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a b s t r a c t

In order to elucidate the plateau phenomena caused by vanishing gradient, we herein analyse stability
of stochastic gradient descent near degenerated subspaces in a multi-layer perceptron. In stochastic
gradient descent for Fukumizu–Amari model, which is the minimal multi-layer perceptron showing
non-trivial plateau phenomena, we show that (1) attracting regions exist in multiply degenerated
subspaces, (2) a strong plateau phenomenon emerges as a noise-induced synchronisation, which is not
observed in deterministic gradient descent, (3) an optimal fluctuation exists to minimise the escape
time from the degenerated subspace. The noise-induced degeneration observed herein is expected to
be found in a broad class of machine learning via neural networks.

© 2021 Elsevier B.V. All rights reserved.
t
t
a
d

e
p
s

1. Introduction

The least square learning of neural networks is a typical frame-
ork in machine learning. The gradient descent is the simplest
ptimisation algorithm represented by gradient dynamics in a po-
ential. When the input data is finite, gradient descent dynamics
luctuates due to the finite size effects, and is called stochastic
radient descent. In this paper, we study stability of stochas-
ic gradient descent dynamics from the viewpoint of dynamical
ystems theory.
Learning is characterised as non-autonomous dynamics driven

y uncertain input from the external, and as multi-scale dy-
amics which consists of slow memory dynamics and fast sys-
em dynamics. When the uncertain input sequences are mod-
lled by stochastic processes, dynamics of learning is described
y a random dynamical system. In contrast to the traditional
okker–Planck approaches [1,2], the random dynamical system
pproaches enable the study not only of stationary distributions
nd global statistics, but also of the pathwise structure of stochas-
ic dynamics. Based on non-autonomous and random dynamical
ystem theory, it is possible to analyse stability and bifurcation in
achine learning.
We adopt a multi-layer perceptron, a class of feed-forward

eural networks, as the parametric model f (x; θ), where θ is
the parameter of neural networks and x is the input data. It is
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known that multi-layer perceptron with a single hidden layer is a
universal function approximator [3], and broadly used for solving
generalisation problems.

In recent years, behaviour of stochastic gradient descent [4,5] in
finite settings, given by the following equation, has become more
important:

θ(t + 1) = θ(t) −
η

S

S∑
i=1

∇θ l(xi(t); θ(t)), (1)

where η is the learning rate, {xi(t)} the input data, and l(·; θ) a loss
function, typically given by the squared norm ∥f (x; θ) − T (x)∥2,
where T (x) is the target function. For each time t , a finite set
{xi(t)}Si=1 of input data, called a batch of learning data, is randomly
chosen, and Eq. (1) is a stochastic dynamics with finite S.

The deterministic gradient descent is given by the gradient
dynamics of the averaged potential Ex[l(x; θ)];

θ(t + 1) = θ(t) − η∇θEx[l(x; θ)], (2)

where Ex[·] denotes the expectation over x. The averaged poten-
tial Ex[l(x; θ)] is also known as the risk function. The approxima-
ion in Eq. (2) corresponds to the assumption that a large set of
raining data x is given to the system at once, yielding the exact
verage potential Ex[l(x; θ)]. Eq. (2) is a deterministic gradient
ynamics.
In many cases, the gradient descent in multi-layer perceptron

xhibits slow convergence to the optimal, known as a plateau
henomenon (see Fig. 1), which makes the dynamics of learning
low down [6,7]. The plateau phenomenon is a chain of slow
ynamics near attracting regions, during which the loss function
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Fig. 1. A schematic view of the plateau phenomena (left) and a stagnant dynamics near the degenerated subspace (right). The dynamics of learning slows down
near the attracting region in the degenerated subspace, but eventually escapes to the optimal.
reduces extremely small amount per unit time. Each plateau or
trapping is caused by a saddle set or a Milnor attractor, which
is an attractor with a zero-measure set of escape holes [8]. In
a degenerated subspace, in Eq. (2), these attracting structures
cause slow convergence to the optimal [9–11]. Fukumizu and
Amari studied the deterministic gradient descent in the minimal
three-layer perceptron with one input neuron, two neurons in the
hidden layer, and one output neuron, which we call Fukumizu–
Amari model, and found non-trivial plateau phenomena based on
Milnor attractors [9].

