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Abstract

We introduce a class of quantum pure state models called the coherent models. A
coherent model is an even dimensional manifold of pure states whose tangent space is
characterized by a symplectic structure. In a rigorous framework of noncommutative
statistics, it is shown that a coherent model inherits and expands the original spirit of
the minimum uncertainty property of coherent states.
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I Introduction

Quantum estimation theory, originated in optical communications, offers a rigorous ap-
proach toward the optimization of detection processes in quantum communication systems
[1] [2]. It aims to find, for a given smooth parametric family of density operators (a model)
P = {ρθ ; θ = (θ1, . . . , θn) ∈ Θ ⊂ Rn}, the optimum measurement (positive operator-
valued measure) M = {M(B) ; B is a Borel set in Rn} for the parameter θ under the
unbiasedness condition: For all θ ∈ Θ,∫

θ̂j Tr ρθM(dθ̂) = θj , j = 1, . . . , n.

Here Tr denotes the operator trace. Normally a more tractable (weaker) condition is
adopted, called the local unbiasedness condition: A measurement M is called locally unbi-
ased at a given point θ if M satisfies at θ the above equality and its formal differentiation

∂

∂θi

∫
θ̂j Tr ρθM(dθ̂) = δj

i , i, j = 1, . . . , n.

It is well-known that when n = 1, the quantum Cramér-Rao inequality with respect to
the symmetric logarithmic derivative (SLD) offers the achievable lower bound (i.e., the
bound attained by a certain measurement) of the variance of estimation. This is also
regarded as a rigorous modification of the uncertainty relation. When n ≥ 2, on the other
hand, a matrix version of the SLD Cramér-Rao inequality itself does not always have an
absolute significance because the lower bound cannot be attained in general unless the
model has commutative SLDs. We therefore often deal with the minimization problem of
the scalar quantity trGVθ[M ] with respect to M , where tr denotes the matrix trace on the
parameter space Θ, G a real symmetric positive matrix representing the weight, and Vθ[M ]
the covariance matrix at θ with respect to a locally unbiased measurement M whose (i, j)
entry is

(Vθ[M ])ij =
∫

(θ̂i − θi)(θ̂j − θj)Tr ρθM(dθ̂).

If there is a number C such that trGVθ[M ] ≥ C holds for all M , C is called a Cramér-Rao
type bound or simply a CR bound. The CR bound C may depend on both G and θ.
The problem of finding the achievable CR bound is in general a hard one and has been
solved only in a few special models such as the quantum gaussian model [3] [2] and the
2-dimensional spin 1/2 model [4] [5].

Holevo showed that if a model having the right logarithmic derivative (RLD) exhibits a
certain “nice” property of a tangent space, the CR bound based on the RLD is expressed
only in terms of the SLDs [2, p.280]. Moreover it was shown that this gives the achievable
CR bound for the gaussian model of quantum oscillators. Motivated by these facts and
that the SLD Fisher information is well-defined also for pure state models [6], we will
introduce a class of pure state models called the coherent models [7] each having a “nice”
tangent space, and will explore their parameter estimation theory.

The construction of the paper is as follows. In Section II, we explore some basic charac-
teristics inherent in pure state models which are closely related with Holevo’s commutation
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operator. In Section III, a special class of pure state models, called the coherent models, is
introduced of which the SLD tangent space forms an invariant subspace with respect to the
commutation operator. In Section IV, we derive a CR bound, called the generalized RLD
bound, for a model that has an invariant SLD tangent space with respect to the commuta-
tion operator. Here the model is not assumed to be pure. In Section V, we show that for
a coherent model, there exists a random measurement which attains the generalized RLD
bound. In Section VI, the above results are demonstrated in two simple coherent models:
a canonical squeezed state model and a spin coherent state model. The final Section VII
gives conclusions.

II Commutation operator

In the study of noncommutative statistics, Holevo introduced useful mathematical tools
called the square summable operators and the commutation operators associated with
quantum states. We here give a brief summary: for details, consult [2]. Let H be a
separable complex Hilbert space which corresponds to a physical system of interest, and
let ρ be a fixed density operator. We define a real Hilbert space L2

h(ρ) associated with
ρ by the completion of Bh(H), the set of bounded self-adjoint operators, with respect to
the pre-inner product 〈X,Y 〉ρ = ReTr ρXY . Letting ρ =

∑
j sj |ψj〉〈ψj | be the spectral

representation, an element X ∈ L2
h(ρ) can be regarded as an equivalence class of such

self-adjoint operators (called square summable operators) satisfying
∑

j sj ∥Xψj∥2< ∞ (so
that ψj ∈ Dom(X) if sj ̸= 0) under the identification X1 ∼ X2 if X1ψj = X2ψj for sj ̸= 0.
The space L2

h(ρ) thus provides a convenient tool to cope with unbounded observables. Let
L2(ρ) be the complexification of L2

h(ρ). Note that L2(ρ) is also regarded as the completion
of B(H), the set of bounded operators, with respect to the pre-inner product

〈X,Y 〉ρ =
1
2

Tr ρ (Y X∗ + X∗Y ).

