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Abstract

A fibre bundle structure is introduced over manifolds of quantum channels. This structure
has a close connection with the problem of estimating an unknown quantum channel Γθ specified
by a parameter θ. It is shown that the quantum Fisher information of the family of output
states (id ⊗ Γθ)(σ̃) maximized over all input states σ̃, which quantifies the ultimate statistical
distinguishability of the parameter θ, is expressed in terms of a geometrical quantity on the
fibre bundle. Using this formula, a criterion for the maximum quantum Fisher information of
the nth extended channel (id⊗Γθ)

⊗n to be O(n) is derived. This criterion further proves that
for almost all quantum channels, the maximum quantum Fisher information increases in the
order of O(n).

PACS numbers: 02.40.-k, 03.65.Yz, 03.67.-a, 89.70.Cf

1 Introduction

Let H be a finite dimensional (say dimC H = d) complex Hilbert space that represents the physical
system of interest, and let B(H) and S(H) denote the sets of linear operators and density operators
on H. A dynamical change Γ : S(H) → S(H) of the physical system, called a quantum channel,
is represented by a trace-preserving completely positive map [1] [2] [3] [4]. It is known that Γ :
B(H) → B(H) is completely positive if and only if (id ⊗ Γ)(σ̃ME) is a positive operator, where
σ̃ME ∈ S(H⊗H) is a maximally entangled pure state and id denotes the identity map. Furthermore,
the correspondence

Γ 7−→ (id ⊗ Γ)(σ̃ME) (1)

establishes an affine isomorphism between the set of quantum channels on S(H) and the convex
subset

S1(H⊗H) :=
{

ρ̃ ∈ S(H⊗H) ; Tr2 ρ̃ =
1
d
I

}
of the extended state space S(H ⊗H), where Tr2 denotes the partial trace on the second Hilbert
space. In this way, one obtains a one-to-one affine parametrization of quantum channels [5] [6].

While the map (1) defines a faithful embedding of quantum channels into the extended state
space S(H ⊗ H), it does not always give an optimal embedding in view of statistical estimation.
To put it more precisely, given a one-dimensional parametric family {Γθ ; θ ∈ Θ ⊂ R} of quantum
channels, the symmetric logarithmic derivative (SLD) Fisher information [7] [8] [9] of the family

∗fujiwara@math.sci.osaka-u.ac.jp

1



(id⊗ Γθ)(σ̃) does not always take the maximum at a maximally entangled input σ̃ = σ̃ME [6] [10].
The problem of finding an optimal estimation scheme for a given family of quantum channels is
called a quantum channel identification problem [11]. Among others, evaluating the SLD Fisher
information of the output family (id ⊗ Γθ)⊗n(σ̃) of the nth extended channel maximized over
all inputs σ̃ ∈ S((H ⊗ H)⊗n), given n ∈ N, is of fundamental importance, because it quantifies
the ultimate statistical distinguishability of the parameter θ. This problem has been studied in
two special classes of quantum channels, i.e., the generalized Pauli channels [12] and the SU(d)
channels [13], and antithetical asymptotic behavior has been obtained. To be exact, the maximum
SLD Fisher information is O(n) in the former, whereas it is O(n2) in the latter, which is in a
striking contrast to the classical statistics. What about other quantum channels? Is there a class
of channels that exhibits O(nα) with α ̸= 1, 2?

The purpose of this paper is to give a partial answer to this question. We show that the
maximum SLD Fisher information increases at most in the order of O(n2) for any class of quantum
channels. We further derive a simple criterion for the order to be O(n), and prove that “almost all”
families of quantum channels exhibit O(n). Here, the geometry of fibre bundle over the manifold
of quantum channels plays an essential role.

The paper is organized as follows. Section 2 is devoted to a brief review of differential geometry
of quantum statistical manifold. In Section 3, we introduce a fibre bundle structure over manifolds
of quantum channels. It is shown that the maximal SLD Fisher information is expressed by means
of the operator norm of the “horizontal lift” of the tangent vector on the base manifold (Theorem
4). In Section 4, we proceed to the problem of evaluating the maximal SLD Fisher information.
We prove that it increases at most in the order of O(n2), and derive a criterion for the order to be
O(n) (Theorem 5). We further prove that any full-rank quantum channels exhibit the order O(n)
(Theorem 8). Since the closure of the set of full-rank quantum channels is identical to the totality
of quantum channels, this result could be paraphrased by saying that almost all quantum channels
exhibit O(n). In section 5, we present several illustrative examples to demonstrate these results.

2 Geometry of quantum statistical manifold

Let us start with a brief review of differential geometry of quantum statistical manifold [14]. We
consider the set of density operators on H of rank r:

S := {ρ ∈ S(H) ; rank ρ = r}.

This can be regarded as a (2dr − r2 − 1)-dimensional real manifold. Given a ρ ∈ S and a natural
number q (≥ r), an ordered list of vectors W = [φ̂1, . . . , φ̂q] is called an ordered ρ-ensemble of size
q if

ρ =
q∑

j=1

|φ̂j〉〈φ̂j |.

Associated with each ρ ∈ S is the set

Wq[ρ] := {W ; W is an ordered ρ-ensemble of size q}.

Letting
Wq :=

⋃
ρ∈S

Wq[ρ],

we have a canonical projection

π : Wq −→ S : [φ̂1, . . . , φ̂q] 7−→
q∑

j=1

|φ̂j〉〈φ̂j |.
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There is a natural right action of the q-dimensional unitary group U(q) on Wq[ρ]:

W = [φ̂j ]1≤j≤q 7−→ WU =

[
q∑

k=1

φ̂kukj

]
1≤j≤q

.

This U(q)-action on Wq[ρ] is transitive. Moreover, when q = r, each W ∈ Wr[ρ] comprises linearly
independent vectors, and the U(r) action on Wr[ρ] is free. Therefore the quadruple (Wr, π,S, U(r))
is a principal fibre bundle [15]. For later applications, however, it is essential to treat ordered ρ-
ensembles of a general size q (≥ r).

The readers may be warned not to confuse the right action W 7→ WU of unitary matrices
U ∈ U(q) with the left action W 7→ LW := [Lφ̂1, . . . , Lφ̂q] of linear operators L ∈ B(H). Also it
should be noted that by using an abridged notation

W =
[
|φ̂1〉, . . . , |φ̂q〉

]
, W ∗ =

 〈φ̂1|
...