Learning in multi-layer perceptrons with S = 1, is called online
earning. Online learning is modelled by a stochastic gradient
escent dynamics with one-dimensional external force, which,
owever, is not well understood theoretically. Recently, plateau
henomena in online learning has been studied, based on the av-
raged dynamics θ̄ (t) of stochastic gradient descent with respect
o the deterministic potential Ex[∇θ̄ l(x; θ̄(t))] by averaging the
tochastic gradient over x [12]. However, such an approximation
s not fully valid in online learning, and recently a different ap-
roximation with stochastic dynamics near degenerated subspace
s studied [13].

In order to elucidate the underlying mechanism of the plateau
henomena in multi-layer perceptrons, we here analyse, as a
rototype, stochastic gradient descent of Fukumizu–Amari model
rom a viewpoint of random dynamical systems without any
veraging;

(t + 1) = θ(t) − η∇θ l(x(t); θ(t)), (3)

where x(t) is a discrete time stochastic process. We show that,
in a class of Fukumizu–Amari model, (1) attracting regions exist
in multiply degenerated subspaces, (2) a strong plateau phe-
nomenon emerges as a noise-induced synchronisation, which is
not observed in deterministic gradient descent, (3) an optimal
fluctuation size exists to minimise the escape time from the
degenerated subspace.

In the studies of stochastic gradient descent, the importance of
the anisotropy of noise has been pointed out [14]. A well-studied
field is the Langevin gradient dynamics [15], which is driven
by isotropic noise, and is tractable by Fokker–Planck analysis;
however, it is essentially different from the dynamics of stochas-
tic gradient descent in the case of small batch size S. Keskar
et al. found that stochastic gradient descent with small batch
admits the convergence to flat minimisers [16], which results in
better generalisation [17]. Some studies reported that small batch
methods accelerate learning [18–20].

In contrast, we find that there is an optimal fluctuation size
which minimises the escape time. To the best of our knowledge,
such a phenomenon has not been reported in studies on either
deterministic or stochastic gradient descent. It is thus expected
that our random dynamical system approach will shed new light
on the analysis of online-learning.

The paper is organised as follows. In Section 2, we introduce
the minimal three-layer perceptron, Fukimizu–Amari model,
2

which shows plateau phenomena. In Section 3, we analyse sta-
bility of stochastic gradient descent in Fukumizu–Amari model;
Global stability in the whole state space (Section 3.1) and local
stability in the multiply degenerated subspace (Section 3.2) are
discussed. In Section 4, we study phenomenology of ‘‘noise-
induced degeneration’’. In Section 5. we give a summary and an
overview.

2. Stochastic gradient descent in multi-layer perceptrons

The minimal model of multi-layer perceptrons which exhibits
plateau phenomena is given by a three-layer perceptron with
gradient descent [9] (see Fig. 2).

Fig. 2. The three-layer perceptron: The nodes are activation functions given
by tanh(·), and each edge indicates a linear superposition with parameters
(w1, w2, v1, v2). The output y is a function of the input x and the parameters
(w1, w2, v1, v2).

The equation of motion of the stochastic gradient descent (3)
is explicitly written as follows;

θ(t + 1) = θ(t) − η∇θ l(x(t); θ(t)), (t = 1, 2, . . .) (4)

where

θ = (w1, w2, v1, v2) ∈ Θ (5)

l(x; θ) =
1
2
(f (x; θ) − T (x))2 (6)

f (x; θ) = v1 tanh(w1x) + v2 tanh(w2x). (7)

Here, Θ is a domain of R4 called the parameter space, x is an
i.i.d. random variable subject to a probability distribution ρ(x),
η ∈ [0, 1] is the learning rate, and T (x) is the target function to
be learnt. A Fukumizu–Amari model [9] is given by Eq. (4) with a
target function

T (x) = 2 tanh(x) − tanh(4x), (8)

and ρ(x) ∼ N(0, σ 2). The optimal function f (x; θ∗) with parame-
ters θ∗ which minimise l(x; θ) is given by

θ∗
= (1, 4, 2,−1), (−1, 4,−2,−1),

(1,−4, 2, 1), (−1,−4,−2, 1),
(4, 1,−1, 2), (4,−1,−1,−2),

(−4, 1, 1, 2), (−4,−1, 1,−2). (9)
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Given Eqs. (4)–(8), the following subspaces

