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We herein report the experimental demonstration of adaptive quantum state estimation for totally
unknown photonic qubits. Similar to our previous study (R. Okamoto, et al., Phys. Rev. Lett. 109,
130404 (2012)), the measurement configuration is updated using the results of each photon detection
event so that our method does not require prior knowledge of the total number of samples. The
experimental results obtained herein demonstrate both strong consistency and asymptotic efficiency
through several rigorous statistical tests. Furthermore, we demonstrate that the experimentally
obtained distribution of the states estimated using AQSE is significantly different from that obtained
by conventional state tomography and agrees well with theoretical predictions.

PACS numbers: 03.65.Wj, 03.67.-a, 42.50.Dv, 42.50.-p

I. INTRODUCTION

Estimating an unknown quantum state is one of the
most fundamental and important tasks in the fields of
quantum information [1–3], communication [4], and mea-
surement [5–7]. The ultimate goal is to estimate the
true value of the parameter that specifies the unknown
state with the smallest uncertainty, such as the quantum
Cramér-Rao bound [8, 9], for a given limited number of
samples. However, in general, it is impossible to achieve
such a theoretical limit when the measurement configu-
ration is fixed. As a solution to this problem, Nagaoka
[10, 11] advocated an adaptive quantum state estimation
(AQSE) procedure. Later, the strong consistency and
the asymptotic efficiency of AQSE were mathematically
proven by Fujiwara [12, 13] and were also experimentally
verified by the present authors for one-dimensional pa-
rameter problems using photons [14].

Recently, a few experimental demonstrations of adap-
tive measurement for photonic qubits have been reported
[15, 16]. However, these experiments used the two-step
adaptive strategy, in which the preliminary measurement
of part of the whole ensemble is used to determine the
measurement configuration for the remainder of the en-
semble. Such a method may have two problems. First,
this method cannot, in principle, achieve the theoretical
limit exactly. Second, prior knowledge of the total num-
ber of samples is required in order to design the overall
estimation procedure.
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Adaptive schemes using the Bayesian estimation algo-
rithm have also been reported [17, 18]. However, their
strategy does not have an objective figure of merit to be
minimized; instead, it involves minimization of the Shan-
non entropy of the posterior distribution calculated from
the arbitrarily fixed initial prior distribution and the his-
tory of the measurement. Such a method may have two
problems. First, there is no guarantee that an objective
figure of merit, such as the mean infidelity, will converge
to its theoretical limit predicted by the standard quan-
tum point estimation theory [9, 19]. In fact, the perfor-
mance reported in [18] remained below the theoretical
limit. Second, the time-consuming minimization proce-
dure of the Shannon entropy is inevitable at every step
of the measurement, which may cause difficulties in real-
izing the estimation scheme by experiment.

In the present paper, we report the first experimen-
tal demonstration of a multi-parameter AQSE for totally
unknown photonic qubits. Similar to the one-parameter
AQSE presented in [14], the measurement configuration
is updated using the results of each photon detection
event so that our method does not require prior knowl-
edge of the total number of samples (Fig. 1). The exper-
imental results obtained herein demonstrate both strong
consistency and asymptotic efficiency through several rig-
orous statistical tests. Furthermore, we show that the
experimentally obtained distribution of the states esti-
mated using AQSE is significantly different from that
obtained by conventional state tomography [20, 21] and
agrees well with theoretical predictions. These results
are important for understanding the fundamental char-
acteristics of quantum estimation procedures.
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FIG. 1: Schematic diagram of adaptive quantum state esti-
mation for single photonic qubits. Single photons with a fixed
unknown polarization are emitted from a photon generator.
The polarization is analyzed by QWP1, HWP1, and a po-
larizing beam splitter (PBS). The controller sets QWP1 and
HWP1 to an angle calculated based on the photon measure-
ment results.

