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We propose an adaptive quantum state estimation method for nonstationary quantum states and verify the
method by numerical simulations and experimental investigations. Adaptive quantum state estimation provides
an asymptotically optimal scheme for estimating an unknown input quantum state by updating the measurement
configuration upon the detection of each quantum. However, previous methods are only valid for quanta with
the same quantum state (a stationary state). By adopting the likelihood function for a fixed number of recent
detection results, our sequential adaptive quantum state estimation allows quantum states changing in time to be
estimated. The numerical simulation results and experimental demonstration using photons agree well with the
theoretical predictions. This method will find applications in various fields where dynamically changing quantum
states need to be estimated.
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I. INTRODUCTION

Estimating quantum states is a fundamental issue in var-
ious fields such as quantum communication [1–5], quantum
computation [6–8], and quantum sensing [9]. Because of
the statistical nature of quantum mechanics, the accuracy
of estimations of an unknown quantum state is limited by
the number of samples [10]. Therefore, finding an optimal
measurement to achieve the best accuracy is very important.
In general, the optimal measurement depends on the unknown
quantum state itself [10]. To solve this problem, Nagaoka
proposed an adaptive quantum state estimation (AQSE) pro-
cedure [11–13]. In AQSE, for each measurement, the value
of the parameter is estimated and the measurement system
is then optimized according to the estimated value. Fujiwara
mathematically proved that AQSE exhibits strong consistency
and asymptotic efficiency [14,15].

Recently, we have demonstrated AQSE for the linear po-
larizations of photons (one parameter) [16] and for a single
polarization qubit (three parameters) [17]. Furthermore, we
performed a high-speed AQSE experiment using a liquid
crystal retarder [18]. Related experiments have investigated
state estimation protocols using a two-step adaptive measure-
ment [19–23] in which a preliminary measurement of part of
the whole ensemble was used to determine the measurement
configuration for the remainder of the ensemble. However, to
the best of our knowledge, all the previously reported adaptive
schemes [16–23] are only valid for photons with the same
quantum state (a stationary state).

In this Rapid Communication, we report our proposal for
sequential adaptive quantum state estimation (SAQSE). In the
previous AQSE method, the likelihood function accumulates
all the past information on the photon detection so that the
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estimated parameter deviates from the latest quantum state of
the input photons. In SAQSE, the likelihood function only
contains information on a fixed number of the most recent
detection results so that the estimated results explicitly follow
the change in the input quantum states. An efficient implemen-
tation of the SAQSE protocol was tested by a numerical sim-
ulation and real experiments using photons. In the numerical
simulation, we show that the estimated angles using SAQSE
follow the true values with linear change, sinusoidal change,
and sudden change. In the experiments, it was found that the
estimated value agrees well with the true values changing
in time (the method is consistent) and that the variances
approximately achieve the Cramér-Rao bound for the given
number of photons (the method is efficient).

II. SAQSE

Figure 1(a) shows the flowchart of AQSE, where ln(θ ) is
the log-likelihood function, n is the number of input photons,
θ̂n is the estimated value, and N is the total photon number.
For details on the AQSE algorithm, see Ref. [16]. In what
follows, we restrict ourselves to a one-dimensional quantum
statistical model {ρθ ; θ ∈ �(⊂ R)} of a smooth parametric
family of density operators on a Hilbert space H having
a one-dimensional parameter θ , as in [16]. Our aim is to
estimate the true value of the one-dimensional parameter θ

using a quantum estimation scheme. We start with an arbi-
trary initial estimate θ̂1, and set l1(θ ) = 0 (Preparation). In
Process-1, the measurement apparatus (half-wave plates in the
real experimental setup) is changed so that the measurement
basis is ideal for the quantum state with parameter θ = θ̂1.
Then, in Process-2 to 3, the next photon is input to the
measurement system and either of one of the detectors (d = 0
or 1) is lit. Depending on which detector has been lit after we
apply the measurement M(θ̂n)d , the log-likelihood function
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FIG. 1. (a) Flowchart of AQSE. (b) Flowchart of SAQSE.

ln(θ ) is updated using the following formula:

ln+1(θ ) = ln(θ ) + fn(θ ), (1)

where fn(θ ) = log〈ψ (θ ) | M(θ̂n)d | ψ (θ )〉. It should be noted
that this update corresponds to adding information on the
latest detection result in the log-likelihood function. Then, the
new estimate θ̂n+1 is calculated following the maximum likeli-
hood method using ln+1(θ ) (Process-4). The above-mentioned
process is repeated for the next input photon until the total
number of photons reaches the preset value N .

