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Abstract

A statistical parameter estimation theory for quantum pure state models is pre-
sented. We first investigate a general framework of the pure state estimation theory
and derive quantum counterparts of the Fisher metric. Then we formulate a one pa-
rameter estimation theory, based on the symmetric logarithmic derivatives, and clarify
the differences between pure state models and strictly positive models.

1 Introduction

A quantum statistical model is a family of density operators ρθ defined on a certain sepa-
rable Hilbert space H with finite-dimensional real parameters θ = (θi)n

i=1 which are to be
estimated statistically. In order to avoid singularities, the conventional quantum estima-
tion theory [1][2] has been often restricted to models that are composed of strictly positive
density operators. It was Helstrom [3] who successfully introduced the symmetrized log-
arithmic derivative for the one parameter estimation theory as a quantum counterpart of
the logarithmic derivative in the classical estimation theory. The right logarithmic deriva-
tive is another successful counterpart introduced by Yuen and Lax [4] in the expectation
parameter estimation theory for quantum gaussian models, which provided a theoretical
background of optical communication theory. Quantum information theorists have also
kept away from degenerated states, such as pure states, for mathematical convenience [5].
Indeed, the von Neumann entropy cannot distinguish the pure states, and the relative
entropies diverge.

In this paper, however, we try to construct an estimation theory for pure state models,
and clarify the differences between the pure state case and the strictly positive state case.
In Sec. 2, we prove some crucial lemmas which will provide fudamentals of the pure state
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estimation theory. In Sec. 3, we study the quantum counterpart of the logarithmic deriva-
tive and the Fisher information which played important roles in the classical estimation
theory. The quantum statistical significance of the Fubini–Study metric is also clarified.
In Sec. 4, we provide one parameter pure state estimation theory based on the symmetric
logarithmic derivative. This is rather analogous to the conventional quantum estimation
theory, but reveals the essential difference between the pure state models and the strictly
positive models. Some examples are also given in Sec. 5.

2 Preliminaries

Let H be a Hilbert space with inner product 〈ψ|ϕ〉 for every ψ,ϕ ∈ H. Further, let L and
Lsa are, respectively, the set of all the (bounded) linear operators and all the self-adjoint
operators on H. Given a possibly degenerated density operator ρ, we define sesquilinear
forms on L:

(A, B)ρ = Tr ρBA∗, (1)

〈A, B〉ρ =
1
2
Tr ρ(BA∗ + A∗B), (2)

where A,B ∈ L. These are pre-inner product on L, i.e., possessing all properties of inner
product except that (K,K)ρ and 〈K,K〉ρ may be equal to zero for a nonzero K ∈ L. Note
that the Schwarz inequality also holds for pre-inner product. The forms (·, ·)ρ and 〈·, ·〉ρ
become inner products if and only if ρ > 0. If rank ρ = 1 or equivalently ρ2 = ρ, ρ is called
pure. The following lemmas are fundamental.

Lemma 1 Suppose ρ is pure. Then the following 3 conditions for linear operators K ∈ L
are equivalent.

(i) (K,K)ρ = 0,

(ii) ρK = 0,

(iii) Tr ρK = 0 and ρK + K∗ρ = 0.

Proof Let us express as ρ = |ψ〉〈ψ| where |ψ〉 is a normalized vector in H. Then the
following equivalent sequence

(K,K)ρ = 0 ⇐⇒ 〈ψ|KK∗|ψ〉 = 0 ⇐⇒ 〈ψ|K = 0 ⇐⇒ |ψ〉〈ψ|K = 0,

yield (i)⇔(ii). Further, (ii)⇒(iii) is trivial. (iii)⇒(ii) is shown as follows. Operating 〈ψ|
from the left to the assumption

|ψ〉〈ψ|K + K∗|ψ〉〈ψ| = 0,
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and invoking another assumption Tr ρK = 0 ⇔ 〈ψ|K∗|ψ〉 = 0, we have

0 = 〈ψ|ψ〉〈ψ|K + 〈ψ|K∗|ψ〉〈ψ| = 〈ψ|K.

Therefore |ψ〉〈ψ|K = 0. ¥

Lemma 2 Suppose ρ is pure. Then the following 3 conditions for linear operators K ∈ L
are equivalent.

(i) 〈K,K〉ρ = 0,

(ii) ρK = ρK∗ = 0,

(iii) Tr ρK = 0, ρK + K∗ρ = 0, and ρK∗ + Kρ = 0.

Proof (i)⇔(ii) is shown as follows:

〈K,K〉ρ = 0 ⇐⇒ 〈ψ|KK∗|ψ〉 + 〈ψ|K∗K|ψ〉 = 0
⇐⇒ 〈ψ|K = 0, 〈ψ|K∗ = 0
⇐⇒ ρK = ρK∗ = 0.