〈φ̂q|

 ,

the above mentioned properties can be exhibited as follows:

ρ =
q∑

j=1

|φ̂j〉〈φ̂j | ⇐⇒ ρ = WW ∗

π : Wq −→ S ⇐⇒ π : W 7−→ WW ∗

U(q) preserves each fibre ⇐⇒ WW ∗ = (WU)(WU)∗

This correspondence clarifies that our formulation unifies and extends the geometry of Berry’s phase
[16] [17] [18] [19] [20] and that of Uhlmann’s [21] [22] [23].

One of the most fundamental quantity on the quantum statistical manifold S is the SLD Fisher
metric. A Hermitian operator-valued continuous one-form Lρ : TρS −→ B(H) satisfying

dρ =
1
2
(ρLρ + Lρρ)

is called the SLD representation, and the bilinear form g (= gρ) : TρS × TρS → R defined by

gρ(X,Y ) :=
1
2

Tr ρ (Lρ(X)Lρ(Y ) + Lρ(Y )Lρ(X))

is called the SLD Fisher metric. Although the SLD representation is not unique unless r = d, the
SLD Fisher metric is invariant under the arbitrariness of the SLD representation [24] [25].

The following theorem provides an interpretation of the SLD Fisher metric of S in terms of the
fibre bundle (Wq, π,S, U(q)) [25].

Theorem 1. Let {ρθ ; θ ∈ Θ ⊂ R} be a smooth curve on S and let q (≥ r) be an arbitrary natural
number. Then the SLD Fisher information J(ρθ) := gρθ

(∂θ, ∂θ) at θ = θ0 ∈ Θ is given by

J(ρθ0) = 4 min
Wθ

Tr ẆθẆ
∗
θ

∣∣∣∣
θ=θ0

where the dot denotes the differentiation with respect to θ, and the minimum is taken over all smooth
families of ordered ρθ-ensembles Wθ of size q that are locally defined around θ = θ0. The minimum
is attained if and only if

Ẇθ =
1
2
Lρθ

(∂θ)Wθ (2)

holds at θ = θ0.
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Proof. Let us fix a local smooth family of ρθ-ensembles W
(0)
θ = [φ̂1(θ), . . . , φ̂r(θ)] of size r around

θ = θ0. We extend it to a family of ρθ-ensembles of size q by adding (q − r) zero vectors as
[φ̂1(θ), . . . , φ̂r(θ), 0, . . . , 0], and regard it as a reference family. Letting V (0) := [ Ir | O ], where Ir

and O denote the r × r identity matrix and the r × (q − r) zero matrix, the reference family is
written as W

(0)
θ V (0). Given a smooth family of ρθ-ensembles Wθ of size q, there is a smooth family

Uθ of q × q unitary matrices that satisfies

Wθ = W
(0)
θ V (0)Uθ.

Then
Ẇθ = Ẇ

(0)
θ V (0)Uθ + W

(0)
θ V (0)U̇θ.

Since Ẇ
(0)
θ describes the change of linearly independent vectors [φ̂j(θ)]1≤j≤r in H, there is an

operator Lθ ∈ B(H) that satisfies

Ẇ
(0)
θ =

1
2
L∗

θW
(0)
θ .

As a consequence

Ẇθ =
1
2
L∗

θWθ + WθU
∗
θ U̇θ.

In order for this equation to be consistent with the change of ρθ, we claim

ρ̇θ = ẆθW
∗
θ + WθẆ

∗
θ =

1
2
(ρθLθ + L∗

θρθ).

This shows that the operator Lθ is a logarithmic derivative.
Let Kθ := Lθ − LS

θ where LS
θ := Lρθ

(∂θ). Then ρθKθ + K∗
θ ρθ = 0, and we have

Tr ẆθẆ
∗
θ =

1
4
Tr ρθ(LS

θ )2 + Tr
(

1
2
K∗

θ Wθ + WθU
∗
θ U̇θ

)(
1
2
K∗

θ Wθ + WθU
∗
θ U̇θ

)∗

.

Since the second term in the right-hand side is nonnegative, we conclude that

min
{Wθ}

Tr ẆθẆ
∗
θ =

1
4
Tr ρθ(LS

θ )2 =
1
4
J(ρθ).

The minimum is attained if and only if

1
2
K∗

θ Wθ + WθU
∗
θ U̇θ = 0

or equivalently

Ẇθ =
1
2
LS

θ Wθ.

In order to obtain an intuitive geometrical insight into Theorem 1, let us regard Wq as a metric
space with metric

d(W (1),W (2)) :=

√√√√ q∑
j=1

(
〈φ̂(1)

j | − 〈φ̂(2)
j |

)(
|φ̂(1)

j 〉 − |φ̂(2)
j 〉

)
,
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where W (i) =
[
|φ̂(i)

1 〉, . . . , |φ̂(i)
q 〉

]
. Given W ∈ π−1(ρ), we define

fW : S −→ Wq

σ 7−→ arg min
W ′∈π−1(σ)

d(W,W ′).

Theorem 1 implies that the minimal squared-distance between two near-by fibres is given by a
quarter of the SLD Fisher information, and the differential dfW maps X ∈ TρS to X ∈ TWWq that
satisfies

XW =
1
2
Lρ(X)W.

An integral curve of the differential equation (2) is called a horizontal lift of the curve ρθ.
It would be worth mentioning that when q = r, the above observation leads to a connection of

the principal fibre bundle (Wr, π,S, U(r)). Let us introduce the projection

P : TWWr −→ TWWr

X 7−→ X,

where X is defined by

XW =
1
2
LW (X)W, LW = π∗Lπ(W ).

Now we decompose the tangent space TWWr into the direct sum

TWWr = VW ⊕ HW ,

where
HW = P (TWWr), VW = (1 − P )(TWWr) = Ker(π∗)W .

The subspace HW has the property that HWU = RU∗HW , where RU denotes the right action of
U ∈ U(r). Thus there is a unique Ehresmann connection A in which HW becomes the horizontal
subspace:

dW = WA +
1
2
LW W.

The curvature form F (A)(X,Y ) := −A([X, Y ]) becomes

WF (A)(X,Y ) = −[X, Y ]W +
1
2
Lρ(π∗[X, Y ])W

=
1
4

{
[LX , LY ] − 1

2
Lρ([ [LX , LY ], ρ])

}
W,

where ρ := π(W ) and LX := LW (X). It is shown that the curvature F (A) is closely related to the
torsion of the exponential connection ∇(e) of the base manifold S. For more information, see [14].