II. QUANTUM ESTIMATION THEORY

A d-dimensional quantum statistical model is a fam-
ily S = {ρθ}θ of density operators on a Hilbert space H
that is smoothly parametrized by a d-dimensional real
parameter θ(∈ Rd). Suppose that the state of the phys-
ical system at hand belongs to model S, but we do not
know which is the true state. A quantum parameter es-
timation problem [8, 9] involves seeking the best strategy
for estimating the true value of θ that specifies the true
state. An estimator for the parameter θ is given by pair
(M, θ̌), where M is a POVM for which the outcomes take
values on some set X , and θ̌ : X → Rd : x 7→ θ̌(x) is a
map that gives an estimated value θ̌(x) from the observed
data x.

It is known that the quantum Cramér-Rao bound,
which gives the ultimate limit of estimation precision
when d = 1, is not always achievable when d ≥ 2.
Therefore, it is customary to seek the (locally unbi-
ased) estimator (M, θ̌) that minimizes the weighted trace
Tr {WθVθ[M, θ̌]} of covariance matrix Vθ[M, θ̌] for the es-
timator, given a weight (positive definite symmetric) ma-
trix Wθ, which may depend on θ.

In the present paper, we restrict our attention to esti-
mating the three-dimensional parameter θ = (x, y, z) of
a qubit state

ρ(x,y,z) =
1

2
(I + xσx + yσy + zσz)

on H = C2 having the domain

B = {(x, y, z) ∈ R3 |x2 + y2 + z2 ≤ 1}

called the Bloch ball. Although far from optimal [19],
conventional state tomography is an example of an esti-
mator for the parameter θ, where the number of photons
is counted in each direction of the fixed coordinate axes
[20, 21]. In fact, the ultimate limit of estimation precision

is given by

min
(M,θ̌)

Tr {WθVθ[M, θ̌]} =

(
Tr

√√
J−1
θ Wθ

√
J−1
θ

)2

, (1)

where Jθ is the symmetric logarithmic derivative (SLD)
Fisher information matrix. The bound (1) is sometimes
referred to as the Hayashi-Gill-Massar bound [19, 22, 23].
An estimator that attains the bound (1) is given in

[19]; in particular, it depends on the weight Wθ. It is
then natural to ask what weight we should adopt. Re-
call that, due to the quantum Cramér-Rao inequality, the
SLD Fisher information matrix Jθ is regarded as a mea-
sure of the statistical inhomogeneity of the quantum state
space. Taking this into account, we adopt Jθ itself as the
weight Wθ in the present study in order to compensate
for the statistical inhomogeneity [24]. Consequently, the
bound (1) with this weight becomes independent of θ,
taking the following constant value:

min
(M,θ̌)

Tr {JθVθ[M, θ̌]} = 9. (2)

In comparison, the weighted trace of the covariance
matrix for simple tomography (see Appendix for the def-
inition) is given by

Tr {JθVθ[Mtomo, θ̌tomo]} = 9 +
6(x2y2 + y2z2 + z2x2)

1− (x2 + y2 + z2)
.

(3)
Clearly, (3) is greater than (2) unless θ lies on an x, y, or
z axis. Note that, due to the law of large numbers, the
weighted trace of the covariance matrix for the standard
maximum likelihood (ML) tomography (see Appendix)
is asymptotically identical to (3).
For further comparison, we consider a totally random-

ized tomography in which the measurement axes are cho-
sen at random according to the Haar measure of the rota-
tion group SO(3). The weighted trace of the covariance
matrix for this randomized tomography is given by

Tr {JθVθ[Mrand, θ̌rand]}

=
r3

(1− r2)(arctanh r − r)
+

4r3

r − (1− r2)arctanh r
, (4)

where r =
√
x2 + y2 + z2. Note that (4) depends only

on the purity r: this is because the POVM Mrand is ro-
tationally covariant.
The differences among (2), (3) and (4) for θ =

r√
3
(1, 1, 1) with 0 ≤ r < 1 are demonstrated in Fig. 2.

