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Abstract

This paper addresses the problem of finding the optimal strategy for estimating a
generalized amplitude damping channel Γ(p)

η by means of the extension id ⊗ Γ(p)
η . We

first evaluate the quantum Fisher information of output states based on the symmetric
logarithmic derivative, and specify all the pure state inputs that maximize the quan-
tum Fisher information. We next investigate the ∇e-autoparallelity of output state
manifolds, and characterize the condition for the existence of an efficient estimator. A
comparison of these results concludes that, while there is no uniformly optimal input
for all p and η, a maximally entangled input is an admissible, relatively optimal one
under a non-asymptotic setting.
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1 Introduction

Let H be a Hilbert space that represents the physical system of interest and let S(H)
be the set of density operators on H. It is well known that a dynamical change Γ :
S(H) → S(H) of the physical system, called a quantum channel, is represented by a trace
preserving completely positive linear map [1, 2, 3]. Nevertheless, it is a different matter
how one can identify the quantum channel that one has in a laboratory. Since almost every
quantum protocol assumes a priori knowledge of the behavior of the quantum channel under
consideration, there is no doubt that identifying the channel is of fundamental importance
in quantum information theory. It is, however, not very long since the quantum channel
identification problem was directed proper attention, and the theory of finding an optimal
estimation scheme has not been developed so far, with only a few exceptions [4, 5, 6, 7,
8, 9]. The purpose of this paper is to investigate the optimality of an estimation scheme
for a (generalized) amplitude damping channel of a two level quantum system, based on
noncommutative parameter estimation theory [10, 11] and quantum information geometry
[12].

An amplitude damping channel Γη : S(C2) → S(C2), having a one dimensional param-
eter η ∈ [0, 1], is defined by [13, p. 380]

Γη(σ) =
2∑

i=1

Ei σ E∗
i ,

where

E1 =
[

1 0
0

√
η

]
, E2 =

[
0

√
1 − η

0 0

]
.

The channel describes the physical process of approach to equilibrium due to coupling with
its environment, and the damping parameter η respresents the rate of dissipation, that is,
η = e−t/T where t is time and T a constant characterizing the speed of the process. This
channel induces the following affine map on the Stokes parameter space: x′

y′

z′

 =

 √
η √

η
η

  x
y
z

 +

 0
0

1 − η

 .

As η → 0, the channel transforms every point in the unit ball towards a fixed point at
the north pole, the ground state. Thus the environment is regarded as if it were at zero
temperature in this model.

A generalized amplitude damping channel Γ(p)
η : S(C2) → S(C2) describes the effect of

dissipation to an environment at finite temperature [13, p. 382]. It is defined by

Γ(p)
η (σ) =

4∑
i=1

Ei σ E∗
i

where

E1 =
√

p

[
1 0
0

√
η

]
, E2 =

√
p

[
0

√
1 − η

0 0

]
,
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E3 =
√

1 − p

[ √
η 0

0 1

]
, E4 =

√
1 − p

[
0 0√

1 − η 0

]
,

and p ∈ [0, 1] is a parameter that represents the temperature of the environment. This
channel induces the following affine map on the Stokes parameter space: x′

y′

z′

 =

 √
η √

η
η

  x
y
z

 +

 0
0

(2p − 1)(1 − η)

 ,

and the stationary state is

σ∞ =
[

p 0
0 1 − p

]
.

When p = 0 or 1, the channel is reduced to an amplitude damping channel, and Γ(p)
η for a

generic p is regarded as their mixture:

Γ(p)
η = pΓ(1)

η + (1 − p) Γ(0)
η .

Since p is an indicator of the temperatute of the environment, it is likely that one
can evaluate the true value of p beforehand, independent of the channel. Therefore, the
estimation problem of the single parameter η, given p ∈ [0, 1], would be physically feasible.
In this paper, we study the optimality of an estimation scheme for the damping parameter
η of a generalized amplitude damping channel Γ(p)

η by means of the extension id ⊗ Γ(p)
η :

S(C2 ⊗ C2) → S(C2 ⊗ C2).
Once an input state σ ∈ S(C2⊗C2) is fixed, we have a one dimensional family of output

states ρη := id ⊗ Γ(p)
η (σ), and the parameter estimation for the quantum channel id ⊗ Γ(p)

η

is reduced to that for the quantum state ρη. As a consequence, the problem amounts to
finding an optimal input state for id⊗Γ(p)

