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A Coding Theoretic Study of Homogeneous
Markovian Predictive Games

Takara Nomura®™ and Akio Fujiwara

Abstract—This paper explores a predictive game in which
a Forecaster announces odds based on a time-homogeneous
Markov kernel, establishing a game-theoretic law of large num-
bers for the relative frequencies of occurrences of all finite strings.
A key feature of our proof is a betting strategy inspired by a
universal coding scheme, drawing on the martingale convergence
theorem and algorithmic randomness theory, without relying
on a diversified betting approach that involves countably many
operating accounts. We apply these insights to thermodynamics,
offering a game-theoretic perspective on Le6 Szilard’s thought
experiment.

Index Terms—Game-theoretic probability, martingale, univer-
sal coding, Szilard’s engine, entropy.

I. INTRODUCTION
AME-THEORETIC probability theory [1], proposed
by Shafer and Vovk in 2001, offers a framework for
studying stochastic behavior without relying on traditional
concept of probability. To illustrate this approach, we begin by
recalling a fundamental result from game-theoretic probability
theory.

Let Q := {1,2,...,A} be a finite alphabet, and let Q",
Q*, and Q% denote the sets of sequences over Q of length
n, finite length, and infinite (one-sided) length, respectively.
The empty string is denoted by A. An element of Q" is
represented symbolically as «". We also introduce the notation
w! 1= wiwity -+ wj for i < j, denoting the substring from the
ith to the jth coordinates of a longer sequence wiws « - wy - +.
By convention, if i > j, we set w! := A. For x € Q" and
y e Q"UQ®, we write x C y to indicate that x is a prefix of y.

Let us introduce the following set:

PO :={p: Q> 0.1 pw) =1

we

Given a p € P(Q), consider the following game.
This protocol can be understood as a betting game in which
Skeptic predicts Reality’s “stochastic” move, regarding p(a)

Received 3 February 2025; revised 10 July 2025; accepted 30 October
2025. Date of publication 11 November 2025; date of current version
23 December 2025. This work was supported in part by the Japan Science and
Technology Agency (JST) Exploratory Research for Advanced Technology
(ERATO) under Grant JPMJER2402; and in part by the Japan Society for
the Promotion of Science (JSPS) KAKENHI under Grant 22340019, Grant
17H02861, Grant 23H01090, and Grant 23K25787. (Corresponding author:
Takara Nomura.)

The authors are with the Department of Mathematics, The Univer-
sity of Osaka, Toyonaka, Osaka 560-0043, Japan (e-mail: u004883d@
ecs.osaka-u.ac.jp; fujiwara@math.sci.osaka-u.ac.jp).

Communicated by V. Kostina, Associate Editor for Communications.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2025.3631705.

Digital Object Identifier 10.1109/TIT.2025.3631705

Simple predictive game
Players: Skeptic and Reality.
Protocol: K, = 1.
FOR n € Z>QZ
Bn € R,
Reality announces w, € Q.

Ky = Kt + 3Bu(wn) = Y_ Bul@)pla)y.
END FOR. o=

as the “probability” of the occurrence of a € Q. Further, §,
and K, denote Skeptic’s bet and capital at step n, respectively,
with the recursion formula specifying how the capital evolves.
Namely, the formula states that, at step n, after Skeptic
announces 3, = (8,(1),5,(2),...,B8,(A)) and Reality announces
w, € Q, Skeptic gains B,(w,) and loses ) . Bs(a)p(a) in
assets. This loss term Y .o Ba(a)p(a) reflects the “expected
value” of the Skeptic’s stakes under the odds p and can be
regarded as a participation cost that must be paid in advance,
regardless of the actual outcome. Note that 5, can take negative
values. Since 8, can depend on Reality’s past move u)'l"l, we
identify Skeptic’s strategy {8,}, with a map 8 : Q* — R? as
Bula) = (B ))@).

Apparently, this game is in favor of Reality because Reality
announces w,, after knowing Skeptic’s bet 3, preventing Skep-
tic from becoming rich. However, Shafer and Vovk showed the
following surprising result.

Theorem I (Game-Theoretic Law of Large Numbers): In
the simple predictive game, Skeptic has a prudent strategy
B QF — R? that ensures lim,_,., K, = co unless

1y
nlggo . ;%(wl) = p(a)
for all a € Q, where 6, denotes the Kronecker delta. Here, a
strategy is called prudent if K, > O for all n € Z.( and every
sequence w} € Q" chosen by Reality.

The theorem implies that there exists a betting strategy (3,
that guarantees Skeptic becomes infinitely rich if Reality’s
moves deviate from the “law of large numbers,” all while
avoiding the risk of bankruptcy.! Note that Skeptic’s capital
may diverge even while the empirical frequencies of Reality’s

ITf Reality’s objective is to prevent Skeptic from becoming infinitely rich,
then Theorem 1 can be rephrased as follows: Skeptic can force the event
lim; 00 711 Y% 1 8a(w;) = p(a), which corresponds to the original statement by

Shafer and Vovk [1].
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moves converge; the two phenomena are not mutually exclu-
sive. For more information, see Appendix C.

After the publication of Shafer and Vovk’s seminal book
[1], game-theoretic probability theory has been widely studied
across various contexts and applications. Notable develop-
ments include the game-theoretic proof of Lévy’s zero-one
law [2], [3], investigations into Reality’s strategic choices [4],
[5], and the game-theoretic formulation of Jeffrey’s law [6],
among others. These contributions are further extended in
Shafer and Vovk’s second book [7], which builds upon the
foundations established in the first, deepening the analysis and
exploring new frontiers in game-theoretic probability. In recent
years, many studies inspired by game-theoretic probability
have explored new applications, including statistical inference
[8], statistical testing [9] and machine learning [10]. These
works have significantly advanced the field, addressing both
theoretical and practical challenges within the framework
of game-theoretic probability. However, despite these devel-
opments, the connection between game-theoretic probability
theory and information theory, particularly in the context
of universal coding, has received limited attention; see, for
example, [11] and [12] for related work primarily addressing
sequential testing problems.

This paper aims to elucidate the coding theoretic aspects
underpinning the theory by presenting an alternative proof of
Theorem 1 and its generalizations. Our approach offers new
insights into game-theoretic probability by employing a single,
coding theoretic (pure) strategy, in contrast to Shafer and
Vovk’s original proof, which relies on a diversified (“mixed”)
betting strategy using countably many operating accounts [1],
and to subsequent alternative proofs grounded in statistical
estimation [13], [14]. We also note that Feder [15] previously
proposed a closely related strategy. Although the aims and
scope differ, we cite this work for completeness and to
acknowledge the prior contribution.

Generalized predictive game
Players: Forecaster, Skeptic, and Reality.
Protocol: K, = 1.
FOR n € Z>QZ
Forecaster announces p, € P(Q).
Skeptic announces 3, € RL,
Reality announces w, € Q.

Ky = Kp + {ﬁn(ww—Zﬁn(a)pn(a) :
END FOR. oo

In order to explicate our coding theoretic approach, consider
the following generalized game in which a Forecaster comes
into play to announce a possibly “non-i.i.d.” process.

Let us identify Skeptic’s betting strategy 3, € R with a,, €
R that satisfies

Bu(a) =

Then, the recursion formula for the capital is rewritten as

- ay(a), (a € Q).