We now more closely examine the updates of the log-
likelihood function [Eq. (1)]. In AQSE, as explained above,
the information of the nth measurement result fn(θ ) is
“added” to the previous log-likelihood function ln(θ ). Ex-
panding the recursive expression gives

ln+1(θ ) = ln(θ ) + fn(θ )

= f1(θ ) + f2(θ ) + · · · + fn(θ )

=
n∑

j=1

f j (θ ). (2)

It is clear that all the past information of the measurement
results is retained by the latest log-likelihood function ln+1(θ ).

FIG. 2. Experimental setup for SAQSE.

Thus, it can be expected that for quantum states changing
in time, the estimation result deviates from the latest “true
value” due to the past measurement results persisting in the
likelihood function.

A natural modification to solve this problem is to construct
the likelihood function using the information of the latest S
measurement results, as follows:

ln+1(θ ) = fn−S+1(θ ) + · · · + fn(θ )

=
n∑

j=n−S+1

f j (θ ). (3)

This modification can be efficiently implemented by replacing
the equation used for Process-3 in Fig. 1(a) with the following
equation:

ln+1(θ ) =
{

ln(θ ) + fn(θ ), n � S
ln(θ ) + fn(θ ) − fn−S (θ ), n > S,

using a tiny memory for the latest S parameters [ f j (θ ), j =
n − S + 1 ∼ n]. Note that parameter S, which determines how
many recent measurement results need to be considered for
the estimation, is set in terms of the rate of change of the input
quantum state. In the actual measurement system, S could also
be adjusted according to the rate of change of the estimation
results. Note also that in the following analysis we stick to
Eq. (3), which corresponds to the simple moving average of
fn(θ ). An alternative approach is to consider another equation
corresponding to other averaging methods, e.g., the weighted
moving average of fn(θ ).

III. NUMERICAL SIMULATION OF SAQSE

Following the experimental setup in Fig. 2, we numerically
simulate and experimentally demonstrate SAQSE. In the sim-
ulation and experiment, we estimate the angle of the linear
polarization of photons generated by a photon source that
varies with time. In the state preparation part in Fig. 2, the
light from a laser diode (wavelength 780 nm) is strongly atten-
uated by a set of neutral density filters (ND filters), which are
much smaller than the single photon level. Half-wave plate 0
(HWP0) is used to adjust the angle of the linear polarization
to the axis of the polarization maintaining fiber (PMF). HWP1
is used to maximize the transmitted light of a Glan-Thompson
prism (GTP). Then, the GTP with an extinction ratio of 10−5

is used to purify the polarization. HWP2 is used to change the
angle of linear polarization of a single photon. In the measure-
ment part in Fig. 2, the angle of HWP2 (θ ) is estimated. The
polarization of an input photon is analyzed by a quarter-wave
plate (QWP), a liquid-crystal retarder (LCR), HWP3, and a
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polarizing beam splitter (PBS). We used the QWP to compen-
sate the phase and HWP3 as a supplement to the LCR. For
details, see Ref. [18]. After passing through the PBS, photons
are guided to single-photon detectors D0 and D1 (SPCM-
AQR, Excelitas Technologies) on each PBS output port. Note
that the detection efficiencies of the two detectors (D0 and D1)
are balanced by inserting a small loss before the detectors.
The outputs of the single-photon detectors are connected to a
first-come discriminator, consisting of a custom-made electric
circuit. When the discriminator receives the first signal from
one of the detectors (D0 or D1) after the measurement for the
nth photon starts, the discriminator reveals which detector has
been clicked. The voltage of the LCR and the angle of HWP3
(measurement basis) for measuring the (n + 1)th photon are
determined by calculating the maximum likelihood estimator
θ̂n+1 = argmaxθ ln+1(θ ), the maximizer of the log-likelihood
function, Eq. (3), chosen from among the 10 000 points that
divide the domain [0, 2π ) of the parameter θ . When the
change of measurement basis (LCR and HWP3) is completed,
the measurement for the next [(n + 1)th] photon will be
started. Note that we randomly shift the measurement basis
once every 30 times to suppress unexpected sudden changes of
the estimated values, and discard the unexpected changes for
the cases | θ̂n − θtrue |> 20◦. The unexpected sudden change
is due to the complete loss of the information obtained in
the initial trials. It can be compensated by inserting measure-
ments with a randomly determined measurement axis. When
we inserted such a measurement once in 30 measurements,
the probability of observing such a sudden change is less
than 10−4.

