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Abstract

In contrast to the many-to-one and quadratic nature of correspondence in the conven-
tional representation of quantum channels, such as the operator-sum or the unitary represen-
tation, we present a one-to-one and linear (affine) parametrization of quantum channels. This
parametrization enables us to visualize the convex structure of the space of quantum channels.
To demonstrate its usefulness, we apply it to the analysis of quantum binary channels.

1 Introduction

Let H,H′ be Hilbert spaces which represent the physical systems of interest and let B(H),B(H′) be
the algebras of all bounded operators on H,H′. A linear map κ : B(H) → B(H′) is called positive
if it sends positive operators to positive operators1. It is called completely positive [1] if for every
positive integer n, the induced map

κ(n) = κ ⊗ I(n) : B(H) ⊗M(n) −→ B(H′) ⊗M(n)

(where I(n) is the identity map acting on the algebra M(n) of n × n complex matrices) is positive.
We denote by CP(H,H′) the totality of completely positive (CP) maps. Note that CP(H,H′) is a
convex cone.

As is well-known, CP maps play an important role in quantum theory [2]. A dynamical change
of the system, called a quantum channel, is described by the dual κ∗ of a CP map κ which satisfies
κ(I) = I ′. The condition that κ is identity-preserving (or equivalently, κ∗ is trace-preserving) is
necessary to ensure that κ∗ maps the set S(H′) of all density operators on H′ into S(H). To see why
κ must be CP, let the elements of M(n) be viewed as operators on an ancillary quantum system Ha

with dimension dimHa = n. Then for density operators ρ ∈ S(H′) and ρa ∈ S(Ha), the induced
map κ(n)∗ maps the composite state ρ ⊗ ρa on H′ ⊗ Ha to κ∗(ρ) ⊗ ρa. This means that κ does
not influence Ha directly. The condition that κ(n) is positive is needed to ensure that every state
on the total system H′ ⊗ Ha (which may be entangled) is mapped to a state [3]. We denote by
CP1(H,H′) the totality of identity-preserving CP maps. Note that CP1(H,H′) is a convex subset
of CP(H,H′).

∗Permanent address: Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
1A linear operator on a Hilbert space is called positive if it is positive semidefinite.
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Some representation theorems for CP maps are known [2]. For example, the operator-sum
representation asserts that a linear map κ : B(H) → B(H′) is CP iff it can be represented in the
form

κ(X) =
∑

j

A∗
jXAj , (1)

where A = {Aj}j is a collection of bounded operators in B(H′,H), see Appendix. When a CP map
κ is represented in this way, we call A a generator of κ and denote κ by κA.

While there is no room for doubt as to the usefulness of the conventional representation, appli-
cations are occasionally inconvenient because of their many-to-one and non-affine nature. (In the
operator-sum representation, the correspondence A 7→ κA is many-to-one and quadratic.) It will
be useful if we have a parametrization of CP1(H,H′) that is both one-to-one and affine, whereby we
can visualize the convex structure of the space of quantum channels. The purpose of this paper is to
provide such a parametrization explicitly for the case where H and H′ are both finite dimensional.

In Section 2, we extend Choi’s argument [4] to establish a one-to-one affine correspondence
between CP1(Cm,Cn) and a subset of the convex cone of hermitian positive semidefinite matri-
ces in Cmn×mn. This correspondence leads to the desired one-to-one affine parametrization of
CP1(Cm,Cn). In Section 3, we demonstrate its usefulness through an analysis of quantum binary
channels: We show that not every ellipsoid inside the unit ball in Stokes’ parameter space can be
the image of a channel. The final Section 4 gives conclusions.

2 Affine parametrization of CP1(C
m,Cn)

Let dimH = m, dimH′ = n (m, n < ∞). Given an orthonormal basis for H, one may identify
vectors in H with column vectors in Cm and operators in B(H) with m×m matrices in Cm×m. In
the same way, vectors in H′ and operators in B(H′) are represented by column vectors in Cn and
n × n matrices in Cn×n. A CP map κ : B(H) → B(H′) is a superoperator that maps operators to
operators. If X = (Xστ ) is an operator with matrix entries Xστ , then Y = κ(X) is an operator
with matrix entries

Yµν =
∑
στ

Kµν,στXστ .