Ky =Ko {1+ an(wn) = Y an(@pa(a)g - (1)
acQ

We shall call «, a betting strategy as well, and call it prudent
if the corresponding 3, is prudent. We also identify {a,}, with
amap a: Q" — R® as a,(a) = (a(w’l"l))(a).

Now, associated with a prudent strategy «, is the following
quantity:

Qwlwi™):=

aeQ

1+ an(w) =Y an<a)pn(a>} pa(@). ()

Since a,, is prudent, we see that Q(w | a)'l"l) > 0 for all w € Q.
Moreover,

Y 0wl W™

we
= Z 1+ a,(w) — Zan(a)pn(a) pn(w)
we aeQ
= 1 + Z an(w)pn(w) - Z an(a)pn(a)
we aeQ

=1

Therefore, the quantity Q(w | a)’l"l) defined by (2) can be
regarded as a conditional probability. Conversely, for any
conditional probability Q(w | wi™!), there exists a prudent
strategy a, (although not unique) that satisfies (2): for instance,
let @, (a) := Q(a | w'l”l)/ pn(a) for each a € Q. Thus, the role of
Skeptic in the above predictive game is regarded as announcing
a conditional probability Q(w | w’f‘l).

Now, suppose that Forecaster happens to have a prede-
termined probability measure P on (Q%,.%), with % :=

o({T'y}xeq-) being the o-algebra generated by the cylinder sets
Iy :={y € Q% : x C y}, and announces each function p, as the
conditional probability, given the past data w™!, as follows:
pa@) = Pla] ™) := P(a| T ), (a€Q).
Then, we have from (1) and (2) that
T > an@pala)
acQ)
_ Ow, | o™
P, |
and hence
Qwy)
K, = K, 3
0 H Kt P@)’ ®

Put differently, the capital process K, is nothing but the
likelihood ratio process between P and Q. This perspective
is consistent with the interpretation developed in [7, Section
10.5] and further elaborated in [16, Section 2.2 and 2.3].

Let %, := 0({l'w}xeqn) for each n € Z.y, Then the capital
process (3) is a P-martingale relative to the natural filtration
{Z,}n, in that

oWy | . ] O(wh) =1
E[P(w?) J,l_l} = g P(w,l,)P(wn | ™)
_ Z Q(w ) Q(wl_])
= P P
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It then follows from the martingale convergence theorem [17]
that the capital process K, converges almost surely to some
nonnegative value under the probability measure P. Game-
theoretic probability provides a reciprocal description of this
mechanism by asserting that K, can diverge “on a P-null set,”
which, in the context of predictive games, is interpreted as “if
Reality does not align with Forecaster P.”

Furthermore, due to (3), the logarithm of the capital process
is written as

log, K, = {—log, P(w})} — {~log, Q(w)}. “)

This expression is simply the difference between the Shannon
codelengths for P and Q, evoking the notion of randomness
deficiency in algorithmic randomness theory [18]. For a com-
putable probability measure P on Q, an infinite sequence
w{ € Q% is Martin-L6f P-random if and only if the sequence

—log, P(w)) - K(w}) ®)

of randomness deficiencies is bounded from above, where
K(w?}) is the prefix Kolmogorov complexity of w] € Q.
Obviously, (4) and (5) are similar in form, as both represent
differences in codelengths. However, it is crucial to note that
(5) contains an uncomputable quantity C(wf). This observation
motivates the design of the conditional probability Q in (2), or
equivalently, a betting strategy «, in the generalized predictive
game, by employing ideas and techniques from computable
universal coding schemes.

Time-homogeneous & th-orderMarkovian predictive
game
Players: Forecaster, Skeptic, and Reality.
Protocol: Ky = 1.
FOR n € Z.y:
Forecaster announces p, € P(Q) such that
pala) := M(a | w!'2}) for n > k.
Skeptic announces a, € R®.
Reality announces w, € Q.

KI‘[ = n—1 l + an(a)n) - Za”(a)p”(a) .
aeQ
END FOR. )

Nevertheless, due to the difficulty of addressing fully gen-
eral predictive games, we focus here on the time-homogeneous
Markovian predictive game? as a first step toward developing
methods applicable to the general stationary ergodic case.
Suppose Forecaster has a kth-order Markov kernel M : Q x
QF 5 (0,1 : (a, ") » M(a | o) that satisfies

Y Ml =1

aeQ

for all w* € QF.

This protocol can be understood as a variant of the general-
ized predictive game in which Forecaster announces p, : Q —
(0,1) for n > k according to a time-homogeneous Markov
kernel M as p,(a) = M(a | wZ:}() based on Reality’s past

2The Markovian predictive game introduced in this paper is entirely distinct
from the Markov game commonly used in the field of operations research [19].

moves. Note that for n < k, p,(a) can be arbitrary as long as
pn € P(Q).
For each ! € Qf with £ € Zy, let P(w’) be defined by

¢
P(0)) := 7(b) 1_[ M(w; | wZp),
i=k+1

where 7 : Q¥ — (0, 1) is the stationary distribution associated
with the Markov kernel M. The main result of this paper is
the following:

Theorem 2: In the time-homogeneous kth-order Markovian
predictive game, Skeptic has a prudent strategy a : Q* — R®
that ensures lim,_,c K, = oo unless

‘
fim 229 _ paty
n—eo  p
for all € € Zs; and af € Qf, where S ,(a’) denotes the number
of occurrences of a’ in w".

Theorem 2 establishes that there exists a betting strategy
that guarantees Skeptic can become infinitely rich if Reality’s
moves do not align with the Markovian Forecaster’s announce-
ments.? Specifically, this happens when the relative frequency
of occurrences of some string of length ¢ (> k) fails to
converge to the stationary joint distribution associated with
the kth-order Markov kernel.

This paper is organized as follows. Section II introduces a
betting strategy based on the incremental parsing scheme of
Ziv and Lempel [20], and presents several lemmas that lay the
groundwork for proving the main result. For improved read-
ability, the proofs of these lemmas are deferred to Appendix
A. In Section III, we prove Theorem 2 by incorporating prop-
erties of Lempel-Ziv incremental parsing established in the
previous section, thereby bringing ideas inspired by universal
coding into game-theoretic probability. Section IV explores
applications of Theorem 2 to thermodynamics, specifically
a game-theoretic interpretation of Szilard’s engine and a
discussion of entropy in predictive games. Finally, Section V
provides concluding remarks. For the reader’s convenience,
additional information on stationary distributions of Markov
chains and an alternative proof of Theorem 1 are provided in
Appendices B and C, respectively.

II. PRELIMINARIES

In this section, we develop a betting strategy using the
technique of incremental parsing and establish several lemmas
in preparation for the proof of Theorem 2.

