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Abstract

The problem of estimating an unknown SU(D) channel ΓU : ρ 7→ UρU∗ is studied based
on the quantum Cramér-Rao inequality. It is shown that the minimum estimation error is
of O(1/n2), where n is the degree of extension of the channel. The mechanism behind this
asymptotic behavior is investigated from a differential geometrical point of view.

1 Introduction

This paper deals with the problem of estimating an unknown unitary channel ΓU acting on the
set S(H) of density operators on a Hilbert space H ≅ CD as ΓU : ρ 7→ UρU∗, where U ∈ SU(D).
In particular, we investigate the optimal estimation scheme using the extension (id ⊗ ΓU )⊗n :
S((H⊗H)⊗n) → S((H⊗H)⊗n), where n is an arbitrary positive integer.

Due to its obvious group covariant structure, the problem has been studied in a Bayesian
framework [1, 2, 3, 4], using a covariant cost function averaged over SU(D) with respect to the
uniform prior distribution (i.e., the Haar measure). In contrast, our approach is a local one based
on the quantum Cramér-Rao inequality. Such a local approach, the validity of which has been
established in [5], has an advantage that it allows a direct comparison of estimation performances
among various classes of quantum channels which do not necessarily possess a priori distributions
such as the generalized Pauli channels [6]. It also allows us to invoke differential geometrical methods
[7] in studying the roles of the quantum entanglement and the degree n of extension.

The paper is organized as follows. We summarize the main results in Section 2, and prove them
in Section 3. In Section 4, we recast the main results from a differential geometrical point of view.
In Section 5, we give brief concluding remarks, and further remarks on the admissibility of an input
state are presented in Appendix A.
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2 Main Results

Let us introduce a local coordinate system θ = (θ1, . . . , θD2−1) of SU(D) around a point U0 by the
exponential map:

Uθ = U0 Exp

√
−1

D2−1∑
i=1

θiXi

 , (1)

where {
√
−1 Xi}1≤i≤D2−1 is a basis of Lie algebra su(D) satisfying TrXiXj = 1

2δij . By a suitable
rearrangement of the constituent Hilbert spaces H, we identify (id⊗ΓUθ

)⊗n with id⊗n⊗Γ⊗n
Uθ

. Once
an input state ψ(n) ∈ H⊗n ⊗H⊗n is fixed, we have a quantum statistical model

ρθ := (id⊗n ⊗ Γ⊗n
Uθ

) (|ψ(n)〉〈ψ(n)|),

and the problem of estimating the unknown unitary operation Uθ ∈ SU(D) is reduced to estimating
the parameter θ of the model ρθ.

Let us decompose H⊗n into irreducible subspaces under the SU(D) action as follows:

H⊗n =
⊕

λ

 ⊕
[λ]∈STab (λ)

H[λ]

 ,

where λ runs over all possible Young frames (or Dynkin indices) and STab (λ) stands for the set of
standard tableaux on λ. Then

H⊗n ⊗H⊗n =
⊕

λ

 ⊕
[λ]∈STab (λ)

H⊗n ⊗H[λ]

 .

Given an input state ψ(n) ∈ H⊗n ⊗H⊗n, let us decompose it as

ψ(n) =
∑

λ

∑
STab(λ)

a[λ] ψ[λ], (2)

where ψ[λ] is a unit vector on the invariant subspace H⊗n ⊗ H[λ], and the coefficients a[λ] satisfy
the normalization ∑

λ

∑
STab(λ)

|a[λ]|2 = 1.

Associated with the quantum statistical model ρθ is the symmetric logarithmic derivative (SLD)
Fisher metric g [7], which will also be denoted as gψ(n) when the input state ψ(n) needs to be
specified. The SLD Fisher metric g is a measure of statistical distinguishability, and is one of the
most fundamental quantity in quantum estimation theory. In fact, it is related to the quantum
Cramér-Rao inequality [8, 9]

Vθ[M (n)|ψ(n)] ≥
(
Jθ[ψ(n)]

)−1

, (3)

where Vθ[M (n)|ψ(n)] is the covariance matrix of the locally unbiased estimator (POVM) M (n) for
the parameter θ when the input state is ψ(n), and Jθ[ψ(n)] is the SLD Fisher information matrix,
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i.e., the representation of the SLD Fisher metric g by components with respect to the coordinate
system θ.