θ†
= (w,w, v1, 2v − v1), (w,−w, v1, v1 − 2v),

(w1, w, 0, 2v), (w,w2, 2v, 0) (10)

efine a class of degenerated functions

(x; θ†) = 2v tanh(wx). (11)

ypically, the plateau phenomena emerge near the degenerated
ubspace (10) in the parameter space Θ [12].
In this paper, we focus on the interplay between degenerated

ubspaces Mw = {θ|w1 = w2 = w} and Mwv = {θ|w1 =

2 = w, v1 = v2 = v}. In the degenerated subspace Mw , the
ffective degrees of freedom of Eq. (4) decreases to 3. Although
e still have free variable v1 in Mw , it does not contribute to
better function approximation. Furthermore, when a multiple
egeneration to Mwv occurs, the effective degrees of freedom
ecreases to 2, and the dynamics cannot even return to the full
arameter space Θ by gradient descent.
In many cases, the dynamics of learning stays near the de-

enerated subspace for a very long time. This trapping phe-
omenon is caused by neutral stability with vanishing gradients.
n online learning, in addition to this neutrally stable trapping,
‘stronger trapping’’ based on multiple degeneration may occur
s a noise-induced synchronisation [21–23]. We call this type of
egeneration as noise-induced degeneration in online learning.

. Stability analysis of stochastic gradient descent

.1. Global attraction to the degenerated subspace

We focus on the following random map derived from
ukumizu–Amari model (4)–(7);

1(t + 1) = w1(t) − ηxv1(t)
h(x; θ, T )

cosh2(w1(t)x)
, (12)

w2(t + 1) = w2(t) − ηxv2(t)
h(x; θ, T )

cosh2(w2(t)x)
, (13)

v1(t + 1) = v1(t) − η tanh(w1(t)x)h(x; θ, T ), (14)
v2(t + 1) = v2(t) − η tanh(w2(t)x)h(x; θ, T ), (15)

where

h(x; θ, T ) = v1 tanh(w1x) + v2 tanh(w2x) − T (x). (16)

The fluctuation σ 2 of the learning data is a control parameter.
Our numerical experiments suggest that, for a broad region of
large σ 2 and a positive measure set of initial conditions, and for
a finite time, there exists attracting dynamics from the full space
Θ to a degenerated subspace

Mw = {θ | w1 = w2 = w}. (17)

Furthermore, with large σ 2, we observe attracting dynamics from
the degenerated subspace Mw to multiply degenerated subspace

Mwv = {θ | w1 = w2 = w, v1 = v2 = v}. (18)

The attraction to Mw is caused by a local minimum of the
averaged potential Ex[l(x; θ)]. Due to the valley formed by steep
gradients of the averaged potential, the gradient dynamics is
dominant compared with the stochastic effects and approaches
a neighbourhood of Mw quickly (see Appendix A).

To investigate local dynamics near the degenerated subspace
Mw , one can introduce the following coordinate system⎧⎨⎩ p =

w1 + w2

2
, q =

v1 + v2

2
,

r =
w1 − w2

, s =
v1 − v2

,
(19)
2 2
3

and the corresponding transformed model

p(t + 1) − p(t)

= −
ηxh
2

[
q(t) + s(t)

cosh2((p(t) + r(t))x)
+

q(t) − s(t)
cosh2((p(t) − r(t))x)

]
, (20)

q(t + 1) − q(t)

= −
ηh
2

[tanh((p(t) + r(t))x) + tanh((p(t) − r(t))x)] , (21)

r(t + 1) − r(t)

= −
ηxh
2

[
q(t) + s(t)

cosh2((p(t) + r(t))x)
−

(q(t) − s(t))
cosh2((p(t) − r(t))x)

]
, (22)

s(t + 1) − s(t)

= −
ηh
2

[tanh((p(t) + r(t))x) − tanh((p(t) − r(t))x)] , (23)

where h is given by

h = h(x; θ, T ) = (q+s) tanh((p+r)x)+(q−s) tanh((p−r)x)−T (x).
(24)

In what follows, we confine ourselves to the situation where
the parameters are in a bounded region and are stagnant away
from the origin, which is typical of the synchronising dynamics
observed in our numerical experiments.

Theorem 1. Assuming that

1. θ is near Mw

2. θ is in a bounded region D, where

D := {θ|w1, w2 ∈ [κ1, κ1+δ], v1, v2 ∈ [−κ2, κ2]} (0 < κ1, κ2, δ)

3. The target function T (x) is bounded as |T (x)| ≤ L,

for a sufficiently small learning rate η > 0, the dynamics of s(t) is
contracting and approaches near 0 in average.