A. Betting Strategy Inspired by Lempel-Ziv Coding Scheme

We outline an algorithm for incremental parsing [20], which
divides a string into substrings separated by slashes, with each
substring being the shortest one not previously encountered.
The algorithm runs as follows: Start with an initial slash.
After each slash, scan the input sequence until the shortest
string that has not yet been marked off is identified. Since

3Using Shafer and Vovk’s terminology [1] once again, Theorem 2 can be
restated as follows: Skeptic can force the event lim,—e. S n(at)/n = P(a’) for
all £ € Zsy, and af € QL.
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this string is the shortest unseen string, all its prefixes must
have appeared earlier in the sequence. For example, a sequence
1000011101011 of length 13 is decomposed into

/1/0/00/01/11/010/11.
Suppose a sequence wf is parsed as
W = Jwy Oy W W

where ny = 0, n; = 1, and all parsed substrings except the

last one, wn 4> are distinct. In what follows, the substrings
Wy _H,a)n] FRTREES u)ZLl 4 are referred to as parsed phrases.

Note that the number T of parsed phrases depends on the
sequence wf, and the last string w/, | may be empty.

We now construct a betting strategy at step n, given
Reality’s past moves ! (n > 2). Using incremental parsing,
we decompose @~ into

n—1 _ 1 53
wp = /“’n0+1/“’n,+1/"'/ nr_ 1+1/0‘)ﬂ7‘+1

Next, we define the set

V(') =
g;tw”f 4y forall je€{0,1,...,T}, and
EeQr|¢é= wn l+lbforsomeje{O,l,...,T} s
andbeQ

where w,’ | = A is the empty string. Equivalently, V(w|")
consists of all one-symbol extensions of already parsed phrases
that have not yet appeared as phrases; it is the “frontier” of the
current dictionary, whose elements are candidates to become
new phrases at some later step (not necessarily the next). The
size of this set is given by

V() =A+T@A-1).

This can be shown by induction on 7: For T = 0, we have

n=1, and
V(™) =V =Q

For T > 1, the set V(w|") is constructed as
V(w]") = (V(w'l" D\ {wh Wy, lJrl}) Ui{w! w, L blbeQ),

which yields a recursive formula [V(w]")| = [V(w]" )| - 1+A,
ensuring the desired result.

Finally, we define the conditional probability Q;z(w, |
@), which determines the betting strategy a,(w,), as fol-

lows. For n =1, let Q;7(a) := 1/A. For n > 2, we define

¢ € V(w)") | wnTHa C &l
i€ e V) o)t e8I

Orz(al ™) := (6)

Note that

eV wii cé
= |_|,g:e V(") |l jac &l

aeQ

which follows from the definition of V(w”T) Moreover, the
set

{f € V(wrlh) | (‘)nT-Ha C é‘:}

is nonempty for any a € Q. Thus, we conclude that

Y Ouzalwi™y =1 and Quz(alwi™)>0.

aeQ)

The motivation behind the deﬁnition (6) is now in order.

When n -1 =nr (ie., when w) +1 = 1), we have
[{€ € V(w]") | ac &)
Qrz(a|wi") = o .
e V()|

Thus, for each & = ¢ € V(w]"),

Quz(& | W) := Quz(éy |w;>1‘[QLz<§f | W}

=2
1

T V@

In other words, the conditional probability Q;z(a | W] -1 s
designed to induce the uniform distribution over V(culT) This
observation also implies that

1

_— 7
] 2

Orz(wy 41 | W) >
whenever n > nr.

In what follows, we refer to the betting strategy a, based
on the conditional probability Q;z(a | W) as the Lempel-
Ziv betting strategy. Since «,, is canonlcally constructed via
ay(a) = Qrz(a | w’f‘l)/pn(a), we may identify @, with Q;z(- |
W) and, for simplicity, also refer to Qrz(- | ™) itself as
the Lempel-Ziv betting strategy.

Example: Let Q@ = {0,1}, and suppose that Skeptic
has observed the sequence of Reality’s outcomes a)}3 =
/1/0/00/01/11/010/11. At this stage, the current set of can-
didate phrases is

V(w!") = {10,000,001,011, 110, 111,0100, 0101},

and the conditional probabilities Q;z(a | a)}3) at step n = 14
are given by

3y a1y 1
QuzOer) = o1 = 2
s WL 1
Orz(1 |wy”) = 10110 ~ 2

Upon hearing Forecaster’s announcement pi4(a), Skeptic

announces the bet

Ouzalw?) 1
pa(a) 2 pua(a)’

Suppose further that Reality’s announcement at step n = 14

is w4 = 0. Skeptic then updates the set of candidate phrases
accordingly:

ay(a) = (a € Q).

V(wi*) = {10,000,001,011, 111,0100,0101, 1100, 1101},

and the updated strategy becomes
[{000,001,011,0100,0101}] 5

0 14 — s _3
01700 ] wi™) @ >
|{10,111,1100,1101}] 4
1 14 — _ L
Gt lon) V() 5
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Remark: From the above discussion,

T-1

—log Q1z(w}") = Y log(A + j(A - 1)), ®)
j=0

where

Quz(w}) = [ | Quz(wi | 7).

i=1

On the other hand, the Lempel-Ziv codelength ¢, [20] is given
by
T+1
Cuz(w) =) Tlog, (GA).

=

B. Properties of Lempel-Ziv Betting Strategy

In this section, we outline several fundamental properties
of the Lempel-Ziv betting strategy. All proofs are deferred to
Appendix A.

Define the complexity c(wf) of a sequence w] € Q" as
the total number 7 of parsed phrases obtained through its
incremental parsing [21, p. 448]. The quantity c(w/) log c(w?)
is known to play an essential role in Lempel-Ziv coding, and
it is also important in this paper as a bridge between several
key quantities. The following lemma provides an asymptotic
lower bound for the difference between c(wf})logc(w!) and
—log Qrz(w).

Lemma 3: For any w}* € Q%, the following inequality holds:

hilgglf ! {c(w’f) log c(w?) — (—log QLZ(a)rl’))} >0

For n, € Z.o with n > ¢, let T,(a}) denote the number
of occurrences of af € Qf in the cyclically extended word
wiw{™ of length n + ¢ — 1. Similarly, let 7,,(b | a!) represent
the number of occurrences of b immediately following af eqQf
in the extended word w’fw‘; of length n + . In other words,
T,(b | ab) = T,(alb).

Note that, by definition,

> Tu@) =n.

aleq!

Moreover, the quantity 7,(a}) is asymptotically equivalent to
S u(af), the number of occurrences of a! in wf, in the sense
that

1
hIElo (T (al) n(al)) =
The following lemma states that the marginals of conditional
counts T,(b | a}) correspond to T,(a}) and T,(a’b).
Lemma 4: Let n,{ € Z.o with n > £. Then, for all a‘f e Qf
and b € Q, the following identities hold:

Y Tubla)=Tya)) and Y T.(b|al)=T,(asb).

beQ a,€Q

Let us now fix £ € Z, arbitrarily. Given | with n > ¢, we
define
T,(b|a")

Wb | ab) o=

for a’ € Q satisfying T, (a") > 0. Due to Lemma 4, we observe

that T
S Wb =Y T((C';;)—

beQ) beQ

Thus, with an appropriate definition of Mﬁ(b | a*) for a’ € Q°
satisfying T,(a’) = 0, M’ can be regarded as an {(th-order
Markov kernel formally associated with wf. The following
lemma provides a condition that ensures T (ak)/n converges
to the stationary distribution 7 of the kth-order Markov kernel
M.