Thus L2(ρ) is regarded as a complex Hilbert space with the inner product 〈·, ·〉ρ. We further
introduce two sesquilinear forms on B(H) by

(X,Y )ρ = Tr ρ Y X∗, [X,Y ]ρ =
1
2i

Tr ρ (Y X∗ − X∗Y ),

and extend them to L2(ρ) by continuity.
The commutation operator Dρ : L2(ρ) → L2(ρ) with respect to ρ is defined by [X,Y ]ρ =

〈X,DρY 〉ρ, which is formally represented by the operator equation ρ(DρX) + (DρX)ρ =
1
i (ρX−Xρ). (To be precise, this definition is different from Holevo’s original definition by a
factor of 2.) The operator Dρ is a complex-linear bounded skew-adjoint operator. Moreover,
since the forms [·, ·]ρ and 〈·, ·〉ρ are real on the real subspace L2

h(ρ), this subspace is invariant
under the operation of Dρ. Thus Dρ can also be regarded as a real-linear bounded skew-
adjoint operator when restricted to L2

h(ρ) as Dρ : L2
h(ρ) → L2

h(ρ).
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Our main concern lies in the case where ρ is pure. In this case the above setting is
considerably simplified as follows: Let ρ = |ψ〉〈ψ|. Then for X,Y ∈ L2(ρ),

〈X,Y 〉ρ =
1
2
{〈Y ∗ψ|X∗ψ〉 + 〈Xψ|Y ψ〉},

[X,Y ]ρ =
1
2i
{〈Y ∗ψ|X∗ψ〉 − 〈Xψ|Y ψ〉},

(X,Y )ρ = 〈Y ∗ψ|X∗ψ〉.

Here Xψ, for example, stands for the vector X1ψ where X1 is an arbitrary representative
of X. (It is independent of the choice of a representative.) In particular, if X,Y ∈ L2

h(ρ)
we have

〈X,Y 〉ρ = Re 〈Y ψ|Xψ〉 = Re 〈Xψ|Y ψ〉, (1)
[X,Y ]ρ = Im 〈Y ψ|Xψ〉 = −Im 〈Xψ|Y ψ〉, (2)

(X,Y )ρ = 〈Y ψ|Xψ〉 = 〈Xψ|Y ψ〉. (3)

It should be noted that operators X and Y (whether bounded or not) are identified with
each other in L2(ρ) iff Xψ = Y ψ and X∗ψ = Y ∗ψ. In particular, self-adjoint operators X
and Y are identified in L2

h(ρ) iff Xψ = Y ψ.

Lemma 1. Let ρ = |ψ〉〈ψ|. Then for all X ∈ L2
h(ρ),

(DρX)ψ = i(X − 〈ψ|Xψ〉I)ψ,

where I denotes the identity in L2
h(ρ).

Proof For X ∈ L2
h(ρ), let Z be the element in L2

h(ρ) having a representative Z1 =
i(|Xψ〉〈ψ| − |ψ〉〈Xψ|). Then Zψ = i(X − 〈ψ|Xψ〉I)ψ. On the other hand, for Y ∈ L2

h(ρ),
we have

〈Y ψ|Zψ〉 = i{〈Y ψ|Xψ〉 − 〈ψ|Xψ〉〈ψ|Y ψ〉},

and hence 〈Y,Z〉ρ = [Y,X]ρ because of (1) and (2). Thus Z = DρX, which completes the
proof. ¤

Note that Lemma 1 does not imply DρX = i(X − 〈ψ|Xψ〉I), since the right hand side is
not a self-adjoint element in L2(ρ) unless it equals 0.

Let us introduce a linear subspace

Th(ρ) = {X ∈ L2
h(ρ) ; 〈I,X〉ρ = 0}

of L2
h(ρ). Here ρ is not necessarily pure. This subspace is itself a real Hilbert space with

the inner product 〈·, ·〉ρ. Now consider again the special case that ρ is pure: ρ = |ψ〉〈ψ|.
Then from Lemma 1, we obtain the important relation:

(DρX)ψ = (iX)ψ, X ∈ Th(ρ). (4)
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This equation, combined with (1), implies that Dρ is a unitary transformation on (Th(ρ), 〈·, ·〉ρ).
In particular, Dρ is nondegenerate on Th(ρ), and so is the skew-symmetric bilinear form
[·, ·]ρ. In other words, the real linear space Th(ρ) is regarded as a symplectic space [8] with
the symplectic form [·, ·]ρ. We also note that D2

ρ = −I on Th(ρ) (I denotes the identity
operator acting on Th(ρ)), since Dρ is unitary and skew-adjoint. Indeed, equation (4) im-
mediately leads to (D2

ρX)ψ = −Xψ and hence D2
ρX = −X for all X ∈ Th(ρ), whereas

DρX ̸= iX as mentioned earlier. In other words, Dρ is an almost complex structure on
Th(ρ).

III Coherent model

Let P = {ρθ ; θ = (θ1, . . . , θn) ∈ Θ} be an n-dimensional model, where ρθ are not
necessarily pure for the present, and Θ is an open subset of Rn. We assume the following
regularity conditions:

(a) The parametrization θ 7→ ρθ is assumed to be appropriately smooth and nondegen-
erate so that the derivatives {∂ρθ/∂θj}n

j=1 exist in trace-class and form a linearly
independent set at each point θ.

(b) There exists a constant c such that∣∣∣∣ ∂

∂θj
Tr ρθX

∣∣∣∣2 ≤ c〈X,X〉ρθ

for all X ∈ B(H) and j.