Proof. A Taylor expansion of Eq. (23) yields

s(t + 1) = ηC1 + [1 − ηC2] s(t) + O(r3) (25)

where

C1 = −
rx(2q tanh(px) − T (x))

cosh2(px)
(26)

2 =
2r2x2

cosh4(px)
. (27)

Since |
x

cosh2 x
| < 1 and p ≃ w1 ≃ w2 near Mw , we have

|C1| ≤
|rx|(2|q| + L)
cosh2(px)

≤
κ2(2κ2 + L)|x|
cosh2(κ1x)

<
κ2(2κ2 + L)

κ1
(28)

nd

≤ C2 ≤
2κ2

2 x
2

cosh4(κ1x)
<

2κ2
2

κ2
1
. (29)

onsequently, for sufficiently small r and η, we have an averaged
ynamics

(t + 1) ≃ ϵ + cs(t), (30)

here ϵ = η⟨C1⟩x ≃ 0, and 0 < c = 1 − η⟨C2⟩x < 1. □

Theorem 1 implies the existence of the second global attrac-
ion from the neighbourhood Mw to a neighbourhood of Mwv . If
(t) is exactly 0, we observe a total synchronisation with w1 = w2
nd v1 = v2 on the degenerated subspace Mwv . In practice, due
o the external inputs x, s(t) approaches 0 and fluctuates around
in average.
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The multiple degeneration from Mw to Mwv is a characteristic
behaviour of the stochastic gradient descent dynamics. In the case
of the deterministic gradient descent dynamics, the dynamics
near Mw in the direction of s is neutral because r converges
to 0 monotonically [13]. By contrast, in the stochastic gradient
descent dynamics, the dynamics of s can be contracting because
r fluctuates around 0 [13]. This phenomenon is comparable with
noise-induced synchronisation in random dynamical systems. A
typical example of synchronisation is given by uncoupled phase
oscillators driven by common noise (see Appendix D). It is known
that the Lyapunov exponent of the stochastic phase oscillator
is negative while those of the deterministic dynamics is zero
[22,24].

In the next section, we show that there exists yet another
noise-induced trapping mechanism in the multiply degenerated
subspace Mwv .

3.2. Local attraction in the degenerated subspace

The equation of motion in Mwv is given by the following two-
dimensional random map of w(= w1 = w2) and v(= v1 =

2);

(t + 1) = w(t) − ηxv(t)
2v(t) tanh(w(t)x) − T (x)

cosh2(w(t)x)
, (31)

v(t + 1) = v(t) − η tanh(w(t)x)[2v(t) tanh(w(t)x) − T (x)]. (32)

or equivalently(
w(t + 1) − w(t)
v(t + 1) − v(t)

)
= η · g(x;w, v, T (x)), (33)

where

g(x;w, v, T ) = −[2v tanh(wx) − T (x)]

⎛⎜⎝
vx

cosh2(wx)

tanh(wx)

⎞⎟⎠ . (34)

heorem 2. If T (x) ̸= 2v tanh(wx), for a sufficiently small η > 0, a
point (w, v) in the dynamics (31), (32) is either an attracting point
r a saddle point.

roof. The Jacobian matrix of g is given by

(x;w, v)

=

⎡⎣ −
2vx2

[
T (x) tanh(wx)−3v tanh2(wx)+v

]
cosh2(wx)

x[T (x)−vq tanh(wx)]
cosh2(wx)

x[T (x)−4v tanh(wx)]
cosh2(wx)

−2 tanh2(wx)

⎤⎦ ,
(35)

r equivalently

(x;w, v) = −2
( vx

cosh2(wx)
tanh(wx)

)(
vx

cosh2(wx)
tanh(wx)

)
− (2v tanh(wx) − T (x))

×

(
−

2vx2 tanh(wx)
cosh2(wx)

x
cosh2(wx)

x
cosh2(wx)

0

)
. (36)

et the eigenvalues of J at a point (w, v) be µ−(x;w, v) and
µ+(x;w, v) (µ− ≤ µ+) (See Appendix B). Since

det

(
−

2vx2 tanh(wx)
cosh2(wx)

x
cosh2(wx)

x
cosh2(wx)

0

)
= −

(
x

cosh2(px)

)2

< 0 (37)

or x ̸= 0, the second term of Eq. (36) has both positive and
egative eigenvalues if 2v tanh(wx) − T (x) ̸= 0. The first term

of Eq. (36) is negative semidefinite. Thus, µ (x;w, v) is negative
−

4

whenever 2v tanh(wx)−T (x) ̸= 0. Therefore, for sufficiently small
η, the point (w, v) is attracting when µ+(x;w, v) is non-positive;
otherwise, it is a saddle. □

Theorem 2 implies that depending on x, each point in Mwv

may be weakly attracting. The dynamics near (w, v) on Mwv is
characterised by the sign of µ+(x;w, v) as long as η is small.