Lemma 5: If
lim MX(b | a}) = M(b | d})
for all a’f e OF and b € Q, then,
T,.(d*
TLIC DS
n—oo n

for all a’{ e Ok,
Next, for n,{ € Z.oy with n > £, we define

¢
RE W) = {H M (w; | wZ—eriwil_l)}

{H

i=(+1

(‘Ul|w }

In the first factor, which represents Rf(wf), we formally
mtroduce concatenated strings w?_,, ,wi" of length £ for i =
., ¢, to facilitate the application of the {th Markov kernel
M,f The following lemma presents an important inequality
relating c(w?) log c(wf) to —log IAQfl(a)’l‘). While its proof resem-
bles Ziv’s inequality and the asymptotic optimality of the
Lempel-Ziv algorithm [21, Section 13.5.2], our setting differs
in that Mﬁ depends solely on Reality’s moves and does not
assume any underlying stochastic process.
Lemma 6: For any n,{ € Z,o with n > ¢ and ] €
following inequality holds:

Q", the

1 1 .
;c(w’l’) log c(w}) < - log RE(w!) + 64(n),

where d,(n) —» 0 as n — .
Finally, for n € Z5;, let us introduce

k n
I1 pi<wi>} : { [ M| w;i:,i)§ ,
i=1

i=k+1

P(w)) =

which represents Forecaster’s announcements. The next
lemma establishes the relationship between P and R’.

Lemma 7: For any n,{ € Zs; with n > ¢, the following
identity holds:

—log P(w}) + log Rfl(w'f)
¢
= —log P(w}) + IOgHM(wz | Wy g i wih)
i=1
+ Z T,(a}) - D (Mi(- | a{)” M(-|ap i),
afeQ[

where D( - || - ) is the Kullback-Leibler divergence.
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III. PROOF OF THEOREM 2

Let K¢ : Q* — R represent the capital process associated
with a betting strategy «, so that K, = K*(w]) for o] € Q.
The following lemma demonstrates that the limit supremum
for the capital process can be replaced by a limit.

Lemma 8: Suppose a strategy « satisfies

lim sup K*(w') = oo
n—oo
for a specific sequence of Reality’s moves {w]},ez.,. Then
there exists another strategy a. such that
lim K (w]) = o
n—oo
for the same sequence {w}nez.,-

Proof: The required strategy «. can be defined as follows:
Strategy «. uses a as long as the capital K, retains below
2. Once K, reaches or exceeds 2, «. transfers the net gain
AK := K, — 1(= 1) into an external storage. It then restart the
game with a capital of 1, employing the strategy a again. ®m

Lemma 9: In the time-homogeneous kth-order Markovian

predictive game, the Lempel-Ziv betting strategy Q;; ensures
lim,_,. K,, = oo unless

lim My (b | af) = M(b | df)

for all a’f eQfand beQ.
Proof: Using (3) and applying Lemma 6, we obtain

logTKn _ % {~log P(w!) - (- log Qrz(w!)}
= % {=log P(w) — (@) log c(w)}
N %{c(w'f) log (@) - (~ log Qrz(@})
> {~ log P} + log Ri(w) ~ nsum)}

1
+ —{et@i log e(@}) = (- log Quz(@)-
Applying Lemma 7 with £ = k, we further evaluate K,, as
log K,

n
T,(a}) ~ k k
2 ) = DM a)| M(- | a)

akeQk

1
-
n

k
—log P(w}) + log [ [ M(w: | )y} )§
i=1
1
- 6w + {c(w';) log (@) — (- log QLZ(a)’l'))}.
From the definition of P,
k
1 - .
lim — {—log P(w}) + 1 M(w; | &, 07 =0.
Jm { og P(wy) + Ogg (Wi | Wy gy Y )}
Furthermore, by Lemma 6, we know that 6(n) — 0 as n — oo,
and by Lemma 3,
: : 1 A A n
lim inf {c(Dlogc(w)) = (- log Qrz(w}))} > 0.

In light of Lemma 8, therefore, it now suffices to prove
the following claim: For a given w{’ € Q, if there exists

bt e OF1 such that MX(byyy | b%) does not converge to
M(by41 | BX) as n — oo, then

k
timsup Y2 D (W] -1 ab) > 0.

We prove this claim by contradiction. Assume that for
a given w? € QF, there exists b\t! e Q! such that
Mﬁ(bk_H | b'f) does not converge to M(by4 | b’l‘) as n — oo,
and yet

. Tn(alf) Ak k k
lim Y =S D (M- L a)| MO ah) =0. )
akeQk
From this assumption, there exists a subsequence (7;); C (n)
such that
lim D (M, (- | b)|| M(- | b)) > 0.
Combining this with (9), we obtain
T, (b*
lim ﬁ =0.
i—00 n;
Further, using (9) and (10), we can deduce that for all d; € Q,
. Tn,-(dkbll(_l)
lim ————= =

i—o0 n;

(10)

0. (11)
To establish (11), we first recall the second identity in Lemma
4, which yields

T,(dd3b) < Y Ty(ad5h) = T,(d5h)

a eQ

for any d € Q and agb e Qf. Thus, for any d; € Q,
< T, (dibY) < Tn,-(b’f)'

0
n; n;
From (10), it follows that
T, (db*
lim Tuldb) _ (12)
—00 n;

Let us prove (11) by contradiction. Suppose there exists d € Q
such that
. T, (diby™")
lim sup —— >
i—00 n;

Then, there exists a subsequence (n;;); C (n;); such that
Tn,vl. (dkbllc_] )
— >0

0.

lim
Jjooo ”ij

(13)
Consequently, for sufficiently large j, we have
Ty, (dib®) T, (by | di bk

n i

Ti;
Ty, (dbk=1) T, (br | di b1y
Tn,-/.(dkblf_l)

I’l,‘f

Tn;j (dkbllc_ ! )

My, (bi | diby),

ij J

and thus, combining (12) and (13), we find lim;_e M¥ (by |
dibt1) = 0. Recalling M(by | dibt™") > 0, we find that

lim My, (bi | dib™") # M(by | dib™). (14)
J—)OO J
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Since (13) and (14) contradict (9), we have (11).

By repeatedly applying this reasoning, adding dj_;;; to the
front and removing b;_;; from the rear of the word b’l‘ in (10)
fori=1,...,k, we conclude that

T, (d*
lim Intd)) _
1—00 ”i
for all d’f € OF. This contradicts the fact that
Y Tud)=n
dfeQ
for all n (> k). Hence, the claim is proved. [ ]
Now we are ready to prove Theorem 2.

Proof of Theorem 2: We prove the assertion by induction
in € (> k). For € = k, the assertion holds by Lemmas 5 and 9.
Assume that the assertion holds for some ¢ (> k), namely,

T,(a%) d
lim L = P(a}) = n(d} M(a; | a=) (>0
lim — (ay) 7r(a1)i:|k+|l (ai | ai5) (> 0)

for all af € Q. Since

Tua™) _ Tu(a)

ol ¢
M, (acy1 | ay),

n
we see that o
T, (a
lim M = P(af“)
n—oo

holds if and only if
}an}o Mi(aci1 | ab) = M(ags | aj_y ).

By a similar evaluation in the proof of Lemma 9, we see
that
log K,

n
Tn(all‘) Vol 4 4
> Z e D (M- 1a)| M(-1d) )

aleQt

‘
—log P(w) + log l_[ M(w; | w2k+iwi1_l)}

i=1

1
+ —
n
1
= 6t + —{c(@ log e(@}) — (- log Quz(W)}.

