
Complementing Chentsov’s characterization

Akio Fujiwara∗

Department of Mathematics, Osaka University

Toyonaka, Osaka 560-0043, Japan

On the occasion of Professor Amari’s 80th birthday.

Abstract

It is shown that Markov invariant tensor fields on the manifold of probability dis-

tributions are closed under the operations of raising and lowering indices with respect

to the Fisher metric. As a result, every (r, s)-type Markov invariant tensor field can

be obtained by raising indices of some (0, r + s)-type Markov invariant tensor field.

1 Introduction

In his seminal book [4], Chentsov characterized several covariant tensor fields on the man-

ifold of probability distributions that fulfil certain invariance property, now referred to as

the Markov invariance. Since Markov invariant (0, 2)- and (0, 3)-type tensor fields play

essential roles in introducing a metric and affine connections on the manifold of probability

distributions, Chentsov’s theorem is regarded as one of the most fundamental achievements

in information geometry [2].

Let, for each n ∈ N,

Sn−1 :=

{
p : Ωn → R++

∣∣∣∣∣ ∑
ω∈Ωn

p(ω) = 1

}
be the manifold of probability distributions on a finite set Ωn = {1, 2, . . . , n}, where R++

denotes the set of strictly positive real numbers. In what follows, each point p ∈ Sn−1 is

identified with the vector (p(1), p(2), . . . , p(n)) ∈ Rn
++.

Given natural numbers n and ℓ satisfying 2 ≤ n ≤ ℓ, let

Ωℓ =
n⊔

i=1

C(i) (1)

be a direct sum decomposition of the index set Ωℓ = {1, . . . , ℓ} into n mutually disjoint

nonempty subsets C(1), . . . , C(n). We put labels on elements of the ith subset C(i) as follows:

C(i) = {i1, . . . , iri},
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Figure 1: A Markov embedding f : Sn−1 → Sℓ−1 for n = 2 and ℓ = 3 associated with the

partition Ω3 = C(1) ⊔ C(2), where C(1) = {1, 2} and C(2) = {3}.

where ri is the number of elements in C(i). A map

f : Sn−1 −→ Sℓ−1 : (p1, . . . , pn) 7−→ (q1, . . . , qℓ)

is called a Markov embedding associated with the partition (1) if it takes the form

qis := λispi

(
λis > 0,

ri∑
s=1

λis = 1

)
(2)

for each i = 1, . . . , n and s = 1, . . . , ri. A simple example of a Markov embedding is

illustrated in Figure 1, where n = 2 and ℓ = 3.

A series {F [n]}n∈N of (0, s)-type tensor fields, each on Sn−1, is said to be Markov

invariant if

F [n]
p (X1, . . . , Xs) = F

[ℓ]
f(p)(f∗X1, . . . , f∗Xs)

holds for all Markov embeddings f : Sn−1 → Sℓ−1 with 2 ≤ n ≤ ℓ, points p ∈ Sn−1,

and tangent vectors X1, . . . , Xs ∈ Tp Sn−1. When no confusion arises, we simply use an

abridged notation F for F [n].

Now, the Chentsov theorem [4] (cf., [3, 5]) asserts that the only Markov invariant tensor

fields of type (0, s), with s ∈ {1, 2, 3}, on Sn−1 are given, up to scaling, by

Tp(X) = Ep[(X log p)] (= 0), (3)

gp(X,Y ) = Ep[(X log p)(Y log p)], (4)

Sp(X,Y, Z) = Ep[(X log p)(Y log p)(Z log p)], (5)

where p ∈ Sn−1, and Ep[ · ] denotes the expectation with respect to p. In particular, the

(0, 2)-type tensor field g is nothing but the Fisher metric, and the (0, 3)-type tensor field

S yields the α-connection ∇(α) through the relation

g(∇(α)
X Y, Z) := g(∇XY, Z)− α

2
S(X,Y, Z),
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where ∇ is the Levi-Civita connection with respect to the Fisher metric g. Chentsov’s

theorem is thus a cornerstone of information geometry.

