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Abstract

It is shown that for an adaptive quantum estimation scheme based on locally unbiased mea-
surements, the sequence of maximum likelihood estimators is strongly consistent and asymp-
totically efficient.

1 Introduction

Let S = {ρθ; θ = (θ1, . . . , θd) ∈ Θ} be a smooth parametric family of density operators, called
a quantum statistical model, on a Hilbert space H with compact parameter space Θ ⊂ Rd. Our
problem is to estimate the true value of θ by means of a certain quantum estimation scheme. An
estimator is represented by a pair (M, θ̌), where M = {M(x); x ∈ X} is a positive operator-valued
measure (POVM) that takes values on a set X , and θ̌ : X → Θ is a map that gives the estimated
value θ̌(x) from each observed data x ∈ X . A POVM is also called a measurement. The observed
data x ∈ X has probability density

f(x; θ,M) := Tr ρθM(x), (1)

which depends on both the parameter θ and the measurement M .
An estimator (M, θ̌) is called unbiased if

Eθ[M, θ̌] = θ (2)

is satisfied for all θ ∈ Θ, where Eθ[ · ] denotes the expectation with respect to the density (1). An
estimator (M, θ̌) is called locally unbiased [1] at a given point θ0 ∈ Θ if the condition (2) is satisfied
around θ = θ0 up to the first order of the Taylor expansion, that is, if

Eθ0 [M, θ̌] = θ0,
∂

∂θj
Eθ[M, θ̌i]

∣∣∣∣
θ=θ0

= δi
j , (i, j = 1, . . . , d). (3)

Clearly, an estimator is unbiased if and only if it is locally unbiased at all θ ∈ Θ.
It is well known that an estimator (M, θ̌) that is locally unbiased at θ0 satisfies the quantum

Cramér-Rao inequality [1, 2]
Vθ0 [M, θ̌] ≥ (Jθ0)

−1
, (4)
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where Vθ[ · ] denotes the covariance matrix, and Jθ is the quantum Fisher information matrix of
the model S whose (i, j)th entry is given by

(Jθ)ij =
1
2
Tr ρθ(Lθ,iLθ,j + Lθ,jLθ,i),

where Lθ,i is the ith symmetric logarithmic derivative (SLD) defined by the selfadjoint operator
satisfying the equation

∂ρθ

∂θi
=

1
2

(Lθ,iρθ + ρθLθ,i) .

As to the achievability of the lower bound in (4), there is a serious difficulty intrinsic to quantum
statistics: due to the noncommutative nature of the SLDs, there is, in general, no locally unbiased
estimator (LUE) (M, θ̌) that satisfies the equality Vθ0 [M, θ̌] = (Jθ0)

−1. To avoid this difficulty,
we must introduce a different criterion for measuring the goodness of an estimator. A possible
alternative is the weighted sum tr GVθ[M, θ̌] of covariances [1, 2], where G is a positive definite
weight matrix, and we seek, for each value of the parameter θ, the best LUE (M, θ̌) that minimizes
the scalar quantity trGVθ[M, θ̌].

Even if such a modified strategy is adopted, we still have a difficulty which often becomes the
target of criticism: since the best LUE for estimating the parameter θ depends, in general, on
the unknown parameter θ itself, the estimation strategy based on LUEs would be impracticable.
In a different yet analogous context, Cochran [3] ingeniously described this kind of dilemma as
follows: “You tell me the value of θ and I promise to design the best experiment for estimating θ.”
Apparently, such a criticism is strong enough to invalidate estimation strategies based on LUEs.

To surmount this difficulty, Nagaoka [4] advocated an adaptive quantum estimation scheme as
follows. Suppose that, by prior investigation of the quantum statistical model S, one has the list of
optimal LUEs

(
M( · ; θ), θ̌( · ; θ)

)
for each θ ∈ Θ. One begins with an arbitrary initial guess θ̂0 ∈ Θ,

and applies the measurement M( · ; θ̂0) that is optimal at θ̂0. Suppose the data x1 is observed. One
then applies the maximum likelihood method to the likelihood function L1(θ) = f(x1; θ,M( · ; θ̂0)),
to obtain the next guess θ̂1. At stage n (≥ 2), one applies the measurement M( · ; θ̂n−1), where
θ̂n−1 is the maximum likelihood estimator (MLE) obtained at the previous stage. The likelihood
function is then given by

Ln(θ) :=
n∏

i=1

f(xi; θ,M( · ; θ̂i−1)),

where xi is the observed data at stage i, and one obtains the nth MLE θ̂n that maximizes Ln(θ). It
is quite natural to expect that, under certain regularity conditions, the sequence θ̂n of MLEs would
converge to the true value of the parameter θ [4]. However, such an asymptotic property has not
been investigated so far in the context of adaptive quantum estimation.

The purpose of this paper is to establish the strong consistency and the asymptotic efficiency for
the above sequence θ̂n of MLEs. For simplicity, we confine ourselves to finite quantum systems. The
paper is organized as follows. In Section 2, we show that the set X of observed data can be taken
to be a finite set X = {1, 2, . . . , n0}, where n0 = (dimH)2 + d(d + 1). In Section 3, we point out
that Nagaoka’s adaptive quantum estimation scheme is a variant of the so-called sequential design
problem [5, 6, 7, 8], and spell out the strong consistency and the asymptotic efficiency in a form
relevant to our problem. The proofs of those results are deferred to Sections 4 and 5 respectively. In
Section 6, we apply those results to Nagaoka’s adaptive quantum estimation scheme, and clarify an
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operational meaning of the Cramér-Rao bound. In Section 7, we remark that, with some additional
regularity conditions, those asymptotic properties can be naturally extended to infinite quantum
systems.

