R8. In Figure 4, the vector v was taken to be

v1 = (−0.036,−0.038, 0.012,−0.026,−0.038, 0.011, 0.002, 0.005)

in the left panel, and

v2 = (0.028, 0.000,−0.006, 0.034,−0.024,−0.022, 0.034, 0.030)

in the right panel.
Figure 4 also demonstrates that the sections of the physical domain B show a variety of shapes.

Unfortunately, due to this asymmetry of B, we were unable to find a (nontrivial) two-dimensional
affine subspace on which every ∇̃(m)-projection runs. Such a difficulty is in good contrast to the
simplest case H ' C2, where the set B is rotationally symmetric and the ∇̃(m)-projections can be
displayed on any two-dimensional section of B that passes through the origin of B as Figure 3.

4.3. When dimH ≥ 4

The spaceH = C4 is also known to admit a full set of MUBs since dimH = 4 is the second power
of the prime number 2; for example [22],

{
|1(1)〉 , |2(1)〉 , |3(1)〉 , |4(1)〉

}
=




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 ,

{
|1(2)〉 , |2(2)〉 , |3(2)〉 , |4(2)〉

}
=


1
2


1
1
1
1

 ,
1
2


1
1
−1
−1

 ,
1
2


1
−1
−1
1

 ,
1
2


1
−1
1
−1


 ,

{
|1(3)〉 , |2(3)〉 , |3(3)〉 , |4(3)〉

}
=


1
2


1
−1
−i
−i

 ,
1
2


1
−1

i
i

 ,
1
2


1
1
i
−i

 ,
1
2


1
1
−i
i


 ,

{
|1(4)〉 , |2(4)〉 , |3(4)〉 , |4(4)〉

}
=


1
2


1
−i
−i
−1

 ,
1
2


1
−i
i
1

 ,
1
2


1
i
i
−1

 ,
1
2


1
i
−i
1


 ,

{
|1(5)〉 , |2(5)〉 , |3(5)〉 , |4(5)〉

}
=


1
2


1
−i
−1
−i

 ,
1
2


1
−i
1
i

 ,
1
2


1
i
−1

i

 ,
1
2


1
i
1
−i


 .
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It is straightforward to calculate the parameter representation (1) of a state ρ ∈ S(C4); however,
the corresponding density matrix is rather complicated, and we omit to display it here.

When H = C6, or more generally, when dimH is not a power of a prime, we do not know
whether H admits a full set of MUBs. Let us touch upon a situation where a Hilbert space H, if it
exists, does not admit a full set of MUBs. In this case, there is no measurement basis M(a) that allows a
parametrization ξ of the state space S(H) having a direct connection to the probability distribution of
the outcomes as (2). Such a situation could be comparable to the case when the Gell-Mann matrices [23]
are used as the measurement basis for estimating an unknown state onH = C3. A state ρ ∈ S(C3) is
represented as

ρ = ρx :=
1
3

(
I +
√

3
8

∑
i=1

xiλi

)
,

where λ1, . . . , λ8 are the Gell-Mann matrices, and x = (x1, . . . , x8) is a set of real parameters.
The physical domain

B =
{

x ∈ R8
∣∣∣ ρx ≥ 0

}
forms a compact convex subset of the unit ball in R8. With the state ρx, the probability distribution of
obtaining the eigenvalues (−1, 0, 1) of the observable λ1 is(

1−
√

3x1 + x8

3
,

1− 2x8

3
,

1 +
√

3x1 + x8

3

)
,

while the probability distribution of obtaining the eigenvalues (−1, 0, 1) of the observable λ2 is(
1−
√

3x2 + x8

3
,

1− 2x8

3
,

1 +
√

3x2 + x8

3

)
.

Note that the probability of obtaining the eigenvalue 0 of λ1 is identical to that of λ2. However,
in a randomized estimation scheme in which λi is measured Ni times, the frequency of obtaining the
eigenvalue 0 of λ1 would be different from that of λ2. Consequently, one cannot assign a consistent
temporary estimate x̂8 for the parameter x8 in that case. Put differently, the empirical distribution q̂N
on the extended outcome space Ω does not in general have a coordinate representation (4).
Thus, the existence of a full set of MUBs is crucial in our analysis.

5. Concluding Remarks

In the present paper, we explored an information geometrical structure of the randomized
quantum state tomography, assuming that the Hilbert space under consideration admits a full
set of MUBs. We first introduced a classical statistical model {p(s,ξ)}s,ξ on an extended sample
space Ω, and found that the probability simplex P(Ω) was decomposed into mutually orthogonal
dualistic foliation (Proposition 1). We then clarified that this geometrical structure had a statistical
importance in estimating the coordinate ξ of an unknown quantum state ρ(ξ) under the existence of the
nuisance parameter s (Proposition 2). This result gave a generalized insight into the ∇(m)-projection
interpretation for the MLE in that a similar interpretation was still valid for the randomized quantum
state tomography by changing the standard Fisher metric into a deformed one. It also provided us
with a new, convenient way of data processing in the actual quantum state tomography that may
involve unexpected probe particle loss.

It should be noted that the existence of a full set of MUBs ensures the parametrization (1) of
the quantum state space S(H). Such a parametrization is distinctive in that it enables a direct
correspondence between the parameter space and the probability simplex, realizing the coordinate
representation (4) of the empirical distribution q̂N . Thus, the use of a full set of MUBs is crucial in
our analysis. Nevertheless, it is often the case that the Hilbert space under consideration takes the
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form H ' (Cp)⊗n for p = 2 or 3 because qubits or qutrits are often regarded as building blocks of
various quantum protocols. Therefore, the existence of a full set of MUBs would not be too strong
a requirement in applications.
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The following abbreviations are used in this manuscript:
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PVM projection-valued measure
MLE maximum likelihood estimate

Appendix A. Information Geometry of MLE

Let P(Ω) denote the set of probability distributions on a finite sample space Ω, i.e.,

P(Ω) :=

{
p : Ω→ R

∣∣∣∣∣ p(ω) > 0 for all ω ∈ Ω, and ∑
ω∈Ω

p(ω) = 1

}
.