(The subscripts σ, τ run from 1 to m, and µ, ν from 1 to n.) The coefficients Kµν,στ are the matrix
entries of κ(Eστ ), where Eστ is the matrix with entries Eστ

σ′τ ′ = δσσ′δττ ′ .
For every operator or matrix X = (Xστ ) in Cm×m let X denote the column vector with height

m2 that is obtained by stacking the successive columns of X on top of each other. The element
Xστ of the matrix X ends up in line 〈〈στ〉〉 of the column vector X, where

〈〈στ〉〉 = (τ − 1)m + σ.

In the same way, a matrix Y = (Yµν) in Cn×n is represented by the column vector Y in Cn2
, in

which the element Yµν appears in line

〈µν〉 = (ν − 1)n + µ.

The functional relationship Y = κ(X) is then represented by the matrix equation Y = KX, where
K is the n2 × m2 matrix with entries

K〈µν〉,〈〈στ〉〉 = Kµν,στ .
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Let A = {Aj}1≤j≤J be a generator for κ, where Aj ∈ B(Cn,Cm) are represented by m × n
matrices in Cm×n. Then for any matrix X = (Xστ ), κ(X) is a matrix with entries

κ(X)µν =
∑

j

∑
στ

(A∗
j )µσXστ (Aj)τν =

∑
στ

Kµν,στXστ ,

where
Kµν,στ =

∑
j

(Aj)τν(A∗
j )µσ.

All the information in the generator A = {Aj}j that pertains to the definition of the map κ = κA
is compressed in the m2n2 numbers Kµν,στ .

Let Aj be the column vector in Cmn that represents the matrix Aj : the element (Aj)σµ appears
in line

〈〈σµ〉 = (µ − 1)m + σ

of Aj . Let A denote the mn× J matrix whose columns are the vectors Aj . Then the matrix AA∗

can be written in the form
AA∗ =

∑
j

AjA∗
j .

The mn × mn matrix AA∗ contains the m2n2 elements of the matrix K = KA in some order. In
fact,

K〈µν〉,〈〈στ〉〉 = Kµν,στ =
∑

j

(Aj)τν(A∗
j )µσ = (AA∗)〈〈τν〉,〈〈σµ〉. (2)

As a consequence we have

Lemma 1. Let A = {Aj}j and B = {Bk}k be two collections of linear operators in B(Cn,Cm).
Then κA = κB iff AA∗ = BB∗.

Lemma 1 implies that the map κA 7→ AA∗ gives a one-to-one affine correspondence between
CP(Cm,Cn) and the cone

P(Cmn) :=
{
M ∈ Cmn×mn ; M ≥ 0

}
of hermitian positive semidefinite matrices in Cmn×mn. In particular, dim CP(Cm,Cn) = m2n2,
and a generator A can be found by spectral factorization of AA∗.

Thus far there is nothing new: we have just recast Choi’s argument [4] (see Appendix) in a
slightly different manner. We now proceed to a characterization of the condition that κ(Im) = In.
Let us identify Cmn with H1 ⊗ H2 where H1 = Cn, H2 = Cm. Given an array Mσµ,τν of m2n2

complex numbers (σ, τ = 1, ...,m; µ, ν = 1, ..., n), we consider the mn×mn matrix M with entries
M〈〈σµ〉,〈〈τν〉 = Mσµ,τν . The partial trace2 TrH2M with respect to H2 is intrinsically defined as the

2The other partial trance TrH1M is defined as the m × m matrix which satisfies

Tr
Cn2 (M (In ⊗ Y ) ) = TrH2 ( (TrH1 M) Y ),

for all m × m matrices Y . It is explicitly written as

(TrH1M)τσ =
X

µν

Mτν,σµδµν =
X

µ

M〈〈τµ〉,〈〈σµ〉.
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n × n matrix which satisfies

Tr Cn2 ( (X ⊗ Im)M ) = TrH1( X (TrH2 M) ),

for all n × n matrices X. Here the Kronecker product X ⊗ Y of X ∈ Cn×n and Y ∈ Cm×m is
defined as the mn × mn matrix with entries (X ⊗ Y )〈〈σµ〉,〈〈τν〉 = XµνYστ . Thus we get

Tr Cn2 ( (X ⊗ Im)M ) =
∑

µν,στ

(Xµνδστ )Mτν,σµ =
∑
µν

Xµν

(∑
στ

δστMτν,σµ

)
,

and consequently
(TrH2M)νµ =

∑
στ

δστMτν,σµ =
∑

σ

M〈〈σν〉,〈〈σµ〉.