By the assumption of induction, T,l(af)/n converges to a
positive number P(a}) for all af € Q as n — co. Therefore,
if Mi(acs1 | af) does not converge to M(agy | af_ ) as
n — oo, we have limsup,_,, K, = oco. This completes the
proof. ]

IV. APPLICATIONS

In the previous section, we demonstrated that adopting a
coding-theoretic idea leads to a new way of understanding
game-theoretic probability. This methodological innovation
motivates further investigation into its broader implications.
Here we present two applications of our main result. The first
concerns Szilard’s engine, which bridges thermodynamics and
information theory, while the second raises questions related
to stationary ergodic games and the role of entropy within
game-theoretic contexts.

A. Szildrd’s Engine Game

We begin by applying the framework of predictive games to
thermodynamics, conceptualizing a thermodynamic cyclic as a
betting game between Scientist and Nature.* As a fundamental
prototype, we consider a work-extracting game inspired by
Le6 Szilard’s thought experiment [23],% which has been widely
discussed in the context of the second law of thermodynamics
and its relationship to information theory.

Consider the following work-extracting game played on a
hypothetical engine illustrated in Figure 1:

(i) A partition, connected to two containers by inextensible
strings, is placed at a specific position within a cylinder
and fixed in place.

(i1) Scientist places a weight m(0) on the left container and
another weight m(1) on the right container.
Nature inserts a single molecule into one side of the
partition, announces whether the molecule is in the left
chamber (w = 0) or the right chamber (w = 1), and then
releases the partition.
If w = 0, the molecule pushes the partition to the right,
and Scientist gains potential energy m(0)gl; — m(1)g{|,
where g is the gravitational acceleration and ¢ is the
displacement of the weights. If w = 1, on the other
hand, Scientist instead gains potential energy m(1)g€y —
m(0)glo.

(v) Once the partition reaches the end of the cylinder, it is
reset to its original position as in step (i).

(iii)

(iv)

Szilard’s engine game
Players: Scientist and Nature.
Protocol: W, = 1.
FOR n € Z>01
Scientist announces m, = (m,(0), m,(1)) € R®.
Nature announces w,, € Q.
Wi i= Wiy + (mu(1) — mu(0)g(lo + £1)(wn — 7).
END FOR.

Letting Q := {0, 1} and

18
;-

= € (0,1),
o + € ©.1

the above procedure can be formulated as a game-theoretic
process:

At first glance, this game appears to favor Nature, as Nature
announces w, after Scientist has set the weights. However, we
can prove the following.

Theorem 10: In Szilird’s engine game, Scientist has a
prudent strategy {m,}, that ensures lim, . W, = oo unless

1]’[
lim - Y 61 (w;) =r.
Jim 2 201w =1

4A related perspective is discussed in [22], which aims to give a game-
theoretic characterization of Gibbs’ distribution. Our approach differs by
emphasizing the coding theoretic aspect of Szildrd’s engine while adhering
closely to the original formalism of the Shafer-Vovk theorem.

5The original work [23] is in German; an English translation is available
[24].
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Heat bath
Lo . 01
cylinder
Fig. 1. Szilard’s engine game.
Heat bath
w=1 [w=2 w=3

QO QO QO
01 M {2 1 03

[m(l)] [m(z)] [m(3)]

Fig. 2. Generalized Szildrd’s engine game having three chambers. The pulleys
can move horizontally and are assumed to be negligibly small.

Proof: Observe that the recurrence relation is rewritten as

W, =W, |:1 + Za’n(a) (éwn(a) - p(a)):| ’

acQ)
where p := (p(0), p(1)) :=(1 —r, r) and

my(a)g(to +€1)
‘/Vn—l )

Thus, Theorem 10 is an immediate consequence of Theorem
1. ]

The implication of Theorem 10 is as follows: If Nature
does not behave in accordance with the expected statistical
law, Scientist can extract an infinite amount of work from the
engine. A distinctive feature of this finding is that it does
not require invoking Maxwell’s demon [25] or employing
any measurement scheme to determine a molecule’s position
before setting weights. Instead, Scientist only needs to detect
deviations in Nature’s behavior from the law of large numbers.

This result closely resembles Kelvin’s formulation of the
second law of thermodynamics, which asserts that it is impos-
sible to extract any net amount of work from a thermodynamic
system while leaving the system in the same state. To clarify
the position of our framework within existing theory, it is
helpful to compare it with the traditional information-theoretic
interpretation of Maxwell’s demon. In that framework, the
paradox is resolved by introducing the costs of information
acquisition and erasure, where “information” serves as a
compensating quantity [26], [27]. In contrast, our formulation
is more flexible: it does not forbid any net conversion of
heat into work from a single heat bath by an arbitrary cyclic
process, but rather forbids the unbounded extraction of work
from the system.

Extending the previous argument to the case when the
outcome space Q is an arbitrary finite set is straightforward.

a,(a) :=

Consider a device illustrated in Figure 2, corresponding to
the case when Q = {1,2,3}. The cylinder contains two parti-
tions, dividing it into three chambers labeled by w = 1,2, 3.
Each partition is connected to two containers by inextensible
strings and negligibly small pulleys that can move horizontally.
Weights can be placed on these containers. The containers
correspond one-to-one with the chambers and are labeled
accordingly.

A generalized Szilard’s engine game for Q = {1,2, 3} runs
as follows:

(1) Each of two partitions is placed at a specific position
within the cylinder and fixed in place.

(i1) Scientist places a weight m(a) on each container a for

a=1,23.

Nature places a single molecule in one of the three

chambers, announces its label w, and releases the parti-

tions.

The molecule pushes the partitions at the boundaries of

chamber w, causing the chamber to expand until all the

partitions are pressed against the end(s) of the cylinder,

and Scientist gains potential energy as follows: If w = 1,

the work extracted is

(iii)

(iv)

6+ 0 %) %)
m(1)g == ~m(2)g ~m3)g7.
If w = 2, the work extracted is

{3 + € 0 0
m(2)g - m(3)g > m(l)g >
If w = 3, the work extracted is
6+ 6 14 %)
m(3)g >~ m(l)gE - m(Z)g?

(v) Once the partitions come to rest, they return to their
original positions as in step (i).

In a single round of the game, Scientist extracts the following
amount of work:
3

m(a)g 2
Z : (b1 + 6+ 63) (5w(“) - M) .

a=1

Generalized Szilard’s engine game
Players: Scientist and Nature.
Protocol: W, = 1.
FOR n € Z.:
Scientist announces m, € R%.
Nature announces w, € Q.
W, =

n—1
+ mn(za)g(& + oo 4 ) (0,(@) = p(@).
END FOR.

Generalizing Szildrd’s engine game to an arbitrary finite set
Q ={1,2,...,A} is straightforward: one simply increases the
number of chambers illustrated in Figure 2. Defining

(a €Q),

we can formulate the generalized work-extracting protocol as
follows.
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Now, we extend Theorem 10 to this generalized setting:
Theorem 11: In generalized Szildrd’s engine game, Scientist
has a prudent strategy {m,}, that ensures lim, ., W, = oo
unless o
lim =3 6,(w) = pl@), (Ya€Q).
i=1
We can further generalize the game described above by
allowing the chamber size ratios p(a) to vary in each round
n, introducing a Forecaster who announces these ratios. In
this extended protocol, Theorem 2 provides a generalization
of Theorem 11, incorporating a time-homogeneous finite-order
Markovian Forecaster.