3 Fibre bundle over quantum channels

Let us proceed to geometry of manifolds of quantum channels. It is well known [3] that a quantum
channel Γ : S(H) → S(H) is represented in the form

Γ(ρ) =
∑

j

AjρA∗
j
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where A = {Aj}j is a finite collection of operators satisfying∑
j

A∗
jAj = I.

This is sometimes referred to as the operator sum representation. When a quantum channel Γ is
represented in this way, the ordered collection of operators A = {Aj}j is called a generator of Γ.
The number J of operators in a list A = {A1, . . . , AJ} is called the size of A. Given a quantum
channel Γ, let G[Γ] be the set of generators of Γ. It is further decomposed as

G[Γ] =
⋃
q≥r

Gq[Γ],

where Gq[Γ] denotes the set of generators of size q, and the minimal size r is called the rank of Γ.
Let us recall the following fundamental characterization [4].

Proposition 2. Two collections of operators {Aj}1≤j≤J , {Bk}1≤k≤K (J ≤ K) give the same
quantum channel if and only if there is a matrix Q = [Qjk] ∈ CJ×K such that QQ∗ = IJ (IJ

denotes the J × J identity matrix) and Bk =
∑

j AjQjk.

Corollary 3. Let r = rankΓ. Then A ∈ G[Γ] belongs to Gr[Γ] if and only if A is a linearly
independent set of operators. Further, A ∈ Gr[Γ] is unique up to an r × r unitary matrix.

Proposition 2 is easily seen by recalling that a generator A of Γ of size q is obtained by rearranging
the components of columns of a d2 × q matrix A that satisfies

1
d
AA∗ = (id ⊗ Γ)(σ̃ME).

Here the operator (id⊗Γ)(σ̃ME) is identified with its d2 × d2 matrix representation. This fact also
implies that rankΓ = rank (id ⊗ Γ)(σ̃ME). See [5] [6] for details.

Corollary 3 shows that by regarding the set of minimal generators Gr[Γ] as the fibre over Γ, one
can define a principal fibre bundle over the set of all quantum channels of rank r. The structure
group is U(r). This principal fibre bundle was first introduced in [14]. In view of applications to
quantum channel identification problems, however, it is useful to treat fibre spaces Gq[Γ] of general
size q (≥ r), as demonstrated below.

Let us recall the quantum channel identification problem which allows extensions of the channel
[11]. Suppose that we have an unknown quantum channel that belongs to a parametric family
{Γθ ; θ ∈ Θ} of quantum channels, and that we wish to estimate the true value of the parameter θ
as accurate as possible. Our task is to find an optimal input σ̃ ∈ S(H⊗H) to the extended channel
id ⊗ Γθ and an optimal measurement for estimating the parameter θ of the family (id ⊗ Γθ)(σ̃) of
output states. In what follows, we restrict ourselves, for the sake of simplicity, to the case when
θ is one-dimensional. In this case, the problem amounts to finding an input σ̃ that maximizes the
SLD Fisher information J((id⊗ Γθ)(σ̃)) of the output family. When the optimal input depends on
the true value of θ, we make use of an adaptive estimation scheme [26].

Now there is a delicate problem concerning the existence of the SLD of (id ⊗ Γθ)(σ̃). First of
all, the family {Γθ}θ must be differentiable in some sense. Here we assume the following.

(RC1) Γθ has a generator A(θ) = {Aj(θ)}1≤j≤r0 ∈ Gr0 [Γθ] with r0 := max{rank Γθ ; θ ∈ Θ}
such that each component Aj(θ), (1 ≤ j ≤ r0), is continuously differentiable in θ.

If this condition is satisfied, we simply call the family {Γθ}θ smooth. Note that (RC1) is stronger
than the requirement that Γθ(σ) is continuously differentiable for all σ ∈ S(H). In fact, (RC1) is
much closer in spirit to the condition that

√
Γθ(σ) is continuously differentiable.
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We next observe the following fact: the rank of the output state (id ⊗ Γθ)(σ̃) may vary as θ
changes, even if rankΓθ is constant, and the family (id ⊗ Γθ)(σ̃) may not have an SLD at a point
where the rank changes. Let us call such a point singular, and denote the set of singular points of
(id ⊗ Γθ)(σ̃) by Θsing(σ̃) (⊂ Θ). To surmount this difficulty, we first assume the following.

(RC2) The set Θsing(σ̃) is a finite set for all σ̃ ∈ S(H⊗H).

This condition ensures that Theorem 1 is applicable to the evaluation of the SLD Fisher information
J((id ⊗ Γθ)(σ̃)) at θ /∈ Θsing(σ̃). Moreover, since the function θ 7→ J((id ⊗ Γθ)(σ̃)) is continuous at
θ /∈ Θsing(σ̃), one would expect that the SLD Fisher information at a singular point θ0 ∈ Θsing(σ̃)
might be defined by

J((id ⊗ Γθ0)(σ̃)) := lim
θ→θ0

J((id ⊗ Γθ)(σ̃)). (3)

In order to put this idea into practice, we further assume the following.

(RC3) For each σ ∈ S(H), the function

θ0 7−→ min
A(θ)

Tr

σ

∑
j

Ȧj(θ)∗Ȧj(θ)

 ∣∣∣∣∣∣
θ=θ0

(4)

is continuous at all θ0 ∈ Θ, where the minimum is taken over all smooth families of generators
A(θ) ∈ G[Γθ] that are locally defined around θ = θ0.

Note that under (RC1), the function (4) is always upper semicontinuous. Moreover, given a pure
state σ̃ ∈ S(H ⊗H), the right-hand side of (4) with σ := Tr1σ̃ gives the SLD Fisher information
J((id ⊗ Γθ0)(σ̃)) at each θ0 /∈ Θsing(σ̃); see (5) below. The condition (RC3) is, therefore, essential
only at θ0 ∈ Θsing(σ̃). We shall call a family {Γθ}θ piecewise regular if it satisfies (RC2) and (RC3).

Let us now proceed to the problem of maximizing the SLD Fisher information J((id ⊗ Γθ)(σ̃))
over all input state σ̃ ∈ S(H⊗H). A direct evaluation of the SLD Fisher information J((id⊗Γθ)(σ̃))
as a function of input state σ̃ is often infeasible because of computational difficulty. The following
theorem gives an alternative way of evaluating the maximal SLD Fisher information.