In the following sections, we will show the results of the
numerical simulation of SAQSE with various ways to change
the true value.

A. Simulation for linear changes of the true value

First, we numerically simulate the case where the true
value varies linearly with time. The amount of variation of
the angle is 0.06◦ for 300 input photons. The angle of the
measurement basis (polarization) is changed according to the
algorithm shown in Fig. 1(b). Figure 3(a) shows a single
trajectory of the simulation result of SAQSE. The horizontal
axis indicates the photon number (n). The vertical axis shows
the estimated angle of the linear polarization θ̂n. The estimated
values for SAQSE and AQSE are obtained along a single tra-
jectory for 5000 input photons. This simulation result shows
that the angle estimated by SAQSE [orange (gray) curve]
follows the true value (black dashed line), changing slowly
from 45.0◦ to 46.0◦, whereas AQSE [blue (dark-gray) curve]
does not follow the true value.

Due to the intrinsic stochastic nature of quantum mechan-
ics, the trajectory differs every time, even for photons of the
same state, so statistical analysis is necessary to evaluate the
performance of the scheme. Figure 3(b) shows the simulation
results averaged over 500 trajectories of SAQSE compared
to AQSE. The horizontal axis indicates the photon number
(n). The vertical axis shows the average of the estimated
angle. These results clearly show that the estimated angle by
SAQSE [orange (gray) curve] follows the true value (black
dashed curve) over time whereas AQSE [blue (dark-gray)

FIG. 3. Simulation results for AQSE and SAQSE. (a) Single
trajectory of the simulation result of AQSE and SAQSE (S = 300).
The black dashed line is the true value, the orange (gray) curve is
the estimated values with SAQSE, and the blue (dark-gray) curve
is the estimated values with AQSE. (b) Simulation results averaged
over 500 trajectories of SAQSE (S = 300) compared to AQSE. The
black dashed line is the true value, the orange (gray) curve is the
estimated values with SAQSE, and the blue (dark-gray) curve is
the estimated values with AQSE. (c) Variance when estimating 500
times with SAQSE (S = 300). The black dashed line is the Cramér-
Rao bound for a measurement with n photons when n < 300 and
for a measurement with 300 photons when n � 300. The orange
(gray) curve is the variance of each photon number when SAQSE
is repeated 500 times.

curve] does not. Finally, the variance when estimating 500
times with SAQSE is shown in Fig. 3(c), showing that the
variance of the SAQSE simulation results [orange (gray)
curve] coincides with the optimal theoretical variance (black
dashed line) called the Cramér-Rao bound for a measurement
with 300 photons when n � 300.

Next, we numerically simulate SAQSE with true val-
ues changing with different constant rates in order to clar-
ify the effect of the rate of change on the estimation.
Figures 4(a)–4(c) show the simulation results averaged over
500 trajectories of SAQSE (S = 200) compared to AQSE.
The horizontal axis indicates the photon number (n). The
vertical axis shows the average of the estimated angle. The
amount of variation of the true value is monotonic and (a) 1◦
for 200 input photons, (b) 2◦ for 200 input photons, and (c)
4◦ for 200 input photons. These results show that the angle
estimated by SAQSE [orange (gray) curve] follows the true
value (black dashed curve), but with a constant delay and
the delay increases with the rate of change. The reason for
the delay comes from our estimation procedure in which the
recent S log-likelihood functions are simply added without
weight. As a result of the procedure, the estimated value
coincides with an average of the recent S true values. Thus,
when the true value changes with a constant rate, it is expected
that the estimated value will coincide with the past true value
(S/2 photon number before). The yellow (light-gray) curves in
Figs. 4(a)–4(c) denote the estimated values shifted by the S/2
photon number. The yellow curves agree well with the true
values. The variances when estimating 500 times with SAQSE
for Figs. 4(a)–4(c) are shown in Figs. 4(d)–4(f), respectively.
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FIG. 4. Simulation results for SAQSE with the different rates of
changes. (a)–(c) Average of estimated angle versus photon number.
The black dashed line is the true value, the orange (gray) curve is the
estimated values with SAQSE (S = 200), the blue (dark-gray) curve
is the estimated values with AQSE, and the yellow (light-gray) curve
is the estimated values shifted by S/2. The amount of variation of
the true value is (a) 1◦ for 200 input photons, (b) 2◦ for 200 input
photons, and (c) 4◦ for 200 input photons. (d),(e) Variance when
estimating 500 times with SAQSE (S = 200). The black dashed line
is the Cramér-Rao bound for a measurement with n photons when
n < 200 and for a measurement with 200 photons when n � 200.