Despite this fact, it is curious that the above-mentioned formulation only concerns

characterization of covariant tensor fields. Put differently, discussing the Markov invariance

of contravariant and/or mixed-type tensor fields is beyond the scope. To the best of the

author’s knowledge, however, there have been no attempts toward such generalization. The

objective of the present paper is to extend Chentsov’s characterization to generic tensor

fields.

2 Main results

Associated with each Markov embedding f : Sn−1 → Sℓ−1 is a unique affine map

φf : Sℓ−1 −→ Sn−1 : (q1, . . . , qℓ) 7−→ (p1, . . . , pn)

that satisfies

φf ◦ f = id.

In fact, it is explicitly given by the following relations

pi =
∑

j∈C(i)

qj (i = 1, . . . , n)

that allocate each event C(i) (⊂ Ωℓ) to the singleton {i} (⊂ Ωn), (cf., Appendix A). We

shall call the map φf the coarse-graining associated with a Markov embedding f . Note

that the coarse-graining φf is determined only by the partition (1), and is independent of

the internal ratios {λis}i,s that specifies f as (2).

For example, let us consider a Markov embedding

f : S1 −→ S3 : (p1, p2) 7−→ (λp1, (1− λ)p1, µp2, (1− µ)p2), (0 < λ, µ < 1)

associated with the partition Ω4 = C(1) ⊔ C(2), where

C(1) = {1, 2}, C(2) = {3, 4}.

The coarse-graining φf : S3 → S1 associated with f is given by

φf : (q1, q2, q3, q4) 7−→ (q1 + q2, q3 + q4).

There are of course other affine maps φf : S3 → R2
++ that satisfy the relation φf ◦ f = id

on S1: for example,

φf : (q1, q2, q3, q4) 7−→
(
q1
λ
,
q3
µ

)
.

However, this is not a map of the form φf : S3 → S1.
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Now we introduce a generalized Markov invariance. A series {F [n]}n∈N of (r, s)-type

tensor fields, each on Sn−1, is said to be Markov invariant if

F [n]
p (ω1, . . . , ωr, X1, . . . , Xs) = F

[ℓ]
f(p)(φ

∗
fω

1, . . . , φ∗
fω

r, f∗X1, . . . , f∗Xs)

holds for all Markov embeddings f : Sn−1 → Sℓ−1 with 2 ≤ n ≤ ℓ, points p ∈ Sn−1,

cotangent vectors ω1, . . . , ωr ∈ T ∗
p Sn−1, and tangent vectors X1, . . . , Xs ∈ Tp Sn−1. When

no confusion arises, we simply use an abridged notation F for F [n].

The main result of the present paper is the following.

Theorem 1. Markov invariant tensor fields are closed under the operations of raising and

lowering indices with respect to the Fisher metric g.

Theorem 1 has a remarkable consequence: every (r, s)-type Markov invariant tensor

field can be obtained by raising indices of some (0, r + s)-type Markov invariant tensor

field. This fact could be paraphrased by saying that Chentsov’s original approach was

universal.

3 Proof of Theorem 1

We first prove that raising indices with respect to the Fisher metric preserves Markov

invariance, and then prove that lowering indices also preserves Markov invariance.

3.1 Raising indices preserves Markov invariance

Suppose we want to know whether the (1, 2)-type tensor field F i
jk := gimSmjk is Markov

invariant, where S is the Markov invariant (0, 3)-type tensor field defined by (5). Put

differently, we want to investigate if, for some (then any) local coordinate system (xa) of

Sn−1, the (1, 2)-type tensor field F defined by F

(
dxa,

∂

∂xb
,

∂

∂xc

)
:= gaeSebc exhibits

Fp

(
dxa,

∂

∂xb
,

∂

∂xc

)
= Ff(p)

(
φ∗
fdx

a, f∗
∂

∂xb
, f∗

∂

∂xc

)
. (6)

In order to handle such a relation, it is useful to identify the Fisher metric g on the

manifold Sn−1 and its inverse g−1 with the following linear maps:

g : TSn−1 −→ T ∗Sn−1 :
∂

∂xa
7−→ gab dx

b,

g−1 : T ∗Sn−1 −→ TSn−1 : dxa 7−→ gab
∂

∂xb
.