η and an optimal estimator for the corresponding
output state. Note that as long as we are concerned only with “local” (or asymptotic)
optimality of an estimation scheme, the problem is further reduced to finding an input
state that maximizes the symmetric logarithmic derivative (SLD) Fisher information of
the output family {ρη}η as shown in [4]. If, however, we switch the subject to “global”
optimality under a non-asymptotic setting, such an approach might fail because the locally
optimal estimation scheme would, in general, depend on the true value of the parameter η.
In this case, we are forced to consider an alternative criterion in discussing the optimality
of an estimation scheme. We will show that this is the case with a generalized amplitude
damping channel, that is, there is no uniformly optimal input that maximizes the SLD
Fisher information for all η unless p = 0, 1, or 1/2. This is in good contrast to the
estimation of an SU(2) channel [6] or a generalized Pauli channel [8], in which a maximally
entangled input is uniformly optimal in that it simultaneously maximizes the SLD Fisher
information for all values of the parameters.

The paper is organized as follows. The main results are stated in Section 2, and are
proved in Section 3. The admissibility of an estimation scheme under a non-asymptotic
setting is discussed in Section 4. For the reader’s convenience, we give a brief account of
quantum information geometry in Appendix A.
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2 Main results

According to the general prescription presented in [4], let us specify the input state for the
channel id⊗Γ(p)

η that maximizes the SLD Fisher information of the output states. Due to
the convexity of the SLD Fisher information [4], we can take the input to be a pure state
σ = |ψ〉〈ψ|. Further, due to the covariancy of the channel in the rotation around the z-axis
of the Stokes parameter space, we can assume, without loss of generality, that the optimal
input takes the form

ψ = ψ(α, φ) :=
√

1 − α

[
1
0

]
⊗

[
cos φ
sinφ

]
+

√
α

[
0
1

]
⊗

[
− sin φ
cos φ

]
, (1)

where 0 ≤ α ≤ 1 and 0 ≤ φ < π. Let us denote the corresponding output state by

ρη = ρη(α, φ) := id ⊗ Γ(p)
η (|ψ(α, φ)〉〈ψ(α, φ)|) ,

and let J
(p)
η (α, φ) be the SLD Fisher information about the parameter η. The main results

are stated in a series of theorems as follows.

Theorem 1. (Amplitude damping channel) When p = 1, the SLD Fisher information
takes the maximum if and only if either (α, φ) = (0, π/2) or (1, 0). When p = 0, it takes
the maximum if and only if either (α, φ) = (0, 0) or (1, π/2). In each optimal case, the
output family admits an efficient estimator for the parameter η.

Theorem 1 has an interesting physical interpretation: the existence of quantum entan-
glement (i.e., α ̸= 0, 1) strictly deteriorates the accuracy of estimation for an amplitude
damping channel. This is in remarkable contrast to the estimation problem of a unitary
channel [6] or a Pauli channel [8] in which quantum entanglement actually enhances the
accuracy of estimation.

Theorem 2. (Submodel of Pauli channel) When p = 1/2, the SLD Fisher information
takes the maximum if and only if α = 1/2. The corresponding output family admits an
efficient estimator for the parameter

√
η.

Theorem 2 is a direct consequence of the fact that, when p = 1/2, the channel forms a
∇e-autoparallel submodel of a Pauli channel [8].

For other values of p, the optimal input depends on the true value of the parameter η.
Let us introduce the function

β(η ; r) =


r (1 − η) − 1 +

√
r (1 − r) (1 + η)

(2 r − 1) (1 − η)
, 0 ≤ η ≤ ηr

0, ηr < η ≤ 1

where 1/2 < r < 1 and ηr :=
√

(1 − r)/r, see Figure 1. Then we have

Theorem 3. (Generalized amplitude damping channel) When 1/2 < p < 1, the SLD
Fisher information takes the maximum if and only if (α, φ) = (β(η; p), π/2) or (1 −
β(η; p), 0). When 0 < p < 1/2, it takes the maximum if and only if (α, φ) = (β(η; 1−p), 0)
or (1 − β(η; 1 − p), π/2).
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Figure 1: The function β(η; r) that characterizes the optimal degree α of entanglenent.
Here the parameter r is taken to be r = 0.9 (solid), r = 0.6 (dashed), and the limit r → 0.5
(chained).

Theorem 3 implies that, as long as one wishes to achieve the lower bound of the optimal
quantum Cramér-Rao inequality [4]

Vη [T ] ≥
(

max
α,φ

J (p)
η (α, φ)

)−1

for the variance Vη [T ] := Eη [(T − ηI)2] of a locally unbiased estimator T , the estimation
scheme for the parameter η is inevitably an adaptive one: one needs to modify successively
the degree α of entanglement of the input state according to the temporary estimate of η.