From the condition (b), the linear functionals X 7→ (∂/∂θj)Tr ρθX can be extended to
continuous linear functionals on L2(ρθ).

Given a model that satisfies (a) and (b), the symmetric logarithmic derivative (SLD)
LS

θ,j in the jth direction is defined by the requirement that

∂

∂θj
Tr ρθX = 〈LS

θ,j , X〉ρθ
, LS

θ,j ∈ L2(ρθ)

for all X ∈ L2(ρθ). It is easily verified that LS
θ,j ∈ L2

h(ρθ); so the definition is formally
written as ∂ρθ/∂θj = 1

2(LS
θ,jρθ + ρθL

S
θ,j). The SLDs belong to Th(ρθ) since 〈I, LS

θ,j〉ρθ
=

(∂/∂θj)Tr ρθ = 0, and the SLD Fisher information matrix defined by JS
θ =

[
〈LS

θ,j , L
S
θ,k〉ρθ

]
gives a Cramér-Rao inequality Vθ[M ] ≥ (JS

θ )−1, where M is an arbitrary locally unbiased
measurement for the parameter θ, see [2, p. 276].

In the rest of this section, we restrict ourselves to pure state models. Some remarks
are in order. First, by differentiating the identity ρ2

θ = ρθ, we see that the element in
L2

h(ρθ) having a representative 2∂ρθ/∂θj gives the SLD LS
θ,j . Thus for a pure state model,

the condition (a) implies (b). Second, associated with a pure state model {ρθ; θ ∈ Θ}
is, at least locally, a smooth family {ψθ; θ ∈ Θ} of normalized vectors in H such that
ρθ = |ψθ〉〈ψθ|. In what follows, we shall frequently use this representation.
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A convenient way of finding SLDs for a pure state model ρθ is as follows: Let LA
θ,j be

the anti-symmetric logarithmic derivative (ALD) satisfying

∂

∂θj
Tr ρθX = [LA

θ,j , X]ρθ
, LA

θ,j ∈ Th(ρθ)

for all X ∈ L2(ρθ), or formally ∂ρθ/∂θj = (LA
θ,jρθ − ρθL

A
θ,j)/2i. (This definition is different

from [6] by a factor of i.) Then the SLD is given by LS
θ,j = −DθL

A
θ,j where Dθ = Dρθ

,
since 〈LS

θ,j , X〉ρθ
= [LA

θ,j , X]ρθ
. Note that since D2

θ = −I on Th(ρθ), then LA
θ,j = DθL

S
θ,j ,

which assures the existence and the uniqueness of the ALD for a pure state model. The
advantage of the use of the ALD is this: Every pure state model can be expressed in the
form ρθ = Uθρ0U

∗
θ where {Uθ}θ is a smooth family of unitary operators (which do not

necessarily form a group representation), so that the ALD is explicitly given by

LA
θ,j = 2i(Aθ,j − 〈I,Aθ,j〉ρθ

),

where Aθ,j is the skew-adjoint element in L2(ρθ) having a representative (∂Uθ/∂θj)U∗
θ , the

local generator of Uθ. For a group covariant pure state model, the generator of the group
is usually obvious.

Let T S
θ (P) be the real-linear subspace of Th(ρθ) spanned by the SLDs {LS

θ,j}j . Since the
tangent vectors of the manifold P at the point ρθ are faithfully represented by the elements
of T S

θ (P) via the correspondence (∂/∂θj)θ 7→ LS
θ,j , we call T S

θ (P) the SLD tangent space
of the model P at θ. A pure state model P = {ρθ ; θ ∈ Θ} is called locally coherent at θ if
T S

θ (P) is Dθ-invariant. The model is called coherent if it is locally coherent for all θ ∈ Θ.
When the Hilbert space H is finite-dimensional, the totality of pure states forms a

complex projective space and is an example of coherent model. The Riemannian metric
on the model induced by the SLD Fisher information matrix JS

θ is identical to the Fubini-
Study metric up to a constant factor [6] and hence is a Kähler metric. The associated
fundamental 2-form [9] in this case is nothing but the symplectic structure [·, ·]ρ.

Theorem 2. Consider a pure state model of the form ρθ = Ug(θ)ρ0U
∗
g(θ) where {Ug ; g ∈

G} is a projective unitary representation of a Lie group G and g(·) : θ 7→ g(θ) is the
parametrization of the elements of G by a local coordinate system satisfying g(0) = e (: the
unit element). This model is coherent iff it is locally coherent at ρ0.

Proof We only need to prove the if part. Let Λθ : G → G be the left translation
by g(θ)−1 which maps h 7→ g(θ)−1h. Then its differential (dΛθ)g(θ) : Tg(θ)(G) → Te(G)
is represented by a nonsingular real matrix ak

j (θ) such that (dΛθ)g(θ)

(
[∂g(θ)/∂θj ]θ

)
=∑

k ak
j (θ) [∂g(θ)/∂θk]θ=0. Now since ρθ+∆θ = Ug(θ) ρ∆θ′ U

∗
g(θ), where Λθ(g(θ + ∆θ)) =

g(∆θ′), we find that ∂ρθ/∂θj =
∑

k ak
j (θ) Uθ[∂ρθ/∂θk]θ=0U

∗
θ . This implies that the SLDs

at θ are given by LS
θ,j =

∑
i a

k
j (θ) UθL

S
0,kU

∗
θ . As a consequence

LS
θ,jψθ =

∑
k

ak
j (θ) UθL

S
0,kψ0. (5)