In view of the Cramér-Rao inequality (3), the way of finding an optimal estimation scheme is
twofold. First, we optimize the input state ψ(n) to make the lower bound

(
Jθ[ψ(n)]

)−1
as small as

possible, that is, to make the SLD Fisher metric g as large as possible. Second, we investigate if
the corresponding lower bound is achievable, that is, if there is a locally unbiased estimator M (n)

for which the equality holds in (3).
Motivated by the decomposition (2), let us first mention the problem of maximizing the SLD

Fisher metric g[λ] := gψ[λ] for the model ρ
[λ]
θ := (id⊗n⊗Γ⊗n

Uθ
) (|ψ[λ]〉〈ψ[λ]|) on the invariant subspace

H⊗n ⊗H[λ]. Unfortunately, the set {Jθ[ψ] |ψ ∈ H⊗n ⊗H[λ]} does not have the maximal element in
general (see Appendix A). In other words, there is no input state ψ ∈ H⊗n ⊗H[λ] that maximizes
the metric g[λ] itself. Hence, we must introduce a weaker optimality criterion.

Definition 1. A state φ ∈ H⊗n ⊗H[λ] is called admissible in the component H⊗n ⊗H[λ] if

tr J0[φ] = max
{

trJ0[ψ]
∣∣∣ ψ ∈ H⊗n ⊗H[λ]

}
.

Suppose φ ∈ H⊗n ⊗ H[λ] is admissible in H⊗n ⊗ H[λ]. Then it is easily seen that there is no
ψ ∈ H⊗n ⊗ H[λ] that satisfies J0[ψ] ≥ J0[φ] and J0[ψ] ̸= J0[φ] simultaneously. Stated otherwise,
there is no ψ ∈ H⊗n⊗H[λ] that satisfies g

[λ]
ψ ≥ g

[λ]
φ and g

[λ]
ψ ̸= g

[λ]
φ at U = U0. Moreover, since J0[ψ]

is independent of the choice of U0 ∈ SU(D) (see the proof of Theorem 1), it follows that there is
no ψ ∈ H⊗n ⊗H[λ] that satisfies g

[λ]
ψ ≥ g

[λ]
φ and g

[λ]
ψ ̸= g

[λ]
φ anywhere on SU(D). This observation

justifies the notion of admissibility as an alternative optimality criterion for input states.
The admissibility of the input state is closely related to the achievability of the Cramér-Rao

inequality. In fact, we can prove the following.

Theorem 1. For ψ ∈ H⊗n ⊗H[λ], the following are equivallent:

(a) There is a locally unbiased estimator M on H⊗n ⊗H[λ] that satisfies V0[M |ψ] = (J0[ψ])−1.

(b) ψ is admissible.

As to a general input of the form (2), we have the following.

Theorem 2. If the input ψ(n) is a superposition of admissible states ψ[λ] ∈ H⊗n ⊗H[λ] as (2), the
lower bound of (3) is achievable. Moreover, the SLD Fisher metric is decomposed as

g =
∑

λ

∑
STab(λ)

|a[λ]|2 g[λ]. (4)

All in all, it is reasonable to restrict ourselves to inputs ψ(n) ∈ H⊗n⊗H⊗n that are superpositions
of admissible states ψ[λ] ∈ H⊗n ⊗H[λ]. (A further discussion is given in the proof of Theorem 2.)
In what follows, as a canonical choice of admissible states on H⊗n ⊗H[λ], we focus on maximally
entangled inputs:

ψ
[λ]
ME :=

1√
dimH[λ]

dimH[λ]∑
ℓ=1

eℓ ⊗ fℓ, (5)
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where {ek}k and {fℓ}ℓ are arbitrary orthonormal bases of H⊗n and H[λ]. (For the admissibility of
ψ

[λ]
ME, see the proof of Theorem 1, and for a statistical meaning of this choice, see Appendix A.)

Now that the SLD Fisher metric g is given by a convex combination of the components g[λ] as
(4), the problem amounts to finding the index λ that maximizes the SLD Fisher information matrix
J0[ψ

[λ]
ME]. This is completely solved by the following.

Theorem 3. For irreducible representations specified by the Dynkin index λ = [n1, n2, . . . , nD−1],
the SLD Fisher information matrix J0[ψ

[λ]
ME] is given by(

J0[ψ
[λ]
ME]

)
ij

=
4 c[λ]

D2 − 1
δij ,

where

c[λ] :=
1

2D

D2
D−1∑
µ=1

pµ + D

(
D−1∑
µ=1

pµ +
D−1∑
µ=1

p2
µ − 2

D−1∑
µ=1

µ pµ

)
−

(
D−1∑
µ=1

pµ

)2
 (6)

with

pµ :=
D−1∑
ν=µ

nν

the length of the µth row of the corresponding Young frame. In particular,

J0[ψ
[λ]
ME] ≤ J0[ψ

[n,0,...,0]
ME ] =

2
D(D + 1)

n(n + D),

and the maximum is attained only if λ = [n, 0, . . . , 0].