In summary, there is no uniformly optimal input that maximizes the SLD Fisher infor-
mation for all η unless p = 0, 1, or 1/2. In this regard, the next theorem, characterizing
the condition for the output family to admit an efficient estimator for all p, would be
meaningful in discussing the admissibility of an estimation scheme under a non-asymptotic
setting.

Theorem 4. (Autoparallelity) The family {ρη(α, φ)}0<η<1 of output states is ∇e-autoparallel
for all p ∈ [0, 1] if and only if either α = 1/2, or (α, φ) = (0, 0), (0, π/2), (1, 0), (1, π/2).

Note that the output family ρη(α, φ) degenerates to a point when (α, φ) = (0, 0), (1, π/2)
and p = 1, or when (α, φ) = (0, π/2), (1, 0) and p = 0.

3 Proof of Theorems

In this section, we change the variables (p, α, φ) into (q, δ, c, s) := (2p−1, 2α−1, cos 2φ, sin 2φ).
The variable s appears only in Section 3.4. Details of the tedious computation are relegated
to the Appendix B. When |q| < 1 and |δ| < 1, the SLD of the output family ρη is unique,
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and the SLD Fisher information is given by

J (q)
η (δ, c) =

h(δ, c ; η, q)
4 η (1 − η) [ 1 − q2 δ2 + (1 + 2 c q δ + (c2 + q2 − 1) δ2) η ]

(2)

where

h(δ, c ; η, q) = 2 − c2
(
1 − q2

)
δ2 −

(
1 + q2

)
δ2 + 2 c q δ

(
1 − δ2

)
+

[
2 + 6 c q δ +

(
−3 + 2 q2

)
δ2 + 2 c3 q δ3 + δ4 + c2 δ2

(
5 + 2 q2 − δ2

)]
η

−
(
1 − c2

)
δ2 (q + c δ)2 η2.

When |q| = 1 or |δ| = 1, on the other hand, the SLD is not unique; however, the SLD
Fisher information is well-defined and is identical to the continuous extension of (2) to the
boundary. Note that the SLD Fisher information satisfies the following relations.

J (q)
η (δ, c) = J (−q)

η (−δ, c) = J (−q)
η (δ,−c) = J (q)

η (−δ,−c). (3)

3.1 Proof of Theorem 1

In view of the symmetry (3), we need only prove the case q = 1. It is easy to show that
the SLD Fisher information

J (1)
η (δ, c) =

2 (1 + δ c) − δ2 (1 − c2) η

4 η (1 − η)

takes the maximum
Jη =

1
η (1 − η)

if and only if (δ, c) = (−1,−1) or (1, 1). The corresponding output states

ρη|(δ,c)=(−1,−1) =


1 − η 0 0 0

0 η 0 0
0 0 0 0
0 0 0 0

 , ρη|(δ,c)=(1,1) =


0 0 0 0
0 0 0 0
0 0 1 − η 0
0 0 0 η


are both isomorphic to the classical coin flipping in which heads occur with probability η.
As a consequence, there is an efficienent estimator for the expectation parameter η. This
proves Theorem 1.

3.2 Proof of Theorem 2

When q = 0, the channel is reduced to a submodel of the Pauli channel which has been
studied in detail in [8]. To be specific, the optimal input is an arbitrary maximally entangled
state (i.e., δ = 0), and the corresponding output family is canonically embedded in the
3-dimensional probability simplex P3 of Pauli channels as follows (see Figure 2).

pη =
(

(1 +
√

η)2

4
,
1 − η

4
,
1 − η

4
,
(1 −√

η)2

4

)
.
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H1,0,0,0L

H0,1,0,0L

H0,0,1,0L

H0,0,0,1L

Figure 2: The output family for q = 0 and δ = 0 embedded in the probability simplex
P3 of Pauli channels. It is the ∇e-geodesic connecting the vertex (1, 0, 0, 0) and the center
(1/4, 1/4, 1/4, 1/4) of P3, and has an efficient estimator for the expectation parameter

√
η.