As an example, we investigate the dynamics near (w, v) =

1/2, 1/2) by computing the eigenvalues µ±(x; 1/2, 1/2) of
J(x;w, v) explicitly. We see from Fig. 3 (left) that the dynamics
is attracted to the point (w, v) = (1/2, 1/2) when the fluctuation
σ 2 is sufficiently large. Put differently, the strong noise may ‘‘sta-
bilise’’ the dynamics near (w, v) in Mwv . As a result, the residual
time near Mwv is extended and a stronger plateau phenomenon
is observed.

Fig. 3 (right) shows the numerically computed probability
distribution

π (x;w, v) = Prob[µ+(x;w, v) ≤ 0], (38)

with σ 2
= 1, where higher values of π (x;w, v) correspond to

the darker tones. The red curve C indicates the approximated
one-dimensional valley formed by steep gradients of the averaged
potential. In this case, C includes a local minimum of the averaged
potential. The dark grey region, where π (x;w, v) is large, may
cause stronger trapping dynamics on Mwv . On the contrary, with
smaller fluctuation σ 2

= 0.1, the grey attracting region in Fig. 3
(right) disappears because most points in Mwv are saddle points.
Thus, there exists another type of noise-induced phenomenon,
i.e., the emergence of an attracting region near Mwv due to the
large fluctuation σ 2, resulting in a substantial extension of the
escape time from Mwv . In the next section, we discuss the escape
time from Mw,v phenomenologically.

4. Noise-induced degeneration

Summarising the main results of the previous section, noise-
induced degeneration and plateau phenomena emerge through
the following three processes;

1. The first global attraction to a neighbourhood of the degen-
erated subspace Mw . (Appendix A)

2. The second global attraction from the neighbourhood Mw

to a neighbourhood of the multiply degenerated subspace
Mwv . (Theorem 1)

3. The third weak attraction, by the attracting regions in the
neighbourhood of Mwv . (Theorem 2)

To examine the above three-step scenario, we made numerical
experiments to compute the global dynamics and the escape time
from the multiply degenerated subspace.

4.1. Global dynamical phenomena

The global dynamics of stochastic gradient descent in Θ is
shown in Fig. 4. It depicts converging dynamics to pullback at-
tractors [25] (see Appendix C) in Fukumizu–Amari model with
T (x) = 2 tanh(x) − tanh(4x), η = 0.1, and σ 2

= 0.1, 1.0. The red
and blue dots represent paths of (w1, w2) and (v1, v2), respec-
tively, starting from different initial conditions. Both dynamics
are plotted together in each panel. The grey points correspond
to the optimal attractors θ∗. The degenerated subspaces w1 = w2
and v1 = v2 are depicted as a single line. In the case of σ 2

= 1.0,
clear noise-induced degeneration, i.e. |w1 − w2| → 0 near Mw at
τ = 10 000, followed by |v1 − v2| → 0 near Mwv at τ = 30 000,
are observed. Due to this type of noise-induced degeneration,
about 20 percentage of the sample paths stay near the attracting
region in Mwv for an extremely long time, which is shown in a
ashed circle at τ = 100 000.
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Fig. 3. (left) The eigenvalues µ+(x; 1/2, 1/2) (red), and µ−(x; 1/2, 1/2) (blue) of J(x; 1/2, 1/2) as well as the distribution ρ(x) are depicted as functions of x. The
arameters are set as T (x) = 2 tanh(x) − tanh(4x), η = 0.1, and σ 2=0.1,1. When the fluctuation σ 2 is small, x is frequently sampled near zero, and the point
w, v) = (1/2, 1/2) is a saddle point; otherwise, it is an attracting point. (right) The probability π (x;w, v) = Prob[µ+(x;w, v) ≤ 0] for σ 2

