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A Coding Theoretic Study of Homogeneous
Markovian Predictive Games

Takara Nomura and Akio Fujiwara

Abstract—This paper explores a predictive game in which
a Forecaster announces odds based on a time-homogeneous
Markov kernel, establishing a game-theoretic law of large num-
bers for the relative frequencies of occurrences of all finite strings.
A key feature of our proof is a betting strategy inspired by a
universal coding scheme, drawing on the martingale convergence
theorem and algorithmic randomness theory, without relying
on a diversified betting approach that involves countably many
operating accounts. We apply these insights to thermodynamics,
offering a game-theoretic perspective on Leó Szilárd’s thought
experiment.

Index Terms—Game-theoretic probability, martingale, univer-
sal coding, Szilárd’s engine, entropy.

I. INTRODUCTION

GAME-THEORETIC probability theory [1], proposed
by Shafer and Vovk in 2001, offers a framework for

studying stochastic behavior without relying on traditional
concept of probability. To illustrate this approach, we begin by
recalling a fundamental result from game-theoretic probability
theory.

Let Ω := {1, 2, . . ., A} be a finite alphabet, and let Ωn,
Ω∗, and Ω∞ denote the sets of sequences over Ω of length
n, finite length, and infinite (one-sided) length, respectively.
The empty string is denoted by λ. An element of Ωn is
represented symbolically as ωn. We also introduce the notation
ω

j
i := ωiωi+1 · · ·ω j for i ≤ j, denoting the substring from the

ith to the jth coordinates of a longer sequence ω1ω2 · · ·ωn · · · .
By convention, if i > j, we set ω j

i := λ. For x ∈ Ω∗ and
y ∈ Ω∗ ∪Ω∞, we write x @ y to indicate that x is a prefix of y.

Let us introduce the following set:

P(Ω) :=

(
p : Ω→ (0, 1)

ˇ̌̌̌
ˇ X
ω∈Ω

p(ω) = 1

)
.

Given a p ∈ P(Ω), consider the following game.
This protocol can be understood as a betting game in which

Skeptic predicts Reality’s “stochastic” move, regarding p(a)
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Simple predictive game
Players: Skeptic and Reality.
Protocol: K0 = 1.

FOR n ∈ Z>0:
βn ∈ R

Ω.
Reality announces ωn ∈ Ω.

Kn := Kn−1 +

(
βn(ωn) −

X
a∈Ω

βn(a)p(a)

)
.

END FOR.

as the “probability” of the occurrence of a ∈ Ω. Further, βn

and Kn denote Skeptic’s bet and capital at step n, respectively,
with the recursion formula specifying how the capital evolves.
Namely, the formula states that, at step n, after Skeptic
announces βn = (βn(1), βn(2), . . ., βn(A)) and Reality announces
ωn ∈ Ω, Skeptic gains βn(ωn) and loses

P
a∈Ω βn(a)p(a) in

assets. This loss term
P

a∈Ω βn(a)p(a) reflects the “expected
value” of the Skeptic’s stakes under the odds p and can be
regarded as a participation cost that must be paid in advance,
regardless of the actual outcome. Note that βn can take negative
values. Since βn can depend on Reality’s past move ωn−1

1 , we
identify Skeptic’s strategy {βn}n with a map β : Ω∗ → RΩ as
βn(a) := (β(ωn−1

1 ))(a).
Apparently, this game is in favor of Reality because Reality

announces ωn after knowing Skeptic’s bet βn, preventing Skep-
tic from becoming rich. However, Shafer and Vovk showed the
following surprising result.

Theorem 1 (Game-Theoretic Law of Large Numbers): In
the simple predictive game, Skeptic has a prudent strategy
β : Ω∗ → RΩ that ensures limn→∞ Kn = ∞ unless

lim
n→∞

1
n

nX
i=1

δa(ωi) = p(a)

for all a ∈ Ω, where δa denotes the Kronecker delta. Here, a
strategy is called prudent if Kn > 0 for all n ∈ Z>0 and every
sequence ωn

1 ∈ Ωn chosen by Reality.
The theorem implies that there exists a betting strategy βn

that guarantees Skeptic becomes infinitely rich if Reality’s
moves deviate from the “law of large numbers,” all while
avoiding the risk of bankruptcy.1 Note that Skeptic’s capital
may diverge even while the empirical frequencies of Reality’s

1If Reality’s objective is to prevent Skeptic from becoming infinitely rich,
then Theorem 1 can be rephrased as follows: Skeptic can force the event
limn→∞

1
n
Pn

i=1 δa(ωi) = p(a), which corresponds to the original statement by
Shafer and Vovk [1].
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moves converge; the two phenomena are not mutually exclu-
sive. For more information, see Appendix C.