Note that these maps do not depend on the choice of a local coordinate system (xa) of

Sn−1.

Now, observe that

LHS of (6) = Sp ◦ (g−1
p ⊗ I ⊗ I)

(
dxa,

∂

∂xb
,

∂

∂xc

)
= Sp

(
gaep

∂

∂xe
,

∂

∂xb
,

∂

∂xc

)
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and

RHS of (6) = Sf(p) ◦ (g−1
f(p) ⊗ I ⊗ I)

(
φ∗
fdx

a, f∗
∂

∂xb
, f∗

∂

∂xc

)
= Sf(p)

(
g−1
f(p)(φ

∗
fdx

a), f∗
∂

∂xb
, f∗

∂

∂xc

)
.

Since the (0, 3)-type tensor field S is Markov invariant, the following Lemma establishes

(6).

Lemma 2. For any Markov embedding f : Sn−1 → Sℓ−1, it holds that

f∗

(
gaep

∂

∂xe

)
= g−1

f(p)(φ
∗
fdx

a). (7)

In other words, the diagram

T ∗
p Sn−1

φ∗
f−−−−→ T ∗

f(p)Sℓ−1

g−1

y g−1

y
TpSn−1

f∗−−−−→ Tf(p)Sℓ−1

is commutative.

Proof. In view of a smooth link with the expression (2) of a Markov embedding, we make

use of the ∇(m)-affine coordinate system

η̂i := pi (i = 1, . . . , n− 1)

as a coordinate system of Sn−1, and the ∇(m)-affine coordinate system

ηis := qis (i = 1, . . . , n− 1; s = 1, . . . , ri and i = n; s = 1, . . . , rn − 1)

as a coordinate system of Sℓ−1, given a Markov embedding f : Sn−1 → Sℓ−1. Note that

the component qnrn
that corresponds to the last element nrn of C(n) is excluded in this

coordinate system because of the normalisation.

We shall prove (7) by showing the identity

ĥim f∗
∂

∂η̂m
= g−1

f(p)(φ
∗
fdη̂i), (8)

where ĥim := hp(dη̂i, dη̂m), with h being the (2, 0)-type tensor field defined by

h(dxa, dxb) := gab.

Note that, due to the duality of the η- and θ-coordinate systems, ĥim is identical to the

component ĝim of the Fisher metric g with respect to the θ-coordinate system (θ̂i) of Sn−1,

and is explicitly given by

ĝim = η̂iδim − η̂iη̂m.
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Similarly, the components of h with respect to the η-coordinate system (ηj) of Sℓ−1 is

simply denoted by hij := hf(p)(dηi, dηj), and is identical to gij = ηiδij − ηiηj .

Due to the choice of the coordinate systems (η̂i)i and (ηis)i,s, we have

η̂i =
∑

j∈C(i)

ηj =

ri∑
s=1

ηis (i = 1, . . . , n− 1),

so that

φ∗
fdη̂i =

∑
j

∂η̂i
∂ηj

dηj =

ri∑
s=1

dηis .

Thus

RHS of (8) = g−1
f(p)

(
ri∑
s=1

dηis

)
=

ri∑
s=1

∑
j

his,j
∂

∂ηj

 . (9)

On the other hand, since
ηis = λis η̂i (i = 1, . . . , n− 1; s = 1, . . . , ri)

ηns = λns

(
1−

n−1∑
i=1

η̂i

)
(s = 1, . . . , rn − 1)

,

we see that, for each m = 1, . . . , n− 1,

f∗
∂

∂η̂m
=

n−1∑
i=1

ri∑
s=1

∂ηis
∂η̂m

∂

∂ηis
+

rn−1∑
s=1

∂ηns

∂η̂m

∂

∂ηns

=

rm∑
s=1

λms

∂

∂ηms

−
rn−1∑
s=1

λns

∂

∂ηns

.