The quantities (3) and (4) exhibit similar behavior; they
diverge as the purity r approaches 1. This makes a strik-
ing contrast to the theoretical bound (2), which is inde-
pendent of r. In the present paper, therefore, we adopt
simple tomography and ML tomography as references in
comparing the performance of estimators.
An estimator that attains the bound (2) is explicitly

given by a uniform mixture (i.e., randomization)

M(θ) :=
1

3
(Πξ ⊕Πη ⊕Πζ) (5)
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FIG. 2: Weighted traces of covariance matrices when θ =
r√
3
(1, 1, 1) with 0 ≤ r < 1. The dashed purple line, the blue

curve, and the dot-dashed black curve indicate the results
obtained by the optimal estimator (2), simple tomography
(3), and totally randomized tomography (4), respectively.

of projective measurements Πξ,Πη, and Πζ correspond-
ing to a suitably chosen set of orthogonal axes ξ, η, and
ζ, respectively, in R3 so that the ξ-axis passes through
the true state θ = (x, y, z) (see Fig. 3).
The reader may find that there is an obvious difficulty

in realizing the optimal measurement (5), because infor-
mation about the unknown value of the parameter θ is
required in order to specify the ξ-axis. This is in striking
contrast to simple/ML tomography, which is represented
by the uniform mixture

Mtomo =
1

3
(Πx ⊕Πy ⊕Πz)

of projective measurements Πx,Πy, and Πz correspond-
ing to the ‘fixed’ orthogonal axes x, y, and z in R3.
This paradoxical difficulty can be avoided by em-

ploying an adaptive quantum state estimation (AQSE)
scheme [12–14], in which successive measurements are

performed to update the temporary estimate θ̂n−1, as

well as the temporary experimental setup M(θ̂n−1), to a

new estimate θ̂n based on the nth measurement and the
maximum likelihood method. It has been proven [12, 13]

that the sequence θ̂n almost certainly converges to the
true value θ∗ of the parameter θ (referred to as strong

consistency), and that the distribution of
√
n(θ̂n − θ∗)

converges to the normal distribution N(0, Vθ∗), where
Vθ∗ := 3(I − |θ∗⟩ ⟨θ∗|) is the covariance matrix that cor-
responds to the optimal measurement (5) at θ∗ (referred
to as asymptotic efficiency).

III. EXPERIMENT

Fig. 4 shows the experimental setup. Single photons
at 780 nm are generated from a heralded single pho-

FIG. 3: An optimal measurement that attains the bound (2) is
a uniform mixture of three projective measurements Πξ,Πη,
and Πζ corresponding to a set of mutually orthogonal axes
ξ, η, and ζ in R3 in which the ξ-axis passes through the true
state θ = (x, y, z).

ton source, consisting of a CW diode pump laser (wave-
length: 402 nm) and a 3 mm long BBO crystal (Type
I). A pair consisting of a signal photon (780 nm) and
a trigger photon (830 nm) is created via spontaneous
parametric down conversion. The detector (DT, SPCM-
AQR, PerkinElmer) after an interference filter (IF1, cen-
ter wavelength: 830 nm) outputs an electric pulse (width:
30 ns) when it detects a trigger photon and the electric
pulse heralds the generation of a signal photon, which
is coupled to a polarization maintaining fiber (PMF) af-
ter an interference filter (IF2, center wavelength: 780
nm, width: 4 nm). The HWP before the IF2 is used to
change the purity of the input state. The purity can be
controlled by tilting the angle of linear polarization to
the slow or fast axis of the PMF due to birefringence.
The polarization direction of the photon was set using
HWP0 and QWP0.

The input photon state was analyzed by HWP1,
QWP1, and a polarizing beam splitter (PBS). After pass-
ing through the PBS, photons are guided to single-photon
detectors (D0 and D1, SPCM-AQR, PerkinElmer) at
each PBS output port. The outputs of single-photon de-
tectors are gated by the rise of the heralding signal and
are connected to a first-come discriminator, consisting
of a custom electric circuit. When the discriminator re-
ceives the first signal from one of the detectors (D0 or D1)
after the measurement for the (n−1)th photon starts, the
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FIG. 4: Schematic diagram of the experimental setup.

FIG. 5: Flowchart of AQSE used in the experiment.

discriminator indicates which detector has been clicked.
A minimum pulse interval of 2.5 ns can be discriminated.
Note that the discriminator ignores the case in which it
receives the pulses from both detectors within 2.5 ns.

The angle of HWP1 and QWP1 for measuring the nth
photon is determined by the log-likelihood function at
stage n chosen from among the 100 points that divide
the domain (−1, 1) of each parameter x, y, and z into
equal parts. When the change of the HWP1 and QWP1
angles is completed, the measurement for the next (nth)
photon will be started.