Here we have set as ρθ = |ψθ〉〈ψθ| with ψθ = Uθψ0. Now suppose P is locally coherent
at ρ0. Then the vector (D0L

S
0,k)ψ0 = iLS

0,kψ0 (see (4)) belongs to the real linear span of
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{LS
0,k′ψ0}n

k′=1; hence the vector (DθL
S
θ,j)ψθ = iLS

θ,jψθ belongs to the real linear span of
{LS

θ,j′ψθ}n
j′=1 because of (5) and the nonsingularity of the matrix ak

j (θ). This implies that
P is locally coherent at every point θ. ¤

It is clear from the definition that if P is locally coherent at θ, then T S
θ (P) forms a

symplectic space with the symplectic form being the restriction of [·, ·]ρθ
. In particular, the

dimensionality of T S
θ (P) is necessarily even (say n = 2m), and it has a symplectic basis

{L̃S
θ,j}2m

j=1 satisfying

[L̃S
θ,j , L̃

S
θ,k]ρθ

=


−1, if j is odd and k = j + 1
1, if j is even and k = j − 1
0, otherwise.

Furthermore, since Dθ is unitary on T S
θ (P) with respect to the inner product 〈·, ·〉ρθ

, we can
take {L̃S

θ,j} to be orthonormal. Such a basis, which we shall call a normalized ρθ-symplectic
basis, satisfies

Dθ



L̃S
θ,1

L̃S
θ,2

L̃S
θ,3

L̃S
θ,4
...

L̃S
θ,2m−1

L̃S
θ,2m


=



0 1
−1 0

0 1
−1 0

. . .
0 1
−1 0





L̃S
θ,1

L̃S
θ,2

L̃S
θ,3

L̃S
θ,4
...

L̃S
θ,2m−1

L̃S
θ,2m


. (6)

Thus the SLD tangent space of a coherent model is decomposed into 2-dimensional Dθ-
invariant subspaces. This suggests the importance of studying 2-dimensional coherent
models.

Now, let us characterize a 2-dimensional coherent model.

Theorem 3. For a 2-dimensional pure state model P = {ρθ = |ψθ〉〈ψθ| ; θ ∈ Θ}, the
following three conditions are equivalent.

(α) P is locally coherent at θ.
(β) LS

θ,1ψθ and LS
θ,2ψθ are linearly dependent.

(γ) LA
θ,1ψθ and LA

θ,2ψθ are linearly dependent.

Before going to the proof, we should remark that the condition (β) does not conflict
with the fact that LS

θ,1 and LS
θ,2 are linearly independent due to the nondegeneracy of the

parametrization θ 7→ ρθ. Indeed, the linear independence of {LS
θ,1, L

S
θ,2} is concerned with

the real linear structure of L2
h(ρθ) and is equivalent to the real linear independence of

{LS
θ,1ψθ, L

S
θ,2ψθ}. On the other hand, the condition (β) asserts the complex linear depen-

dence of the same vectors.
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Proof The proof relies essentially on (4). We only need to show that (α)⇔(β), since
(β)⇔(γ) is obvious from the identity LS

θ,jψθ = −(DθL
A
θ,j)ψθ = −iLA

θ,jψθ. Let ϕj := LS
θ,jψθ,

and assume (α) first. Then there exist real numbers x, y such that DθL
S
θ,1 = xLS

θ,1 + yLS
θ,2.

This is equivalent to iϕ1 = xϕ1 + yϕ2 and leads to (β). Assume (β) in turn. Recalling the
real linear independence of {ϕ1, ϕ2}, we see that there exist real numbers x, y satisfying
ϕ2 = (x + iy)ϕ1 with y ̸= 0. It then follows that iϕ1 = −(x/y)ϕ1 + (1/y)ϕ2 and DθL

S
θ,1 =

−(x/y)LS
θ,1 + (1/y)LS

θ,2. Similarly DθL
S
θ,2 is shown to be a real linear combination of

{LS
θ,1, L

S
θ,2} and thus (α) is verified. ¤

The following corollary, whose proof is now straightforward from Theorem 3 and (4),
offers a mostly useful method to treat group covariant coherent models as exemplifed in
Section VI. Moreover the equation (7) in the corollary reveals a close connection with the
conventional definition of coherent states [10]. Indeed, this fact gave a motive for the
nomenclature of the coherent model.

Corollary 4. Let P = {ρθ = |ψθ〉〈ψθ|; θ ∈ Θ} be a 2-dimensional pure state model and
let T A

θ (P) be the real linear span of ALDs {LA
θ,1, L

A
θ,2} at θ. Then P is locally coherent at

θ iff there exist nonzero elements X1, X2 in T A
θ (P) satisfying

(X1 + iX2)ψθ = 0. (7)

Moreover, (7) is also necessary and sufficient for {cXj}j=1,2 to form a normalized ρθ-
symplectic basis of T S

θ (P) (= T A
θ (P)) with a common normalizing constant c. Under the

condition (7), the linear relations

LA
θ,1 = c11X1 + c12X2, LA

θ,2 = c21X1 + c22X2

imply
LS

θ,1 = c12X1 − c11X2, LS
θ,2 = c22X1 − c21X2.