Theorem 4. Let {Γθ ; θ ∈ Θ ⊂ R} be a smooth, piecewise regular one-parameter family of quantum
channels, and let q (≥ max{rankΓθ}θ) be an arbitrary natural number. Then

max
σ̃∈S(H⊗H)

J((id ⊗ Γθ0)(σ̃)) = 4 min
A(θ)

∥∥∥∥∥∥
q∑

j=1

Ȧj(θ)∗Ȧj(θ)

∥∥∥∥∥∥
∣∣∣∣∣∣
θ=θ0

for all θ0 ∈ Θ, where ∥ · ∥ denotes the operator norm of H, and the minimum is taken over all
smooth families of generators A(θ) = {Aj(θ)}1≤j≤q ∈ Gq[Γθ] that are locally defined around θ = θ0.

Proof. Since the SLD Fisher information J((id⊗Γθ)(σ̃)) takes the maximum at the extreme bound-
ary ∂eS(H ⊗ H) [11], we can restrict ourselves, without loss of generality, to pure state inputs
σ̃ = |ψ〉〈ψ|, where ψ is a unit vector in H⊗H. Letting A(θ) = {Aj(θ)}1≤j≤q be a smooth family
of generators of Γθ, we have

ρ̃θ := (id ⊗ Γθ)(σ̃) =
q∑

j=1

(I ⊗ Aj(θ)) |ψ〉〈ψ| (I ⊗ Aj(θ))∗.
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This shows that [(I ⊗ Aj(θ))ψ]1≤j≤q is an ordered ρ̃θ-ensemble of size q. Moreover, the transitive
right action of unitary group U(q) on the fibre Gq[Γθ]:

{Aj(θ)}1≤j≤q 7−→

{
q∑

k=1

Ak(θ) ukj

}
1≤j≤q

naturally induces a transitive right action on the fibre Wq[ρ̃θ]:

[(I ⊗ Aj(θ))ψ]1≤j≤q 7−→

[
q∑

k=1

((I ⊗ Ak(θ))ψ) ukj

]
1≤j≤q

.

According to Theorem 1, therefore, the SLD Fisher information J(ρ̃θ0) at θ0 /∈ Θsing(σ̃) is given by

1
4

J(ρ̃θ0) = min
A(θ)

TrH⊗H
∑

j

∣∣∣∣ d

dθ
(I ⊗ Aj(θ))ψ

〉〈
d

dθ
(I ⊗ Aj(θ))ψ

∣∣∣∣
∣∣∣∣∣∣
θ=θ0

= min
A(θ)

TrH⊗H |ψ〉〈ψ|

I ⊗
∑

j

Ȧj(θ)∗Ȧj(θ)

 ∣∣∣∣∣∣
θ=θ0

= min
A(θ)

TrH σ

∑
j

Ȧj(θ)∗Ȧj(θ)

 ∣∣∣∣∣∣
θ=θ0

, (5)

where σ := Tr1 |ψ〉〈ψ| ∈ S(H), and the minimum is taken over all smooth families of generators
A(θ) = {Aj(θ)}j ∈ Gq(Γθ) that are locally defined around θ = θ0. Now, because of (RC3), we
see that (3) is actually well-defined for any pure state input σ̃ = |ψ〉〈ψ|. This observation further
ensures that, under the definition (3), the formula (5) holds for all θ0 ∈ Θ.

In order to evaluate the minimum in (5), let us introduce a smooth reference generator B(θ) =
{Bj(θ)}1≤j≤q. Then there is a smooth family of q × q unitary matrices U(θ) = [ukj(θ)] such that

Aj(θ) =
q∑

k=1

Bk(θ)ukj(θ).

Let xkℓ := (1/
√
−1)

∑
j u̇kjuℓj = (1/

√
−1)(UU̇∗)ℓk. Then xkℓ = xℓk, so that the matrix X = [xkℓ]

is Hermitian and
√
−1X belongs to Lie algebra u(q). Now

∑
j

Ȧ∗
j Ȧj =

∑
j

(∑
k

Ḃkukj + Bku̇kj

)∗ (∑
ℓ

Ḃℓuℓj + Bℓu̇ℓj

)

=

(∑
k

Ḃ∗
kḂk

)
+

(∑
kℓ

Ḃ∗
kBℓ − B∗

kḂℓ√
−1

xkℓ

)
+

(∑
kℓ

B∗
kBℓ

∑
m

xkmxℓm

)
. (6)

As a consequence, (5) is rewritten as

1
4

J(ρ̃θ0) = min√
−1X∈u(q)

fθ0(σ,X) (7)

where

fθ(σ,X) :=

(∑
k

TrσḂ∗
kḂk

)
+

∑
kℓ

(
Trσ

Ḃ∗
kBℓ − B∗

kḂℓ√
−1

)
xkℓ +

∑
m

(∑
kℓ

(TrσB∗
kBℓ)xkmxℓm

)
.

(8)
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Now we are ready to prove Theorem 4. The function fθ(σ,X) is linear (affine) in σ, and is convex
in X because the coefficient matrix [Tr σB∗

kBℓ]1≤k,ℓ≤q is positive semidefinite. Consequently, the
maximal SLD Fisher information can be evaluated as follows.

1
4

max
σ̃∈S(H⊗H)

J((id ⊗ Γθ0)(σ̃)) =
1
4

max
σ̃∈∂eS(H⊗H)

J((id ⊗ Γθ0)(σ̃))

= max
σ∈S(H)

min√
−1X∈u(q)

fθ0(σ,X)

= min√
−1X∈u(q)

max
σ∈S(H)

fθ0(σ,X)

= min
A(θ)

∥∥∥∥∥∥
∑

j

Ȧj(θ)∗Ȧj(θ)

∥∥∥∥∥∥
∣∣∣∣∣∣
θ=θ0

. (9)

In the second equality, the relation (7) and the surjectivity of the partial trace Tr1 : ∂eS(H⊗H) →
S(H) are used. In the third equality, on the other hand, a version of minimax theorem [27, Corollary
37.3.2] is used, which asserts the exchangeability of min and max when either of the domains of the
arguments is compact.

