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Abstract

We show that for the tensor product of two depolarizing channels, the classical capacity is additive.
The key observation is a majorisation relation for the eigenvalues of output states.
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Given quantum channels Γ1 and Γ2, do their (classical) capacities [1, 2] satisfy additivity C(Γ1 ⊗ Γ2) =
C(Γ1)+C(Γ2)? In other words, does it suffice to use tensor product states as codewords to achieve the ultimate
communication rate through the channel Γ1⊗Γ2? This is called the additivity problem of the capacity, and is
one of the big open problems in quantum information theory. It is conjectured that the additivity may hold
(see, for instance, [3, 4]). However, up to date, the additivity has been proved only for three special classes
of quantum channels: Γ1 is arbitrary and Γ2 = id [3, 5], Γ1 is arbitrary and Γ2 is an entanglement-breaking
channel [6], Γ1 is arbitrary and Γ2 is a unital binary channel [7]. The purpose of this paper is to add to the
above list a new class: both Γ1 and Γ2 are depolarizing channels. This gives a substantial generalization of
[8].

Let S(H) denote the set of density operators on a Hilbert space H. A quantum channel Γ : S(Cn) → S(Cn)
is called a depolarizing channel if it is represented in the form

Γ(ρ) = dρ + (1 − d)
I(n)

n
,

where I(n) is the identity acting on Cn, and d is the parameter describing the magnitude of depolarization.
To ensure that Γ is completely positive, d must lie in the closed interval [−1/(n2 − 1), 1]. In this paper, we
further assume that d is nonnegative, that is, d ∈ [0, 1]. The main result is the following.

Theorem 1 Let Γ1 and Γ2 be depolarizing channels on S(Cm) and S(Cn), where m,n are arbitrary natural
numbers. Then C(Γ1 ⊗ Γ2) = C(Γ1) + C(Γ2).

The proof is based on the theory of majorisation [9]. Given x = (x1, . . . , xn) ∈ Rn, let x↓ = (x↓
1, . . . , x

↓
n)

denote the vector that is obtained by rearranging the components of x in the decreasing order. (We use row
and column vector representations interchangeably.) Given x, y ∈ Rn, we say that x is majorised by y (and
denote x ≺ y) if

k∑
j=1

x↓
j ≤

k∑
j=1

y↓
j , (1 ≤ k ≤ n),

with equality for k = n. For x, y ∈ Rn, we denote x ∼ y if x↓ = y↓. A real valued function f on Rn is called
Schur-convex if x ≺ y implies f(x) ≤ f(y). It is called Schur-concave if −f is Schur-convex. We list some
basic properties of majorisation: (a) For x, y ∈ Rn, x ≺ y if and only if x = Ty for a doubly stochastic matrix
T . (b) If x, y ∈ Rn and u, v ∈ Rm satisfy x ≺ y and u ≺ v, then (x, u), (y, v) ∈ Rn+m satisfy (x, u) ≺ (y, v).
(c) Let A be an n × n Hermitian matrix and let λ(A) denotes the vector whose components are eigenvalues
of A specified in any order. Then for all k = 1, . . . , n

k∑
j=1

λ↓
j (A) = max

k∑
j=1

〈vj , Avj〉,

where 〈·, ·〉 denotes the standard inner product of Cn and the maximum is taken over all orthonormal k-tuples
of vectors {v1, . . . , vk} in Cn. (This is referred to as Ky Fan’s maximum principle.) (d) For a Hermitian
matrix A, λ(Diag(A)) ≺ λ(A) holds, where Diag(A) denotes the diagonal matrix that corresponds to the
diagonal part of A. (This is referred to as Schur’s theorem.) The next Lemma is a slight generalization of
Schur’s theorem.

Lemma 2 For a Hermitian matrix A and 0 ≤ µ ≤ 1, it holds that

λ(µA + (1 − µ) Diag(A)) ≺ λ(A).
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Proof For all k = 1, . . . , n, we have

k∑
j=1

λ↓
j (µA + (1 − µ)Diag(A))

≤
k∑

j=1

λ↓
j (µA) +

k∑
j=1

λ↓
j ((1 − µ)Diag(A))

= µ
k∑

j=1

λ↓
j (A) + (1 − µ)

k∑
j=1

λ↓
j (Diag(A))

≤ µ

k∑
j=1

λ↓
j (A) + (1 − µ)

k∑
j=1

λ↓
j (A)

=
k∑

j=1

λ↓
j (A).