B. Entropy

Given the pivotal role of universal coding schemes in estab-
lishing game-theoretic law of large numbers, it is natural to
expect that the protocol of a predictive game is also intertwined
with the concept of entropy. The next proposition formalizes
this connection, where we continue to assume that M is a kth-
order Markov kernel with strictly positive entries and 7 is the
stationary distribution of M.

Proposition 12: In the time-homogeneous kth-order Marko-
vian predictive game, Skeptic has a prudent strategy a : Q* —
R® that ensures lim,_, K, = oo unless

. —log Qrz(w))
lim ——————
n

n—oo

= H(M), (15)

where

H(M) == > n(d)Y " M| af)log M(b | d})

aheqt beQ
is the entropy rate.

Proof: We observed in the proof of Theorem 2 that, under
the Lempel-Ziv betting strategy Q;z, the boundedness of the
capital process, i.e., limsup,_,., K, < oo, guarantees not only
that

logK,

1 -
== = — {~log P(w]) ~ (~log Qrz(@))} — 0
but also that
v Tn k
WAy — M(- ) and 2D
n

— n(a})
for all @t € QF as n — oo.

As a consequence, using a similar computation as in the
proof of Lemma 7, we obtain

1 .
— —log P(w')
n

T,(a} N
==, ) > Mk | af)log M(b | af)
akeQk n beQ
1 k
—{-log () +1 Mw; | &', !
+ 4~ log Plwp) + og[l[ (i | Wy )
— H(M).

Combining these asymptotic properties, (15) follows
immediately. [ |

The implication of Proposition 12 is as follows: To prevent
Skeptic from becoming infinitely rich, Reality must ensure that
the asymptotic compression rate of its moves coincides with
the entropy rate.

Note that Proposition 12 bears a close resemblance to
Lempel-Ziv’s theorem [20]

g n
lim 2D _ Py, Pas.
as well as Brudno’s theorem [28]
IC n
lim M) _ by P,

for the prefix Kolmogorov complexity X(w{) when data ! are
drawn according to a stationary ergodic probability measure
P on Q%°, where

1
Hy(P) := lim E [—— log, P(a)’f)]
n—oo n

is the entropy rate to the base A. In addition, the last asymptotic
property in the proof of Proposition 12 corresponds to the
Shannon-McMillan-Breiman theorem [21]

1
lim %—— log P(w’f)% = H(P), P-as.
n—oo n

which also has a counterpart in algorithmic randomness theory
[29], [30], [31]. These observations prompt us to call a
Forecaster stationary ergodic if they announce predictions
according to the prescription

pn(wn) = P(wn | wrlz—l)’ (w’f € Qn),

where P represents a predetermined stationary ergodic proba-
bility measure.

If we were to discover a compression algorithm capable
of efficiently compressing Reality’s moves within the game-
theoretic context, we could define the entropy of a game as
the asymptotic data compression rate, assuming that Reality
faithfully follows the predictions of a stationary ergodic Fore-
caster and thereby prevents Skeptic from becoming infinitely
rich.

Howeyver, this definition, which relies on the existence of
a stationary ergodic Forecaster, may not be fully satisfactory
from the perspective of Dawid’s prequential principle [32],
as the prequential framework does not impose any structural
assumptions on the underlying data-generating mechanisms
but instead evaluates predictive performance based solely
on the observed data sequence. The validation and further
exploration of the concepts of game entropy and stationary
ergodic Forecasters remain topics for future investigation.

V. CONCLUDING REMARKS

In this paper, we established a generalization of the
game-theoretic law of large numbers in a time-homogeneous
kth-order Markovian predictive game. By constructing a
Lempel-Ziv-inspired strategy based on incremental parsing
and the martingale properties of the game, we provided new
insights into the relationship between game-theoretic random-
ness and coding theory.
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We also explored applications to thermodynamics by for-
mulating a game-theoretic version of Szilard’s engine. Our
results demonstrated that Nature must behave stochastically,
satisfying the law of large numbers, to avoid violating the
second law of thermodynamics. Furthermore, we introduced
the concept of entropy in predictive games, associating it to
the codelength of universal coding.

Despite these advances, several important challenges
remain. For instance, integrating additional thermodynamic
concepts such as thermal equilibrium, thermal contact, tem-
perature, and free energies into a game-theoretic framework
remains a significant open problem. Additionally, extending
the framework to non-Markovian processes could provide
deeper insights into the dynamics of predictive games.

APPENDIX A
PROOF OF LEMMAS

In this appendix, we provide detailed proofs of the lemmas
stated in Section II-B.

A. Proof of Lemma 3

Since

—log Q1z(w))
= —log Qrz(w\" W), 1)
= —log Qrz(w\") —log Qrz(wy, 41 | ")
for n > nr, it follows from (7) and (8) that, for any n,
—log Q1z(w}) < —log Qrz(wy") + log |V(w|")|

c(wh)

=) log(A + j(A - 1)
j=0

c(wh)

< Y log(A + c(wi)(A - 1))
Jj=0
= (c(w]) + 1) log(A + c(w})(A - 1)).

Consequently,
1
- {c(w)log (@) — (- log Qrz(w}))}
> %c(w’f) log c(w})
1
- ;(C(w'f) + D log(A + c(w)(A - 1))
_ @ c(w!)
T BArdwh@a-n

_ log(A + c(w)A - 1)
- )

Thus, the following Lemma 13 proves the claim.
Lemma 13: For sufficiently large n and for all w} € Q",

n #
0 <) c(w)) < (1-¢&,)log,n’

where g, — 0 as n — oo. Specifically, c(w])/n — 0 as n — oo.
Proof: See Lemma 13.5.3 of [21]. [ ]

B. Proof of Lemma 4
The first identity follows from
> Tub|ah)
beQ

= E (number of occurrences of a{b in wiw!)
beQ
= (number of occurrences of af in wjw!™") = T,(a)).

On the other hand, observe that
D Tub )
a;€Q

= E (number of occurrences of a{b in wiw!)
ajeQ

= (number of occurrences of a4b in wiw|

= (number of occurrences of a4b in wiw{™") + A; + A,

where
Ay : = (adjustment for the effect of adding w;
to the head of wjw?!)
)1 (w{ = agb),
o (otherwise),
and
A¢ @ = (adjustment for the effect of removing w,

from the tail of wiw!)

_ 1 (wf = agb),
0 (otherwise).
Since A; + A, = 0, the second identity holds.

C. Proof of Lemma 5

The assumption M* — M ensures that for sufficiently large
n, we have MX(b | @) > 0 for all & € QF and b € Q. For
Wt € QF, define §,(w") := T,(w*)/n. Then, by Lemma 4, the
empirical distribution §, is stationary under the kth Markov
kernel M* [33]:

Z Tu(b | a)) Ty(a))

Ok kA k
> Wb | d)guah) @) n

a|€Q

a,€Q

T, (d5b
EZTn(bIalf)zﬁ
n n

ajeQ

= §u(d5h).