(ii)⇔(iii) is a sraightforward consequence of Lemma 1. ¥

Lemma 3 Suppose ρ is pure. Then the following 3 conditions for self–adjoint operators
K ∈ Lsa are equivalent.

(i) 〈K,K〉ρ = 0,

(ii) ρK = 0,

(iii) ρK + Kρ = 0.

Proof Straightforward by setting K = K∗ in Lemma 2. ¥

Note that in either lemmas, equivalence of the conditions (i) and (ii) holds for any ρ,
whereas the condition (iii) is characteristic of pure states. These lemmas are, therefore,
effectively employed in the pure state estimation theory. Denote by K(ρ) the set of linear
operators K ∈ L satisfying (K,K)ρ = 0, which are called the kernel of the pre-inner
product (·, ·)ρ. Also denote by Ksa(ρ) the set of self-adjoint operators K ∈ Lsa satisfying
〈K,K〉ρ = 0, which are called the kernel of the pre-inner product 〈·, ·〉ρ.
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3 Quantum Fisher metric

suppose we are given a n parameter pure state model:

S = {ρθ ; ρ∗θ = ρθ, Tr ρθ = 1, ρ2
θ = ρθ, θ ∈ Θ ⊂ Rn}. (3)

We define a family of quantum analogues of the logarithmic derivative by

∂ρθ

∂θj
=

1
2
[ρθLθ,j + L∗

θ,jρθ], Tr ρθLθ,j = 0. (4)

For instance,
∂ρθ

∂θj
=

1
2
[ρθL

S
θ,j + LS

θ,jρθ], LS
θ,j = LS∗

θ,j (5)

defines the symmetric logarithmic derivative (SLD) LS
θ,j introduced by Helstrom [3]. Fur-

thermore, since every pure state model is written in the form ρθ = Uθρ0U
∗
θ , where Uθ is

unitary, we have another useful logarithmic derivative

∂ρθ

∂θj
=

1
2
[ρθL

A
θ,j − LA

θ,jρθ], Tr ρθL
A
θ,j = 0, LA

θ,j = −LA∗
θ,j , (6)

which may be called the anti-symmetric logarithmic derivative (ALD). Indeed, the ALD
is closely related to the local generator Aθ,j = −i(∂Uθ/∂θj)U∗

θ of the unitary Uθ such as
LA

θ,j = −2iAθ,j . Thus, (4) defines a certain family of logarithmic derivatives [6]. Denote
by T (ρθ) all the logarithmic derivatives which satisfy (4).

Lemma 4 Suppose ρθ is pure and an arbitrary linear operator A ∈ L is given. Then all
the quantities (A,Lθ,j)ρθ

with respect to the common θj are identical for every logarithmic
derivatives Lθ,j ∈ T (ρθ).

Proof Take any logarithmic derivatives Lθ,j and L′
θ,j which correspond to the same θj ,

and denote K = Lθ,j − L′
θ,j . Then, from (4), K satisfies the condition (iii) of Lemma 1.

Therefore (K,K)ρθ
= 0 holds. This and the Schwarz inequality

|(A, K)ρθ
|2 ≤ (A,A)ρθ

(K,K)ρθ
,

lead us to (A,K)ρθ
= 0 for all A ∈ L. ¥

From Lemma 4, we can define uniquely the complex Fisher information matrix Jθ for the
family of logarithmic derivatives (4) whose (j, k) entry is (Lθ,j , Lθ,k)ρθ

.
The SLD is also not uniquely determined for pure state models. Denote by T S(ρθ) all

the SLD’s which satisfy (5).
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Lemma 5 Suppose ρθ is pure and an arbitrary self-adjoint operator A ∈ Lsa is given.
Then all the quantities 〈A,LS

θ,j〉ρθ
with respect to the common θj are identical for every

SLD LS
θ,j ∈ T S(ρθ).

Proof By using Lemma 3, it is proved in the same way as Lemma 4. ¥

From Lemma 5, we can define uniquely the real Fisher information matrix JS
θ for the family

of SLD (5) whose (j, k) entry is 〈LS
θ,j , L

S
θ,k〉ρθ

, which is called the SLD–Fisher information
matrix. The above results are summarized by the following theorem.

Theorem 1 Suppose ρθ is pure. Then the complex Fisher information matrix Jθ =
[(Lθ,j , Lθ,k)ρθ

] and the SLD–Fisher information matrix JS
θ =

[
〈LS

θ,j , L
S
θ,k〉ρθ

]
are uniquely

determined on the quotient spaces T (ρθ)/K(ρθ) and T S(ρθ)/Ksa(ρθ), respectively. They
are related by JS

θ = Re Jθ. The (j, k) entry of JS
θ becomes

(JS
θ )jk = 2Tr (∂jρθ)(∂kρθ), (7)

where ∂j = ∂/∂θj. This metric is identical, up to a constant factor, to the Fubini–Study
metric.