The variances of the SAQSE simulation results [orange (gray)
curve] coincide with the optimal theoretical variance (black
dashed line) called the Cramér-Rao bound for a measurement
with 200 photons when n � 200.

B. Simulation for sinusoidal changes of the true value

In this section, we perform the numerical simulation of
SAQSE for sinusoidally changing rates in order to clarify
the effect of the changing rate on the estimation. Figure 5

FIG. 5. Simulation results for SAQSE (S = 400) with the sine
function. (a),(b) Average of estimated angle versus photon number.
The black dashed curve is the true value, the orange (gray) curve
is the estimated values with SAQSE, the blue (dark-gray) curve
is the estimated values with AQSE, and the yellow (light-gray)
curve is the estimated values shifted by S/2. The insets show
the variances when estimating 500 times with SAQSE. The black
dashed line is the Cramér-Rao bound for a measurement with n
photons when n < 400 and for a measurement with 400 photons
when n � 400.

FIG. 6. Simulation results of SAQSE for a sudden change of the
true value. The black dashed line is the true value, the orange (gray)
curve is the estimated values with SAQSE (S = 200), and the blue
(dark-gray) curve is the estimated values with AQSE.

shows the simulation results averaged over 500 trajectories
of SAQSE compared to AQSE. The maximum amount of
variation of the true value is (a) 0.32◦ for 400 input photons
[θ t = sin(0.144n/π ) [deg]], (b) 5.8◦ for 400 input photons
[θ t = 15sin(0.184n/π ) [deg]]. The horizontal axis indicates
the photon number. The vertical axis shows the average of the
estimated angle. These results show that the angle estimated
by SAQSE [orange (gray) curve] follows the true value (black
dashed curve) over time whereas AQSE [blue (dark-gray)
curve] does not. The estimated values have a delay of the S/2
photon number from the true values for the same reason as dis-
cussed in the previous section. The yellow (light-gray) curve
in Fig. 5(b) shows the estimated values [orange (gray) curve]
shifted by the S/2 photon number. The yellow curve agrees
well with the true values (black dashed curve). The variances
when estimating 500 times with SAQSE are shown in the
insets in Figs. 5(a) and 5(b). The variances of the SAQSE
simulation results [orange (gray) curve] coincides with the
optimal theoretical variance (black dashed line) called the
Cramér-Rao bound for a measurement with 400 photons when
n � 400.

C. Simulation for a sudden change of the true value

Here, we numerically simulate SAQSE with the true value
with a sudden change from a constant value to another con-
stant value. Figure 6 shows the simulation results averaged
over 500 trajectories of SAQSE compared to AQSE. True
value is 5◦ when n < 400, and 15◦ when n � 400. The hor-
izontal axis indicates the photon number. The vertical axis
shows the average of the estimated angle. The simulation
result shows that the estimated value does not coincide with
the true value shifted by S/2 in this case. It is because, in this
case, the averages of recent S true values are not equivalent to
the shifted true values.

IV. EXPERIMENTAL DEMONSTRATION

We experimentally demonstrate SAQSE using the experi-
mental setup in Fig. 2. In order to focus on the demonstration
of the efficiency and the consistency of SAQSE, which are
the most important features to be verified from the theoretical
viewpoint, we only performed for a constant rate. We estimate
the rotation angle θ t (true value) of HWP2. The polarization

030401-4



ADAPTIVE QUANTUM STATE ESTIMATION FOR DYNAMIC … PHYSICAL REVIEW A 102, 030401(R) (2020)

FIG. 7. Experimental results of AQSE and SAQSE (S = 200).
(a) Single experimental trajectory of AQSE and SAQSE (S = 200).
The black dashed line is the true value, the orange (gray) curve is
the estimated values with SAQSE, and the blue (dark-gray) curve
is the estimated values with AQSE. (b) Experimental results averaged
over 100 trajectories of SAQSE (S = 200) compared to AQSE.
(c) Variance when estimating 100 times with SAQSE (S = 200). The
black dashed line is the Cramér-Rao bound for a measurement with
n photons when n < 200 and for a measurement with 200 photons
when n � 200. The orange (gray) curve is the variance of each
photon number for SAQSE repeated 100 times.