After the publication of Shafer and Vovk’s seminal book
[1], game-theoretic probability theory has been widely studied
across various contexts and applications. Notable develop-
ments include the game-theoretic proof of Lévy’s zero-one
law [2], [3], investigations into Reality’s strategic choices [4],
[5], and the game-theoretic formulation of Jeffrey’s law [6],
among others. These contributions are further extended in
Shafer and Vovk’s second book [7], which builds upon the
foundations established in the first, deepening the analysis and
exploring new frontiers in game-theoretic probability. In recent
years, many studies inspired by game-theoretic probability
have explored new applications, including statistical inference
[8], statistical testing [9] and machine learning [10]. These
works have significantly advanced the field, addressing both
theoretical and practical challenges within the framework
of game-theoretic probability. However, despite these devel-
opments, the connection between game-theoretic probability
theory and information theory, particularly in the context
of universal coding, has received limited attention; see, for
example, [11] and [12] for related work primarily addressing
sequential testing problems.

This paper aims to elucidate the coding theoretic aspects
underpinning the theory by presenting an alternative proof of
Theorem 1 and its generalizations. Our approach offers new
insights into game-theoretic probability by employing a single,
coding theoretic (pure) strategy, in contrast to Shafer and
Vovk’s original proof, which relies on a diversified (“mixed”)
betting strategy using countably many operating accounts [1],
and to subsequent alternative proofs grounded in statistical
estimation [13], [14]. We also note that Feder [15] previously
proposed a closely related strategy. Although the aims and
scope differ, we cite this work for completeness and to
acknowledge the prior contribution.

Generalized predictive game
Players: Forecaster, Skeptic, and Reality.
Protocol: K0 = 1.

FOR n ∈ Z>0:
Forecaster announces pn ∈ P(Ω).
Skeptic announces βn ∈ R

Ω.
Reality announces ωn ∈ Ω.

Kn := Kn−1 +

(
βn(ωn) −

X
a∈Ω

βn(a)pn(a)

)
.

END FOR.

In order to explicate our coding theoretic approach, consider
the following generalized game in which a Forecaster comes
into play to announce a possibly “non-i.i.d.” process.

Let us identify Skeptic’s betting strategy βn ∈ R
Ω with αn ∈

RΩ that satisfies

βn(a) = Kn−1 · αn(a), (a ∈ Ω).

Then, the recursion formula for the capital is rewritten as

Kn = Kn−1

(
1 + αn(ωn) −

X
a∈Ω

αn(a)pn(a)

)
. (1)

We shall call αn a betting strategy as well, and call it prudent
if the corresponding βn is prudent. We also identify {αn}n with
a map α : Ω∗ → RΩ as αn(a) = (α(ωn−1

1 ))(a).
Now, associated with a prudent strategy αn is the following

quantity:

Q(ω | ωn−1
1 ) :=

(
1 + αn(ω) −

X
a∈Ω

αn(a)pn(a)

)
pn(ω). (2)

Since αn is prudent, we see that Q(ω | ωn−1
1 ) > 0 for all ω ∈ Ω.

Moreover,X
ω∈Ω

Q(ω | ωn−1
1 )

=
X
ω∈Ω

(
1 + αn(ω) −

X
a∈Ω

αn(a)pn(a)

)
pn(ω)

= 1 +
X
ω∈Ω

αn(ω)pn(ω) −
X
a∈Ω

αn(a)pn(a)

= 1.

Therefore, the quantity Q(ω | ωn−1
1 ) defined by (2) can be

regarded as a conditional probability. Conversely, for any
conditional probability Q(ω | ωn−1

1 ), there exists a prudent
strategy αn (although not unique) that satisfies (2): for instance,
let αn(a) := Q(a | ωn−1

1 )/pn(a) for each a ∈ Ω. Thus, the role of
Skeptic in the above predictive game is regarded as announcing
a conditional probability Q(ω | ωn−1

1 ).
Now, suppose that Forecaster happens to have a prede-

termined probability measure P on (Ω∞,F ), with F :=
σ({Γx}x∈Ω∗ ) being the σ-algebra generated by the cylinder sets
Γx := {y ∈ Ω∞ : x @ y}, and announces each function pn as the
conditional probability, given the past data ωn−1

1 , as follows:

pn(a) := P(a | ωn−1
1 ) := P(a | Γωn−1

1
), (a ∈ Ω).

Then, we have from (1) and (2) that

Kn

Kn−1
=

(
1 + αn(ω) −

X
a∈Ω

αn(a)pn(a)

)
=

Q(ωn | ω
n−1
1 )

P(ωn | ω
n−1
1 )

,

and hence

Kn = K0

nY
i=1

Ki

Ki−1
=

Q(ωn
1)

P(ωn
1)
. (3)

Put differently, the capital process Kn is nothing but the
likelihood ratio process between P and Q. This perspective
is consistent with the interpretation developed in [7, Section
10.5] and further elaborated in [16, Section 2.2 and 2.3].