Consequently,

LHS of (8) =
n−1∑
m=1

ĥim

rm∑
s=1

λms

∂

∂ηms

−

(
n−1∑
m=1

ĥim

)(
rn−1∑
s=1

λns

∂

∂ηns

)
. (10)

To prove (8), let us compare, for each j, the coefficients of
∂

∂ηj
in (9) and (10). The

index j runs through (
n−1⊔
k=1

C(k)

)
⊔ {ns}rn−1

s=1 .

So suppose that j = ku, the uth element of C(k), where 1 ≤ k ≤ n. Then

coefficient of
∂

∂ηku
in (9) =

ri∑
s=1

his,ku . (11)

On the other hand,

coefficient of
∂

∂ηku
in (10) =


ĥikλku (1 ≤ k ≤ n− 1)

−

(
n−1∑
m=1

ĥim

)
λnu (k = n)

. (12)
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We show that (11) equals (12) for all indices i, k, and u.

When 1 ≤ k ≤ n− 1,

(11) =

ri∑
s=1

(ηisδis,ku − ηisηku)

= δikηku − η̂iηku

= λku (δikη̂k − η̂iη̂k)

= (12).

When k = n, on the other hand,

(11) =

ri∑
s=1

(−ηisηnu)

= −η̂i λnu

(
1−

n−1∑
m=1

η̂m

)

= −λnu

n−1∑
m=1

(η̂iδim − η̂iη̂m)

= (12).

This proves the identity (8).

Now that Lemma 2 is established, a repeated use of the line of argument that precedes

Lemma 2 leads us to the following general assertion: raising indices with respect to the

Fisher metric preserves Markov invariance.

3.2 Lowering indices preserves Markov invariance

Suppose that, given a Markov invariant (3, 0)-type tensor field T , we want to know whether

the (2, 1)-type tensor field F defined by

F

(
∂

∂xa
, dxb, dxc

)
:= gaeT

ebc

satisfies Markov invariance:

Fp

(
∂

∂xa
, dxb, dxc

)
= Ff(p)

(
f∗

∂

∂xa
, φ∗

fdx
b, φ∗

fdx
c

)
or equivalently

Tp

(
gaedx

e, dxb, dxc
)
= Tf(p)

(
gf(p)

(
f∗

∂

∂xa

)
, φ∗

fdx
b, φ∗

fdx
c

)
.

This question is resolved affirmatively by the following

Lemma 3. For any Markov embedding f : Sn−1 → Sℓ−1, it holds that

φ∗
f ((gp)ae dx

e) = gf(p)

(
f∗

∂

∂xa

)
.
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In other words, the diagram

T ∗
p Sn−1

φ∗
f−−−−→ T ∗

f(p)Sℓ−1

g

x g

x
TpSn−1

f∗−−−−→ Tf(p)Sℓ−1

is commutative.

Proof. Since g is an isomorphism, this is a straightforward consequence of Lemma 2.

Lemma 3 has the following implication: lowering indices with respect to the Fisher

metric preserves Markov invariance.

Theorem 1 is now an immediate consequence of Lemmas 2 and 3.

4 Concluding remarks

We have proved that raising and lowering indices with respect to the Fisher metric preserve

Markov invariance of tensor fields on the manifold of probability distributions. For example,

gij is, up to scaling, the only (2, 0)-type Markov invariant tensor field. It may be worthwhile

to mention that not every operation in tensor calculus preserves Markov invariance. The

following example is due to Amari [1].

With the ∇(e)-affine coordinate system θ = (θ1, . . . , θn−1) of Sn−1 defined by

log p(ω) =

n−1∑
i=1

θiδi(ω)− log

(
1 +

n−1∑
k=1

exp θk

)
,

the (0, 3)-type tensor field (5) has the following components:

Sijk =



ηi(1− ηi)(1− 2ηi), (i = j = k)

−ηi(1− 2ηi)ηk, (i = j ̸= k)

−ηj(1− 2ηj)ηi, (j = k ̸= i)

−ηk(1− 2ηk)ηj , (k = i ̸= j)

2ηiηjηk, (i ̸= j ̸= k ̸= i)

.