3 Proof of Theorems

3.1 Proof of Theorem 1

We prove a more detailed assertion.

Lemma 4. Let τ : SU(D) → B(H[λ]) be an irreducible representation. For ψ ∈ H⊗n ⊗ H[λ], the
following are equivalent:

(a) There is a locally unbiased estimator M on H⊗n ⊗H[λ] that satisfies V0[M |ψ] = (J0[ψ])−1.

(b) 〈ψ|I ⊗ [τ∗(Y ), τ∗(Z)]ψ〉 = 0 for all Y,Z ∈ su(D).

(c) 〈ψ|I ⊗ τ∗(Y )ψ〉 = 0 for all Y ∈ su(D).

(d) ψ is admissible.

Proof. We first prove (a) ⇔ (b). According to [10], (a) occurs if and only if

{〈Li,θ ψθ|Lj,θ ψθ〉}1≤i,j≤D2−1
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are all real at θ = 0, where ψθ := (I ⊗ τ(Uθ))ψ, and Li,θ is an ith SLD of the pure state model
ρθ = |ψθ〉〈ψθ|. (See also [11].) By direct computation using the coordinate system (1) and the
canonical representation Li,θ = 2 ∂iρθ for pure state models [12], we have

Li,0 ψ0 = 2
√
−1 (I ⊗ τ(U0)) (I − |ψ〉〈ψ|) (I ⊗ τ∗(Xi))ψ

and
〈Li,0ψ0|Lj,0ψ0〉 = 4 〈ψ|I ⊗ τ∗(Xi)τ∗(Xj)ψ〉 − 4 〈ψ|I ⊗ τ∗(Xi)ψ〉 〈ψ|I ⊗ τ∗(Xj)ψ〉. (7)

As a consequence

Im 〈Li,0ψ0|Lj,0ψ0〉 =
2√
−1

〈ψ|I ⊗ [τ∗(Xi), τ∗(Xj)]ψ〉,

and the assertion immediately follows.
Next, (b) ⇔ (c) is a direct consequence of the fact that Lie algebra su(D) is simple [13]. In

fact, [su(D), su(D)] = su(D), so that [τ∗(su(D)), τ∗(su(D))] = τ∗(su(D)).
Finally we prove (c) ⇔ (d). Since the (i, j)th entry of J0[ψ] is given by Re 〈Li,0ψ0|Lj,0ψ0〉, we

have from (7) that

trJ0[ψ] = 4 〈ψ|I ⊗ C [λ] ψ〉 − 4
D2−1∑
i=1

|〈ψ|I ⊗ τ∗(Xi)ψ〉|2 , C [λ] :=
D2−1∑
i=1

τ∗(Xi)2.

Since {Xi}i are chosen to be Killing orthonormal up to scaling, the operator C [λ] is the second order
Casimir operator [13] for the representation τ , and is a scalar multiple of the identity: C [λ] = c[λ]I.
The coefficient c[λ] is explicitly given by (6), see [14]. As a consequence,

trJ0[ψ] = 4c[λ] − 4
D2−1∑
i=1

|〈ψ|I ⊗ τ∗(Xi)ψ〉|2 ≤ 4c[λ]

for all ψ. Now observe that the upper bound 4c[λ] is achievable. In fact, let ψ be a maximally
entangled state ψ

[λ]
ME, then

〈ψ[λ]
ME|I ⊗ τ∗(Xi) ψ

[λ]
ME〉 =

1
dimH[λ]

Tr τ∗(Xi) = 0,

because elements of τ∗(su(D)) have trace zero. Therefore

trJ0[ψ
[λ]
ME] = 4c[λ] = max

{
tr J0[ψ]

∣∣∣ ψ ∈ H⊗n ⊗H[λ]
}

.

The equivalence (c) ⇔ (d) now follows immediately.