Since
κA(Im)µν =

∑
στ

Kµν,στδστ =
∑
στ

(AA∗)〈〈τν〉,〈〈σµ〉δστ =
∑

σ

(AA∗)〈〈σν〉,〈〈σµ〉,

we obtain

Lemma 2. κA(Im) = X is equivalent to TrH2AA∗ = tX.

Now we reach the main claim. Let us define the convex subset

P1(Cmn) := {M ∈ P(Cmn) ; TrH2M = In}

of the cone P(Cmn). If κA(Im) = In, then TrH2AA∗ = In by Lemma 2, hence AA∗ ∈ P1(Cmn).
We consider the map

κA ∈ CP1(Cm,Cn) 7−→ AA∗ ∈ P1(Cmn). (3)

Then (3) is injective by Lemma 1, and is surjective by Lemma 2. (The spectral decomposition of an
element in P1(Cmn) gives a generator.) Thus (3) gives a one-to-one affine correspondence between
CP1(Cm,Cn) and P1(Cmn). In particular, dim CP1(Cn) = m2n2 −n2, and the correspondence (2)
of matrix elements leads to the following

Theorem 3. Given an array Kµν,στ of m2n2 complex numbers, there is a map κ ∈ CP1(Cm,Cn)
such that Kµν,στ = (κ(Eστ ))µν iff the matrix M with entries M〈〈τν〉,〈〈σµ〉 = Kµν,στ belongs to
P1(Cmn).

It is straightforward to obtain an analogous correspondence for a general constraint of the form
κA(Im) = X where X is an arbitrary n× n positive matrix. Physical implication of such a general
constraint is presented in [2].

Theorem 3 establishes a one-to-one affine parametrization for CP1(Cm,Cn), since P1(Cmn) has
a standard affine parametrization. In fact, recall that there is a simple way to visualize calculation
of partial trace. Given an mn × mn matrix M, let us partition M into n2 blocks:

M =

 M̃11 · · · M̃1n

...
...

M̃n1 · · · M̃nn

 ,
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where M̃µν are m × m matrices. Then

(TrH2M)µν =
∑

σ

M〈〈σµ〉,〈〈σν〉 =
∑

σ

M(µ−1)m+σ,(ν−1)m+σ = Tr M̃µν .

Thus the condition TrH2M = In in the definition of P1(Cmn) is equivalent to Tr M̃µν = δµν for
each (µ, ν) block.

In order to parametrize quantum channels directly, we only need a translation formula between a
CP map κA and its dual κ∗

A. The dual κ∗
A is defined by the requirement that Trκ∗(S)X = TrSκ(X)

for all S ∈ B(Cn) and X ∈ B(Cm), and is explicitly given by

κ∗
A(S) =

∑
j

AjSA∗
j .

Hence
κ∗
A(S)στ =

∑
j

∑
µν

(Aj)σµ(S)µν(A∗
j )ντ =

∑
µν

K̂στ,µνSµν ,

where
K̂στ,µν =

∑
j

(Aj)σµ(A∗
j )ντ = (AA∗)〈〈σµ〉,〈〈τν〉 = Kνµ,τσ.

The column vector that represents the matrix T = κ∗
A(S) is given by

T = K̂A S,

where K̂A = K̂ is the m2 × n2 matrix with entries

K̂〈〈στ〉〉,〈µν〉 = K̂στ,µν = Kνµ,τσ = K〈νµ〉,〈〈τσ〉〉 = (AA∗)〈〈σµ〉,〈〈τν〉. (4)

This gives the desired translation formula.

3 Application to quantum binary channels

When dimH = dimH′ = 2, a quantum channel κ∗ : S(H′) → S(H) is called a quantum binary
channel [5]. In this section we apply the parametrization to the analysis of quantum binary channels.