In what follows, we abbreviate the formula (9) as

max
σ̃∈S(H⊗H)

J((id ⊗ Γθ)(σ̃)) = 4 min
A(θ)

∥∥∥∥∥∥
q∑

j=1

Ȧj(θ)∗Ȧj(θ)

∥∥∥∥∥∥ . (10)

Several remarks are in order. First, Theorem 4 gives a complete answer to the question raised
by Sarovar and Milburn [28] of how to express the maximal SLD Fisher information in terms of
generators. Originally they intended to find an expression for the maximal SLD Fisher information
maxσ∈S(H) J(Γθ(σ)) of unextended channels. Actually the formula (10) only gives its upper bound:

max
σ∈S(H)

J(Γθ(σ)) ≤ 4 min
A(θ)

∥∥∥∥∥∥
∑

j

Ȧj(θ)∗Ȧj(θ)

∥∥∥∥∥∥ . (11)

In fact, an argument similar to the proof of (7) leads to

1
4
J(Γθ(|ψ〉〈ψ|)) = min√

−1X∈u(q)
fθ(|ψ〉〈ψ|, X) (12)

for any |ψ〉〈ψ| ∈ ∂eS(H). Therefore, the obvious inequality

max
σ∈∂eS(H)

min√
−1X∈u(q)

fθ(σ,X) ≤ max
σ∈S(H)

min√
−1X∈u(q)

fθ(σ,X) (13)

leads to (11). It is important to notice that the inequality (13), and hence (11), is not always
saturated. This is because the function σ 7→ minX fθ(σ,X) does not in general take the maximum
at the extreme boundary ∂eS(H), although the function σ 7→ fθ(σ,X) always does for any X. (A
simple example which may help intuition: the function f : [−1, 1] × R → R : (a, x) 7→ x2 + ax,
which is affine in a and convex in x, has a single saddle point at (a, x) = (0, 0).) These observations
clarify the importance of extending the channel into the form id⊗Γθ. In Section 5, we demonstrate
these subtleties in more detail.

Second, the similarity between Theorems 1 and 4 clarifies a parallelism between the geometry
of optimal estimation scheme for quantum states and that for quantum channels: we need only
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change the Hilbert-Schmidt norm into the operator norm. In particular, by comparison with the
exposition presented after the proof of Theorem 1, Theorem 4 could be interpreted as expressing
the maximal SLD Fisher information by means of the operator norm of the “horizontal lift” of the
tangent vector ∂θ on the base manifold. Since the maximal SLD Fisher information quantifies the
statistical distinguishability of quantum channels by means of an optimal estimation scheme, we
might as well call the quantity (10) the SLD Fisher information of the quantum channel Γθ, and
shall denote it as J̃(id ⊗ Γθ).

4 Application to quantum channel estimation problems

Given a family of quantum channels Γθ, how fast does the SLD Fisher information J̃((id ⊗ Γθ)⊗n)
of the extended channel (id ⊗ Γθ)⊗n increase as n increases? It has been shown that J̃((id ⊗
Γθ)⊗n) = O(n) for generalized Pauli channels [12], and that J̃((id ⊗ Γθ)⊗n) = O(n2) for unitary
channels [13]. In this section, we prove that “almost all” families of quantum channels Γθ exhibit
J̃((id ⊗ Γθ)⊗n) = O(n).

We start with the following sufficient condition for J̃((id ⊗ Γθ)⊗n) = O(n).

Theorem 5. For any smooth, piecewise regular one-parameter family of quantum channels Γθ, it
holds that J̃((id ⊗ Γθ)⊗n) ≤ O(n2). Moreover, if Γθ has a generator A(θ) that satisfies∑

j

Ȧ∗
jAj = 0,

then J̃((id ⊗ Γθ)⊗n) = O(n).

Corollary 6. A smooth, piecewise regular one-parameter family of quantum channels Γθ exhibits
the additivity of the SLD Fisher information J̃((id ⊗ Γθ)⊗n) = n J̃(id ⊗ Γθ) if Γθ has a generator
A(θ) that satisfies both

∑
j

Ȧ∗
jAj = 0 and J̃(id ⊗ Γθ) = 4

∥∥∥∥∥∥
∑

j

Ȧ∗
j Ȧj

∥∥∥∥∥∥ .

We next show the following.

Lemma 7. Let Γ be a full-rank quantum channel. Then

rank (id ⊗ Γ)(|ψ〉〈ψ|) = d · (Schmidt rank of ψ)

for any ψ ∈ H ⊗ H, where the Schmidt rank of ψ is the number of nonzero components in the
Schmidt decomposition of ψ.

Lemma 7 implies that any one-parameter family of full-rank quantum channels is (piecewise)
regular, in that Θsing(σ̃) = ∅ for all σ̃ ∈ ∂eS(H⊗H). Taking account of this fact, we finally reach
the following important consequence.

Theorem 8. Any smooth one-parameter family of full-rank quantum channels Γθ exhibits J̃((id⊗
Γθ)⊗n) = O(n).

The affine isomorphism Γ 7→ (id ⊗ Γ)(σ̃ME) mentioned in Section 1 establishes a one-to-one
correspondence between the set of full-rank quantum channels on S(H) and the set of full-rank
density operators in S1(H⊗H). Therefore, the closure of the set of full-rank quantum channels is
identical to the totality of quantum channels. This observation prompts us to interpret Theorem 8
as asserting that the SLD Fisher information is of O(n) for “almost all” quantum channels.
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4.1 Proof of Theorem 5 and Corollary 6

By a suitable rearrangement of the constituent Hilbert spaces H, we identify (id ⊗ Γθ)⊗n with
id⊗n ⊗Γ⊗n

θ . Given a smooth family of generators A(θ) = {Aj(θ)}1≤j≤q of Γθ, let A
(1)
j := Aj(θ) for

j ∈ {1, . . . , q}, and let inductively

A(n+1)
µ := A(n)

µ1
⊗ A(1)

µ2
for µ := (µ1, µ2) ∈ {1, . . . , q}n × {1, . . . , q}.

Then
{

A
(n)
µ ; µ ∈ {1, . . . , q}n

}
is a generator of Γ⊗n

θ . Let

αn :=
∑

µ∈{1,...,q}n

Ȧ(n)∗
µ Ȧ(n)

µ

and
βn :=

∑
µ∈{1,...,q}n

Ȧ(n)∗
µ A(n)

µ .