IV Generalized RLD bound

Throughout this section we consider an n-dimensional model P = {ρθ} of general (i.e., not
necessarily pure) states satisfying the regularity conditions (a) and (b) presented in Section
III.

Let L2
+(ρ) denote the completion of B(H) with respect to the pre-inner product (·, ·)ρ.

Since (X,X)ρ ≤ 2〈X,X〉ρ, then L2(ρ) ⊂ L2
+(ρ). The right logarithmic derivative (RLD)

LR
θ,j in the jth direction of a model P = {ρθ}, when it exists, is defined by the requirement

that
∂

∂θj
Tr ρθX = (LR

θ,j , X)ρθ
, LR

θ,j ∈ L2
+(ρθ)

for all X ∈ L2
+(ρθ), or formally ∂ρθ/∂θj = (LR

θ,j)
∗ρθ = ρθL

R
θ,j . The covariance matrix of

an arbitrary locally unbiased estimator M is then bounded from below as

Vθ[M ] ≥ (JR
θ )−1, (8)
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where JR
θ =

[
(LR

θ,j , L
R
θ,k)ρθ

]
is the RLD Fisher information matrix [2, p. 279]. When a real

positive definite matrix G is specified as the weight for the estimation accuracy, the total
deviation is bounded from below as

trGVθ[M ] ≥ CR := tr GRe (JR
θ )−1 + tr abs G Im (JR

θ )−1, (9)

where tr abs A denotes the absolute sum of the eigenvalues of matrix A, see [2, p. 284].
The RLD thus gives a CR bound and plays a crucial role in optical communication theory
[3] [2].

The RLD exists iff there is a constant c such that∣∣∣∣ ∂

∂θj
Tr ρθX

∣∣∣∣2 ≤ c(X,X)ρθ
(10)

for all X ∈ B(H). Thus the RLD does not always exist for a model satisfying the weaker
condition (b). In particular it never exists for a pure state model ρθ = |ψθ〉〈ψθ|. To see this,
let us fix a θ arbitrarily and take a vector x ∈ H such that 〈ψθ|x〉 = 0 and 〈∂ψθ/∂θj |x〉 ̸=
0. (This is indeed possible because ψθ and ∂ψθ/∂θj are linearly independent owing to
(∂/∂θj)〈ψθ|ψθ〉 = 0 and (∂/∂θj)|ψθ〉〈ψθ| ̸= 0.) Then X = |x〉〈ψθ| satisfies (X,X)ρθ

= 0 and
(∂/∂θj)Tr ρθX ̸= 0. It is, however, important to notice that what is needed in estimation
theory is not the RLD itself but the inverse of the RLD Fisher information matrix as
indicated by (8) and (9).

In his book [2, p. 280], Holevo has shown that when a model satisfying the regularity
conditions (a) and (10) has a Dθ-invariant SLD tangent space, the (JR

θ )−1 is expressed
only in terms of SLDs; so is the CR bound (9). We generalize this result to a wider class
of models that satisfy only the weaker conditions (a) and (b).

Theorem 5. Suppose we are given an n-dimensional model P = {ρθ} having a Dθ-
invariant SLD tangent space T S

θ (P). Then for all locally unbiased measurements M at
θ,

Vθ[M ] ≥
(
JS

θ

)−1
+ i

(
JS

θ

)−1
Dθ

(
JS

θ

)−1
,

where Dθ =
[
[LS

θ,j , L
S
θ,k]ρθ

]
.

Proof Let us introduce a family of inner products on L2(ρθ) having a parameter ε ∈
(0, 1]:

(X,Y )(ε)ρθ
= (1 − ε)(X,Y )ρθ

+ ε〈X,Y 〉ρθ
.

Since
ε〈X,X〉ρθ

≤ (X,X)(ε)ρθ
≤ (2 − ε)〈X,X〉ρθ

,

there exists, for each ε, a unique operator L
(ε)
θ,j ∈ L2(ρθ) which satisfies

∂

∂θj
Tr ρθX = (L(ε)

θ,j , X)(ε)ρθ
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for all X ∈ L2(ρθ). Then in a quite similar way to the derivation of the quantum Cramér-
Rao inequality, we have

Vθ[M ] ≥
(
J

(ε)
θ

)−1
, J

(ε)
θ =

[
(L(ε)

θ,j , L
(ε)
θ,k)

(ε)
ρθ

]
. (11)

Now observing the identity (X,Y )(ε)ρθ = 〈X,Y 〉ρθ
+ i(1−ε)[X,Y ]ρθ

, and using the definition
of Dρθ

= Dθ, we see that for all Y ∈ L2(ρθ),

∂

∂θj
Tr ρθY = 〈LS

θ,j , Y 〉ρθ
= (L(ε)

θ,j , Y )(ε)ρθ
= 〈{I + i(1 − ε)Dθ}L

(ε)
θ,j , Y 〉ρθ

.