Moreover, this turns out to be an exponential family:

pη(ξ) =
1

(eξ/2 + e−ξ/2)2
(eξ, 1, 1, e−ξ)

having a natural (∇e-affine) parameter ξ := 2 arctanh
√

η. We regard the vector X :=
(1, 0, 0,−1), that is obtained by collecting the coefficients of ξ in the exponents of (eξ, 1, 1, e−ξ),
as a random variable that takes values X(i) with probability pη(i), (i = 1, . . . , 4). Accord-
ing to the theory of exponential family [12, Section 3.5], the random variable X gives the
efficient estimator for the expectation parameter

Eη[X] =
√

η.

This proves Theorem 2. We will give an alternative argument in Section 4.

3.3 Proof of Theorem 3

We present the proof in a series of lemmas. The goal is to find the maximum of J
(q)
η (δ, c)

on the compact square region [−1, 1] × [−1, 1] for a given q ̸= 0 and ±1. Let us consider
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the extremal conditions:

∂J
(q)
η (δ, c)
∂δ

= 0,
∂J

(q)
η (δ, c)
∂c

= 0. (4)

The next key lemma asserts that the SLD Fisher information J
(q)
η (δ, c) takes the maximum

either on δ = 0 or on the boundary |δ| = 1 or |c| = 1.

Lemma 5. If δ ̸= 0, the equations (4) do not simultaneously hold for any interior point
(δ, c) ∈ (−1, 1) × (−1, 1).

Proof Consider the quantity

K(δ, c ; η, q) := c

(
∂J

(q)
η (δ, c)
∂c

)
− δ

(
∂J

(q)
η (δ, c)
∂δ

)
. (5)

If the equations (4) simultaneously hold, then K(δ, c ; η, q) = 0. It is therefore sufficient
to show that K(δ, c ; η, q) > 0 for all (δ, c) ∈ (−1, 1) × (−1, 1) unless δ = 0. By a direct
evaluation

K(δ, c ; η, q) =
δ2 f(δ, c ; η, q)

2 η (1 − η) [ 1 − q2 δ2 + (1 + 2 c q δ + (c2 + q2 − 1) δ2) η ]2

where f is a polynomial that has the following decomposition:

f(δ, c ; η, q) = η
(
1 − δ2 + (q + c δ)2 η

)2
+ (1 − q2)

[ (
1 − q2

)
η +

(
1 − δ4

)
η +

(
1 − δ2

)2
η2

+ (1 − η)
(
1 + c q δ + c q δ η + c2 δ2 η

)2 + (q + c δ)2 η
(
1 + η2

) ]
.

Since 0 < η < 1 and |q| < 1, it is clear from the above decomposition that f(δ, c ; η, q) is
strictly positive for all interior points (δ, c) ∈ (−1, 1) × (−1, 1). This proves the assertion.
¤

Lemma 6. If δ = 0, the equations (4) have a unique solution c = 0. The point (δ, c) =
(0, 0) is a saddle point of J

(q)
η (δ, c).

Proof By a direct computation, we have

∂J
(q)
η (δ, c)
∂δ

∣∣∣∣∣
δ=0

=
c q

2η (1 − η)
,

∂J
(q)
η (δ, c)
∂c

∣∣∣∣∣
δ=0

= 0.

Since q ̸= 0, the only critical point on δ = 0 is c = 0. The Hessian matrix at the origin
(δ, c) = (0, 0) is

H(0, 0) =
1

2η (1 − η)

[
q2 (1 − η) q

q 0

]
,

and detH(0, 0) = −q2/4η2 (1 − η)2 < 0. ¤
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Lemma 7. J
(q)
η (δ, c) does not take the maximum on the boundary |δ| = 1 unless |c| = 1.

Proof According to (3), J
(q)
η (−1, c) = J

(q)
η (1,−c), so that it suffices to treat the case

δ = −1. For −1 < c < 1, consider the quantity

K̂(c ; η, q) := c

(
∂J

(q)
η (−1, c)

∂c

)
+

[
∂J

(q)
η (δ, c)
∂δ

]
δ=−1

. (6)

Here the second term is understood as the one-sided derivative at the boundary δ = −1.
Then

K̂(c ; η, q) = K(−1, c ; η, q) =
f(−1, c ; η, q)

2 η (1 − η) [ 1 − q2 + (c − q)2 η ]2
.

As the function f(−1, c ; η, q) is strictly positive for all c ∈ (−1, 1), so is K̂(c ; η, q). Suppose
now that ∂J

(q)
η (−1, c)/∂c = 0 at a certain c = c0 ∈ (−1, 1). Then

[
∂J

(q)
η (δ, c)/∂δ

]
δ=−1

is

strictly positive at c = c0. In other words, J
(q)
η (−1, c0) < J

(q)
η (−1 + ε, c0) for sufficiently

small ε > 0. ¤

We deduce from Lemmas 5-7 that J
(q)
η (δ, c) takes the maximum on the boundary |c| = 1.