The first inequality follows easily from Ky Fan’s maximum principle and the second inequality is due to
Schur’s theorem. In addition

n∑
j=1

λ↓
j (µA + (1 − µ)Diag(A)) = tr A =

n∑
j=1

λ↓
j (A).

The claim was verified. ¤

Proof of Theorem 1 We need only prove that C(Γ1 ⊗ Γ2) ≤ C(Γ1) + C(Γ2). We first recall that [10]

C(Γ1) = log m − min
τ∈S(Cm)

H(Γ1(τ)),

C(Γ2) = log n − min
τ∈S(Cn)

H(Γ2(τ)).

Here H(ρ) := −Tr ρ log ρ is the von Neumann entropy, and the minimum is attained at the extreme boundary.
In what follows we denote by ∂eS(H) the extreme boundary of S(H), that is, the set of pure states on H.
On the other hand, since the entropy function is Schur-concave, we see from Lemma 3 below that for all
σ ∈ ∂eS(Cm ⊗ Cn), there exist τ1 ∈ ∂eS(Cm) and τ2 ∈ ∂eS(Cn) such that

H(Γ1 ⊗ Γ2(σ)) ≥ H(Γ1 ⊗ Γ2(τ1 ⊗ τ2)).

This entailes, in particular, that there exist τ̂1 ∈ ∂eS(Cm) and τ̂2 ∈ ∂eS(Cn) such that

min
σ∈S(Cm⊗Cn)

H(Γ1 ⊗ Γ2(σ)) = H(Γ1 ⊗ Γ2(τ̂1 ⊗ τ̂2)).

Then by using the minimax formula for the channel capacity [11, 12]

C(Γ) = inf
ρ∈S(H)

sup
σ∈S(H)

D(Γ(σ)||Γ(ρ)),
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where D(σ||ρ) := Tr σ(log σ − log ρ) is the quantum relative entropy, we have

C(Γ1 ⊗ Γ2) = inf
ρ

sup
σ

D(Γ1 ⊗ Γ2(σ)||Γ1 ⊗ Γ2(ρ))

≤ sup
σ

D(Γ1 ⊗ Γ2(σ)||Γ1 ⊗ Γ2(I(mn)/mn))

= sup
σ

D(Γ1 ⊗ Γ2(σ)||I(mn)/mn)

= log mn − H(Γ1 ⊗ Γ2(τ̂1 ⊗ τ̂2))
= log m − H(Γ1(τ̂1)) + log n − H(Γ2(τ̂2))
= C(Γ1) + C(Γ2).

The assertion was verified. ¤

Let m,n be natural numbers that satisfy m ≥ n. According to the Schmidt decomposition, given a pure
state σ ∈ ∂eS(Cm ⊗ Cn), there exist orthonormal bases {ei}m

i=1, {fj}n
j=1, and an n-dimensional probability

vector α = (α1, . . . , αn) such that

σ = σα :=
n∑

i=1

n∑
j=1

√
αiαj |ei〉〈ej | ⊗ |fi〉〈fj |.

We can regard the probability vector α as describing the degree of entanglement of the pure state σα. The
following lemma is the key to the proof of Theorem 1.

Lemma 3 Let Γ1 and Γ2 be depolarizing channels on S(Cm) and S(Cn). For any pure state σα ∈ ∂eS(Cm⊗
Cn), it holds that

λ(Γ1 ⊗ Γ2(σα)) ≺ λ(Γ1 ⊗ Γ2(σ(1,0,...,0))).

Proof To demonstrate the basic idea, we first prove the case when m = 3 and n = 2. Letting

Γ1(ρ) = cρ + (1 − c)
I(3)

3
, Γ2(σ) = dσ + (1 − d)

I(2)

2
,

we see that

Γ1(|ei〉〈ej |) = c |ei〉〈ej | + δij(1 − c)
I(3)

3
,

Γ2(|fi〉〈fj |) = d |fi〉〈fj | + δij(1 − d)
I(2)

2
.