Proof We only need to prove (7). Differentiating ρθ = ρ2
θ,

∂jρθ = (∂jρθ)ρθ + ρθ(∂jρθ). (8)

This relation indicates that 2∂jρθ is a representative of the SLD. Then

(JS
θ )jk = 〈2∂jρθ, 2∂kρθ〉ρθ

= 2Tr ρθ[(∂jρθ)(∂kρθ) + (∂kρθ)(∂jρθ)]. (9)

Further, multiplying ρθ to (8), we have

ρθ(∂jρθ)ρθ = 0. (10)

Therefore, by using (8) and (10),

(∂jρθ)(∂kρθ) = [(∂jρθ)ρθ + ρθ(∂jρθ)][(∂kρθ)ρθ + ρθ(∂kρθ)]
= (∂jρθ)ρθ(∂kρθ) + ρθ(∂jρθ)(∂kρθ)ρθ.

This, along with (9), leads to the relation (7). Denoting ρθ = |ψ〉〈ψ|

Tr (∂jρθ)(∂kρθ) = 2[Re 〈∂jψ|∂kψ〉 + 〈ψ|∂jψ〉〈ψ|∂kψ〉],

which is identical to the Fubini–Study metric [8][9]. ¥
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The Fubini–Study metric is known as a gauge invariant metric on a projective Hilbert
space [10]. Theorem 1 gives another meaning of the Fubini–Study metric, i.e., the statistical
distance. Wootters [11] also investigated from a statistical viewpoint the distance between
two rays, and obtained d(ψ,ϕ) = cos−1 |〈ψ|ϕ〉|. This is identical, up to a constant factor,
to the geodesic distance as measured by the Fubini–Study metric [12]. Theorem 1, together
with the following Theorem 2, reveals a deeper connection between them.

4 Paremeter estimation of pure states

In this section, we give a parameter estimation theory of pure state models based on
the SLD. Given a n parameter pure state model (3). In order to handle simultaneous
probability distributions of possibly mutually non-commuting observables, an extended
framework of measurement theory is needed [1, p. 53] [2, p. 50]. An estimator for θ is
identified to a generalized measurement which takes values on Θ. The expectation vector
with respect to the measurement M at the state ρθ is defined as

Eθ[M ] =
∫

θ̂PM
θ (dθ̂).

The measurement M is called unbiased if Eθ[M ] = θ holds for all θ ∈ Θ, i.e.,∫
θ̂jPM

θ (dθ̂) = θj , (j = 1, · · · , n). (11)

Differentiation yields ∫
θ̂j ∂

∂θk
PM

θ (dθ̂) = δj
k, (j, k = 1, · · · , n). (12)

If (11) and (12) hold at a certain θ, M is called locally unbiased at θ. Obviously, M
is unbiased iff M is locally unbiased at every θ ∈ Θ. Letting M be a locally unbiased
measurement at θ, we define the covariance matrix Vθ[M ] = [vjk

θ ] ∈ Rn×n with respect to
M at the state ρθ by

vjk
θ =

∫
(θ̂j − θj)(θ̂k − θk)PM

θ (dθ̂). (13)

A lower bound for Vθ[M ] is given by the following theorem, which is a quantum version of
Cramér–Rao theorem.

Theorem 2 Given a pure state model ρθ, the following inequality holds for any locally
unbiased measurement M :

Vθ[M ] ≥
(
JS

θ

)−1
. (14)
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Proof It is proved almost in the same way as the strictly positive case [2, p. 274], except
that 〈·, ·〉ρθ

is a pre-inner product now. ¥

When the model is one dimensional, the measurement M is identified with a certain
self-adjoint operator T , and the inequalities in the theorem become scalar, i.e.,

Vθ[T ] ≥ 1
JS

θ

. (15)

In this case, the lower bound 1/Tr ρθ(LS
θ )2 can be attained by the unbiased estimators

T = θI +
2

JS
θ

dρθ

dθ
+ Kθ,

∀Kθ ∈ Ksa(ρθ), (16)

where I is the identity. Since dρθ/dθ and Kθ do not commute in general, the measure-
ment which attains the lower bound (15) is not determined uniquely. This fact provides
significant features in the pure state estimation theory.