= 1 plotted in [0, 2]2 on
wv . The red curve C indicates the valley formed by steep gradients of the averaged potential (see Appendix A). (For interpretation of the references to colour in

his figure legend, the reader is referred to the web version of this article.)
W

f

w

θ

N

w

v

.2. Escape time from the degenerated subspace

We numerically compute the average escape time from the
ttracting region on Mwv (w, v > 0) for several values of σ 2. The
scape time from the region [−2, 2] × [−2, 2], which includes
he multiply degenerated subspace Mwv (w, v > 0), is averaged
ver 105 initial conditions and 103 noise realisations. In Fig. 5,
he average escape time τ ∗ as a function of the fluctuation size
2 is depicted in log–log plot. One can see that larger fluctua-
ion size induces longer escape time because of noise-induced
egeneration becoming effective around σ 2

= 0.15. When noise
s weak, around σ 2

= 0.004, τ ∗ is large, and when noise is
trong, around σ 2

= 0.15, τ ∗ is large again. In the intermediate
cale, an optimal fluctuation size around σ 2

≃ 0.07 exists to
inimise the escape time from the degenerated subspace. Thus,

he classical Kramer’s escape view based on Brownian particle in
potential is insufficient, and the pathwise analysis in terms of
andom dynamical systems theory is needed.

.3. Random attractors in stochastic gradient descent

If there exists an attractor A on a subspace M , and A is not
n attractor in the full space Θ , it is called a relative attractor in
[26]. Thus, if there exists an attractor on Mwv , it is a relative

ttractor. If there is no random compact invariant set in a ran-
om dynamical system, all random attractors are random Milnor
ttractors [27]. Our conjecture is that both relative attractors (or
ttracting region) in the multiply degenerated subspaces Mwv and
he optimal attractors in Θ are random Milnor attractors. The
ynamics of learning can come and go with each attractor in a
ong time scale.

In general, non-optimal stable random attractors may exist in
tochastic gradient descent learning with small η, because T (x),
(x; θ), and ∇θ l(x; θ) are bounded for any ρ(x). In these cases,
f an initial point θ(0) does not belong to the effective basins
f the optimal attractors θ∗, the attracting region near θ† may
ecome a stable random attractor, which is completely separated
rom the optimal attractor θ∗, and the orbits can stay there for an
rbitrarily long time.

.4. An extension to larger networks and applications to practical
roblems

Our results can be extended to a larger three-layer perceptron
ith N hidden-layer neurons and L dimensional output neurons.
5

e consider a parameterised function

i(x; θ) =

N∑
k=1

vk tanh(wkx) (i = 1, . . . , L)

here

= (w1, . . . , wN , v1 . . . , vN ).

ear the subspaces defined by

1 = · · · = wj = wa, wj+1 = · · · = wM = wb

(j = 1, . . . ,M, 1 < M < N),

1 = . . . = vj = va, vj+1 = . . . = vM = vb

(j = 1, . . . ,M, 1 < M < N),

we have a degenerated function

fi(x; θ) = jva tanh(wax) + (M − j)vb tanh(wbx)

+

N∑
k=M+1

vk tanh(wkx)

= Mg(x;wa, w,b , va, vb) +

N∑
k=M+1

vk tanh(wkx), (39)

where i = 1, . . . , L, j = 1, . . . ,M , and

g(x;wa, w,b , va, vb) =
j
M
va tanh(wax) +

M − j
M

vb tanh(wbx).

Thus, noise-induced degeneration in learning the function
g(x;wa, wb, va, vb) occurs again in the same way. We have many
of such degenerated subspaces hierarchically embedded in the
entire parameter space Θ . Indeed, it is known that these sin-
gular structures are inevitable, generic properties of neural net-
works [12].

From the viewpoint of nonlinear physics, the plateau phenom-
ena, noise-induced degeneration, and noise-induced synchronisa-
tion between two variables (w1, v1) and (w2, v2) are all under-
stood as the same dynamical structure. Since synchronisation is
a universal phenomenon, they are expected to be observed in a
broad class of dynamical systems, and in a broad class of online
learning. If the system has a certain local symmetry, synchronisa-
tion almost always occurs in that locally symmetric space, and the
presented trapping phenomena near the multiply degenerated
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Fig. 4. Finite time pullback attractors (see Appendix C) with the pullback time τ = 1000, τ = 10 000, τ = 30 000, and τ = 100 000 in the full space Θ . Parameters
re set as T (x) = 2 tanh(x)− tanh(4x), η = 0.1, and σ 2