3.2 Proof of Theorem 2

Let τ [λ] : SU(D) → B(H[λ]) be irreducible representations, and let ψ ∈ H⊗n ⊗H⊗n be decomposed
into

ψ =
∑

λ

∑
STab(λ)

a[λ] ψ[λ], (8)
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where ψ[λ] ∈ H⊗n ⊗H[λ]. Further let

ψθ := (I ⊗ U⊗n
θ )ψ =

∑
λ

∑
STab(λ)

a[λ] (I ⊗ τ [λ](Uθ))ψ[λ],

and let Li,θ be an ith SLD of the corresponding model ρθ = |ψθ〉〈ψθ|. Then by an evaluation similar
to (7), we have

〈Li,0ψ0|Lj,0ψ0〉

= 4
∑

λ

∑
STab(λ)

|a[λ]|2 〈ψ[λ]|I ⊗ τ
[λ]
∗ (Xi)τ

[λ]
∗ (Xj)ψ[λ]〉

−4

∑
λ

∑
STab(λ)

|a[λ]|2 〈ψ[λ]|I ⊗ τ
[λ]
∗ (Xi)ψ[λ]〉

 ∑
λ

∑
STab(λ)

|a[λ]|2 〈ψ[λ]|I ⊗ τ
[λ]
∗ (Xj)ψ[λ]〉

 . (9)

Now suppose that ψ[λ] are all admissible. It then follows from Lemma 4 (c) that

〈Li,0ψ0|Lj,0ψ0〉 = 4
∑

λ

∑
STab(λ)

|a[λ]|2 〈ψ[λ]|I ⊗ τ
[λ]
∗ (Xi)τ

[λ]
∗ (Xj)ψ[λ]〉.

As a consequence

Im〈Li,0ψ0|Lj,0ψ0〉 =
2√
−1

∑
λ

∑
STab(λ)

|a[λ]|2 〈ψ[λ]|I ⊗ [τ [λ]
∗ (Xi), τ

[λ]
∗ (Xj)]ψ[λ]〉 = 0,

which follows from Lemma 4 (b). This proves the achievability of (3). On the other hand,

J0[ψ] = [Re〈Li,0ψ0|Lj,0ψ0〉]ij =
∑

λ

∑
STab(λ)

|a[λ]|2 J0[ψ[λ]].

This proves the decomposition (4).
It should be noted that for any input ψ of the form (8) having a fixed set of coefficients {a[λ]}λ,

we obtain from (9) that
tr J0[ψ] ≤ 4

∑
λ

∑
STab(λ)

|a[λ]|2 c[λ].

Moreover, this upper bound is achievable if ψ[λ] are all admissible. This observation supports the
validity of restricting inputs ψ to superpositions of admissible states.

3.3 Proof of Theorem 3

By direct calculation using (7), we have(
J0[ψ

[λ]
ME]

)
ij

=
4

dimH[λ]
Kτ (Xi, Xj),

where
Kτ (Y,Z) := Tr τ∗(Y )τ∗(Z).
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Since, for each U ∈ SU(D), the adjoint action Ad(U) : su(D) → su(D) : Y 7→ UY U−1 is Kτ -
orthogonal, in that Kτ (Ad(U)Y,Ad(U)Z) = Kτ (Y,Z), it follows from [15, Theorem VIII.2.4] that
Kτ is identical, up to a constant multiple, to the Killing metric. In other words, there is a constant
rτ satisfying Kτ (Y,Z) = rτ TrY Z, so that Kτ (Xi, Xj) = (rτ/2) δij . Consequently,

(D2 − 1)
rτ

2
=

D2−1∑
i=1

Kτ (Xi, Xi) =
D2−1∑
i=1

Tr τ∗(Xi)2 = Tr C [λ] = dimH[λ] c[λ].

By using these relations, we obtain(
J0[ψ

[λ]
ME]

)
ij

=
2 rτ

dimH[λ]
δij =

4 c[λ]

D2 − 1
δij . (10)

We next show that (10) takes the maximum at λ = [n, 0, . . . , 0]. Letting M :=
∑D−1

µ=1 pµ, the
coefficient c[λ] is rewritten as

c[λ] =
1

2D

[
D2M + D

(
M +

D−1∑
µ=1

p2
µ − 2

D−1∑
µ=1

µ pµ

)
− M2

]
. (11)

The problem is thus reduced to maximizing (11) under the constraint that M ≤ n and

p1 ≥ p2 ≥ · · · ≥ pD−1 ≥ 0.

Since

D−1∑
µ=1

p2
µ − 2

D−1∑
µ=1

µ pµ ≤
D−1∑
µ=1

p2
µ − 2

D−1∑
µ=1

pµ ≤

(
D−1∑
µ=1

pµ

)2

− 2
D−1∑
µ=1

pµ = M2 − 2M,

we have

c[λ] ≤ 1
2D

[
D2M + D(M2 − M) − M2

]
=

D − 1
2D

(M2 + DM) ≤ D − 1
2D

(n2 + Dn).