2 Size of optimal LUE

We first show that the size of an optimal measurement for estimating θ can be taken to be at most
(dimH)2 + d(d + 1). Let Mn be the set of POVMs that take values on Xn = {1, . . . , n}, that is

Mn =

{
M = (M(1), . . . ,M(n)) ; ∀M(x) ≥ 0,

n∑
x=1

M(x) = I

}
.

There is a natural convex structure on Mn: for M,N ∈ Mn and 0 ≤ λ ≤ 1,

(1 − λ)M + λN = ((1 − λ)M(x) + λN(x))n
x=1.

Moreover, Mn is naturally regarded as a compact set [9]. For an M ∈ Mn, we call the set
{x; M(x) ̸= 0} the support of M and denote it as supp (M). Further, given θ̌ : X → Θ, let

Mn(θ̌) =
{
M ∈ Mn ; (M, θ̌) is locally unbiased at a given θ ∈ Θ

}
.

For a subset A of a convex set, a point x ∈ A is called extreme if x cannot be represented as
a nontrivial convex combination of points in A. The totality of extreme points in A is called the
extreme boundary and is denoted by ∂eA.

Lemma 1 Mn(θ̌) is a convex compact subset of Mn. Thus

Mn(θ̌) = co ∂eMn(θ̌), (5)

where co denotes the convex hull.

Proof Convexity follows from the fact that convex combination of POVMs in Mn(θ̌) preserves
the local unbiasedness conditions:

n∑
x=1

θ̌i(x) Tr ρθM(x) = θi, (∀i = 1, . . . , d) (6)

n∑
x=1

θ̌i(x) Tr
∂ρθ

∂θj
M(x) = δi

j , (∀i,∀j = 1, . . . , d) (7)

and compactness follows from the fact that, due to (6) (7), Mn(θ̌) is closed. The relation (5) is an
immediate consequence of Krein-Milman’s extreme point theorem [10]. ¤

Let us call M = (M(1), . . . ,M(n)) ∈ Mn(θ̌) linearly quasi-independent with respect to θ̌ if the
three conditions

(i)
∑

x

α(x) M(x) = 0,
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(ii)
∑

x

α(x)θ̌i(x)Tr ρθM(x) = 0, for all i = 1, . . . d,

(iii)
∑

x

α(x)θ̌i(x)Tr
∂ρθ

∂θj
M(x) = 0, for all i, j = 1, . . . d,

for a sequence (α(1), . . . , α(n)) ∈ Rn imply α(x) = 0 for all x ∈ supp (M).

Lemma 2

∂eMn(θ̌) ⊂
{
M ∈ Mn(θ̌) ; M is linearly quasi-independent with respect to θ̌

}
Proof Assume that M ∈ Mn(θ̌) is not linearly quasi-independent with respect to θ̌. Then there
is a sequence (α(x))n

x=1 that fulfills conditions (i)-(iii) and that (α(x))x∈supp (M) are not all zero.
Let

N (+)(x) = (1 + ε α(x))M(x), N (−)(x) = (1 − ε α(x))M(x)

for sufficiently small ε > 0. Then N (±) = (N (±)(x))n
x=1 are different elements of Mn(θ̌). In fact,∑

x

N (±)(x) =
∑

x

M(x) ± ε
∑

x

α(x)M(x) =
∑

x

M(x) = I,

where (i) is used in the second equality. Similarly, the local unbiasedness conditions are verified by
using (ii) and (iii) as follows:∑

x

θ̌i(x) Tr ρθN
(±)(x) =

∑
x

θ̌i(x) Tr ρθM(x) ± ε
∑

x

α(x)θ̌i(x) Tr ρθM(x) = θi,

∑
x

θ̌i(x) Tr
∂ρθ

∂θj
N (±)(x) =

∑
x

θ̌i(x) Tr
∂ρθ

∂θj
M(x) ± ε

∑
x

α(x)θ̌i(x) Tr
∂ρθ

∂θj
M(x) = δi

j .

Since M = 1
2N (+) + 1

2N (−), M is not an extreme point. ¤

Corollary 3 For M ∈ ∂eMn(θ̌)

|supp (M)| ≤ (dimH)2 + d + d2.

Proof Conditions (i)-(iii) of the quasi-independence impose at most (dimH)2 +d+d2 linear con-
straints on (α(x))x∈supp (M). As a consequence, M ∈ Mn(θ̌) cannot be linearly quasi-independent
with respect to θ̌ if |supp (M)| > (dimH)2 + d + d2. ¤

Lemma 4 For all M ∈ Mn(θ̌), there is an N ∈ ∂eMn(θ̌) such that

trGVθ[M, θ̌] ≥ tr GVθ[N, θ̌].
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Proof As the covariance

vij
θ [M, θ̌] =

n∑
x=1

(
θ̌i(x) − θi

) (
θ̌j(x) − θj

)
Tr ρθM(x) (8)

is linear in M , so is tr GVθ[M, θ̌]. Assume that M = (1 − λ)N (1) + λN (2) for N (1), N (2) ∈ Mn(θ̌)
and 0 ≤ λ ≤ 1. Then

tr GVθ[M, θ̌] = (1 − λ) trGVθ[N (1), θ̌] + λ tr GVθ[N (2), θ̌]

≥ min
{

trGVθ[N (1), θ̌], tr GVθ[N (2), θ̌]
}

.