It is now straightforward to obtain the maximum. Due to the symmetry (3), we need only
consider the case c = −1, in which

J (q)
η (δ,−1) =

1 − δ2 + (1 − 2q δ + δ2) η

2 η (1 − η) [1 + q δ + (1 − q δ) η]
.

The optimal δ that maximizes J
(q)
η (δ,−1) is given by

arg max
−1≤δ≤1

J (q)
η (δ,−1) =


(
√

1 − q2 − 1) (1 + η)
q (1 − η)

, 0 ≤ η ≤ ηq

−1, ηq < η ≤ 1

where ηq :=
√

(1 − q)/(1 + q). This completes the proof.

3.4 Proof of Theorem 4

A quantum statistical model ρη is ∇e-autoparallel if and only if there is a constant operator
T and smooth functions λ(η) and µ(η) such that the SLD Lη satisfies

Lη = λ(η)T − µ(η)I. (7)

In this case, the operator T is the efficient estimator for an alternative parameter ζ :=
µ(η)/λ(η) of the model. It is important to notice that the condition (7) is invariant under
the transformation

Lη 7→ L̂η := f(η)Lη − g(η)I,
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where f(η) and g(η) are arbitrary smooth functions with f(η) ̸= 0. In fact, L̂η = λ̂(η)T −
µ̂(η)I holds for λ̂(η) := f(η)λ(η) and µ̂(η) := f(η)µ(η) + g(η). Specifically, if we let
g(η) := f(η)(Lη)11, then the (1, 1)th entry of L̂η vanishes, and we have µ̂(η) = λ̂(η)T11 and

L̂η = λ̂(η) T̂ , (8)

where T̂ := T − T11I is a constant operator. Namely, L̂η becomes a constant operator
multiplied by a smooth function of η; in particular, the entries of L̂η are linearly dependent
functions of η. Conversely, when (8) holds for specific functions f(η) and g(η), a triad of
the original λ(η), µ(η) and T that satisfies (7) can be retrieved as follows:

λ(η) =
λ̂(η)
f(η)

, µ(η) = − g(η)
f(η)

, T = T̂ . (9)

Thus (8) gives a necessary and sufficient condition for the model ρη to be ∇e-autoparallel.
Let us proceed to the proof of Theorem 4. We present the proof for |δ| < 1 and

|δ| = 1 separately. We first treat the case |δ| < 1. Assume for now that |q| < 1: in this
case, the model ρη is strictly positive and the SLD is uniquely determined in the form
Lη = [ℓij/2

√
η D] as seen in the Appendix B. Let us set

f(η) := 2
√

η D, g(η) := ℓ11.

If δ ̸= 0 (in addition to |δ| < 1), the (3, 3)th entry

(L̂η)33 = 8 δ
√

η
[
1 + c2 + 2 c q δ +

(
1 − c2 − δ2 + c2 δ2

)
η
]

of the transformed SLD L̂η is a nonzero irrational function of η, and the (1, 4)th and (2, 3)th
entries

(L̂η)14 = 4 (1 + c)
√

1 − δ2
[
1 + q δ +

(
1 − δ2 + c δ (q + δ)

)
η + (−1 + c) δ (q + c δ) η2

]
(L̂η)23 = 4 (−1 + c)

√
1 − δ2

[
1 − q δ +

(
1 − δ2 + c δ (q − δ)

)
η + (1 + c) δ (q + c δ) η2

]
are polynomials of η that cannot be simultaneously zero. As a consequence, (L̂η)33 and at
least one of the latter two are linearly independent, and L̂η cannot be of the form (8). If
δ = 0, on the other hand, the transformed SLD of the model ρη becomes

L̂η = 8 (1 + η) T,

where

T =
1
2


0 s 0 1 + c
s 0 −1 + c 0
0 −1 + c 0 −s

1 + c 0 −s 0

 . (10)

This is of the form (8), and the model turns out to be ∇e-autoparallel for all q ∈ (−1, 1).
We now invoke a continuity argument to conclude that, when δ = 0, the model ρη is
∇e-autoparallel for all q ∈ [−1, 1].
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We next treat the case δ = −1, in which the model ρη is factorized as

ρη =
[

1 0
0 0

]
⊗ ση, (11)

where

ση =
1
2

[
1 + q + (c − q) η s

√
η

s
√

η 1 − q − (c − q) η

]
.