Here, η = (η1, . . . , ηn−1) is the ∇(m)-affine coordinate system of Sn−1 that is dual to θ. By

using the formula

gij =
1

η0
+

δij

ηi
,

(
η0 := 1−

n−1∑
i=1

ηi

)
,

the (1, 2)-type tensor field F i
jk := gimSmjk is readily calculated as

F i
jk =


1− 2ηi, (i = j = k)

−ηk, (i = j ̸= k)

−ηj , (i = k ̸= j)

0, (i ̸= j, i ̸= k)

.
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We know from Theorem 1 that F is Markov invariant. However, the following contracted

(0, 1)-type tensor field

T̃k := F i
ik = 1− nηk

is non-zero, and hence is not Markov invariant; see (3). This demonstrates that the con-

traction, which is a standard operation in tensor calculus, does not always preserve Markov

invariance.

Chentsov’s idea of imposing the invariance of geometrical structures under Markov em-

beddings f : Sn−1 → Sℓ−1 is based on the fact that Sn−1 is statistically isomorphic to

f(Sn−1). Put differently, the invariance only involves direct comparison between Sn−1 and

its image f(Sn−1), and is nothing to do with the complement of f(Sn−1) in the ambient

space Sℓ−1. On the other hand, the partial trace operation F i
jk 7→ F i

ik on Sℓ−1 (more

precisely, on Tf(p)Sℓ−1 ⊗ T ∗
f(p)Sℓ−1) makes the output F i

ik “contaminated” with informa-

tion from outside the submanifold f(Sn−1). It is thus no wonder such an influx of extra

information manifests itself as the non-preservation of Markov invariance. In this respect,

a distinctive characteristic of Lemmas 2 and 3 lies in the fact that raising and lowering in-

dices preserve Markov invariance although they are represented in the forms of contraction

such as giℓSmjk 7→ gimSmjk or giℓT
mjk 7→ gimTmjk.
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Appendix

A Uniqueness of φf

A Markov embedding f : Sn−1 → Sℓ−1 defined by (1) and (2) uniquely extends to a linear

map f̃ : Rn → Rℓ : (x1, . . . , xn) 7→ (y1, . . . , yℓ) as

yis := λisxi

(
λis > 0,

ri∑
s=1

λis = 1

)
.

Similarly, let φ̃f : Rℓ → Rn be the unique linear extension of φf : Sℓ−1 → Sn−1.

Since (
ℓ∑

k=1

(φ̃f )ik qk

)
i=1,...,n

∈ Sn−1 (13)
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for all q = (q1, . . . , qℓ) ∈ Sℓ−1, we see that the matrix elements of φ̃f are nonnegative:

(φ̃f )ik ≥ 0 (∀i = 1, . . . , n; ∀k = 1, . . . , ℓ). (14)

The relation (13) also entails that, for all q ∈ Sℓ−1,

ℓ∑
k=1

qk = 1 =
n∑

i=1

(
ℓ∑

k=1

(φ̃f )ik qk

)
,

so that
ℓ∑

k=1

(
n∑

i=1

(φ̃f )ik − 1

)
qk = 0.

Consequently,
n∑

i=1

(φ̃f )ik = 1 (∀k = 1, . . . , ℓ). (15)

It then follows from (14) and (15) that

0 ≤ (φ̃f )ik ≤ 1 (∀i = 1, . . . , n; ∀k = 1, . . . , ℓ). (16)

Now, since φ̃f is a left inverse of f̃ ,

δij =
ℓ∑

k=1

(φ̃f )ik

(
f̃
)
kj

=
∑

k∈C(j)

(φ̃f )ik λk =

rj∑
s=1

(φ̃f )i,js λjs .

Because of (16), we have

(φ̃f )i,js = δij (∀s = 1, . . . , rj).

This proves that φf is unique and is given by the coarse-graining associated with f .
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