The procedure of AQSE is summarized in Fig. 5. In
the present study, the procedure was carried out for up
to 798 input photons (n=798). We repeated the adaptive
estimation sequence 200 times.

Fig. 6 shows a single measured trajectory for a true
state of θ∗ = (0.52, 0.52, 0.52) (red dot in Fig. 6(a) and
red horizontal lines in Figs. 6(b) through 6(d)). Fig. 6(a)
is the trajectory in the Bloch ball, and Figs. 6(b) through
6(d) are the trajectories projected to x, y, and z axes,
respectively. The state for n = 0 was initially set to be
(0, 0, 0) (not shown in Fig. 6). The trajectory starts at
state A for n = 1 in Fig. 6(a) and then approaches the
true state.

FIG. 6: Single measured trajectory for a true state of θ∗ =
(0.52, 0.52, 0.52). (a) Trajectory in the Bloch ball. The red
dot indicates the true state, and the green dot indicates the
estimated state at n = 798. The first three estimated states
are labeled A, B, and C, respectively. (b)-(d) Estimated states
projected to x, y, and z axes. The red horizontal lines indicate
the true state.
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FIG. 7: Trajectories of estimated Stokes parameters θ̂n =
(x̂n, ŷn, ẑn) plotted with respect to the number n of photons
for the first 10 repetitions. The true value of the parameter
is set to be θ∗ = (0.52, 0.52, 0.52), as indicated by the red
horizontal lines.

IV. RESULTS AND DISCUSSIONS

As mentioned in the previous section, the tempo-

rary estimate θ̂n−1, which determines the measurement

M(θ̂n−1) at the next stage n, is taken at a lattice point
of side 1/50. In the following data analysis, however, we
do not necessarily use these rough estimates. Instead,
we can recalculate the true maximizer of the likelihood

TABLE I: Goodness-of-fit tests.
Test P-value Result
Anderson-Darling 99.0079% accept
Cramér-von Mises 99.5538% accept
Kolmogorov-Smirnov 99.4815% accept
Pearson χ2 83.9265% accept

function that is reconstructed from the history {M(θ̂n)}n
of POVMs actually used. In what follows, all estimates

θ̂n for θ∗ = (0.52, 0.52, 0.52) refer to the maximum likeli-
hood estimators recalculated in this way (cf., Appendix).

Let us first verify the strong consistency for the se-

quence θ̂n. Fig. 7 shows the first 10 trajectories of

θ̂n = (x̂n, ŷn, ẑn) with respect to the number n of photons
when the true state is set to be θ∗ = (0.52, 0.52, 0.52).
The curves correspond to independent runs of adaptive
estimation. Evidently, each curve approaches the true
value θ∗, which agrees with the mathematical result that

θ̂n → θ∗ almost certainly as n → ∞.

We next carry out statistical tests for the null hy-

pothesis that the sequence θ̂n follows a normal distri-
bution for large n. More concretely, we investigate

whether the random variable
√
n(θ̂n− θ) follows the nor-

mal distribution N(0, Vθ), where θ is the sample average

of the estimated values θ̂n over 200 independent trials,
and Vθ := 3(I −

∣∣θ⟩ ⟨θ∣∣). Table I summarizes the re-
sults of some typical goodness-of-fit tests implemented
on Mathematica 10.3 for the data at n = 798 with
θ = (0.501928, 0.499555, 0.542737). Each P-value eval-
uates the probability of obtaining the experimental data

under the null hypothesis H0 :
√
n(θ̂n− θ) ∼ N(0, Vθ). If

the P-value turns out to be less than a previously chosen
significance level α, say 10%, we judge that the exper-
imental data do not follow the null hypothesis H0, and
the hypothesis H0 is rejected under significance level α.
Now, Table I shows that the experimental data follow the
null hypothesis H0 surprisingly well.