The problem amounts to finding the condition for ση to be ∇e-autoparallel for all q ∈
[−1, 1]. Since

det ση =
1
4
(1 − η)

[
1 − q2 + (c − q)2 η

]
,

the model ση is strictly positive unless q = c = ±1, and the SLD is uniquely determined
as Lη = [ℓij/8

√
η det ση], where

ℓ11 =
√

η
[
(1 − q) (2c − 2q − s2) − (c − q) (2c − 2q + s2) η

]
ℓ12 = s

[
1 − q2 + (c − q)2 η2

]
ℓ22 = −√

η
[
(1 + q) (2c − 2q + s2) + (c − q) (2c − 2q − s2) η

]
.

Letting
f(η) := 8

√
η det ση, g(η) := ℓ11,

the transformed SLD becomes

(L̂η)12 = s
[
1 − q2 + (c − q)2 η2

]
(L̂η)22 = −2

√
η

[
2c − 2q + s2 q − s2 (c − q) η

]
.

These elements are linearly dependent for all q ∈ (−1, 1) if and only if s = 0. Now by a
continuity argument, we conclude that the model ση is ∇e-autoparallel for all q ∈ [−1, 1] if

and only if s = 0, that is |c| = 1. Note that the model ση degenerates to a point
[

1 0
0 0

]
when q = c = 1, and to a point

[
0 0
0 1

]
when q = c = −1.

Finally, we treat the case δ = 1, in which the model ρη is factorized as

ρη =
[

0 0
0 1

]
⊗ ση,

where

ση =
1
2

[
1 + q − (c + q) η −s

√
η

−s
√

η 1 − q + (c + q) η

]
.

A similar argument as above concludes that ση is ∇e-autoparallel for all q ∈ [−1, 1] if and

only if s = 0. Note that the model ση degenerates to a point
[

1 0
0 0

]
when q = −c = 1,

and to a point
[

0 0
0 1

]
when q = −c = −1. This completes the proof.
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4 Discussions

In this paper, we have studied the problem of estimating a generalized amplitude damping
channel Γ(p)

η for a given p through the extension id ⊗ Γ(p)
η . It was shown that there is no

uniformly optimal input that simultaneously maximizes the SLD Fisher information for all
η unless p = 0, 1, or 1/2. Nevertheless, it was also shown that the output family admits
an efficient estimator for all p if and only if the input is either a maximally entangled state
(α = 1/2) or a disentangled state of the type (α, φ) = (0, 0), (0, π/2), (1, 0), (1, π/2). In this
section, we discuss the relative merits of these inputs.

When (α, φ) = (0, 0), the SLD of the factorized model ση in (11) satisfies

Lη =
1

(1 − η) [η + p (1 − η)]
T − 1

1 − η
I, T =

[
1 0
0 0

]
.

Therefore, the model has an efficient estimator T for the parameter ζ = η + p (1 − η)
unless p = 1. For example, when p = 0, the model ση is reduced to the classical coin

flipping
[

η 0
0 1 − η

]
, and T is the efficient estimator for the parameter η, as was seen in

Theorem 1. When p = 1, however, the model ση degenerates to a point
[

1 0
0 0

]
, and has

no information about the parameter η. In short, the input (α, φ) = (0, 0) is the best for
p = 0, whereas it is the worst for p = 1. Such a biased nature is convinced also by the fact
that the SLD Fisher information

J (p)
η (0, 0) =

1 − p

(1 − η) [η + p (1 − η)]

approaches zero monotonously as p → 1. Similar observation also applies to the other
disentangled inputs (α, φ) = (0, π/2), (1, 0), (1, π/2).

When α = 1/2, on the other hand, the SLD of the model ρη satisfies

Lη =
1

(1 − η)
√

η
T − 1

1 − η
I,

where T is given by (10). Therefore, T is the efficient estimator for the parameter ζ =
√

η
irrespective of p. This uniformity is also seen in the SLD Fisher information

J (p)
η (1/2, φ) =

1
2 η (1 − η)

,

which is independent of p (and φ). Such a robustness is in good contrast to the above
mentioned biased nature of disentangled inputs, and would be preferable in practical ap-
plications, although the SLD Fisher information does not take the maximum at α = 1/2
unless p = 1/2.

The advantage of the use of maximally entangled inputs can be viewed also from a
different angle. The SLD Fisher information J

(p)
η (0, 0) for the disentangled input (α, φ) =
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(0, 0) is averaged over p as

Jη :=
∫ 1

0
J (p)

η (0, 0) dp =
η − log η − 1

(1 − η)3
.