Then LS
θ,j = {I + i(1 − ε)Dθ}L

(ε)
θ,j , hence (L(ε)

θ,j , L
(ε)
θ,k)

(ε)
ρθ = 〈LS

θ,j , {I + i(1 − ε)Dθ}−1LS
θ,k〉ρθ

.
Let us introduce Dirac’s notation |LS

θ,j〉 for the Hilbert space (L2(ρθ), 〈·, ·〉ρθ
), and let

Γθ :=
[
|LS

θ,1〉, · · · , |LS
θ,n〉

]
. Then Γ∗

θ Γθ = JS
θ and Γ∗

θDθΓθ = Dθ. And the matrix J
(ε)
θ can

be written in the form J
(ε)
θ = Γ∗

θ{I + i(1 − ε)Dθ}−1Γθ. Thus from the assumption that
T S

θ (P) is Dθ-invariant, the inverse of J
(ε)
θ is explicitly given by(

J
(ε)
θ

)−1
=

(
JS

θ

)−1
Γ∗

θ {I + i(1 − ε)Dθ}Γθ

(
JS

θ

)−1

=
(
JS

θ

)−1
+ i(1 − ε)

(
JS

θ

)−1
Dθ

(
JS

θ

)−1
. (12)

Combining (11) and (12), and taking the limit ε ↓ 0, we have the theorem. ¤

Theorem 5 asserts that even for a model that does not have the RLDs, the limε↓0(J
(ε)
θ )−1

indeed gives a generalization of (JR
θ )−1 as long as the SLD tangent space is Dθ-invariant.

Then by using Theorem 5 and an analogous argument to the derivation of (9), we obtain
the CR bound

CR = trG
(
JS

θ

)−1
+ tr abs G

(
JS

θ

)−1
Dθ

(
JS

θ

)−1
, (13)

for models each having a Dθ-invariant SLD tangent space T S
θ (P). This may be called a

generalized RLD bound. We will show in the next section that this bound is achievable in
a coherent model.

V Optimal estimation for 2-dimensional coherent models

We now proceed to a parameter estimation for a pure coherent model. In particular,
taking into account the symplectic structure (6) of the SLD tangent space, we restrict
ourselves to a 2-dimensional case. We note that as long as we are concerned with the
achievable CR bound at each point on the model {ρθ}, we can take the weight as G = I
without loss of generality. In fact, let M be a locally unbiased measurement for the pa-
rameter θ = (θ1, θ2) and let p(θ̂1, θ̂2)dθ̂ = Tr ρθM(dθ̂) be the corresponding joint distri-
bution. The coordinate transformation ηi =

∑
j hi

jθ
j , where H = [hi

j ] is a real regular
matrix, then induces another measurement N(dη̂) which corresponds to the joint distribu-
tion q(η̂1, η̂2)dη̂ = p(θ̂1, θ̂2)dθ̂ and is locally unbiased for the parameter η = (η1, η2). In

10



this case, tr Vη[N ] = tr (tHH)Vθ[M ]. Thus the parameter estimation for θ with the weight
G = tHH is equivalent to that for η with the weight I.

Now suppose we are given a 2-dimensional coherent model P = {ρθ ; θ = (θ1, θ2) ∈ Θ}.
Let {Li} be the dual basis of the SLDs: Li =

∑
j J ijLS

θ,j with J ij being the (i, j) entry of
(JS

θ )−1. Then (
JS

θ

)−1
=

[
〈L1, L1〉ρθ

〈L1, L2〉ρθ

〈L2, L1〉ρθ
〈L2, L2〉ρθ

]
and (

JS
θ

)−1
Dθ

(
JS

θ

)−1
=

[
0

[
L1, L2

]
ρθ[

L2, L1
]
ρθ

0

]
Thus the generalized RLD bound (13) for G = I can be rewritten in the form

CR = 〈L1, L1〉ρθ
+ 〈L2, L2〉ρθ

+ 2
∣∣[L1, L2]ρθ

∣∣ . (14)

We will show that the bound CR is achievable. In what follows, we fix a θ = (θ1, θ2)
arbitrarily.

Let us consider a random measurement as follows. We first introduce a linear transfor-
mation φ : T S

θ (P) −→ T S
θ (P) by

φ(X) = 〈L1, X〉ρθ
L1 + 〈L2, X〉ρθ

L2.

Since φ is symmetric and positive definite, it has positive eigenvalues λ1, λ2, and mutually
orthogonal unit eigenvectors A1, A2 satisfying φ(Aν) = λνAν , ν = 1, 2. We next take
positive numbers p1, p2 satisfying p1 + p2 = 1. Now letting∫

ξEν(dξ), ν = 1, 2

be the spectral decompositions of arbitrarily fixed representatives of Aν , we define a gen-
eralized measurement

M(ν, dξ) = pνEν(dξ).

This has the following physical interpretation: Select one of the two “observables” A1, A2

according to the probability p1, p2, respectively, and measure it in a usual sense.
Now suppose we have selected Aν and have obtained an outcome ξ. We identify this

result with a pair of real quantities

θ̂i(ν, ξ) = θi +
ξ

pν
〈Li, Aν〉ρθ

, i = 1, 2.

The pair {θ̂i(ν, ξ)}i=1,2 satisfies the local unbiasedness condition at θ:

2∑
ν=1

∫
θ̂i(ν, ξ) Tr ρθM(ν, dξ) = θi, i = 1, 2 (15)

2∑
ν=1

∫
θ̂i(ν, ξ)

∂

∂θj
Tr ρθM(ν, dξ) = δi

j , i, j = 1, 2. (16)

11



To prove (15), we used the fact that Aν ∈ T S
θ (P), i.e., 〈I,Aν〉ρθ

= 0. To prove (16), observe
that ∫

ξ
∂

∂θj
Tr ρθEν(dξ) = 〈LS

θ,j , Aν〉ρθ
,

so that the left hand side of (16) becomes

2∑
ν=1

〈Li, Aν〉ρθ
〈LS

θ,j , Aν〉ρθ
= 〈Li, LS

θ,j〉ρθ
= δi

j .