A state of a two-level quantum system H ∼= C2 can be represented by a 2× 2 Hermitian matrix
of the form

ρθ =
1
2

[
1 + θz θx − iθy

θx + iθy 1 − θz

]
,

where θ = t(θx, θy, θz) is a vector in the unit ball

Θ = {θ ∈ R3 ; ∥θ∥2 = θ2
x + θ2

y + θ2
z ≤ 1}.

The correspondence θ 7→ ρθ is often called the Stokes parametrization of two-level quantum states.
By Theorem 3, CP1(C2,C2) can be identified with P1(C4), each element of which has the form

AA∗ =


1
2 + p x r w

x̄ 1
2 − p y −r

r̄ ȳ 1
2 + q z

w̄ −r̄ z̄ 1
2 − q

 . (5)
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Here p, q ∈ R and r, x, y, z, w ∈ C are taken so that the matrix becomes positive semidefinite.
Using (4), we see that the dual κ∗

A of the CP map κA defined by (5) corresponds to

K̂A =


1
2 + p r̄ r 1

2 + q
x̄ w̄ y z̄
x ȳ w z

1
2 − p −r̄ −r 1

2 − q

 .

Since the column vectors representing ρθ and ρθ′ = κ∗
A(ρθ) are related by K̂A, we can easily verify

that κ∗
A induces the following affine map on the Stokes parameter space: θ′x

θ′y
θ′z

 =

 yR + wR yI + wI xR − zR

yI − wI −yR + wR −xI + zI

2rR 2rI p − q

  θx

θy

θz

 +

 xR + zR

−xI − zI

p + q

 . (6)

(The subscripts R and I denote the real and imaginary parts.) Thus there exist a matrix A ∈ R3×3

and a vector b ∈ R3 such that θ′ = Aθ + b. The transformation θ 7→ Aθ + b has n4 − n2 = 12
degrees of freedom, but is not completely arbitrary since (5) must be positive semidefinite.

In the paper [5], the notion of pseudoclassicality of a quantum channel was introduced and
studied intensively. In particular, a necessary and sufficient condition for a quantum binary channel
to be pseudoclassical was expressed only in terms of the shape of the image of the channel [5,
Theorem 23]. In that paper, it was assumed for the sake of simplicity that the channel was just an
affine map (i.e. not necessarily the dual of a CP map), so that every ellipsoid in the unit ball could
be the image of a channel. To emphasize that we are dealing now with a more restricted class of
channels, we shall call the dual of an identity preserving CP map a CP channel. Now a question
arises naturally: Does the additional condition that the channel shall be CP impose restrictions on
the shape of the image? In other words, can every ellipsoid inside the unit ball be realized as the
image of a CP channel? The answer is given in the next theorem.

Theorem 4. There exists an ellipsoid inside the unit ball that cannot be realized as the image of
a binary CP channel.

Proof It is sufficient to consider affine maps of the form θ′ = Aθ + b where A ∈ R3×3 is regular.
We first observe that the matrix A can be expressed as

A = σÃQ, (7)

where σ is the sign of detA, Ã =
√

A tA is a symmetric positive definite matrix, and Q is an
orthogonal matrix with detQ = 1. Next, there exists an orthogonal matrix P with detP = 1 and
a diagonal matrix Λ with nonzero diagional elements all having sign σ such that

σÃ = tPΛP. (8)

According to (7) and (8), the map θ′ = Aθ + b can be decomposed into three stages:

θ′′ = PQθ,

θ′′′ = Λθ′′ + β, where β = Pb,
θ′ = tP θ′′′.
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Thus we have the following commutative diagram:

θ −→ θ′′y y
θ′ ←− θ′′′

The first stage θ 7→ θ′′ = (PQ)θ maps the unit ball Θ to the unit ball and does not affect the
image AΘ + b = σÃΘ + b. The first and third stages represent invertible CP channels since they
correspond to rotations of R3 or unitary evolutions on the quantum state space. It follows that the
process θ 7→ θ′ is a CP channel iff the process θ′′ 7→ θ′′′ is a CP channel. Therefore it suffices to
consider special maps of the form θ′ = Λθ + β, where Λ is a diagonal matrix with nonzero diagonal
elements all having the same sign.