Thus, by Lemma 16 in Appendix B, g, is the unique stationary
distribution of Markov matrix M.

Consider a convergent subsequence {g,, — 7}; of {g, — 7}y,
which converges to some r € [—1, I]Qk. By the assumption
M’,j — M, we obtain

r = 1im(gy, — 1) = lim(M}, g, —Mn)
1—00 1—00

= lim {7} (4, — ) + (1}, — M)} = Mr.
i—00
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By the Perron-Frobenius theorem (Section 4.4 of [34]), there
exists a constant ¢ € R satisfying r = cn. Furthermore,

> rah) = lim Y7 (G (@) - n(ah)) =

akeQk akeQk

Thus, we must have ¢ = 0, completing the proof.

D. Proof of Lemma 6

Suppose the sequence ] is parsed into C, distinct sub-
strings as
no_ 1 1) ncy
wy = /w110+l/wn]+l/ T /wncn,l-&-l’
where ng = 0 and nc, = n. For example, if w7} is parsed using
the incremental parsing algorithm as

no__ ny ) nr n
wy = /wﬂo+1/wn1+1/ o /wn171+1/wnr+l’

. nr n
we define C, = T and set a)nc LS W, W
Now, define s; := a)l._[ for £+ 1 < i < n, and extend them

cyclically for 1 <i < ¢ as follows:

-1

- 1 o— n
SIS Wy gy, $2I= Wy g W1, ..., S¢ T WY

For m € Z. and s € Qf, let c,,,s denote the num-
ber of occurrences of the word w 41 of length m such

that s, 11 = wn;:_{, 4 =S among the C, substrings
n 7 ne, .
Cm,s
_ ‘{je{l,Z,..., W 1 = m, s :s”,
Letting U := {(m, 5) € Zg x QF | c;ns > 0}, we have
Z Cms = C, and Z m:- Cpy = N.
(m,s)eld (m,s)eld
For each (m, s) e U, let
jm,x
= {] € {1’2"' -,Cn} | n] - nj—l =m, Snj—l""l = S}.

With a slight abuse of notation, we define, for any m € Z.,
and a' € Q",

m
My 1ab) =[] Miai1a).
i=t+1
Then, we can evaluate log ﬁﬁ(w?) as follows:

log R (W)
Cy

— ol
= log Miw,! \y |sn, 41
J=1

= Z Z logﬂﬁ(wgfﬁl | $n, 1)

(m.$)eU  j€Tm,s

=Y e Y

~ n
Vl(wn/,;r‘rl | Snj,1+l)

(m,s)eUd JEJm
4
< Z Cm,slog Z M (wn 141 |sn/_|+1)
(m,s)eld Cm.s J€Tms

In the last inequality, we used Jensen’s inequality. Since the
parsed substrings {wZ;l 11hsjsc, are distinct, we have

4
Z M (‘”n, a1 IS <1
JE€Tm,s

for all (m, s) € U. As a consequence,

log R (w})
< - Z Cm,s log Cm,s
(m,s)eld
Cm,s
= ~c@hloge(@) —cw) J Stlog
1

(m,s)eld

where c(w]) = C,,. Writing 71, 5 1= cin s/ c(w]), We have

Z Tms =1 and Z M« T =

(m,s)eU (m,s)eU C(wn)
We now define the random variables U and V as follows:
Pr(U=m, V=15):=m,;.
From the above bound on log Rﬁ(w’l’), it follows that

c(wf) (")

1 .
——log Ri(w}) = — = loge(w)) - —=H(U, V),
where . .
HWU,V):=- 2 1o ms
Z () ~ cwh)

(m,s)eld
By the subadditivity of entropy, we have
HWU,V)<HU)+ H(V).

Since the expectation of U is given by
n
c(_a)’l‘)’
applying Lemma 14 below, we can bound H(U) as

E[U] =

H(U) < (E[U] + DlogE[U] + 1) — (E[U]) log(E[U])

n c(w) )
lo —+1).
C(w’f)+(( n ) g( no

On the other hand, since H(V) < log|Q|’ =

=log

{log A, we obtain

_ W n)H(U V)
S@ log n + (1 +
n c(wh)

c(wW?
_;’_Q
n

6[(71) .

cw) lo @—&-1)
n £ n

Since c(w|)/n — 0 as n — co by Lemma 13, it follows that
6¢(n) — 0 as n — oo. This completes the proof.

Lemma 14: Let Z be a nonnegative integer-valued random
variable with mean p. Then the entropy H(Z) is bounded by

HZ) < (u+ 1)log(u+1)—ulogpu.
Proof: See Lemma 13.5.4 of [21]. [ |

{logA.
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E. Proof of Lemma 7
For n, € € Z. satisfying n > € > k,

— log P(w}) + log R(w?)
= —log f’(a)f) —log f’(w’}H | wf) + logléﬁ(w’f)

= —log P(w) —log || M(w;|wi7}) + log Ri(w})
=41
4

= —log P(w}) + log [ [ M(w; | &)y ,0")
i=1

t
—log 1_[ M(w; | w0t
i=1
—log [ | M(w:|wi7}) + log Ri(w))

i=0+1
t

= —log P(w}) + log [ [ M(wi | i)
i=1

= D Tublaplog M | gy
ateQ!f beQ
+ log R (wh).
In the last equality, we used the fact that
M(w; | Wy 07 = M(w; | )l_, 07" and
M(w; | 7)) = M(w; | @),
since £ > k and M is the kth-order Markov kernel.
Substituting the definition of I?ﬁl(w'{), the computation fol-
lows as:
— log P(w}) + log Ri(w)
¢
= —log P(w}) + log 1_[ M(w; | w0

i=1
+ YD Tub | ah)

dfeQ) beQ
x (~log M(b | ab_yy) + log Mi(b | ab))

€

= —log P(w}) + log 1_[ M(w; | w0

i=1

+ Y Tula)) - D (M- 1al™h)| MC- 1 afyy) -
afeQ[
This completes the proof.
APPENDIX B

STATIONARY DISTRIBUTIONS OF MARKOV CHAINS

Given a Markov matrix M : QxQ — (0,1) : (a,b) — M(a |

b) satisfying
> M@lb)=1
acQ
for all b € Q, let M be the mth power of M, in that M1 ;=
M and
M™(a|b) = M(a|M" V(| b).
ceQ

We recall the following well-known fact.

Lemma 15: There exists a unique probability distribution u
on  such that for any a,b € Q,
lim M™(a | b) = u(a),

and u is the stationary distribution of M.
Proof: See Theorem 6 in Chapter 4 of [34]. [
Now, consider a kth-order Markov kernel M : Q x Qf —
0,1) : (a, %) > M(a | ) that satisfies

Y Ml o) =1

acQ)

Lemma 16: For the kth-order Markov kernel M, there is a
unique stationary distribution 7 : Q% — (0, 1) satisfying

n(ds™") =" Mgy | dn(db).

a;eQ)

Proof: Define M : Q* x QF — [0, 1) by

(Vo € Q).

M(ac | %) (df = Biap),

M k bk =
(a1| 1) 0 (otherwise).