= 0.1 (left) and σ 2
= 1.0 (right). The red and blue dots represent paths of (w1, w2) and (v1, v2), respectively,

tarting from different initial conditions. Both dynamics are plotted together in each panel. The grey points correspond to the optimal attractors θ∗ . The degenerated
ubspace w1 = w2 and v1 = v2 are depicted as a single line. A typical noise realisation {x} is fixed and dynamics is developed with 105 different initial conditions

θ(0) ∈ [−1, 1]4 . When σ 2
= 1.0, the trapping dynamics near Mwv is observed in the attracting region indicated by a dashed circle. (For interpretation of the references

o colour in this figure legend, the reader is referred to the web version of this article.)
ubspace may occur and possibly affect global dynamics. In some
ases, the state space degeneration is rather useful, because, if
here is no degeneration, we are faced with the problem of over-
itting, which is caused by explosion of the effective degrees of
reedom. Thus, it is important to study the trade-off between
egeneration and explosion of the effective degree of freedom in
erms of nonlinear physics.

In practice, unless the learning requires the full dimension of
he parameters, we need degeneration to some extent to avoid
ver-fitting, although that causes the possible strong plateau phe-
omena in the learning dynamics. We may choose an ‘‘optimal
6

fluctuation size’’ to sample the input data x, which is exempli-
fied in Fig. 5, and which, however in general, depends on the
complexity of problems and models.

5. Conclusion

In Fukumizu–Amari model, there exist characteristic fluctua-
tion sizes of the training data, with which the dynamics shows
strong plateau phenomena. Starting from an initial point in the
full space, the dynamics of learning is attracted by a degenerated
subspace by the gradient, and then, is attracted by a multi-
ply degenerated subspace by noise-induced synchronisation. We
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Fig. 5. The averaged escape time from [−2, 2]× [−2, 2], τ ∗ as a function of σ 2

in log–log plot. The other parameters are same as in the numerical computation
in Fig. 4. Stronger noise induces longer escape time because of noise-induced
degeneration. An optimal fluctuation size is σ 2

≃ 0.07.

called the second attraction noise-induced degeneration, which
is not observed in deterministic gradient descent. Furthermore,
when noise is strong, near the multiply degenerated subspace,
attracting regions emerge and the residual time near there can
be extremely long.

In the attracting region in the multiply degenerated subspace,
an optimal fluctuation size exists to minimise the escape time,
and stronger noise induces longer escape time. This implies that
the classical Kramer’s escape view is insufficient, and the path-
wise analysis in terms of random dynamical systems theory is
needed.

Noise-induced degeneration presented in this paper is ex-
pected to be one of the key elements to understand advantages
of variety of machine learning to control the appropriate size of
the degrees of freedom. As pointed out in [12], the degeneration
may be weaken in perceptrons with many hidden layers, which
could explain in part the advantage of deep learning. We here add
an opposite possibility: the existence of many hidden layer may
result in stronger degeneration, which could explain the reason
why the over-parameterised neural networks work well.

Further studies on stability of random attractors, geometry of
random basins, and bifurcations of stochastic gradient descent of
larger neural networks will be reported elsewhere. Our approach
would shed new light on various problems in machine learning
from a viewpoint of random dynamical systems theory.
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Appendix A. Local minima in the averaged dynamics

In this paper, we have treated tanh(·) as an activation function.
However, in order to analyse the averaged potential, we herein
use the function h(u) := erf(x/

√
2) :=

√
2/π

∫ x
0 e−t2/2dt as an

pproximation of tanh(·) to understand the qualitative behaviour
f the dynamics. According to [28], for a network

(x; θ) = v1h(w1x) + v2h(w2x), (A.1)

and a target function which is denoted as

T (x) = ν1h(ω1x) + ν2h(ω2x), (A.2)

for some values ν1, ν2, ω1, ω2 ∈ R, the averaged potential is given
by

L(θ) = Ex

[
1
2
(f (x; θ) − T (x))2

]
=

1
π

2∑
i,j=1

vivjΦ(wi, wj)

−
2
π

2∑
i,a=1

viνaΦ(wi, ωa) + const, (A.3)

Φ(ζ1, ζ2) := arcsin

⎛⎝ σ 2ζ1ζ2√
1 + σ 2ζ 21

√
1 + σ 2ζ 22

⎞⎠ . (A.4)

When w1 ̸= 0 and w2 ̸= 0, the function L(θ) is quadratic in
v1, v2), and thus has a minimiser. In particular, when w1 = w2 =

is fixed and v1 = v2 = v,

∗(w, v) := L(θ) =
4
π

(
v2Φ(w,w) − v

2∑
a=1

νaΦ(w,ωa)
)

+ const.