Now we show that there is an ellipsoid ΛΘ + β inside the unit ball Θ which is not the image of
a CP channel. We take the vector β to be parallel to one of the principal axes of the ellipsoid. By
a suitable choice of the reference frame, such a map θ 7→ Λθ + β can be represented in the form θ′x

θ′y
θ′z

 =

 yR + wR

−yR + wR

p − q

  θx

θy

θz

 +

 0
0

p + q

 , (9)

where p+q > 0. According to [5, Eqn.(28)], the ellipsoid ΛΘ+β is inside the unit ball iff |p|, |q| ≤ 1
2

and

(±yR + wR)2 ≤
1 − 4pq +

√
(1 − 4p2)(1 − 4q2)

2

=

(√(
1
2
− p

) (
1
2

+ q

)
+

√(
1
2

+ p

) (
1
2
− q

))2

. (10)

Using (5) and (6), it is easy to see that (9) is a CP channel iff the matrix
1
2 + p 0 0 wR

0 1
2 − p yR 0

0 yR
1
2 + q 0

wR 0 0 1
2 − q

 (11)

is positive semidefinite. By a suitable orthogonal decomposition of C4, (11) is represented as[
1
2 − p yR

yR
1
2 + q

]
⊕

[
1
2 + p wR

wR
1
2 − q

]
.

Therefore (11) becomes positive semidefinite iff |p|, |q| ≤ 1
2 and

y2
R ≤

(
1
2
− p

) (
1
2

+ q

)
, w2

R ≤
(

1
2

+ p

)(
1
2
− q

)
. (12)

We first consider the case where the diagonal elements ±yR +wR and p− q of Λ are all positive.
Suppose we are given p, q such that |p|, |q| ≤ 1

2 and p ± q > 0. In this case, the conditions (10)
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together with ±yR + wR > 0 define a square region in the upper-half (yR, wR)-plane, whereas the
conditions (12) together with ±yR +wR > 0 define a “home base”-shaped pentagonal region which
is a proper subset of the former region.

Next we consider the case where the diagional elements ±yR +wR and p−q of Λ are all negative.
Suppose we are given p, q such that |p|, |q| ≤ 1

2 , p−q < 0, and p+q > 0. In this case, the conditions
(10) together with ±yR + wR < 0 define a square region in the lower-half (yR, wR)-plane, whereas
the conditions (12) together with ±yR + wR < 0 define a triangular region which is again a proper
subset of the former region. ¤

Theorem 4 is in no sense contrary to [5, Theorem 23]. It only implies that physical law imposes
restrictions on shapes of images of quantum binary channels to which [5, Theorem 23] is applied.

4 Conclusions

In this paper, we derived a one-to-one affine correspondence between CP1(Cm,Cn) and P1(Cmn).
This establishes a one-to-one affine parametrization of all finite dimensional quantum channels. The
parametrization was applied to the analysis of quantum binary channels.
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Appendix: Operator-sum representation

Theorem 5. Given a linear map κ : B(Cm) → B(Cn), the following are equivalent.
(a) κ is CP.
(b) κ is m-positive.

(c)
m∑

σ,τ=1

κ(Eστ ) ⊗ Eστ is positive.

(d) κ is represented in the form κ(X) =
J∑

j=1

A∗
jXAj.

Proof (a) ⇒ (b) ⇒ (c) are obvious. (Recall that
∑

στ Eστ ⊗ Eστ is a positive operator.) Now
assume (c), and let Kµν,στ = (κ(Eστ ))µν . Then∑

στ

κ(Eστ ) ⊗ Eστ . (13)

is an mn×mn matrix whose (〈〈σµ〉, 〈〈τν〉) entry is Kµν,στ . Letting AA∗ be a decomposition of the
transpose of (13), and recalling the relation (2), we have an operator-sum representation. Finally
(d) ⇒ (a) is obvious by Stinespring’s theorem [1]. ¤

Corollary 6. For every CP map κ = κA, the cardinality J of a generator A can be taken at
most mn.
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