With this measurement M ,

tr Vθ[M ] =
2∑

ν=1

∫ [(
θ̂1(ν, ξ) − θ1

)2
+

(
θ̂2(ν, ξ) − θ2

)2
]

Tr ρθM(ν, dξ)

=
2∑

ν=1

1
pν

[
〈L1, Aν〉2ρθ

+ 〈L2, Aν〉2ρθ

]
.

In the second equality, we used the fact that∫
ξ2 Tr ρθEν(dξ) = 〈Aν , Aν〉ρθ

= 1.

Since, for given µ1, µ2 > 0, µ1/p1 + µ2/p2 takes the minimum (
√

µ1 +
√

µ2)2 at pν =√
µν/(

√
µ1 +

√
µ2), we see

min
{pν}

trVθ[M ] =
[√

〈L1, A1〉2ρθ
+ 〈L2, A1〉2ρθ

+
√

〈L1, A2〉2ρθ
+ 〈L2, A2〉2ρθ

]2

=
[√

〈A1, φ(A1)〉ρθ
+

√
〈A2, φ(A2)〉ρθ

]2

=
[√

λ1 +
√

λ2

]2

= 〈L1, L1〉ρθ
+ 〈L2, L2〉ρθ

+ 2
√
〈L1, L1〉ρθ

〈L2, L2〉ρθ
− 〈L1, L2〉2ρθ

.

(17)

The last equality follows from the fact that the trace λ1 + λ2 and the determinant λ1λ2 of
the linear transformation φ are independent of the choice of the basis which represents φ
in a matrix form.

The random measurement presented above was first introduced in [5] by one of the
present authors. In that paper, it was also shown that the problem of finding the achievable
CR bound for an arbitrary 2-parameter faithful spin 1/2 model can be reduced to an easy
minimization problem. Interestingly, the explicit solution of the minimization problem,
i.e., the achievable CR bound, turns out to be identical to the quantity (17), although the
model treated there is not pure nor has in general a Dρ-invariant tangent space.

Now we establish the relation between (14) and (17) for a coherent model.

12



Theorem 6. For a 2-dimensional coherent model {ρθ = |ψθ〉〈ψθ|}, the lower bound (14)
is identical to (17). In other words, the generalized RLD bound (14) is achievable.

Proof By Theorem 3, L1ψθ and L2ψθ are linearly dependent. Therefore

det
[
〈L1ψθ|L1ψθ〉 〈L1ψθ|L2ψθ〉
〈L2ψθ|L1ψθ〉 〈L2ψθ|L2ψθ〉

]
= 0,

which leads to

(Im 〈L1ψθ|L2ψθ〉)2 = 〈L1ψθ|L1ψθ〉〈L2ψθ|L2ψθ〉 − (Re 〈L1ψθ|L2ψθ〉)2.

By (1) and (2), this can be read as∣∣[L1, L2]ρθ

∣∣2 = 〈L1, L1〉ρθ
〈L2, L2〉ρθ

− 〈L1, L2〉2ρθ
,

which proves the theorem. ¤

It should be noted that a more convincing result has been obtained by Matsumoto [11].
He proved that the CR bound (13) is achievable for a 2m-dimensional coherent model with
an arbitrary weight G.

It is also worth noting that the achievability of (14) is closely related to the Heisenberg
uncertainty relation. By a coordinate transformation, we can assume that the SLD Fisher
information matrix is diagonal at a fixed ρθ = |ψθ〉〈ψθ|. Then there exist nonzero real
numbers c1, c2 and normalized ρθ-symplectic basis {L̃S

1 , L̃S
2 } such that LS

j = cjL̃
S
j . Then

Lj = L̃S
j /cj , and by (7)

(c1L
1 + ic2L

2)ψθ = 0.

This is nothing but the equality condition for the Heisenberg uncertainty relation. So we
have

〈L1, L1〉ρθ
〈L2, L2〉ρθ

=
∣∣[L1, L2]ρθ

∣∣2 .

This equation, combined with the assumption that 〈L1, L2〉ρθ
= 0, gives another proof of

Theorem 6 for an orthogonal parametrization at ρθ.

VI Examples

In this section we calculate the achievable CR bounds for canonical and spin coherent
models. Throughout this section, adjoint operators and complex conjugate numbers are
denoted by † and ∗, respectively, according to the convention in physics. Also we use the
same letter for both a square summable operator and the corresponding element in L2

h(ρ).
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VI.1 Canonical squeezed state model

The canonical squeezed state [12] [13] is defined by

ρq,p = D(q, p)|0〉ξξ〈0|D†(q, p), (q, p ∈ R),

where D(q, p) = exp(za†− z∗a) denotes the shift operator with z = (q + ip)/
√

2, and a and
a† are annihilation and creation operators, respectively, with a = (Q + iP )/

√
2. Further

|0〉ξ = exp[(ξa†2 − ξ∗a2)/2]|0〉 is the squeezed vacuum with |0〉 the Fock vacuum, and ξ a
complex number which represents the squeezing ratio: let ξ = seiθ.