Next, let us compare AQSE with simple/ML tomogra-
phy. Fig. 8(a) shows the 200 estimated states at n = 798
with AQSE. The estimated states are distributed around
the true state with the typical pancake-like distribution
[15, 19] of AQSE. Fig. 8(b) shows the 200 states esti-
mated at n = 798 with simple tomography. The distri-
bution for simple tomography, which includes unphysical
states falling outside the Bloch ball, is spherical. ML
tomography avoids those unphysical estimates as shown
in Fig. 8(c). Note that this refinement is equivalent to
projecting the unphysical estimates in Fig. 8(b) onto the
Bloch ball with respect to the Fisher metric [21]. Con-
sequently, estimated values obtained by ML tomography
are hemispherically distributed.

In order to demonstrate quantitatively the differ-
ence between AQSE and simple/ML tomography, the
weighted traces of sample covariances obtained by 200
independent trials for θ∗ = (0.52, 0.52, 0.52) are plotted
in Fig. 9. The purple, blue, and green dots indicate the
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FIG. 8: Empirical distributions at n = 798 for (a) AQSE,
(b) simple tomography, and (c) ML tomography, when θ∗ =
(0.52, 0.52, 0.52). The true θ∗ value is shown by the red points.

data for AQSE, simple tomography, and ML tomography,
respectively. Furthermore, the purple and blue dashed
horizontal lines indicate the theoretical limiting values
given by (2) and (3), the latter being evaluated based on
the sample average θ = (0.515752, 0.491917, 0.509737) at
n = 798. In AQSE (purple), the figure of merit TrJθ̂nVθ̂n
quickly approaches and evolves around the theoretical
value. The evolution of simple tomography (blue) is sim-
ilar. In contrast, the figure of merit for ML tomography
(green) shows a slow uphill and eventually merges with
the curve obtained by simple tomography. This odd be-
havior is due to the maximum likelihood data process-
ing, which forces the unphysical estimates to be projected
onto the Bloch ball, yielding a false shrinkage of variance.
Put differently, the seemingly small values of TrJθ̂nVθ̂n
for ML tomography at an early stage of estimation are
illusive. The figure of merit eventually converges to the
performance of simple tomography, because the values
estimated by simple tomography for large n are likely

FIG. 9: Weighted trace Tr Jθ̂n
Vθ̂n

of sample covariance Vθ̂n
obtained by 200 independent trials, multiplied by n, when
θ∗ = (0.52, 0.52, 0.52). The purple, blue, and green dots in-
dicate the data obtained by AQSE, simple tomography, and
ML tomography, respectively. The purple and blue dashed
horizontal lines indicate the theoretical values of (2) and (3)
evaluated from the sample average θ at n = 798.

to fall inside the unit ball, as the law of large numbers
asserts.

The superiority of AQSE compared to tomography
becomes much clearer if the true state is taken in the
vicinity of the surface of the Bloch ball, that is, if the
true state is (almost) pure. Fig. 10 shows the 200 esti-
mated states at n = 798 when the true state is set to be
θ∗ = (0.577, 0.577, 0.577). For this true state, the esti-
mated states of AQSE (Fig. 10(a)) have a much thinner
pancake-like distribution, as compared with Fig. 8(a).
Simple tomography (Fig. 10(b)) still has a spherical dis-
tribution around θ∗ and, since the center point is near the
surface now, approximately half of the estimated states
are unphysical and are to be projected onto the Bloch
ball by ML tomography (Fig. 10(c)). In this way, the
number of unphysical estimates increases as the purity
approaches 1, and thus the effect of the maximum likeli-
hood data processing is sensitive to the purity.

Let us observe this tendency from a different view-
point. Fig. 11 shows the evolution of the weighted trace
of sample covariance for θ∗ = (0.577, 0.577, 0.577). The
purple, blue, and green dots indicate the data obtained
by AQSE, simple tomography, and ML tomography, re-
spectively. Furthermore, the purple and blue dashed
horizontal lines indicate the corresponding theoretical
values for AQSE and simple tomography, respectively,
the latter being evaluated based on the sample average
θ = (0.562556, 0.535301, 0.565639) at n = 798. The fig-
ures of merit for AQSE and simple tomography quickly
approach the corresponding theoretical values, whereas
the figure of merit for ML tomography exhibits a very
slow uphill, which would eventually merge with the curve
of simple tomography. The convergence is very slow, as
compared with Fig. 9, because the true state is almost
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FIG. 10: Empirical distributions at n = 798 for (a) AQSE,
(b) simple tomography, and (c) ML tomography, when θ∗ =
(0.577, 0.577, 0.577). The true θ∗ value is shown by the red
points.

pure now. Stated another way, the efficiency of AQSE
compared to simple/ML tomography becomes more ev-
ident as the true state approaches the boundary of the
Bloch ball. Thus, the performance of AQSE is clearly
superior to that of conventional state tomography.