This inequality, as well as Lemma 1, proves the lemma. ¤

Now Corollary 3 and Lemma 4 immediately leads to the following:

Theorem 5 The size of the support of an optimal measurement that attains

min
M∈Mn(θ̌)

trGVθ[M, θ̌]

can be taken to be at most (dimH)2 + d(d + 1).

Since
inf

(M,θ̌):LUE at θ
trGVθ[M, θ̌] = inf

n,θ̌
min

M∈Mn(θ̌)
trGVθ[M, θ̌],

we can conclude that the size of an optimal measurement for estimating a d-dimensional quantum
statistical model on a Hilbert space H can be taken to be at most n0 := (dimH)2 + d(d + 1). In
particular,

inf
(M,θ̌):LUE at θ

tr GVθ[M, θ̌] = inf
θ̌

min
M∈Mn0 (θ̌)

tr GVθ[M, θ̌].

Some remarks are in order. By considering a rank-one refinement of POVMs, we can confine
ourselves, without loss of generality, to measurements M = (M(x))n

x=1 that satisfy rankM(x) ≤ 1
for all x = 1, . . . , n. Let us introduce

M(e)
n (θ̌) = {M ∈ Mn(θ̌) ; rankM(x) ≤ 1 for all x = 1, . . . , n},

which is not a convex subset of Mn(θ̌) but is an extremal subset of Mn(θ̌), see [9].

Lemma 6

∂eMn(θ̌) ∩M(e)
n (θ̌) =

{
M ∈ M(e)

n (θ̌) ; M is linearly quasi-independent with respect to θ̌
}

.

Proof Left-hand side (LHS) ⊂ right-hand side (RHS) is obvious from Lemma 2. We show
that LHS ⊃ RHS. Let M be an arbitrary element in RHS, and suppose that M is written as
M = 1

2N (1) + 1
2N (2) where N (1), N (2) ∈ Mn(θ̌). To prove M ∈ ∂eMn(θ̌), it sufficies to show that

N (1) = N (2).
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Since 0 ≤ N (k)(x) ≤ 2M(x) and rankM(x) ≤ 1 for all x ∈ Xn and k ∈ {1, 2}, there is a constant
c(k)(x) such that N (k)(x) = c(k)(x)M(x). Substituting this relation into∑

x

N (k)(x) = I,
∑

x

θ̌i(x) Tr ρθN
(k)(x) = θi,

∑
x

θ̌i(x) Tr
∂ρθ

∂θj
N (k)(x) = δi

j ,

we have ∑
x

(
c(1)(x) − c(2)(x)

)
M(x) = 0,∑

x

(
c(1)(x) − c(2)(x)

)
θ̌i(x) Tr ρθM(x) = 0,

∑
x

(
c(1)(x) − c(2)(x)

)
θ̌i(x) Tr

∂ρθ

∂θj
M(x) = 0.

Since M is assumed linearly quasi-independent with respect to θ̌, we have c(1)(x) − c(2)(x) = 0 for
all x ∈ supp (M). This implies that N (1) = N (2). ¤

Corollary 7 For all M ∈ M(e)
n (θ̌), there is an N ∈ ∂eMn(θ̌) ∩M(e)

n (θ̌) such that

trGVθ[M, θ̌] ≥ tr GVθ[N, θ̌].

In particular, |supp (N)| ≤ (dimH)2 + d(d + 1).

3 Strong consistency and asymptotic efficiency of MLE

We next observe that Nagaoka’s quantum adaptive estimation scheme presented in Section 1 is a
variant of the so-called sequential design problem: a sequential design problem allows at each stage
an experiment E to be taken from an experiment space E . The observed data xn ∈ X at time n has
probability density f(xn; θ,En), with respect to some σ-finite measure µ on X , which depends on
both the parameter θ ∈ Θ and the experiment En ∈ E selected at stage n. It is assumed that En

is measurable with respect to the natural filtration Fn−1 := σ(X1, . . . , Xn−1), that is, En is chosen
according to the information of the past data X1, . . . , Xn−1. The likelihood function is therefore
given by

Ln(θ) :=
n∏

i=1

f(xi; θ,Ei).

Let θ̂n denote the MLE of θ.
In our quantum estimation problem, according to Section 2, we can assume that X is a finite

set (with µ the counting measure), and that Θ and E are both compact. We further assume the
following regularity conditions:

(RC1) f(x; θ, e) is positive for all (x, θ, e), and is continuous in (x, θ, e),

(RC2) µ({x; f(x; θ, e) ̸= f(x; θ′, e)}) > 0 for any θ ̸= θ′ and e ∈ E .

6



Under these mild conditions, we can obtain the following strong consistency.

Theorem 8 Suppose that the true value of the parameter, θ0, is an interior point of Θ. Then

θ̂n −→ θ0, Pθ0-a.s. (9)

Chernoff [5] proved strong consistency of the MLE when Θ and E are both finite sets (but X
is arbitrary). McCormick et al. [6] extended Chernoff’s method to the case of compact Θ and E .
Datta [7] further studied the case when Θ is a precompact metric space and X and E are arbitrary,
and proved weak consistency of the MLE. Although Theorem 8 is subsumed by McCormick et al.
[6], we will give a simplified proof in Section 4 for the reader’s convenience.