By checking the condition for each inequality to saturate, it is easily seen that this upper bound is
attained if and only if λ = [n, 0, . . . , 0].

4 Geometry of SU(D) estimation

Theorem 3 implies that, for each n, the optimal input is ψ
[n,0,...,0]
ME , and that the optimal strategy

for estimating an unknown SU(D) channel exhibits

min
M(n),ψ(n)

Vθ

[
M (n)

∣∣∣ ψ(n)
]

=
D + 1

n(n + D)

(
Jθ[ψ

[1]
ME]

)−1

. (12)

The implication of this result is profound1. In the standard (classical) statistics, it is commonly
believed that the estimation error approaches zero in the rate of O (1/n). In contrast, for estimating

1Although in a different setting, an analogous asymptotic property has been obtained in [1, 2, 3, 4]; see also [16]
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Figure 1: The global structure of the manifold of output states for n = 1. When α = 0 or 1, it
collapses to 2-dimensional sphere S2 of radius 1/2; when α = 1/2, it is isometric to 3-dimensional
real projective space RP 3 of unit radius; otherwise it is diffeomorphic, but is not isometric, to RP 3

of any radius.

an unknown SU(D) channel, the estimation error approaches zero asymptotically in the rate of
O

(
1/n2

)
as (12) asserts.

Let us recast this result in terms of differential geometry. Theorem 3 asserts that the output
manifold

M[λ] :=
{

(id⊗n ⊗ Γ⊗n
U )(|ψ[λ]

ME〉〈ψ
[λ]
ME|)

∣∣∣ U ∈ SU(D)
}

for a maximally entangled input ψ
[λ]
ME is locally isometric, up to a scaling factor

√
c[λ], to the

Riemannian manifold SU(D) equipped with the Cartan-Killing metric. On the other hand, it is
easily seen that M[λ] is diffeomorphic to SU(D)/ZD. As a consequence, we have the following.

Theorem 5. The output manifold M[λ] is isometric to SU(D)/ZD up to a scaling factor
√

c[λ].

In order to get a better perspective on Theorem 5, let us study the simplest case SU(2) in detail.
When n = 1, an input ψ ∈ H ⊗H is decomposed into the following Schmidt form:

ψ =
√

1 − α e1 ⊗ f1 +
√

α e2 ⊗ f2,

where α ∈ [0, 1] describes the degree of entanglement. The structure of the corresponding output
manifold {(id ⊗ ΓU )(|ψ〉〈ψ|) | U ∈ SU(2)} was studied in detail in [11], and is illustrated in Fig. 1.
When α = 0 or 1, the output manifold degenerates to a 2-dimensional sphere CP 1 ∼= S2 of radius
1/2, which is nothing but the Bloch sphere. When 0 < α < 1, on the other hand, the global
topology of the output manifold completely changes into one which is diffeomorphic to the 3-
dimensional real projective space SU(2)/{±I} ∼= SO(3) ∼= RP 3. Moreover, as the degree α of
entanglement approaches 1/2, the manifold gradually inflates and hence points on the manifold are
getting separated from each other. Finally when α reaches 1/2 (i.e., when the input is maximally
entangled), the maximally inflated output manifold becomes isometric to RP 3 of unit radius. This
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is the underlying differential geometrical mechanism for the admissibility of a maximally entangled
input. In fact, the larger the SLD Fisher distance of two nearby quantum states becomes, the
easier one can distinguish these states, as the quantum Cramér-Rao inequality asserts. For general
n, the situation is similar: the output manifold inflates maximally (on average) when the input is a
maximally entangled state ψ

[n]
ME on the invariant subspace specified by the Dynkin index λ = [n], and

it becomes isometric to RP 3 of radius rn =
√

(n2 + 2n)/3. In summary, the degree of entanglement
controls the “shape” of the output manifold, while the degree n of extension controls its maximal
“radius.”

As to SU(D) for D ≥ 3, on the other hand, the output manifold is not of constant curvature
even for a maximally entangled input ψ

[λ]
ME. In fact, the dimension of a Cartan subalgebra of su(D)

is greater than one, and the sectional curvature vanishes there. Thus the notion of radius is not
relevant for the case D ≥ 3. However the situation is analogous: if the input is taken to be a
maximally entangled state ψ

[λ]
ME, then as the degree n of extension increases, the “size” of output

manifold increases in the rate
√

c[λ] which is asymptotically linear in n, while the “shape” is kept
unchanged.