(A.5)

akes the minimum at

∗(w; σ 2) =

∑
a νaΦ(w,ωa)
2Φ(w,w)

. (A.6)

Hence, a minimiser of L∗ lies in the one-dimensional valley
{(w, v∗(w; σ 2))|w ∈ R}.

For (ω1, ω2, ν1, ν2) = (1, 4, 2,−1) and σ 2
= 1, in particular,

we have the red curve C in Fig. 3 (right) as

v∗(w; 1) =

(
2 arcsin

(
w

√
2
√

1+w2

)
− arcsin

(
4w

√
17

√
1+w2

))
(
2 arcsin

(
w2

1+w2

)) .

(A.7)

ppendix B. Eigenvalues of Jacobian of the dynamics in the
ultiply degenerated subspace

The Jacobian matrix of g on the multiply degenerated subspace
wv is given by

=

⎡⎣ −
2vx2

[
T (x) tanh(wx)−3v tanh2(wx)+v

]
cosh2(wx)

x[T (x)−vq tanh(wx)]
cosh2(wx)

x[T (x)−4v tanh(wx)]
−2 tanh2(wx)

⎤⎦ . (B.1)

cosh2(wx)



Y. Sato, D. Tsutsui and A. Fujiwara Physica D 430 (2022) 133095

T

µ

w

s

τ

˜

o
l

d

L

d

o

d

A
g
c

λ

he eigenvalues of J are given by

±(x;w, v) = A ±
1

8 cosh4(wx)

√
B, (B.2)

here

A = −1 +
1 + 2v2x2 − vx2 tanh(wx)T (x)

cosh2(wx)
−

3v2x2

cosh4(wx)
, (B.3)

B = 32x2 cosh2(wx)C +(
−1 + 16v2x2 − 8v2x2 cosh(2wx)

+ cosh(4wx) + 4vx2 sinh(2wx)T (x)
)2

(B.4)

C = 8v2(2 + cosh(2wx)) sinh2(wx) − v(6 sinh(2wx)
+ sinh(4wx))T (x) + 2 cosh2(wx)T (x)2. (B.5)

Appendix C. Pullback attractors in random dynamical systems

Let θ act on the probabilistic space of noise realisationsΩ , and
θtω be the path taken at time t by the noise realisation ω ∈ Ω .
The random dynamical system is represented by the pair (θ, φ),
where φ denotes the dynamics in the state space X , driven by a
noise realisation θtω. The pullback attractor A(t, ω) of a random
dynamical system is defined as a random invariant set of X that
atisfies

lim
→∞

dist(φ(τ , θt−τω)B, A(t, ω)) = 0, (C.1)

for any bounded set B ⊂ X , where dist(C,D) denotes the Haus-
dorff distance between two subsets C and D of X [29].

We call the following τ -pullback image of B as finite time
pullback attractor or τ -pullback attractor, which is given by

AB
τ (t, ω) = φ(τ , θt−τω)B, (C.2)

where τ is called pullback time. For a given τ , the set ÃB
τ (t, ω)

represents a finite space–time structure, which may include tran-
sient orbits and densities. Each invariant sets in Fig. 4 are finite
time pullback attractors with pullback time τ .

Appendix D. Noise-induced synchronisation

A stochastic phase oscillator is given by

dφ = ωdt + sinφ ◦ dWt , (D.1)

in Stratonovich form, where ω is a constant, φ ∈ (0, 2π ] is phase
n circle, and Wt is the Wiener process with dWt ∼ N(0, σ 2). The
inearisation along a fixed solution φ is given by

ψ = cosφ · ψ ◦ dWt , (D.2)

et r = log |ψ |, then we have

r = cosφ ◦ dWt , (D.3)

r, equivalently in Ito form,

r = −
σ 2

2
sin2 φdt + cosφdWt . (D.4)

Thus, the Lyapunov exponent λ of (D.1) is given by

λ = lim
T→∞

r(T )
T

= − lim
T→∞

1
T

∫ T

0

σ 2

2
sin2 φdt. (D.5)

ssuming that the fluctuation σ 2 is small, the dynamics is er-
odic, and the invariant density is approximately uniform on
ircle, we have

≃ −
1
∫ 2π σ 2

sin2 φdφ = −
σ 2

< 0. (D.6)

2π 0 2 4
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