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Abstract

This paper explores an entirely new application of the quantum entanglement. The problem
treated here is the quantum channel identification problem: given a parametric family {I'g}o of
quantum channels, find the best strategy of estimating the true value of the parameter 6. As
a simple example, we study the estimation problem of the isotropic depolarization parameter
for a two level quantum system H ~ C?. In the framework of noncommutative statistics, it is
shown that the optimal input state on ‘H ® H to the channel exhibits a transition-like behavior
according to the value of the parameter 6.
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Let ‘H be a Hilbert space that represents the physical system of interest and let S(H) be the
set of density operators on H. It is well known [1] that a dynamical change I' : S(H) — S(H)
of the physical system, called a quantum channel, is represented by a trace preserving completely
positive map. But how can we identify the quantum channel that we have in a laboratory? A
general scheme may be as follows: input an well prepared state o to the quantum channel and
estimate the dynamical change o — I'(0) by performing a certain measurement on the output state
I'(0). It is then natural to inquire what is the best strategy of estimating a quantum channel. The
purpose of this paper is to study this problem from a noncommutative statistical point of view. For
mathematical simplicity, we restrict ourselves to the case when the quantum channel to be identified
lies in a smooth parametric family {T'g; 0 = (01, ...,6,,) € O} of quantum channels. When H is finite
dimensional, this is not an essential restriction [2].

Once an input state o for the channel is fixed, we have a parametric family {I'g(0) }sco of output
states, and as long as the parametrization 6 — I'yp(0) is nondegenerate, the problem of estimating the
quantum channel is reduced to a parameter estimation problem for the noncommutative statistical
model {T'y(0)}pco. As a consequence, the parameter estimation problem for a family {I'g}pco of
quantum channels amounts to finding an optimal input state o for the channel and an optimal
estimator for the parametric family {I'g(c)}p of output states. One may imagine that this problem
does not exceed the realm of conventional quantum estimation theory [3] [4]. But, in fact, it opens
a new field of research in noncommutative statistics.

Since each channel I'y is completely positive, it can be extended to the composite quantum system
H ® H. In view of statistical parameter estimation, there are two essentially different extensions
that have the same parametrization 6 as T'g: one is 'y ® Id : S(H® H) — S(H ® H), where Id
denotes the identity channel, and the other is Ty @ I'y : S(H® H) — S(H ® H). A question arises
naturally: what happens when we use an entangled state as an input to the extended channel? In
what follows, we demonstrate a somewhat nontrivial aspect of this problem.

Let H := C? and let the channel Ty : S(H) — S(H) be defined by
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The parameter 6 represents the magnitude of isotropic depolarization. The channel can be uniquely
extended on the 2 x 2 matrix algebra C?*? as follows.
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To ensure that 'y is completely positive, the parameter € must lie in the closed interval © := [—%, 1].
(See [2].) We thus have a one parameter family {I'p; 0 € O} of quantum channels, and our task is
to estimate the true value of 6.

Before proceeding to the parameter estimation for {I'p}g, we give a brief account of the one
parameter quantum estimation theory for density operators. (Consult [3] or [4] for details.) Given a
one parameter family {pg}g of density operators, an estimator for the parameter 6 is represented by a
Hermitian operator 7', normally with a requirement that the estimator should be (locally) unbiased:
that is, if the system is in the state pg, then the expectation Ey[T] := TrpyT of the estimator 7" should
be identical to . It is easy to show that every (locally) unbiased estimator T' for the parameter
satisfies the quantum Cramér-Rao inequality Vy[T] > (Jy) ™1, where V3[T] := Trpp(T — 6)? is the
variance of estimator T, and Jy := J(py) := Trpg(Lg)? is the quantum Fisher information with Ly
the symmetric logarithmic derivative (SLD), i.e., the Hermitian operator that satisfies the equation

% = %(Lepe + poLe).
It is important to notice that the lower bound (Jy)~! in the quantum Cramér-Rao inequality is
achievable (at least locally). In other words, the inverse of the SLD Fisher information gives the
ultimate limit of estimation. As a consequence, the larger the SLD Fisher information is, the more
accurately we can estimate the parameter 6.

Let us return to the parameter estimation problem for the one parameter family {T'g }4 of quantum
channels. Taking account of the above-mentioned one parameter estimation theory for density
operators, our task is reduced to finding an optimal input for the channel that maximizes the SLD
Fisher information of the corresponding parametric family of output states.