This set may be identified with the (|Ω| − 1)-dimensional (open) simplex, where |Ω| denotes the
number of elements in Ω, and thus it is sometimes referred to as the probability simplex on Ω. The set
P(Ω) is also regarded as a statistical manifold endowed with the dualistic structure (g,∇(e),∇(m)),
where g is the Fisher metric, and ∇(e) and ∇(m) are the exponential and mixture connections [11–13].

Suppose that the state of the physical system at hand belongs to a (closed) subsetM of P(Ω),
but we do not know which is the true state. We further assume that the probability distributions ofM
are faithfully parametrized by a finite dimensional parameter θ as

M = {pθ(ω) | θ ∈ Θ}.

In this case, M is called a parametric model, and our task is to estimate the true value of the
parameter θ that specifies the true state. Suppose that, by n independent experiments, we have
obtained data (x1, x2, . . . , xn) ∈ Ωn. This information is compressed into the empirical distribution,
an element of P(Ω) defined by

q̂n(ω) :=
Number of occurrences of ω in data (x1, x2, . . . , xn)

n

=
1
n

n

∑
i=1

δxi (ω)

for each ω ∈ Ω, where δxi (ω) is the Kronecker delta. If q̂n belongs to the modelM, then we have an
estimate θ̂n that satisfies pθ̂n

= q̂n. However, the empirical distribution q̂n does not always belong
to the modelM. When q̂n /∈ M, we need to find an alternative estimate from the data. A canonical
method of finding an alternative estimate pθ̂n

∈ M is the maximum likelihood method, in which one
seeks the maximizer of the likelihood function

θ 7−→ pθ(x1)pθ(x2) . . . pθ(xn),



Entropy 2018, 20, 609 14 of 16

within the domain Θ of the parameter θ, so that

θ̂n := arg max
θ∈Θ

{pθ(x1)pθ(x2) · · · pθ(xn)} .

We can rewrite this relation as follows.

θ̂n = arg max
θ∈Θ

1
n

n

∑
i=1

log pθ(xi)

= arg max
θ∈Θ

∑
ω∈Ω

q̂n(ω) log pθ(ω)

= arg min
θ∈Θ

∑
ω∈Ω

q̂n(ω) {log q̂n(ω)− log pθ(ω)}

= arg min
θ∈Θ

D(q̂n‖pθ),

where

D(q‖p) := ∑
ω∈Ω

q(ω) log
q(ω)

p(ω)

is the Kullback-Leibler divergence from q to p. In other words, the maximum likelihood estimate
(MLE) pθ̂n

is the point onM that is “closest” from the empirical distribution q̂n as measured by the
Kullback-Leibler divergence:

pθ̂n
= arg min

p∈M
D(q̂n‖p).

Due to the generalized Pythagorean theorem, the MLE is geometrically understood as the
∇(m)-projection from q̂n toM or its boundary, as illustrated in Figure A1.

q
∧

n

p
θ
∧

n

M

∇
(m)

-projection

Figure A1. The maximum likelihood estimate pθ̂n
is the minimizer of the function p 7→ D(q̂n‖p) with

respect to p ∈ M, and is also understood as the ∇(m)-projection from the empirical distribution q̂n to
M or its boundary.

Appendix B. Parametrization of S(H)

Suppose that the Hilbert spaceH ' Cd under consideration admits a full set of MUBs{
|α(a)〉

}
α∈{1,...,d}

, (a = 1, . . . , d + 1).

For each a ∈ {1, . . . , d + 1}, let

M(a) :=
{

M(a)
1 , . . . , M(a)

d

}
=
{
|1(a)〉 〈1(a)| , . . . , |d(a)〉 〈d(a)|

}
.

Then, the operators {
M(a)

α −
I
d

}
(a,α)∈{1,...,d+1}×{1,...,d−1}
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are linearly independent, spanning the space of selfadjoint operators with zero trace. This is easily
seen from the orthogonality relation:

Tr
(

M(a)
α −

I
d

)(
M(b)

β −
I
d

)
= δab

(
δαβ −

1
d

)
.

Thus, given ρ ∈ S(H), the operator ρ− (I/d) is uniquely expanded as

ρ− I
d
=

d+1

∑
a=1

d−1

∑
α=1

x(a)
α

(
M(a)

α −
I
d

)
,

where x(a)
α are real numbers. We can regard x(a)

α as a coordinate system of the state space S(H).
When d = 2, this is identical to the Stokes parametrization, up to a factor of 2.

Now, let us change the coordinate system x(a)
α into ξ

(a)
α as

x(a)
α = ξ

(a)
α +

(
d−1

∑
β=1

ξ
(a)
β

)
− 1.

We then arrive at the parametrization (1), i.e.,

ρ =
d+1

∑
a=1

{
d−1

∑
α=1

ξ
(a)
α M(a)

α +

(
1−

d−1

∑
β=1

ξ
(a)
β

)
M(a)

d

}
− I.

This parametrization is useful in our analysis because it gives a direct connection to the probability
distribution of outcomes of the measurement M(a) as

p(a)
α := Tr ρM(a)

α =


ξ
(a)
α , for α = 1, . . . , d− 1,

1−
d−1

∑
β=1

ξ
(a)
β , for α = d.
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