Since both Γ1 and Γ2 are unitarily covariant, we can take without loss of generality that {ei}3
i=1 and {fj}2

j=1

are the standard bases of C3 and C2. It is then easy to observe that the Kronecker product representation of
Γ1 ⊗ Γ2(σα) is partitioned into blocks of 2 × 2 matrices as follows:

Γ1 ⊗ Γ2(σα) =
1
6

 A11
α A12

α O
A21

α A22
α O

O O D̂α

 .
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Further, by a suitable rearrangement of the orthonormal basis {ei ⊗ fj}ij of C3 ⊗ C2, it is represented as

Γ1 ⊗ Γ2(σα) =
1
6

Aα ⊕ Dα ⊕ D̂α, (1)

where

Aα =
[

α1(1 + 2c)(1 + d) + α2(1 − c)(1 − d) 6
√

α1α2cd
6
√

α1α2cd α1(1 − c)(1 − d) + α2(1 + 2c)(1 + d)

]
,

Dα =
[

α1(1 + 2c)(1 − d) + α2(1 − c)(1 + d) 0
0 α1(1 − c)(1 + d) + α2(1 + 2c)(1 − d)

]
,

D̂α =
[

α1(1 − c)(1 + d) + α2(1 − c)(1 − d) 0
0 α1(1 − c)(1 − d) + α2(1 − c)(1 + d)

]
.

According to the basic property (b) of majorisation mentioned above, it suffices to prove a series of relations
(i) λ(Aα) ≺ λ(A(1,0)), (ii) λ(Dα) ≺ λ(D(1,0)), and (iii) λ(D̂α) ≺ λ(D̂(1,0)) separately. If c = d = 0, these
relations are obvious. We thus assume that either c or d is nonzero.

We first prove (i). Choose real numbers p21, p22 appropreately so that

P =
[ √

α1
√

α2

p21 p22

]
becomes an orthogonal matrix. (For example, let p21 = −√

α2 and p22 =
√

α1.) Then

tPA(1,0)P =
[

α1(1 + 2c)(1 + d) + α2(1 − c)(1 − d)
√

α1α2 (3c + 2d + cd)√
α1α2 (3c + 2d + cd) α1(1 − c)(1 − d) + α2(1 + 2c)(1 + d)

]
.

Observe that the diagonal entries of Aα and tPA(1,0)P are identical, and that the off-diagonal entries are in
the constant ratio

µ :=
6cd

3c + 2d + cd
.

We thus have
Aα = µ tPA(1,0)P + (1 − µ)Diag(tPA(1,0)P ).

Since 0 ≤ µ ≤ 1, it follows from Lemma 2 that

λ(Aα) ≺ λ(tPA(1,0)P ) ∼ λ(A(1,0)).

We next prove (ii). Let T be the doubly stochastic matrix defined by

T :=
[

α1 α2

α2 α1

]
.

Then it follows from the basic property (a) that

λ(Dα) ∼ Tλ(D(1,0)) ≺ λ(D(1,0)).
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The relation (iii) is proved in the same way:

λ(D̂α) ∼ Tλ(D̂(1,0)) ≺ λ(D̂(1,0)).

This completes the proof of Lemma 3 for m = 3 and n = 2.
We can generalize the above argument for any natural numbers m and n. Assume without loss of generality

that m ≥ n. Let c, d be the parameters of Γ1, Γ2 as before. By a straightforward computation, we have a
direct sum representation of Γ1 ⊗ Γ2(σα) analogous to Eq. (1) as follows:

Γ1 ⊗ Γ2(σα)

=
1

mn
Aα ⊕ D(1)

α ⊕ · · · ⊕ D(n−1)
α ⊕

m−n︷ ︸︸ ︷
D̂α ⊕ · · · ⊕ D̂α .

Here Aα is the n × n matrix whose ith diagonal entry is

αi(mc + 1 − c)(nd + 1 − d) + (1 − αi)(1 − c)(1 − d),

and the (i, j)th off-diagonal entry is √αiαjmncd. On the other hand, D
(j)
α is the n×n diagonal matrix whose

ith diagonal entry is

αi(mc + 1 − c)(1 − d) + αi+j(1 − c)(nd + 1 − d)
+(1 − αi − αi+j)(1 − c)(1 − d),

where the subscript of α should be understood modulo n. Further, D̂α is the n × n diagonal matrix whose
ith diagonal entry is

αi(1 − c)(nd + 1 − d) + (1 − αi)(1 − c)(1 − d).

We show (i) λ(Aα) ≺ λ(A(1,0,...,0)), (ii) λ(D(j)
α ) ≺ λ(D(j)

(1,0,...,0)) for j = 1, . . . , n − 1, and (iii) λ(D̂α) ≺
λ(D̂(1,0,...,0)).