On the other hand, when the dimension n ≥ 2, the matrix equality in (14) cannot be
attained in general, because of the impossibility of the exact simultaneous measurement
of non-commuting observables (in the von–Neumann’s sense). We must, therefore, aban-
don the strategy of finding the measurement that minimizes the covariance matrix itself.
Rather, we often adopt another strategy as follows: Given a positive definite real matrix
G = [gjk] ∈ Rn×n, find the measurement M that minimizes the quantity

tr GVθ[M ] =
∑
jk

gjkv
jk
θ . (17)

If there is a constant C such that tr GVθ[M ] ≥ C holds for all M , C is called a Cramér–Rao
type bound or simply a CR bound, which may depend on both G and θ. For instance, it
is shown that the folowing quantity is a CR bound [7].

CS = tr G(JS
θ )−1.

This bound is, however, not always the most informative one unless n = 1. For instance,
it is shown that the CR bound based on the right logarithmic derivative is the most
informative one for coherent models [13][14]. Anyhow, there have been few results that
derived the most informative CR bounds, as is the strictly positive case. The construction
of the general quantum parameter estimation theory for n ≥ 2 is left to future study.

5 Examples

Here we give examples of one parameter pure state estimation.
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5.1 Time–energy uncertainty relation

Let us consider a model of the form

ρθ = eiθH/h̄ρ0 e−iθH/h̄.

Here, H is the time independent Hamiltonian of the system, h̄ the Planck’s constant, and
θ the time parameter.

According to the one parameter estimation theory for strictly positive models [6],

V [T ] ≥ 1
JS

θ

≥ 1
J(Lθ)

(18)

holds, where Lθ is any logarithmic derivative which satisfy (4) and J(Lθ) = (Lθ, Lθ)ρθ
. The

first equality is attained when and only when T = θI + LS
θ /JS

θ , and the second equality
holds iff Lθ = LS

θ .
Now, LA

θ = −2iH/h̄ is an ALD for the model and the corresponding Cramér–Rao
inequality becomes

Vθ[T ] ≥ h̄2

4Vθ[H]
, (19)

where T is an arbitrary unbiased estimator T for the time parameter θ. This inequality is
nothing but a time-energy uncertainty relation. If ρ0 > 0, then this lower bound cannot
be attained for any T since LA

θ is not an SLD, whereas Theorem 2 asserts that, if ρ0 is
pure, the equality in (19) is locally attainable. This is a significant difference between the
strictly positive models and the pure state models. Since the ALD LA

θ = −2iH/h̄ and the
SLD–Fisher information for the pure state models JS

θ = 2Tr (dρθ/dθ)2 are both obtainable
directly from the Liouville–von Neumann equation, this result is not specific to the case
where the Hamiltonian is time independent, but is quite general.

5.2 Efficient estimator

An unbiased estimator T is called efficient if the equality in (15) holds for all θ ∈ Θ.
Nagaoka [6] has proved that a one parameter model ρθ has an efficient estimator when and
only when the model takes the form

ρθ = e
1
2
[β(θ)T−γ(θ)] ρ0 e

1
2
[β(θ)T−γ(θ)], (20)

where β(θ), γ(θ) are real functions.
Let us consider a model of the form

ρθ = eif(θ)Aρ0 e−if(θ)A,
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where f(θ) is a real monotonic odd function and A ∈ Lsa. If ρ0 > 0, then it is shown
that there exists an efficient estimator for θ only when A is a canonical observable [15].
On the other hand, if ρ0 is pure, then there may exist an efficient estimator even if A is
not canonical, because of the uncertainty Kθ ∈ Ksa(ρθ) in (16). For instance, the spin 1/2
model

f(θ) =
1
2

(
π

2
− cos−1 θ), A = σy, ρ0 =

1
2

[
1 1
1 1

]
,

has an efficient estimator σz for the parameter θ. Indeed, this model admits another form

ρθ =
√

1 − θ2 exp
[

1
4

log
1 + θ

1 − θ
σz

]
ρ0 exp

[
1
4

log
1 + θ

1 − θ
σz

]
. (21)

This is not a paradox since, in the pure state model, the estimator which attains the
Cramér–Rao bound (15) is adjustable for every points ρθ up to the uncertainty of the
kernel Ksa(ρθ), see also [15].

6 Conclusions

A quantum estimation theory of the pure state models was presented. We first investigated
a general framework of the pure state estimation theory and derived quantum counterpart
of the Fisher metric. The statistical significance of the Fubini–Study metric was also
stressed. We then formulated the one parameter pure state estimation theory based on the
symmetric logarithmic derivative and disclosed the characteristics of the pure states. Some
examples were also given in order to demonstrate the one parameter pure state estimation,
and clarified the difference between the pure state models and the strictly positive models.
The construction of the general quantum multi-parameter estimation theory is, however,
left to future study, as is the strictly positive model case.
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