of a photon is linearly changed. The amount of maximum
variation in the angle is 0.6◦ for 200 input photons. Figure 7(a)
shows a single trajectory of the experimental result of SAQSE.
The horizontal axis indicates the photon number (n). The
vertical axis shows the estimated angle of linear polarization
θ̂n. The experimental result shows that the angle estimated by
SAQSE [orange (gray) curve] follows the true value (black
dashed line) whereas AQSE [blue (dark-gray) curve] does not.
Figure 7(b) shows the experimental results averaged over 100
trajectories of SAQSE compared to AQSE. The horizontal
axis indicates the photon number (n) and the vertical axis
shows the average of the estimated angle. Similar to the
numerical simulation, we randomly shift the measurement
basis once every 30 times to suppress unexpected sudden
changes in the estimated values and discard the unexpected
sudden changes for the cases for which |θ̂n − θtrue| > 20◦.
The result is highly consistent with the simulation result and
clearly shows that the estimated angle by SAQSE [orange
(gray) curve] follows the true value (black dashed line) over
time whereas AQSE [blue (dark-gray) curve] does not.

The variance when estimating 100 times with SAQSE is
shown in Fig. 7(c), confirming that the variance of the SAQSE
experimental results [orange (gray) curve] coincides with
the optimal theoretical variance (black dashed line) called
the Cramér-Rao bound for a measurement with 200 photons
when n � 200.

Finally, we verify the consistency and efficiency of these
experimental results. First we consider the estimation with
SAQSE for four input states, 0.003n, 20 + 0.003n, 40 +
0.003n, and 60 + 0.003n [deg]. The amount of variation in
each angle is 0.6◦ for 200 photons input. This variation value
is the same as for Fig. 7(a). Figure 8 shows experimental

FIG. 8. Average of estimated values (left vertical axis) and vari-
ance (right vertical axis) versus photon number. Estimation results
with SAQSE (S = 200) for four input states, 0.003n, 20 + 0.003n,
40 + 0.003n, and 60 + 0.003n [deg], are repeated 100 times and
averaged over the 100 repetitions. The black dashed line is the input
state, the orange (gray) curve is the estimated value of SAQSE
(S = 200), and the orange shaded region indicates the area of the
90% confidence interval in the estimation results. The dash-dotted
black line is the Cramér-Rao bound for a measurement with n
photons when n < 200 and for a measurement with 200 photons
when n � 200, the yellow (light-gray) dots are the variance of the
estimated values, and the yellow shaded region indicates the area
of the 90% confidence interval in the variance of the estimation
results.

results with SAQSE (S = 200) over 100 repetitions. Note that
the precision for preparing θ t (true value) is about ±0.2◦, and
the 90% confidence region (colored in orange) in Fig. 8 illus-
trates this precision. For the four cases, the 90% confidence
region (colored in orange and yellow) overlaps well with
the true value of the angle over time. These results confirm
the consistency and the efficiency of the estimation in the
proposed SAQSE method.

V. CONCLUSION

We have proposed an adaptive quantum state estimation
scheme for nonstationary quantum states (SAQSE) by adopt-
ing the likelihood function for a fixed number (S) of the
most recent detection results. In the numerical simulation
of SAQSE, we have shown that the estimated angles using
SAQSE followed the true values with linear change, sinu-
soidal change, and sudden change whereas AQSE does not
follow the true value. When the estimated value of SAQSE
is shifted by S/2, it well coincides with the true value of the
slightly past state (S/2 photon number before) except for the
case of the sudden change. In the experiments, we have shown
that the estimated angles using SAQSE followed the true
values over time well (consistency) while the former adaptive
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scheme (AQSE) was not consistent for various angles. We
have also confirmed that the variances reached the Cramér-
Rao bound for the given number S used for the likelihood
function (efficiency). These results suggest that SAQSE can
provide the most accurate estimation of unknown quantum
states changing in time. Based on this, SAQSE may find useful
applications not only in quantum information sciences, but
other fields of science, such as astronomy and biology, where
accurate estimation of quantum states is important.
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