Let us first prove (i). Choose real numbers pij (2 ≤ i ≤ n, 1 ≤ j ≤ n) appropreately so that

P =


√

α1 · · · √
αn

p21 · · · p2n

...
...

pn1 · · · pnn


becomes an orthogonal matrix. Then it is shown that

Aα = µ tPA(1,0,...,0)P + (1 − µ)Diag(tPA(1,0,...,0)P ),

where
µ :=

mncd

mc + nd + (mn − m − n)cd
.

Since

mncd = mcd + ncd + (mn − m − n)cd
≤ mc + nd + (mn − m − n)cd,
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it follows that 0 ≤ µ ≤ 1. Then by Lemma 2

λ(Aα) ≺ λ(tPA(1,0,...,0)P ) ∼ λ(A(1,0,...,0)).

We next prove (ii). Let T be the doubly stochastic matrix defined by

T :=


α1 α2 · · · αn

α2 α3 · · · α1

...
...

...
αn α1 · · · αn−1

 ,

and let the vector v(j) ∈ Rn (j = 1, . . . , n − 1) be such that the first and the (j + 1)th components are
(mc + 1 − c)(1 − d) and (1 − c)(nd + 1 − d), and the rest are all (1 − c)(1 − d). Then it is easy to see that
λ(D(j)

α ) ∼ Tv(j) and λ(D(j)
(1,0,...,0)) ∼ v(j). This proves (ii).

Finally (iii) is proved as follows.

λ(D̂α) ∼ Tλ(D̂(1,0,...,0)) ≺ λ(D̂(1,0,...,0)).

This completes the proof. ¤

Now we proceed to a question inspired by Lemma 3: does α ≺ β imply λ(Γ1 ⊗Γ2(σα)) ≺ λ(Γ1 ⊗Γ2(σβ))?
The next theorem gives a partial answer.

Theorem 4 Let Γ1 and Γ2 be depolarizing channels on S(Cm) and S(C2). If α ≺ β, then

λ(Γ1 ⊗ Γ2(σα)) ≺ λ(Γ1 ⊗ Γ2(σβ)).

Proof According to the proof of Lemma 3

Γ1 ⊗ Γ2(σα) =
1

2m
Aα ⊕ Dα ⊕

m−2︷ ︸︸ ︷
D̂α ⊕ · · · ⊕ D̂α .

We show (i) λ(Aα) ≺ λ(Aβ), (ii) λ(Dα) ≺ λ(Dβ), and (iii) λ(D̂α) ≺ λ(D̂β).
Let α↓ = (a, 1 − a) and β↓ = (b, 1 − b). Then α ≺ β implies 1/2 ≤ a ≤ b ≤ 1. The maximum eigenvalue

of Aα is

λ↓
1(Aα) =

1
2

(
trAα +

√
(trAα)2 − 4 det Aα

)
.

Here we observe that
tr Aα = (mc + 1 − c)(1 + d) + (1 − c)(1 − d)

is independent of a, and that

detAα = a(1 − a){mc(1 − d) + 2d(1 − c)}
×{mc(1 + 3d) + 2d(1 − c)}

+(terms independent of a).
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As a consequence, λ↓
1(Aα) is monotone increasing in a(∈ [1/2, 1]). In particular, the inequality λ↓

1(Aα) ≤
λ↓

1(Aβ) follows from the fact that 1/2 ≤ a ≤ b ≤ 1. On the other hand

λ↓
1(Aα) + λ↓

2(Aα) = tr Aα = λ↓
1(Aβ) + λ↓

2(Aβ).

The relation (i) is thus verified.
We next prove (ii). Since α ≺ β, there is a doubly stochastic matrix T such that α = Tβ. Then by a

direct computation, we see that λ(Dα) ∼ Tλ(Dβ), which implies (ii). The relation (iii) is also proved in the
same way. ¤

It is an open question whether Theorem 4 can be generalized for a depolarizing channel Γ2 acting on
S(Cn) of arbitrary dimension n.

We have shown that for the tensor product of two depolarizing channels having nonnegative depolarization
parameters, the classical capacity is additive (Theorem 1). The key observation was a majorisation relation for
the eigenvalues of output states (Lemma 3). Unfortunately this argument does not apply to those depolarizing
channels which have negative depolarization parameters. We also studied a generalization of Lemma 3 and
obtained a partial answer (Theorem 4).
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