In order to establish asymptotic efficiency, we further assume the following smoothness condition:

(RC3) f(x; θ, e) is thrice differentiable in θ in the interior of Θ, and the derivatives

∂

∂θi
f(x; θ, e),

∂2

∂θi∂θj
f(x; θ, e),

∂3

∂θi∂θj∂θk
f(x; θ, e)

are all continuous in (x, θ, e).

Then we have the following

Theorem 9 Suppose that the true value of the parameter, θ0, is an interior point of Θ, and that
the nth experiment En (n ≥ 2) is chosen according to the MLE θ̂n−1 as

En(X1, . . . , Xn−1) = Ê
(
θ̂n−1(X1, . . . , Xn−1)

)
,

where Ê : Θ → E is a continuous function. Then
√

n (θ̂n − θ0) −→ N
(
0, J(θ0|Ê(θ0))−1

)
, in distribution, (10)

where J(θ|e) is the Fisher information matrix at θ under the experiment e, and its (i, j)th entry is

J(θ|e)ij := Eθ

[(
∂

∂θi
log f(X; θ, e)

)(
∂

∂θj
log f(X; θ, e)

)]
.

Chaudhuri and Mykland [8] studied an adaptive two stage design for a general nonlinear re-
gression problem, and obtained a consistent sequence of roots of the likelihood equation (local
maximizers of the likelihood) and its asymptotic normality under the criterion of “D-optimality.”
In contrast to their results, this paper deals with a true maximizer of the likelihood function, and
with the asymptotic efficiency on condition that the optimal experiment Ê(θ) ∈ E for each θ ∈ Θ
is known in advance. The proof of Theorem 9, which is a modification of that in [8], is given in
Section 5.

4 Proof of Theorem 8

We prove Theorem 8 in a series of lemmas. Let

R(θ0, θ, e) := log
f(X; θ, e)
f(X; θ0, e)
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and, for ε > 0, let
Rε(θ0, θ, e) := sup

θ′∈Nε(θ)

R(θ0, θ
′, e),

where Nε(θ) is the open ε-neighborhood of θ in Θ.

Lemma 10 For any θ with θ ̸= θ0, it holds that

sup
e∈E

Eθ0

[
eR(θ0,θ,e)/2

]
< 1. (11)

Proof Since the function

g(e) := Eθ0

[
eR(θ0,θ,e)/2

]
=

∑
x∈X

√
f(x; θ, e)

√
f(x; θ0, e)

is continuous on the compact set E , there is a point e0 ∈ E such that g(e) ≤ g(e0) for all e ∈ E . For
this e0, we have by the identifiability condition (RC2) that there is a γ > 0 such that the set

Aγ :=
{

x;
∣∣∣√f(x; θ, e0) −

√
f(x; θ0, e0)

∣∣∣ > γ
}

has positive µ-measure (cardinality). Since, for x ∈ Aγ ,

√
f(x; θ, e0)

√
f(x; θ0, e0) <

1
2
{f(x; θ, e0) + f(x; θ0, e0)} −

γ2

2
,

we have

g(e0) =

 ∑
x∈Aγ

+
∑

x∈Ac
γ

 √
f(x; θ, e0)

√
f(x; θ0, e0)

<
∑

x∈Aγ

(
1
2
{f(x; θ, e0) + f(x; θ0, e0)} −

γ2

2

)
+

∑
x∈Ac

γ

1
2
{f(x; θ, e0) + f(x; θ0, e0)}

= 1 − γ2

2
µ(Aγ) < 1.

¤

Lemma 11 For any θ with θ ̸= θ0, it holds that

lim
ε↓0

sup
e∈E

Eθ0

[
eRε(θ0,θ,e)/2

]
< 1. (12)

Proof For

gε(e) := Eθ0

[
eRε(θ0,θ,e)/2

]
=

∑
x∈X

sup
θ′∈Nε(θ)

√
f(x; θ′, e)

√
f(x; θ0, e),
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we have (i) gε(e) ↓ g(e) as ε ↓ 0 for each e ∈ E , and (ii) gε is continuous on E for all ε > 0 (see
Appendix A). Therefore, by Dini’s theorem, the convergence is uniform in e. That is, for any δ > 0,
there is an ε0 > 0 such that

g(e) ≤ gε(e) < g(e) + δ

for all e ∈ E and ε ∈ (0, ε0). As a consequence

sup
e∈E

g(e) ≤ lim
ε↓0

sup
e∈E

gε(e) ≤ sup
e∈E

g(e) + δ.

Since δ > 0 is arbitrary, we have
lim
ε↓0

sup
e∈E

gε(e) = sup
e∈E

g(e).

Thus (12) follows from (11). ¤

Lemma 12 For any θ with θ ̸= θ0, there exist ε > 0 and b > 0 such that for any n ∈ N and any
strategy {Ei}1≤i≤n ⊂ E, we have

Pθ0

[
n∑

i=1

Rε(θ0, θ, Ei) > 0

]
≤ e−bn. (13)

Proof According to Lemma 11, there exist ε > 0 and b > 0 such that

sup
e∈E

Eθ0

[
eRε(θ0,θ,e)/2

]
= e−b. (14)

For each n, let

Mn :=
n∏

i=1

eRε(θ0,θ,Ei)/2.

The stochastic process {Mn}n enjoys the following supermartingale property [11]:

Eθ0 [Mn|Fn−1] = Eθ0

[
Mn−1 eRε(θ0,θ,En)/2

∣∣∣ Fn−1

]
= Mn−1 Eθ0

[
eRε(θ0,θ,En)/2

∣∣∣ Fn−1

]
≤ e−b Mn−1, Pθ0-a.s.