Comparing the identity b|z〉ξ = β|z〉ξ with Corollary 4, where |z〉ξ = D(q, p)|0〉ξ, b =
a cosh s − a†eiθ sinh s, and β = z cosh s − z∗eiθ sinh s, we see that ρq,p is a 2-dimensional
coherent model, and a normalized ρq,p-symplectic basis is given by

L̃S
1 =

√
2[(Q − qI)(cosh s − cos θ sinh s) − (P − pI) sin θ sinh s],

L̃S
2 =

√
2[(P − pI)(cosh s + cos θ sinh s) − (Q − qI) sin θ sinh s].

The SLDs at ρq,p are calculated by operating −Dq,p to ALDs at ρq,p. By expanding
ALDs LA

q = 2(P − pI), LA
p = −2(Q − qI) into linear combinations of L̃S

1 , L̃S
2 , and using

the relations Dq,pL̃
S
1 = L̃S

2 , Dq,pL̃
S
2 = −L̃S

1 , we have

LS
q = 2[(Q − qI)(cosh 2s − cos θ sinh 2s) − (P − pI) sin θ sinh 2s],

LS
p = 2[(P − pI)(cosh 2s + cos θ sinh 2s) − (Q − qI) sin θ sinh 2s].

The corresponding SLD Fisher information matrix becomes

JS
q,p = 2

[
cosh 2s − cos θ sinh 2s − sin θ sinh 2s

− sin θ sinh 2s cosh 2s + cos θ sinh 2s

]
.

Then from (17), we have
min
M

tr Vq,p[M ] = cosh 2s + 1.

VI.2 Spin coherent state model

The spin coherent state [14] [15] in the spin j representation is defined by

ρθ,ϕ = R(θ, ϕ)|j〉〈j|R†(θ, ϕ), (0 ≤ θ ≤ π, 0 ≤ ϕ < 2π),

where (θ, ϕ) is the polar coordinate system (the north pole is θ = 0 and x-axis corresponds
to ϕ = 0), R(θ, ϕ) = exp [iθ(Jx sinϕ − Jy cos ϕ)] the rotation through an angle −θ about an
axis (sin ϕ,− cos ϕ, 0), and |j〉 the highest weight state with respect to Jz that corresponds
to the north pole.

Since J+|j〉 = (Jx + iJy)|j〉 = 0, we find that ρθ,ϕ is a 2-dimensional coherent model,
and a normalized ρ0,0-symplectic basis is L̃S

1 (0, 0) =
√

2/jJx, L̃S
2 (0, 0) =

√
2/jJy. A

normalized ρθ,ϕ-symplectic basis is then calculated as

L̃S
k (θ, ϕ) = R(θ, ϕ)L̃S

k (0, 0)R†(θ, ϕ),
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where k = 1, 2.
On the other hand, the generators of rotations about axes (sinϕ,− cos ϕ, 0) and (cos ϕ, sinϕ, 0)

at θ = 0 are i(Jx sin ϕ − Jy cos ϕ) and i(Jx cos ϕ + Jy sinϕ), respectively. Therefore ALDs
for the model at ρθ,ϕ are given by

LA
θ (θ, ϕ) = R(θ, ϕ){−2(Jx sinϕ − Jy cos ϕ)}R†(θ, ϕ)

= −
√

2j
{

L̃S
1 (θ, ϕ) sin ϕ − L̃S

2 (θ, ϕ) cos ϕ
}

,

LA
ϕ (θ, ϕ) = R(θ, ϕ){−2(Jx cos ϕ + Jy sinϕ) sin θ}R†(θ, ϕ)

= −
√

2j
{

L̃S
1 (θ, ϕ) sin θ cos ϕ + L̃S

2 (θ, ϕ) sin θ sinϕ
}

.

The SLDs at ρθ,ϕ are calculated by operating −Dθ,ϕ to ALDs, to obtain

LS
θ (θ, ϕ) =

√
2j

{
L̃S

1 (θ, ϕ) cos ϕ + L̃S
2 (θ, ϕ) sin ϕ

}
,

LS
ϕ(θ, ϕ) = −

√
2j

{
L̃S

1 (θ, ϕ) sin θ sin ϕ − L̃S
2 (θ, ϕ) sin θ cos ϕ

}
.

Since ρθ,ϕ-symplectic basis {L̃S
k (θ, ϕ)}k=1,2 is orthonormal, the SLD Fisher information

matrix and the matrix D are easily calculated:

JS
θ,ϕ =

[
2j 0
0 2j sin2 θ

]
, Dθ,ϕ =

[
0 −2j sin θ

2j sin θ 0

]
.

We thus have

min
M

tr Vθ,ϕ[M ] =
1
2j

(
1 +

1
sin θ

)2

.

VII Conclusions

We introduced a class of quantum pure state models called the coherent models. They are
characterized by a symplectic structure of the tangent space, and have a close connection
with the conventional generalized coherent states in mathematical physics. A Cramér-Rao
type bound for a coherent model was derived by an analogous argument to the derivation of
the right logarithmic derivative bound. Moreover, by an argument of random measurement,
this lower bound was found to be achievable.
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