The average value Jη is the same for the other disentangled inputs (α, φ) = (0, π/2), (1, 0), (1, π/2).
Since J

(p)
η (1/2, φ) > Jη for all η ∈ (0, 1), we may assert that, among those which admit

efficient estimators for all p, maximally entangled inputs are optimal on average.

Appendix A: Quantum Information Geometry

This appendix provides a brief account of quantum information geometry based on the
SLD. Let S be the totality of faithful quantum states on a D-dimensional Hilbert space
H. The set S is naturally regarded as a (D2 − 1)-dimensional differentiable manifold, and
its dualistic geometrical structure is introduced as follows. We first define a Riemannian
metric by

g(X,Y ) :=
1
2
Tr ρ(LXLY + LY LX) = Tr (Xρ)LY ,

where X,Y ∈ TρS, and LX , LY are the corresponding SLDs, i.e., the Hermitian operators
satisfying

Xρ =
1
2
(ρLX + LXρ).

The metric g is called the SLD Fisher metric. We next introduce a pair of affine connections.
One is defined by

(∇m
XY )ρ := X(Y ρ),

and is called the mixture connection. The other is defined by

(∇e
XY )ρ :=

1
2
{ρ(XLY − Tr ρ(XLY )) + (XLY − Tr ρ(XLY ))ρ},

and is called the exponential connection. These connections are mutually dual with respect
to the SLD Fisher metric, in that

Xg(Y,Z) = g(∇m
XY,Z) + g(Y,∇e

XZ).

A coordinate system ξ = (ξi)1≤i≤D2−1 of S is called affine with respect to a connection
∇ of S if ∇∂i

∂j = 0 for all i, j, where ∂i = ∂/∂ξi. For example, the components of
density matrices ρ (∈ S), with one diagonal entry removed (since Tr ρ = 1), form a ∇m-
affine coordinate system of S. On the other hand, S does not have a ∇e-affine coordinate
system, since ∇e-torsion does not vanish because of the noncommutativity of operators.

A submanifold M of S is called autoparallel with respect to a connection ∇ of S if
∇XY ∈ TρM for all ρ ∈ M and X,Y ∈ TρM. In particular, a one-dimensional ∇-
autoparallel submanifold is called a ∇-geodesic. When M is ∇-autoparallel in S, M has a
vanishing embedding curvature with respect to ∇, and one can regard ∇ as a connection
of M, just by restricting ∇ onto M. For example, a maximal commutative subset P of
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S is autoparallel with respect to both ∇m and ∇e, so that one can naturally induce a
dualistic structure on P from that of S. In fact, the geometrical structure thus induced on
P is isomorphic to that of the (D−1)-dimensional classical probability simplex PD−1. For
more information, see [12]. A generalization to manifolds of non-faithful (i.e., degenerate)
quantum states is discussed in [14].

Appendix B: Derivation of the SLD Fisher information

In this appendix, we outline the derivation of the SLD Fisher information (2). In what
follows, we work with an alternative parametrization θ :=

√
η in order to simplify the

computation. The entries of the output state

ρ̃θ = ρ̃θ(α, φ) := ρη(α, φ)|η=θ2

are

(ρ̃θ)11 =
1
2

(1 − α) [ 2p (1 − θ2) + θ2 (1 + cos 2φ) ]

(ρ̃θ)12 =
1
2

(1 − α) θ sin 2φ

(ρ̃θ)13 = −1
2

√
α (1 − α) θ sin 2φ

(ρ̃θ)14 =
1
2

√
α (1 − α) θ (1 + cos 2φ)

(ρ̃θ)22 =
1
2

(1 − α) [ 2 − 2p (1 − θ2) − θ2 (1 + cos 2φ) ]

(ρ̃θ)23 = −1
2

√
α (1 − α) θ (1 − cos 2φ)

(ρ̃θ)24 =
1
2

√
α (1 − α) θ sin 2φ

(ρ̃θ)33 =
1
2

α [ 2p (1 − θ2) + θ2 (1 − cos 2φ) ]

(ρ̃θ)34 = −1
2

√
α (1 − α) θ sin 2φ

(ρ̃θ)44 =
1
2

α [ 2 − 2p (1 − θ2) − θ2 (1 − cos 2φ) ].