Here, the second equality follows from the fact that Mn−1 is Fn−1-measurable [12], and the in-
equality follows from (14). Then by induction

Eθ0 [Mn] = Eθ0 [Mn|Fn−1|Fn−2| · · · |F0] ≤ e−bn,

and by Markov’s inequality

Pθ0

[
n∑

i=1

Rε(θ0, θ, Ei) > 0

]
= Pθ0 [Mn > 1] ≤ Eθ0 [Mn] ≤ e−bn.

¤
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Proof of Theorem 8. Fix a > 0 arbitrarily. Since Na(θ0)c is a compact subset of Θ, for some
finite subset {θ1, . . . , θr} ⊂ Na(θ0)c, we have

Na(θ0)c ⊂
r∪

λ=1

Nελ
(θλ),

where the ελ are chosen so that (13) holds with θ = θλ and b = bλ, λ = 1, . . . , r. Then

Pθ0

[
|θ̂n − θ0| ≥ a

]
= Pθ0

[
max

θ∈Na(θ0)c

n∑
i=1

R(θ0, θ, Ei) > 0

]

≤ Pθ0

[
max

1≤λ≤r
sup

θ∈Nελ
(θλ)

n∑
i=1

R(θ0, θ, Ei) > 0

]

≤ Pθ0

[
max

1≤λ≤r

n∑
i=1

Rελ(θ0, θλ, Ei) > 0

]

≤
r∑

λ=1

Pθ0

[
n∑

i=1

Rελ(θ0, θλ, Ei) > 0

]

≤
r∑

λ=1

e−bλn

≤ r e−b0n,

where b0 := min
1≤λ≤r

bλ is a positive constant. Then we have by the Borel-Cantelli lemma that

Pθ0

[
|θ̂n − θ0| ≥ a, i.o.

]
= 0.

Since this holds for any a > 0, the strong consistency (9) is established. ¤

5 Proof of Theorem 9

According to the Cramér-Wold device (see, for example, [13, pp. 48-49]), it suffices to treat the case
when θ is a one-dimensional parameter. For notational simplicity, let

ℓ(θ|x, e) := log f(x; θ, e),

and let

ℓn(θ) :=
n∑

i=1

ℓ(θ|Xi, Ei).

By assumption (RC3), we have the 2nd order Taylor expansion of ℓ′n(θ) around θ0 as follows:

ℓ′n(θ) = ℓ′n(θ0) + ℓ′′n(θ0) (θ − θ0) +
1
2

ℓ′′′n (θ∗) (θ − θ0)2,
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where θ∗ is a point satisfying |θ∗ − θ0| < |θ − θ0|. Since LHS vanishes at θ = θ̂n, we have

0 =
ℓ′n(θ0)√

n
+
√

n (θ̂n − θ0)
{

ℓ′′n(θ0)
n

+
ℓ′′′n (θ∗)

2n
(θ̂n − θ0)

}
,

or

√
n (θ̂n − θ0) =

ℓ′n(θ0)√
n

−ℓ′′n(θ0)
n

− ℓ′′′n (θ∗)
2n

(θ̂n − θ0)
. (15)

Since the MLE θ̂n exhibits the strong consistency θ̂n → θ0 (Theorem 8), it suffices to show that

ℓ′n(θ0)√
n

−→ N
(
0, J(θ0|Ê(θ0))

)
, in distribution, (16)

that
ℓ′′n(θ0)

n
−→ −J(θ0|Ê(θ0)), in probability, (17)

and that for sufficiently large n,

ℓ′′′n (θ∗)
n

is bounded in probability. (18)

The desired result
√

n (θ̂n − θ0) → N
(
0, J(θ0|Ê(θ0))−1

)
follows immediately from (15).

Proof of (18). According to (RC3), for sufficiently small δ > 0, there is a number M such that

sup
(θ,x,e)∈Nδ(θ0)×X×E

|ℓ′′′(θ|x, e)| ≤ M.

Thus for sufficiently large n, it holds that θ̂n ∈ Nδ(θ0), Pθ0-a.s., and that∣∣∣∣ℓ′′′n (θ∗)
n

∣∣∣∣ =
1
n

∣∣∣∣∣
n∑

i=1

ℓ′′′(θ∗|Xi, Ei)

∣∣∣∣∣ ≤ 1
n

n∑
i=1

|ℓ′′′(θ∗|Xi, Ei)| ≤ M, Pθ0 -a.s.

¤

Proof of (17). According to (RC3), there is a number M such that

sup
(x,e)∈X×E

|ℓ′′(θ0|x, e)| ≤ M.

Let Y be a random variable (r.v.) which takes the constant value M . Then Eθ0 [|Y | log+ |Y |] =
M log+ M < ∞, and

Pθ0(|ℓ′′(θ0|Xn, En)| > y) ≤ Pθ0(|Y | > y)
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for each y ≥ 0 and n ≥ 1. As a consequence, we have from Theorem 14 in Appendix B that

1
n

n∑
i=1

{ℓ′′(θ0|Xi, Ei) − Eθ0 [ℓ′′(θ0|Xi, Ei)| Fi−1]} −→ 0, Pθ0 -a.s. (19)

For an interior point θ ∈ Θ, let

I(θ|Ei) := Eθ

[
ℓ′(θ|Xi, Ei)2

∣∣ Fi−1

]
= −Eθ [ℓ′′(θ|Xi, Ei)| Fi−1] , Pθ0-a.s. (20)

be the conditional Fisher information [14, p. 157] under the experiment Ei. Since Ei = Ê(θ̂i−1) for
i ≥ 2 and θ̂i−1 → θ0, Pθ0 -a.s., it follows from (RC1) and (RC3) that

I(θ0|Ei) −→ J(θ0|Ê(θ0)), Pθ0 -a.s. (21)

Combining (19)-(21), and using Cesàro’s lemma, we have

1
n

n∑
i=1

ℓ′′(θ0|Xi, Ei) −→ −J(θ0|Ê(θ0)), Pθ0 -a.s.