Since βn + β∗
n = 0, we see that

αn+1 =
∑

µ1,µ2

[
∂θ

(
A(n)

µ1
⊗ A(1)

µ2

)]∗ [
∂θ

(
A(n)

µ1
⊗ A(1)

µ2

)]
= αn ⊗ I + I⊗n ⊗ α1 − 2βn ⊗ β1 (14)

and that

βn+1 =
∑

µ1,µ2

[
∂θ

(
A(n)

µ1
⊗ A(1)

µ2

)]∗ [
A(n)

µ1
⊗ A(1)

µ2

]
= βn ⊗ I + I⊗n ⊗ β1. (15)

Substituting the solution

βn =
n∑

i=1

I⊗(i−1) ⊗ β1 ⊗ I⊗(n−i)

of (15) into (14), we have

αn =
∑

i, j ≥ 0
i+j=n−1

I⊗i ⊗ α1 ⊗ I⊗j − 2
∑

i, j, k ≥ 0
i+j+k=n−2

I⊗i ⊗ β1 ⊗ I⊗j ⊗ β1 ⊗ I⊗k. (16)

As a consequence, the operator norm of αn is evaluated as

∥αn∥ ≤ n ∥α1∥ + n(n − 1) ∥β1∥2
. (17)

Combining inequality (17) with Theorem 4, we have

nJ̃(id ⊗ Γθ) ≤ J̃((id ⊗ Γθ)⊗n) ≤ 4 min
A(θ)

∥αn∥ ≤ 4n ∥α1∥ + 4n(n − 1) ∥β1∥2
,

where the last side is evaluated for an arbitrary generator A(θ) of Γθ. Theorem 5 and Corollary 6
now follows immediately.
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4.2 Proof of Lemma 7

Let ψ ∈ H ⊗H be represented in a Schmidt decomposition

ψ =
d∑

i=1

√
αi ei ⊗ fi,

where α = (α1, . . . , αd) is a probability vector, and {ei}1≤i≤d and {fi}1≤i≤d are orthonormal bases
of H. When ψ is represented in this way, we denote it as ψα. Thus

(id ⊗ Γ)(|ψα〉〈ψα|) =
∑
ij

√
αiαj |ei〉〈ej | ⊗ Γ(|fi〉〈fj |)

= (Dα ⊗ I) · ((id ⊗ Γ)(|ψu〉〈ψu|)) · (Dα ⊗ I),

where

Dα :=
√

d

d∑
i=1

√
αi |ei〉〈ei|

and u = (1/d, . . . , 1/d) denotes the uniform distribution. Since Γ is full-rank, the operator (id ⊗
Γ)(|ψu〉〈ψu|) is strictly positive. As a consequence,

rank (id ⊗ Γ)(|ψα〉〈ψα|) = rank (Dα ⊗ I) = d · rankDα.

4.3 Proof of Theorem 8

We show that any family Γθ of full-rank channels has a generator A(θ) that satisfies β1 = 0.
Let B(θ) = {Bj(θ)}1≤j≤d2 be an arbitrary smooth reference generator of Γθ of size d2, and let
A(θ) = {Aj(θ)}1≤j≤d2 be

Aj(θ) =
∑

k

Bk(θ)ukj(θ),

where U(θ) = [ukj(θ)] is unitary. Then

β1 =
∑

j

Ȧ∗
jAj

=
∑

j

(∑
k

Ḃkukj + Bku̇kj

)∗ (∑
ℓ

Bℓuℓj

)
=

∑
k

Ḃ∗
kBk +

√
−1

∑
kℓ

B∗
kBℓxkℓ, (18)

where xkℓ = (1/
√
−1)

∑
j u̇kjuℓj (= xℓk). It suffices to prove that for each θ, there is a Hermitian

matrix X = (xkℓ) that satisfies ∑
kℓ

B∗
kBℓxkℓ =

√
−1

∑
m

Ḃ∗
mBm. (19)

Since Γθ is full-rank, the generator {Bj}1≤j≤d2 forms a basis of the space B(H) of linear operators
on H, and there exist complex numbers {λk}1≤k≤d2 and {µk}1≤k≤d2 that satisfy

∑
k

λkBk = I,
∑

k

µkBk =
√
−1
2

∑
m

Ḃ∗
mBm.
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Let
xkℓ := λkµℓ + λℓµk.

Then xkℓ = xℓk and

∑
kℓ

B∗
kBℓxkℓ =

(∑
k

λkBk

)∗ (∑
ℓ

µℓBℓ

)
+

(∑
k

µkBk

)∗ (∑
ℓ

λℓBℓ

)

=
√
−1
2

∑
m

(Ḃ∗
mBm − B∗

mḂm)

=
√
−1

∑
m

Ḃ∗
mBm.

5 Examples

In this section, we present several examples to demonstrate the results obtained in Sections 3 and
4.

5.1 Depolarizing channel

Let σ1, σ2, σ3 be the standard Pauli matrices. A depolarizing channel Γθ : S(C2) → S(C2)
is a full-rank channel defined by the generator B(θ) = {Bj(θ)}0≤j≤3 with the parameter space
Θ = (−1/3, 1), where

B0(θ) =
√

1 + 3θ

2
I, Bj(θ) =

√
1 − θ

2
σj (1 ≤ j ≤ 3).

It is known [11] that

max
σ∈S(C2)

J(Γθ(σ)) =
1

(1 − θ)(1 + θ)
(20)

and
max

σ̃∈S(C2⊗C2)
J((id ⊗ Γθ)(σ̃)) =

3
(1 − θ)(1 + 3θ)

. (21)

Let us investigate these results in the light of the inequality (13).
We make use of the Stokes parametrization for σ ∈ S(C2) as follows:

σ =
1
2
(I + a σ1 + b σ2 + c σ3), (a2 + b2 + c2 ≤ 1). (22)

By a direct computation, the function (8) is explicitly minimized with respect to X as

min√
−1X∈u(4)

fθ(σ,X) =
3(1 + θ) − 2(a2 + b2 + c2)
4(1 − θ)(1 + θ)(1 + 3θ)

. (23)

When σ is restricted to the extreme boundary ∂eS(C2) where a2 + b2 + c2 = 1, we have

min√
−1X∈u(4)

fθ(σ,X)
∣∣∣∣
σ∈∂eS(C2)

=
1

4(1 − θ)(1 + θ)
.

This relation, combined with (12), reproduces (20) as follows:

max
σ∈S(C2)

J(Γθ(σ)) = max
σ∈∂eS(C2)

J(Γθ(σ)) = 4 max
σ∈∂eS(C2)

min√
−1X∈u(4)

fθ(σ,X) =
1

(1 − θ)(1 + θ)
.
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On the other hand, when no restriction is imposed on σ ∈ S(C2), we have

max
σ∈S(C2)

min√
−1X∈u(4)

fθ(σ,X) =
3

4(1 − θ)(1 + 3θ)
.