V. CONCLUSIONS

In conclusion, we reported the experimental demon-
stration of AQSE for totally unknown photonic qubits.
The experimental results obtained herein revealed both
strong consistency and asymptotic efficiency through sev-
eral rigorous statistical tests. Furthermore, we showed
that the experimentally obtained distribution of the
states estimated using AQSE was significantly different
from that obtained by conventional state tomography
and agreed well with theoretical predictions. These re-

FIG. 11: Weighted trace Tr Jθ̂n
Vθ̂n

of sample covariance Vθ̂n
obtained by 200 independent trials, multiplied by n, when
θ∗ = (0.577, 0.577, 0.577). The purple, blue, and green dots
indicate the data obtained by AQSE, simple tomography, and
ML tomography, respectively. The purple and blue dashed
horizontal lines indicate the theoretical values of (2) and (3)
evaluated from the sample average θ at n = 798.

sults are important for clarifying the fundamental char-
acteristics of quantum estimation procedures. AQSE
will find a wide range of applications from astronomy
to molecular biology, whenever precise measurements for
quantum objects, such as photons, spins, atoms, and su-
perconducting artificial atoms, are needed.
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APPENDIX: COMPARISON BETWEEN
CONVENTIONAL STATE TOMOGRAPHY AND

AQSE

Suppose that, at the ith step of estimation, a POVM
Mi = {Mi[ · ]} was chosen and an outcome di was ob-
tained. The maximum likelihood estimate that takes val-
ues on a parameter domain Θ at stage n is given by

θ̂n := argmax
θ∈Θ

ℓn(θ |M,d),

where

ℓn(θ |M,d) :=

n∑
i=1

log Tr {ρθMi[di]}
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is the log-likelihood function determined from the history

(M,d) = {(M1, d1), (M2, d2), . . . , (Mn, dn)}

of experiments.
In the conventional qubit state tomography for esti-

mating the Stokes parameter θ = (x, y, z), each POVM
Mi is chosen from among the projective measurements
Πx, Πy, and Πz corresponding to the fixed orthogonal
axes x, y, and z in R3. When the domain Θ of the pa-
rameter is taken to be the cubic region [−1, 1]3, we call
the corresponding estimation scheme the simple tomog-
raphy, and denote the estimate symbolically as

θ̂simple
n := argmax

θ∈[−1,1]3
ℓn(θ |Mfix, d).

Here Mfix indicates that the measurement axes are fixed.
The simple tomography, also called the linear tomogra-
phy in [20], amounts to computing the empirical distri-
bution from the data [21].

Note that the estimate θ̂simple
n may fall outside the

Bloch ball, giving an unphysical estimate. This drawback

is circumvented by the standard maximum likelihood to-
mography, in which the parameter domain Θ is taken to
be the Bloch ball B = {(x, y, z) ∈ R3 |x2 + y2 + z2 ≤ 1},
so that

θ̂ML
n := argmax

θ∈B
ℓn(θ |Mfix, d). (6)

The relationship between θ̂simple
n and θ̂ML

n has been scru-
tinized in [21].
In AQSE, on the other hand, the nth measurement

Mn is chosen to be the best one at the previous estimate

θ̂n−1; thus the nth estimate is symbolically written as

θ̂AQSE
n := argmax

θ∈B
ℓn(θ |Madapt, d). (7)

Here Madapt indicates that the measurement axes are
chosen in an adaptive manner. It should be emphasized
that the only difference between ML tomography (6) and
AQSE (7) is whether each Mn is determined based on
information of the history {(Mi, di)}1≤i≤n−1 of experi-
ments or not.
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