¤

Proof of (16). For an interior point θ ∈ Θ, n ≥ 1, and 1 ≤ i ≤ n, let

Sni(θ) :=
1√
n

ℓ′i(θ) =
1√
n

i∑
j=1

ℓ′(θ|Xj , Ej),

and let Fni := σ(X1, . . . , Xi). Then {Sni(θ)}1≤i≤n is a martingale array (see Appendix C) with
the martingale difference

Yni(θ) := Sni(θ) − Sn,i−1(θ) =
1√
n

ℓ′(θ|Xi, Ei).

In fact,

Eθ[Sni(θ) | Fn,i−1] = Sn,i−1(θ) +
1√
n

Eθ[ℓ′(θ|Xi, Ei) | Fn,i−1] = Sn,i−1(θ), Pθ0 -a.s.

and the square integrability is verified as follows.

Eθ

[
Sni(θ)2

]
=

1
n

i∑
j=1

Eθ

[
ℓ′(θ|Xj , Ej)2

]
+

2
n

i∑
j<k

Eθ [ℓ′(θ|Xj , Ej) ℓ′(θ|Xk, Ek)]

=
1
n

i∑
j=1

Eθ

[
ℓ′(θ|Xj , Ej)2

]
≤ M(θ)2.

Here
M(θ) := sup

(x,e)∈X×E
|ℓ′(θ|x, e)|,

12



and the following relation is used in the second equality: for j < k

Eθ [ℓ′(θ|Xj , Ej) ℓ′(θ|Xk, Ek) | Fn,k−1] = ℓ′(θ|Xj , Ej) Eθ[ℓ′(θ|Xk, Ek) | Fn,k−1] = 0, Pθ0-a.s.

Let us verify the conditions that ensure the martingale central limit theorem (Theorem 15 in
Appendix C). Clearly the σ-algebras {Fni} are nested. The conditional variance is

V 2
ni(θ) :=

i∑
j=1

Eθ

[
Ynj(θ)2

∣∣ Fn,j−1

]
=

1
n

i∑
j=1

Eθ

[
ℓ′(θ|Xj , Ej)2

∣∣ Fn,j−1

]
=

1
n

i∑
j=1

I(θ|Ej).

Thus, by (21),

V 2
nn(θ0) =

1
n

n∑
j=1

I(θ0|Ej) −→ J(θ0|Ê(θ0)), Pθ0 -a.s.

On the other hand, for any ε > 0, we have from the conditional Markov inequality that

Eθ0

[
Yni(θ0)2 I(|Yni(θ0)| > ε)

∣∣Fn,i−1

]
≤ M(θ0)2

n
Pθ0 [ |Yni(θ0)| > ε | Fn,i−1]

≤ M(θ0)2

n

1
ε2

Eθ0

[
Yni(θ0)2

∣∣ Fn,i−1

]
≤ M(θ0)4

n2ε2
, Pθ0 -a.s.

This assures the conditional Lindeberg condition:

n∑
i=1

Eθ0

[
Y 2

ni(θ0) I(|Yni(θ0)| > ε)
∣∣Fn,i−1

]
≤ M(θ0)4

nε2
−→ 0, Pθ0 -a.s.

As a consequence, the desired result

Snn(θ0) −→ N
(
0, J(θ0|Ê(θ0))

)
, in distribution

follows immediately from the martingale central limit theorem. ¤

6 Adaptive quantum estimation problems

Having established strong consistency and asymptotic efficiency of MLE, let us investigate the oper-
ational meaning of the Cramér-Rao type approach in the context of adaptive quantum estimation.
Suppose that, by prior investigation of the quantum statistical model S, we have the list of optimal
LUEs

(
M( · ; θ), θ̌( · ; θ)

)
for each θ ∈ Θ. The basic idea of Nagaoka’s adaptive quantum estimation

scheme was to use the LUE
(
M( · ; θ̂n−1), θ̌( · ; θ̂n−1)

)
at stage n (≥ 2) which is chosen according to

the MLE θ̂n−1 obtained at the previous stage. Because of the strong consistency of MLE (Theorem
8), it is expected that this sequence of LUEs would work well. We assume the following regularity
condition:

13



(RC4)
(
M(x; θ), θ̌(x; θ)

)
is continuous in (x, θ).

We first treat the case when the SLD lower bound in (4) is achievable. Note that, by the
optimality of LUEs, the estimator

(
M( · ; θ0), θ̌( · ; θ0)

)
achieves the lower bound (Jθ0)

−1 in this
case. Because of (RC4) and the strong consistency of θ̂n, the sequence M( · ; θ̂n−1) of measurements
converges almost surely to M( · ; θ0). Thus the limiting Fisher information matrix J(θ0|Ê(θ0)) in
Theorem 9 is almost surely identical to the SLD Fisher information matrix Jθ0 , and the asymptotic
efficiency of the MLE (Theorem 9) establishes the achievability of the Cramér-Rao lower bound
by means of the adaptive estimation scheme. Note that there is no need for using the estimating
functions θ̌( · ; θ̂n−1) in this case.