Since

DM@ 1By =Y" Y M |b)
akeQk a€Q gk-leQh-!1

=Y M| b =1,

areQ)

we can regard M as a first-order Markov kernel on QF.
Moreover it is straightforward to verify that

k
MO | by = [ | Ma; | blai ™).
i=1
This expression ensures that M(k)(a’f | b’f) > 0 for all a’{ ,b’]< €
QF. Thus, by applying Lemma 15 to the Markov matrix M®,
we conclude that there exists a unique distribution 7 on QF
satisfying
M(k)ﬂ' =T7T.

Furthermore, since
MP M) = M(M®Pr) = M,

the uniqueness of the stationary distribution for M® implies
that Mr = 7. [

APPENDIX C
LYNCH-DAVISSON BETTING STRATEGY FOR SIMPLE
PREDICTIVE GAME

In this appendix, we present an alternative proof of Theo-
rem | using one of the simplest universal data compression
schemes [35], [36]. As a by-product, we also analyze the
convergence rate of the empirical distribution.

We begin with a binary case and consider describing a
binary sequence x" = 11001 of length n = 5. For a € {0, 1},
let S,(a) denote the number of occurrences of a in x". The
sequence can be identified by first specifying its type (also
known as the empirical distribution):

b (sn(O), Sn<1>) _ (gg)
n n 55
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and then specifying the index of this sequence among all
sequences of length n = 5 that share this type. Thus, the
given binary sequence x" can be described by another binary
sequence as follows:

specify the type‘ + ’ specify the sequence in the type class

’Vlog2 ( n )—’ bits
Sn(0), Sy(1)

This scheme is called the Lynch-Davisson code, and its code-
length is given by

[log,(n+41)] bits

|
o) = Mogy(n + )] + ’710g2 #1

S, (D!
(n+ 1!

=log, — 2 _
82 5 (0)15,(1)!

+ 0(1).

Generalizing to a generic alphabet Q = {1,2,...,A} is
straightforward, and the corresponding Lynch-Davisson code-

length is
g (1+A=D!
TR

n!
+ ’VIOgA S!S, (2! --- Sn(A)!—‘
n+A-1)!
A= DISDIS,@)!- -+ Su(A)!

Now, we are ready to prove Theorem 1.

Crp(x")

= log, +0(1).

Proof of Theorem I: Let us introduce the reference proba-
bility measure P on Q" defined by

P(}) =] | pe),

i=1

and consider the “randomness deficiency” function L;p(wf)
for the Lynch-Davisson codelength £;p(wf) relative to the
Shannon codelength —log, P(w!) defined by

Lip(wh) := —log, P(w]) — {Lp(W)).
A crucial observation is that
ELD(w'f)

= —log, Hp(w,')
i=1
o (A=D!S,(D)S2)! - S (A)!
084 n+A-1)!
= - Su(@log, p(a)

aeQ

+0(1)

(A-DIS,(D!SH2)! --- §,(A)!
A

+ log nt A D) + 0(1)

(16)

= (logA e)

Y S0 log S0@ _ 1ogn — OClogn)
- pa)

o 1
= n(log, ¢) {D(Pwr,tnp) -0 (%)} ,

where Stirling’s formula was used in the third equality.

a7

The relation (17) shows that limsup,_,., Lip(w]) = oo if
P does not converge to p. It then suffices to show that there
exists a prudent betting strategy «, that realizes

K, o AL (A - 13!Sn(1)!S,,(2)! e S,,(A)!. (18)
[Iio plwd) - (n+A - D!
If this were the case, then
K, 1
= 19)
Kn—l P(wn)(” +A- 1)
Sa(DISa@)!- -+ Sa(A)!
Sn—l(l)! Sn—l(z)! o 'Sn—l(A)!
1
=—  (S,- D). 20
oA S+ h
Comparing this with the recursion formula
Ky = Kooy {1+ an(@n) = Y an(@pla)y
aeQ)
we find that S, @)+ 1
an(a) = —22 @1)

play(n+A-1)

gives a desired prudent betting strategy that satisfies (18). In
fact, since

1
Zan(a)P(a) = TAC Z {Sn-1(a) + 1}
ac) aeQ)
Sara-ple-bra=l
we have

1+ an(@n) = Y an(@p(a)f = an(wy),

aeQ

which is identical to the right-hand side of (20).
In summary, the prudent betting strategy (21) ensures that

limsuplog, K,, = limsup L;p(w}) =

n—oo n—oo

if ﬁ’w'; does not converge to p as n — oo. The proof is
complete. [

Remark: In Theorem 1, the two events K,, — co and IA’w»l« —
p are not necessarily mutually exclusive, and both may occur
simultaneously.® For example, suppose that P,y converges to

p at the rate
IPu; — pll = OCy/logn/n)

and satisfies

>A-1.

lim sup

n—oo

n (Puy(a) - p(a))?
logn % p(a)

Then, we have
lim sup K, = oo.

Proof: Applying Stirling’s formula
1
logn! = (n + E) logn—n+ O(1),

6A similar argument is found in [13].
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we get

S!S (2! Sa(A)!
(n+A-1)!

=2 (su@+ 3 g5 - .60
aeQ

—{((n-l-A—l)—l—%)log(n—l—A—l)—(n—l—A—l)}

+01)
= Y Su@logS @ + 3 3 logS @
acQ) agQ)

- (n +A- %) log(n + 1) + O(1).

Thus, the randomness deficiency function £;p(w?) is evaluated
using (16) as

Lp(w) _ Su(a)
wlog,e Zs; . log p(a)
1 Su(DISH2) - S,(A)! 1
e AT, +0(Z)
= 3 2D tog pla + log 8, @)
acQ
1
+ Zglogsn(a)

1 1 1
——(n+A——)log(n+A—1)+O(—)
n 2 n

= ZP 1(a) (1 g%—klogn)

aeQ)

1 N
+5 Z (log Py (a) + logn)

acQ)

(1+é—i)log(n+A—l)+0(l)

Pyi(a)
= Pwn(a)log
2 @
+—a§;10gP (a)— 1lognJrO(i)

(22)

Letting Q,(a) := Iswrlx (a) — p(a), we evaluate the first term of
(22) as

wi (@)
acQ) ()

0.(a) 0..(a)
= log (1
%p(“)( )) g(+p<a>)
0u(@) 1 (0n@ ? (Qn(a))3
= -0
Z;:p( ){ pa) (p(a)) (@
Z Qn(a)

u

0(10.6). (23)

Combining (22) and (23), we have

Lip(@f) ) On(@? A-1
- 1
nlogA e g pla) 2n ogn
1 . 3 1
+ -2 log Puy(a@) + 0 (1,F) + 0 (;) :
aeQ
and thus
n 2

Lip(w)) _logn | n 3 On(a)” A-1)

log, e 2 |logn = p(a)

+ ) log Puy(a) +n0 (1Q.°) + O(D).  (24)

acQ)
O( y/logn/n),

Now, by the assumption that |Q,| = |P.; — p| =

we have
Y logPy(a)=0(1) and 10 (1Q.) -0
acQ)
It then follows from (24) that
(Puy(a) = p(a))*
lim su L >A-1,
P fogn 2 pla)

aeQ

implies limsup,,_,., Lrp(w]) = co. This completes the proof.m
Note that the quantity

3 (Pu(a) - p(a))?

s pla)

corresponds to the Fisher information.
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