This leads to (21). Moreover, the maximum is attained if and only if σ = I/2. Since

Tr1|ψu〉〈ψu| =
I

2
,

(
ψu =

1√
2

2∑
i=1

ei ⊗ fi

)
,

we see that the maximum in (21) is attained at a maximally entangled pure state.
Note in passing that

β1 =
3∑

j=0

Ḃ∗
j Bj = 0

and

α1 =
3∑

j=0

Ḃ∗
j Ḃj =

3
4(1 − θ)(1 + 3θ)

I.

We therefore conclude from Corollary 6 that the SLD Fisher information is additive:

J̃((id ⊗ Γθ)⊗n) = n J̃(id ⊗ Γθ)).

This is in accordance with the result obtained in [12].

5.2 Rank-two quasi-unitary channel

Let Γθ : S(C2) → S(C2) be a one-parameter family of rank-two channels defined by the generator
B(θ) = {B1(θ), B2(θ)} with the parameter space Θ = [−π/2, π/2), where

B1(θ) :=
1√
2

exp(
√
−1 θ σ1) =

1√
2

(
I cos θ +

√
−1σ1 sin θ

)
B2(θ) :=

1√
2

σ2.

We show that
max

σ∈S(C2)
J(Γθ(σ)) = 2, (∀θ ∈ Θ) (24)

and
max

σ̃∈S(C2⊗C2)
J((id ⊗ Γθ)(σ̃)) = 2, (∀θ ∈ Θ). (25)

These results imply that the use of entanglement does not help enhance the distinguishability in
this channel.

We first prove (25) by a direct application of Theorem 4. Let us set

X =
[

x y +
√
−1 z

y −
√
−1 z w

]
. (26)

Then (6) becomes∑
j

Ȧ∗
j Ȧj =

(
1 + x2 + 2y2 + 2z2 + w2

2

)
I − xσ1

+((x + w)y cos θ − z sin θ) σ2 + ((x + w)y sin θ + z cos θ)σ3,
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and its maximal eigenvalue is∥∥∥∥∥∥
∑

j

Ȧ∗
j Ȧj

∥∥∥∥∥∥ =
1 + x2 + 2y2 + 2z2 + w2 + 2

√
x2 + z2 + (x + w)2y2

2
.

Obviously this takes the minimum at x = y = z = w = 0, and (25) follows immediately from
Theorem 4.

We next prove (24) and (25) in a unified manner based on (13). Let ψ ∈ C2⊗C2 be a unit vector
such that σ = Tr1|ψ〉〈ψ| is represented as (22), and let ρθ := Γθ(σ). Then by a direct computation,
we obtain

min√
−1X∈u(2)

fθ(σ,X) =
3 − (a2 + b2 + c2)

4
− det ρθ −

a2

16 det ρθ
(27)

at θ /∈ Θsing(|ψ〉〈ψ|) = {θ ; det ρθ = 0}, where

det ρθ =
1
8

[
2 − (b2 + c2) − (b2 − c2) cos 2θ − 2bc sin 2θ

]
.

Note that Θsing(|ψ〉〈ψ|) ̸= ∅ if and only if b2 + c2 = 1.
We first assume that b2 + c2 < 1: in this case Θsing(|ψ〉〈ψ|) = ∅. With (b, c) fixed, (27) is

monotone decreasing in a2, so that

J((id ⊗ Γθ)(|ψ〉〈ψ|)) = 4 min√
−1X∈u(2)

fθ(σ,X)

≤ 4 min√
−1X∈u(2)

fθ(σ,X)
∣∣∣∣
a=0

= 2 − r2 sin2(θ − φ) ≤ 2. (28)

Here we have set (a, b, c) = (0, r cos φ, r sinφ) in the second equality.
We next assume that b2 + c2 = 1: in this case, we need to pay special attention to the fact

that Θsing(|ψ〉〈ψ|) ̸= ∅. Let us fix a point θ0 ∈ Θ arbitrarily, and let us take a unit vector
ψ0 ∈ C2 ⊗ C2 such that σ0 := Tr1|ψ0〉〈ψ0| is represented by (a, b, c) = (0, cos θ0, sin θ0). Then
det Γθ(σ0) = sin2(θ− θ0)/4, so that θ0 ∈ Θsing(|ψ0〉〈ψ0|). On the other hand, we see from (27) that

J((id ⊗ Γθ)(|ψ0〉〈ψ0|)) = 4 min√
−1X∈u(2)

fθ(σ0, X) = 2 − sin2(θ − θ0) (29)

for all θ /∈ Θsing(|ψ0〉〈ψ0|). Taking the limit θ → θ0, and using the convention (3) at a singular
point, we have J((id ⊗ Γθ0)(|ψ0〉〈ψ0|)) = 2. This implies that the formula (29) holds for all θ ∈ Θ.

In summary, we see from (28) and (29) that

J((id ⊗ Γθ)(|ψ〉〈ψ|)) ≤ 2

for all ψ ∈ C2 ⊗ C2 and θ ∈ Θ. Moreover, this upper bound is achieved, for instance, by a tensor
product state ψ = φ1 ⊗ φ2, where φ1 and φ2 are unit vectors such that |φ2〉〈φ2| is specified by the
Stokes parameter (a, b, c) = (0, cos θ, sin θ). This completes the proof of (24) and (25).

Finally, we prove that β1 ̸= 0 for any generator A(θ) of Γθ. To this end, we show that the
equation (19) does not have a Hermitian solution X = (xkℓ). By a direct computation using the
parametrization (26) of X, (19) is reduced to(

x + w

2

)
I + (y cos θ) σ2 + (y sin θ)σ3 =

1
2
σ1.

Since {I, σ1, σ2, σ3} is linearly independent, this equation does not have a solution.
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5.3 Full-rank quasi-unitary channel

While Theorem 8 asserts that J̃((id ⊗ Γθ)⊗n) = O(n) for any family of full-rank channels Γθ, it
does not always imply the additivity J̃((id⊗Γθ)⊗n) = n J̃(id⊗Γθ). In this section we demonstrate
the superadditivity by an example.