We next treat the case when the SLD lower bound is not necessarily achievable, and study
the problem of minimizing the scalar quantity trGVθ[M, θ̌], given a weight G > 0. Note that the
best LUE

(
M( · ; θ), θ̌( · ; θ)

)
at each θ ∈ Θ is the minimizer of tr GVθ[M, θ̌] in this case. It then

follows from the strong consistency (Theorem 8) and continuity (RC1) (RC4) that the sequence
trGVθ0 [M( · ; θ̂n−1), θ̌( · ; θ̂n−1)] converges to

trGVθ0 [M( · ; θ0), θ̌( · ; θ0)] = min
(M,θ̌):LUE at θ0

trGVθ0 [M, θ̌].

This quantity is sometimes referred to as the most informative Cramér-Rao bound at θ0 [4].
Let us investigate the operational meaning of this bound. The sample covariance matrix Sn =

(sij
n )1≤i,j≤d for the above sequence of LUEs up to stage n is given by

sij
n :=

1
n

n∑
k=1

(
θ̌i(Xk; θ̂k−1) − θ̄i

n

) (
θ̌j(Xk; θ̂k−1) − θ̄j

n

)
=

1
n

n∑
k=1

(
θ̌i(Xk; θ̂k−1) − θi

0

)(
θ̌j(Xk; θ̂k−1) − θj

0

)
−

(
θ̄i

n − θi
0

) (
θ̄j

n − θj
0

)
, (22)

where θ̄i
n is the sample mean:

θ̄i
n :=

1
n

n∑
k=1

θ̌i(Xk; θ̂k−1).

According to (RC4), there is a number M such that

max
1≤i≤d

sup
(x,θ)∈X×Θ

|θ̌i(x; θ)| ≤ M.

Letting Y := M , we see that Eθ0 [|Y | log+ |Y |] = M log+ M < ∞, and

Pθ0(|θ̌i(Xk; θ̂k−1)| > y) ≤ Pθ0(|Y | > y)

for all y ≥ 0, k ≥ 1, and 1 ≤ i ≤ d. It then follows from Theorem 14, continuity (RC1) (RC4), and
the local unbiasedness condition (3), that the sample mean θ̄i

n converges to

lim
k→∞

Eθ0

[
θ̌i(Xk; θ̂k−1)

∣∣∣ Fk−1

]
= θi

0,
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almost surely as n → ∞. As a consequence, the second term of (22) approaches zero almost surely,
and, again by Theorem 14, the sample covariance sij

n converges to

lim
k→∞

Eθ0

[(
θ̌i(Xk; θ̂k−1) − θi

0

)(
θ̌j(Xk; θ̂k−1) − θj

0

) ∣∣∣ Fk−1

]
= vij

θ0

[
M( · ; θ0), θ̌( · ; θ0)

]
almost surely as n → ∞. We thus conclude that

trGSn −→ min
(M,θ̌):LUE at θ0

tr GVθ0 [M, θ̌]

almost surely as n → ∞.
In summary, when the true value of the parameter is θ0, the weighted sum trGSn of sample

covariances sij
n for the sequence

(
M( · ; θ̂n−1), θ̌( · ; θ̂n−1)

)
of LUEs converges almost surely to the

most informative Cramér-Rao bound at θ0.

7 Concluding remarks

A crucial observation in the proof of strong consistency is the continuity of the functions g(e) and
gε(e), and the convergence gε(e) ↓ g(e), which hold trivially when X is finite. For a general data
space X equipped with a σ-finite measure µ, these properties might fail. However, with additional
regularity conditions, the same argument would still work. A possible additional requirement will
be as follows:

(RC5) For each θ ∈ Θ, e ∈ E , and sufficiently small ε > 0, there exists a δ > 0 such that∫
sup

(θ′,e′)∈Nε(θ)×Nδ(e)

√
f(x; θ′, e′) f(x; θ0, e′) µ(dx) < ∞.

This condition allows us to use the dominated convergence theorem in proving the continuity of
g(e) and gε(e) as well as the convergence gε(e) ↓ g(e). For example, for any e0 ∈ E and sufficiently
small ε > 0,

lim
e→e0

gε(e) = lim
e→e0

∫
sup

θ′∈Nε(θ)

√
f(x; θ′, e) f(x; θ0, e) µ(dx)

=
∫

lim
e→e0

sup
θ′∈Nε(θ)

√
f(x; θ′, e) f(x; θ0, e) µ(dx)

=
∫

sup
θ′∈Nε(θ)

√
f(x; θ′, e0) f(x; θ0, e0) µ(dx) = gε(e0).

Note that condition (RC5) is similar in spirit to condition (S2) in Datta [7], and is slightly stronger
than condition (2.4) in McCormick et al. [6]. Also note that when X is compact and µ(X ) < ∞,
(RC5) is always satisfied. In order to handle asymptotic efficiency for a general data space X ,
further regularity conditions are also required.

Returning to adaptive quantum estimation problems, the finiteness of the sample space X
was ensured by the finite dimensionality of H (Theorem 5). It is nevertheless clear from the above
remarks that the asymptotic properties of adaptive quantum estimation schemes obtained in Section
6 can be extended, with some additional regularity conditions, to quantum statistical models on
infinite dimensional Hilbert spaces. Such an extension will provide a rigorous foundation of adaptive
estimation schemes in quantum optics [15, 16, 17].
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Appendices

A Continuity of gε

Since f(x; · , e) is continuous on the compact set Θ, we have

sup
θ′∈Nε(θ)

√
f(x; θ′, e) = max

θ′∈Nε(θ)

√
f(x; θ′, e).