The SLD of the model ρ̃θ is a selfadjoint operator L̃θ that satisfies the equation

∂

∂θ
ρ̃θ =

1
2
(ρ̃θL̃θ + L̃θρ̃θ).

Since
det ρ̃θ = p2 (1 − p)2 α2 (1 − α)2 (1 − θ2)4,

the SLD is uniquely determined if and only if p ̸= 0, 1 and α ̸= 0, 1. In this case

L̃θ =
1
D

[ℓij ]1≤i,j≤4, ℓij = ℓji
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where

D = 2
(
1 − θ2

) [
−8 (−α + p (−1 + 2α)) (1 − α + p (−1 + 2α)) + θ2

{
3 − 8p(1 − 2α)2

+8p2(1 − 2α)2 + 4 (−1 + α) α + (−1 + 2α) ((−4 + 8p) cos 2φ + (−1 + 2 α) cos 4φ))
}]

,

and ℓij = ℓij(θ, p, α, φ) are given by

ℓ11(θ, p, α, φ) = ℓ44(θ, 1 − p, 1 − α, φ)
= 4 θ (1 − α + p (−1 + 2 α)) (3 − 8 p + 2 (−7 + 8 p) α + (4 − 8α) cos 2 φ + (1 − 2α) cos 4 φ)

+θ3
[
2

(
−7 + 18 p (1 − 2α)2 − 16 p2 (1 − 2α)2 + 8 (−2 + α) (−1 + α) α

)
+(−1 + 2 α) (17 − 32 p + 4 (−1 + α) α) cos 2 φ

−2 (−1 + 2 α)
(
−1 − 2α + 4 α2 + p (−2 + 4 α)

)
cos 4 φ − (−1 + 2 α)3 cos 6 φ

]
,

ℓ22(θ, p, α, φ) = ℓ33(θ, 1 − p, 1 − α, φ)
= 4 θ (−α + p (−1 + 2 α)) (5 − 8 p − 2α + 16 pα + (4 − 8α) cos 2 φ + (−1 + 2 α) cos 4 φ)

+θ3
[
2

(
−5 + 14 p (1 − 2α)2 − 16 p2 (1 − 2α)2 + 8 (−1 + α)2 α

)
− (−1 + 2 α) (32 p + (−5 + 2 α) (3 + 2 α)) cos 2 φ

−2 (−1 + 2 α)
(
−3 + p (2 − 4α) + 2 α + 4 α2

)
cos 4 φ + (−1 + 2 α)3 cos 6 φ

]
,

ℓ12(θ, p, α, φ) = − ℓ34(θ, 1 − p, 1 − α, φ)
= 16 (α − p (−1 + 2 α)) (1 − α + p (−1 + 2 α)) sin 2 φ

+16 θ2 (−1 + α) α (−1 − (−1 + 2 p) (−1 + 2 α) cos 2 φ) sin 2 φ

+θ4
[
(5 + 16 (−1 + p) p) (1 − 2 α)2 sin 2 φ

+4 (−1 + 2 p) (−1 + 2 α (2 + α (−3 + 2 α))) sin 4 φ + (1 − 2α)2 sin 6 φ
]
,

ℓ13(θ, p, α, φ) = ℓ24(θ, p, α, φ)
= 8

√
α (1 − α) (2 α − 1) θ

(
1 − θ2

)
[ (2p − 1) (2α − 1) + cos 2φ ] sin 2φ,

ℓ14(θ, p, α, φ) = − ℓ23

(
θ, p, 1 − α,

π

2
− φ

)
= 8

√
α (1 − α) cos2 φ [4 − 4α + 4 p (−1 + 2 α)

+θ2 (−8 (−1 + α) α + 4 (−1 + p + α) (−1 + 2 α) cos 2 φ)
−4 θ4 (−1 + 2 α) (−1 + 2 p + (−1 + 2 α) cos 2 φ) sin2 φ

]
.

The SLD L̃θ of ρ̃θ is related to the SLD Lη of ρη by

Lη =
1

2
√

η
L̃√

η
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and the SLD Fisher information for the parameter η is given by

J (p)
η (α, φ) = Tr

[
∂ρη

∂η
Lη

]
=

1
4 η

Tr
[
∂ρ̃θ

∂θ
L̃θ

]
θ=

√
η

.

This leads to the formula (2).
When p = 0, 1 or α = 0, 1, on the other hand, the SLD is not unique; however, the

SLD Fisher information is well-defined, and is identical to the continuous extension of (2)
to the boundary, since the rank of ρθ is invariant for each values of the parameters p and
α [14].
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