5 Concluding remarks

The problem of estimating an unknown SU(D) channel ΓU : ρ 7→ UρU∗ was studied based on the
quantum Cramér-Rao inequality. By invoking extensions (id⊗ΓU )⊗n, it was shown that there was
a sequence of input states ψ(n) and estimators M (n) on (H⊗H)⊗n that exhibited

min
M(n),ψ(n)

Vθ

[
M (n)

∣∣∣ ψ(n)
]

= O

(
1
n2

)
.

The optimal coefficient was also determined explicitly. Further, the mechanism behind this asymp-
totic behavior was investigated from a differential geometrical point of view.

Combining this result with the former one obtained in [6], we can conclude that there are at least
two classes of quantum channels that exhibit essentially different asymptotic behaviors: the minimal
estimation error is of O(1/n2) for SU(D) channels, while it is of O(1/n) for generalized Pauli
channel2. It is an open problem whether there is a quantum channel that exhibits an asymptotic
rate O(1/ns) with s ̸= 1, 2.

Appendix

A Nonexistence of maximal SLD metric

In this appendix, we demonstrate that the set {J0[ψ] |ψ ∈ H⊗n⊗H[λ]} does not in general have the
maximal element. Let us consider the irreducible representation λ = [n1] of SU(2), which is also
called the highest weight j := n1/2 representation. We take Xi := σi/2 to be the basis of su(2),
where {σi}i are Pauli matrices. We further take an input of the form

ψ = ψ[n1] :=
n1∑

k=0

√
αk ek ⊗ fk,

2Recently, it was shown that low-noise channels also exhibited the same asymptotic behavior O(1/n) [17].
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where (αi)i is a probability vector, and fk := |j,m〉 is the standard orthonormal basis of H[λ] with
m := j − k, (0 ≤ k ≤ n1), satisfying

Ŝ±|j,m〉 =
√

j(j + 1) − m(m ± 1) |j,m ± 1〉,
Ŝ3 |j,m〉 = m |j,m〉.

with Ŝi := τ
[n1]
∗ (Xi), and Ŝ± := Ŝ1 ±

√
−1 Ŝ2. The corresponding SLD Fisher information matrix

J0[ψ] is given by

(J0[ψ])ij = 4
∑

k

αk Re〈fk|ŜiŜjfk〉 − 4

(∑
k

αk〈fk|Ŝifk〉

)(∑
k

αk〈fk|Ŝjfk〉

)
.

Let n1 = 2 for definiteness. Then after some calculation, we have

(J0[ψ])11 = (J0[ψ])22 = 2 (α0 + 2α1 + α2), (J0[ψ])33 = 4 [α0 + α2 − (α0 − α2)2],

and the off-diagonal elements are all zero. Consequently, the input ψ is admissible if and only if
α0 = α2, for which we have

J0[ψ] = 4

 1 − α
1 − α

2α

 , (13)

where α0 = α2 = α and α1 = 1 − 2α, with 0 ≤ α ≤ 1/2.
Now suppose there is an input φ which gives the maximal Fisher information matrix. Let us

denote the matrix as

J0[φ] = 4

 a ∗ ∗
∗ b ∗
∗ ∗ c

 ,

where the off-diagonal elements are suppressed. Since φ is necessarily admissible,

a + b + c = (1 − α) + (1 − α) + 2α = 2.

On the other hand, since J0[φ] ≥ J0[ψ] for all α, it holds that

a ≥ 1 − α, b ≥ 1 − α, c ≥ 2α

for all α. As a consequence, a, b, c ≥ 1, so that

a + b + c ≥ 3.

This is a contradiction, proving that no such a φ exists.
Incidentally, the formula (13) demonstrates what happens when the entanglement parameter α

is changed. In order to get better distinguishability in the first (and the second) direction of the
parameter, we need to make α as small as possible. But accordingly, we lose distinguishability in
the third direction. In general, if one tries to get more information about some directions, then he
loses information about the other directions, as long as input states are chosen among admissible
ones. This is the statistical, as well as the geometrical, meaning of the fact that no maximal element
exists in {J0[ψ] ; ψ ∈ H⊗n ⊗H[λ]}. In a sense, a maximally entangled input (e.g., α = 1/3 in the
above example) gives an estimation scheme “impartial” to all directions of the parameter.
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