Hence to prove the continuity of gε(e) in e for each ε > 0, it suffices to establish the following

Lemma 13 Let f : A×B → R be a continuous function with A a compact set. Then the function
g(y) := max

x∈A
f(x, y) is continuous in y.

Proof We show that the opposite claim leads to a contradiction. Suppose that g(y) is discontin-
uous at y0 ∈ B. Then there exists an ε > 0 and a sequence {yn}n such that yn → y0 as n → ∞,
and that either (i) g(yn) − g(y0) > ε for all n, or (ii) g(y0) − g(yn) > ε for all n.

In case (i), we have

max
x

f(x, yn) > max
x

f(x, y0) + ε ≥ f(x′, y0) + ε

for all n and all x′ ∈ A. For each n, let xn ∈ A be a maximizer of f(x, yn). Then we have
f(xn, yn) > f(xn, y0) + ε for all n. Since A is compact, there is a subsequence {xn(i)}i which
converges to a point, say x0, in A as i → ∞. For this subsequence, f(xn(i), yn(i)) > f(xn(i), y0) + ε.
Taking the limit i → ∞, and using the continuity of f(x, y), we have f(x0, y0) ≥ f(x0, y0)+ε. This
is a contradiction.

In case (ii), on the other hand, we have

max
x

f(x, y0) > max
x

f(x, yn) + ε ≥ f(x′, yn) + ε

for all n and all x′ ∈ A. Let x0 ∈ A be a maximizer of f(x, y0). Then f(x0, y0) > f(x0, yn) + ε.
Taking the limit n → ∞, we have f(x0, y0) ≥ f(x0, y0) + ε. Once again, this is a contradiction. ¤

B Law of large numbers

Theorem 14 Let {Yn}n be a sequence of r.v. adapted to an increasing sequence {Fn}n of σ-
algebras. If there is a r.v. Y satisfying E|Y | < ∞, and a constant λ such that

P (|Yn| > y) ≤ λ P (|Y | > y)
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for all n ≥ 1 and y ≥ 0, then

1
n

n∑
i=1

{Yi − E[Yi | Fi−1]} −→ 0, in probability.

If E[ |Y | log+ |Y | ] < ∞, then the convergence in probability can be strengthened to a.s. convergence.

Here, log+ x := max{0, log x}. For the proof, see [14, p. 36, Theorem 2.19]. For example, if
{Yn}n is bounded, in that there is a constant M > 0 satisfying |Yn| ≤ M for all n, then the
a.s. convergence in Theorem 14 holds. (To see this, just let Y := M and λ = 1.)

C Martingale central limit theorem

For each n ≥ 1, let {Sni}1≤i≤kn
be a zero-mean, square-integrable martingale adapted to {Fni}1≤i≤kn

,
and let Yni := Sni − Sn,i−1 denote the martingale difference (with Sn0 = 0). It is assumed that
kn ↑ ∞ as n → ∞. We shall call the double sequence {Sni}1≤i≤kn a martingale array, and

V 2
ni :=

i∑
j=1

E
[
Y 2

nj

∣∣Fn,j−1

]
the conditional variance of Sni. The following result is a martingale extension of the central limit
theorem [14, p. 58, Corollary 3.1].

Theorem 15 Suppose that the σ-algebras are nested: Fni ⊂ Fn+1,i, for n ≥ 1 and 1 ≤ i ≤ kn,
and that

for all ε > 0,

kn∑
i=1

E
[
Y 2

ni I(|Yni| > ε)
∣∣Fn,i−1

]
−→ 0, in probability, (23)

and
V 2

nkn
−→ η2, in probability,

where η2 is an a.s. finite r.v. Then Snkn
→ Z in distribution stably, where the r.v. Z has charac-

teristic function E
[
exp

(
−1

2η2t2
)]

.

Note that convergence Zn → Z in distribution is called stable if for any continuity point z of Z
and any event F ∈ F , the limit

lim
n→∞

P ({Zn ≤ z} ∩ F ) =: Qz(F )

exhists and satisfies Qz(F ) → P (F ) as z → ∞. The condition (23) is called the conditional
Lindeberg condition.

References

[1] A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Ams-
terdam, 1982).

17



[2] C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York,
1976).

[3] W.G. Cochran, “Experiments for nonlinear functions” (R.A. Fisher memorial lecture), Journal
of the American Statistical Association, vol. 68, pp. 771-781 (1973).

[4] H. Nagaoka, “An asymptotically efficient estimator for a one-dimensional parametric model of
quantum statistical operators,” in Proc. Int. Symp. on Inform. Theory, p. 198 (1988); H. Na-
gaoka, “On the parameter estimation problem for quantum statistical models,” in Proc. 12th
Symp. on Inform. Theory and its Appl., pp. 577-582 (1989), reprinted in Asymptotic Theory of
Quantum Statistical Inference, ed. M. Hayashi (World Scientific, Singapore, 2005), pp. 125-132.

[5] H. Chernoff, “Sequential design of experiments,” Annals of Mathematical Statistics, vol. 30,
pp. 755-777 (1959).

[6] W.P. McCormick, A.K. Mallik and J.H. Reeves, “Strong consistency of the MLE for sequential
design problems,” Statistics and Probability Letters, vol. 6, pp. 441-446 (1988).

[7] S. Datta, “Consistency of the mle for a general sequential design problem,” Sankyā: The Indian
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