We start with the maximization of the SLD Fisher information of the family {T'y(c)}s with
respect to the input state o € S(H). An important observation is that the maximum is attained by
a pure state. To see this, it suffices to prove the convexity of the SLD Fisher information, i.e., if pg =
Aog+(1— )7 for a constant A between 0 and 1, then J(py) < AJ(0p)+(1—X)J(79). Let us introduce
the states pg := Aop @ (1 — A\)19 on H @ H. It is easy to show that J(pg) = AJ(og) + (1 — ) J(79).
By identifying H @ H with C? ® H, we consider the partial trace Trq2 : S(H @ H) — S(H). Since
Tro2 is a stochastic (i.e., trace preserving completely positive) map, the monotonicity of the SLD
Fisher information with respect to a stochastic map [5] shows that J(pg) > J(Tre2 po) = J(pe)-
This completes the proof of the convexity of the SLD Fisher information. Now we are ready to
specify an optimal input state. Since our channel I'p is unitarily invariant (i.e., isotropic in the
Stokes parameter space), we can take without loss of generality the optimal input to be o = |e)(e|
where (e| = (1,0). The corresponding output state py := I'y(0) is
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Since the state py is isomorphic to the classical coin flipping in which head occurs with probability



(1+6)/2, the SLD Fisher information becomes

1

s

We next study the extended channel I'y ® Id : S(H® H) — S(H ® H). In this case we can use a
possibly entangled state as the input. By the same reason as above, we can take the input to be a
pure state: & = |¢) (10| where ¢ € H®H. By the Schmidt decomposition, the vector v is represented
as

V) =V len)|f1) + V1 -z le2)|f), (1)

where z is a real number between 0 and 1, and {e;,es} and {f;, fo} are orthonormal bases of
H = C?. Since the channels I'y and Id are both unitarily invariant, we can assume without loss of
generality that the optimal input takes the form (1) with (e;| = (f;| = (0,1) and (e2| = (f,| = (1,0).
The constant z remains to be determined. The corresponding output state pg := I'y @ Id(5) becomes

(I1—2)(1+86) 0 0 2y/z(l—x)0
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The SLD for the family {pg}s is given by
[ 14260 — 360% — 80 0 0 4y/x(1—2) ]
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and the SLD Fisher information is
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When z = 0 or 1, the above SLD Fisher information jg is identical to Jy. This is a matter of
course: the input state is disentangled in this case and no information about the parameter 6 is
available via the independent channel Id. When z # 0 and # 1, the SLD Fisher information Jp
diverges at § = 1 and —%. This is because the complete positivity of the channel I'g breakes across
these values. Now let us specify the optimal input state. For every 6, the SLD Fisher information
Jy takes the maximum 3/(1 — 0)(1 + 36) at z = %. Therefore the optimal input for the channel



I'g ®1d is the maximally entangled state. The implication of this result is deep: although we use the
channel I'g only once, extra information about the channel is obtained via entanglement of the input
state. In particular, the use of entanglement improves exceedingly the performance of estimation as
f approaches —%.

Let us proceed to the analysis of the other extended channel 'y @ I'y : S(H® H) — S(H® H).
As before, we can take the input to be a pure state & = [¢) (1| where 9 is given by Eq. (1) with
(e1] = (f1| = (0,1) and (e2] = (f3] = (1,0). The corresponding output state pg := I'y @ I'y(5)
becomes

r(1-02+(1-2)(1+6)2 0 0 4y/x(1 — x) 62
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Since the SLD for the family {pp}s is too complicated to write down, we give the SLD Fisher
information only.
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When z = 0 or 1, the above SLD Fisher information Jp becomes 2/(1 — 62), which is precisely
double the Jy. Again this is a matter of course: the input state is disentangled in this case and
the same amount of information about the parameter 6 is obtained per independent use of the
channel I'y. When x # 0 and # 1, the SLD Fisher information J diverges at § = 1 but does not
at 0 = —%. This is because the requirement of positivity for the channel I'y ® I'y is strictly weaker
than that for the channel I'y ® Id (i.e., the complete positivity for I'y). Now we examine a rather
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unexpected behavior of the optimal input state. For 7 < # < 1, the SLD Fisher information Jp

takes the maximum 1262/(1 — 6?)(1 + 36%) at = = 3, while for —% <60 < %, it takes the maximum
2/(1 —60%) at * = 0 and 1. (See Figure 1.) Namely, the optimal input state ‘jumps’ from the
maximally entangled state to a disentangled state at = 1/4/3. It is surprising that the seemingly
homogeneous family {T'g}y of depolarization channels involves a transition-like behavior.

Finally we mention the possibility of extending the channel I'y in the form I'y ® IV where T
is a channel that is known to the observer and is independent of . Since the channel 'y @ I is
decomposed into (Id®@I)(T'y ® Id), the monotonicity argument for the SLD Fisher information with
respect to a stochastic map allows us to deduce that the best choice of the channel IV is the identity
channel.

To conclude, among those we have considered on the second extension H ® H of the quantum
system, the best strategy of estimating the isotropic depolarization parameter 6 is the following. For
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% <0 <1, use I'g® 'y and input a maximally entangled state on H ® H; for % <6< 5 use

T'g twice independently and input any pure state on H each time; for —% <0< %, use 'y ® Id and
input a maximally entangled state on H ® H.



S D Fisher information

Figure 1: SLD Fisher information Jy versus x, for = 0.7 (dashed), # = 1/4/3 (solid), and 6 = 0.3
(chained).

We have demonstrated a nontrivial aspect of statistical estimation problem for a quantum chan-

nel.

The other problems, such as the use of nth extension H®" and its asymptotics, or the multi

parameter quantum channel estimation, will be presented elsewhere.
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