Given ε ∈ [0, 1/3), let Γε
θ : S(C2) → S(C2) be defined by

Γε
θ(τ) := (1 − 3ε)UθτU∗

θ + ε
3∑

i=1

σiτσ∗
i

where
Uθ := exp(

√
−1 θ σ1) = I cos θ +

√
−1σ1 sin θ

with θ ∈ (−π/2, π/2). The channel Γε
θ is full-rank if and only if ε ̸= 0. For sufficiently small

ε > 0, the channel is regarded as an “almost” unitary channel, perturbed by a fixed depolarizing
noise. When ε = 0, on the other hand, the channel is reduced to a genuine unitary channel, and it
enjoys J̃((id⊗Γ0

θ)
⊗n) = O(n2) [13]. It is therefore probable that J̃((id⊗Γε

θ)
⊗n) > n J̃(id⊗Γε

θ) for
sufficiently small ε.

We first show that

J̃(id ⊗ Γε
θ) =

2(1 − 3ε)(2 − (5 + cos θ)ε)
1 − 2ε

. (30)

Let us take
B0(θ) :=

√
1 − 3εUθ, Bi(θ) :=

√
ε σi (1 ≤ i ≤ 3)

as a reference generator to define fθ(τ,X). It then follows from (9) that J̃(id⊗Γε
θ) is the quadruple

of the saddle value of fθ(τ,X). It can be shown that the function (τ,X) 7→ fθ(τ,X) has a unique
saddle point (τ0, X0), where

τ0 :=
1
2

[
1 0
0 1

]
and

X0 :=

√
ε(1 − 3ε) cos θ

1 − 2ε


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .

The formula (30) is then obtained by computing 4fθ(τ0, X0). Note that maxτ̃ J((id ⊗ Γε
θ)(τ̃)) is

attained by a maximally entangled τ̃ ∈ ∂eS(C2 ⊗ C2) because τ0 is the barycentre of S(C2).
In order to prove the superadditivity of J̃((id ⊗ Γε

θ)
⊗n), it suffices to show that there is a

ψ ∈ (C2 ⊗ C2)⊗2 that satisfies

J
(
(id ⊗ Γε

θ)
⊗2(|ψ〉〈ψ|)

)
> 2J̃(id ⊗ Γε

θ).

As in Section 4.1, we identify (id ⊗ Γε
θ)

⊗2 with (id⊗2 ⊗ Γε⊗2
θ ). Let {ei}i=1,2 be the standard basis

of C2, and let

f̃1 := e1 ⊗ e1, f̃2 :=
1√
2
(e1 ⊗ e2 + e2 ⊗ e1), f̃3 := e2 ⊗ e2.

Then {f̃i}1≤i≤3 forms an orthonormal basis of an irreducible subspace of C2 ⊗C2 under the SU(2)
action. It is known [13] that when ε = 0, the maximally entangled vector

ψME :=
1√
3

3∑
i=1

f̃i ⊗ f̃i

16



gives an optimal (more precisely, an admissible) input state to the extended channel (id⊗2 ⊗Γ0⊗2
θ ).

Therefore, we can expect that for sufficiently small ε, ψME would give a nearly optimal input
to the extended channel (id⊗2 ⊗ Γε⊗2

θ ). By computing explicitly the SLD of the output state
(id⊗2 ⊗ Γε⊗2

θ )(|ψME〉〈ψME |) at θ = 0, we obtain

J
(
(id⊗2 ⊗ Γε⊗2

θ )(|ψME〉〈ψME |)
)∣∣∣

θ=0
=

32(1 − 3ε)2(3 − 15ε + 20ε2)
9 − 42ε + 48ε2

. (31)

Comparing (31) with (30) at θ = 0, we see that

J
(
(id⊗2 ⊗ Γε⊗2

θ )(|ψME〉〈ψME |)
)∣∣∣

θ=0
> 2J̃(id ⊗ Γε

θ)
∣∣∣
θ=0

for 0 ≤ ε < (9 −
√

21)/40 (= 0.110 · · · ). This completes the proof of the superadditivity.
Incidentally, (30) and (31) suggest that J̃((id ⊗ Γε

θ)
⊗n) would be of the form

J̃((id ⊗ Γε
θ)

⊗n) =
O(n2)

1 + εO(n)
.

Deriving the explicit formula of J̃((id ⊗ Γε
θ)

⊗n) is a challenging open problem.

6 Concluding remarks

We introduced a fibre bundle structure over manifolds of quantum channels. Under mild regularity
conditions, it was shown that the SLD Fisher information J̃(id ⊗ Γθ) of a one-paremeter family
of quantum channels Γθ is expressed by means of the operator norm of the horizontal lift of the
tangent vector on the base manifold. Using this formula, we proved that J̃((id⊗Γθ)⊗n) = O(n) for
any family of full-rank channels Γθ. This result asserts that for almost all quantum channels, the
maximum SLD Fisher information increases in the order of O(n). We presented several illustrative
examples for the sake of demonstration.

There are many open problems left. Among others, investigating the order of J̃((id ⊗ Γθ)⊗n)
for channels Γθ of ranks in-between would be of primary importance. We observe that the solution
(16) also leads to the following evaluation:

n(n − 1) ∥β1∥2 − n ∥α1∥ ≤ ∥αn∥ ≤ n(n − 1) ∥β1∥2 + n ∥α1∥ (32)

for any generator A(θ) of Γθ. This suggests the following dichotomy: the order of J̃((id⊗Γθ)⊗n) is
either O(n) or O(n2), and is O(n) if and only if Γθ has a generator A(θ) that satisfies β1 = 0. If this
were true, the rank-two quasi-unitary channel investigated in Section 5.2 would give an example of
non-unitary channel that exhibits J̃((id ⊗ Γθ)⊗n) = O(n2). Unfortunately, because

J̃((id ⊗ Γθ)⊗n) ≤ 4 min
A(θ)

∥αn∥,

(32) does not conclude anything about this conjecture at present.
Another important subject is to establish a perturbation theory of quantum channels. In an

experiment, noise from the environment is inevitable. According to Theorem 8, a slight perturbation
applied to a unitary channel induces a transition of the increasing order from O(n2) to O(n). Does
this mean that the O(n2) increase of the quantum Fisher information cannot be detected by an
experiment? Actually, given a family Γε

θ of perturbed unitary channels, the SLD Fisher information
J̃((id⊗Γε

θ)
⊗n) would be continuous in the magnitude ε of perturbation for each n, as demonstrated

in Section 5.3, and there is a hope for detecting the O(n2) increase approximately. A detailed
analysis of the transition from O(n2) to O(n) is, therefore, important not only from a theoretical
point of view but also from an experimental point of view.
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