Let Fn := σ({Γxn }xn∈Ωn ) for each n ∈ Z>0, Then the capital
process (3) is a P-martingale relative to the natural filtration
{Fn}n, in that

E

�
Q(ωn

1)
P(ωn

1)

ˇ̌̌̌
Fn−1

�
=
X
ωn∈Ω

Q(ωn
1)

P(ωn
1)

P(ωn | ω
n−1
1 )

=
X
ωn∈Ω

Q(ωn
1)

P(ωn−1
1 )

=
Q(ωn−1

1 )
P(ωn−1

1 )
.
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It then follows from the martingale convergence theorem [17]
that the capital process Kn converges almost surely to some
nonnegative value under the probability measure P. Game-
theoretic probability provides a reciprocal description of this
mechanism by asserting that Kn can diverge “on a P-null set,”
which, in the context of predictive games, is interpreted as “if
Reality does not align with Forecaster P.”

Furthermore, due to (3), the logarithm of the capital process
is written as

logA Kn =
˚
− logA P(ωn

1)
	
−
˚
− logA Q(ωn

1)
	
. (4)

This expression is simply the difference between the Shannon
codelengths for P and Q, evoking the notion of randomness
deficiency in algorithmic randomness theory [18]. For a com-
putable probability measure P on Ω∞, an infinite sequence
ω∞1 ∈ Ω∞ is Martin-Löf P-random if and only if the sequence

− logA P(ωn
1) −K(ωn

1) (5)

of randomness deficiencies is bounded from above, where
K(ωn

1) is the prefix Kolmogorov complexity of ωn
1 ∈ Ω∗.

Obviously, (4) and (5) are similar in form, as both represent
differences in codelengths. However, it is crucial to note that
(5) contains an uncomputable quantity K(ωn

1). This observation
motivates the design of the conditional probability Q in (2), or
equivalently, a betting strategy αn in the generalized predictive
game, by employing ideas and techniques from computable
universal coding schemes.

Time-homogeneous k th-orderMarkovian predictive
game
Players: Forecaster, Skeptic, and Reality.
Protocol: K0 = 1.

FOR n ∈ Z>0:
Forecaster announces pn ∈ P(Ω) such that
pn(a) := M(a | ωn−1

n−k) for n > k.
Skeptic announces αn ∈ R

Ω.
Reality announces ωn ∈ Ω.

Kn := Kn−1

(
1 + αn(ωn) −

X
a∈Ω

αn(a)pn(a)

)
.

END FOR.

Nevertheless, due to the difficulty of addressing fully gen-
eral predictive games, we focus here on the time-homogeneous
Markovian predictive game2 as a first step toward developing
methods applicable to the general stationary ergodic case.
Suppose Forecaster has a kth-order Markov kernel M : Ω ×
Ωk → (0, 1) : (a, ωk) 7→ M(a | ωk) that satisfiesX

a∈Ω

M(a | ωk) = 1

for all ωk ∈ Ωk.
This protocol can be understood as a variant of the general-

ized predictive game in which Forecaster announces pn : Ω→

(0, 1) for n > k according to a time-homogeneous Markov
kernel M as pn(a) = M(a | ωn−1

n−k) based on Reality’s past

2The Markovian predictive game introduced in this paper is entirely distinct
from the Markov game commonly used in the field of operations research [19].

moves. Note that for n ≤ k, pn(a) can be arbitrary as long as
pn ∈ P(Ω).

For each ω` ∈ Ω` with ` ∈ Z≥k, let P(ω`) be defined by

P(ω`) := π(ωk)
Ỳ

i=k+1

M(ωi | ω
i−1
i−k),

where π : Ωk → (0, 1) is the stationary distribution associated
with the Markov kernel M. The main result of this paper is
the following:

Theorem 2: In the time-homogeneous kth-order Markovian
predictive game, Skeptic has a prudent strategy α : Ω∗ → RΩ

that ensures limn→∞ Kn = ∞ unless

lim
n→∞

S n(a`)
n

= P(a`)

for all ` ∈ Z≥k and a` ∈ Ω`, where S n(a`) denotes the number
of occurrences of a` in ωn.

Theorem 2 establishes that there exists a betting strategy
that guarantees Skeptic can become infinitely rich if Reality’s
moves do not align with the Markovian Forecaster’s announce-
ments.3 Specifically, this happens when the relative frequency
of occurrences of some string of length ` (≥ k) fails to
converge to the stationary joint distribution associated with
the kth-order Markov kernel.

This paper is organized as follows. Section II introduces a
betting strategy based on the incremental parsing scheme of
Ziv and Lempel [20], and presents several lemmas that lay the
groundwork for proving the main result. For improved read-
ability, the proofs of these lemmas are deferred to Appendix
A. In Section III, we prove Theorem 2 by incorporating prop-
erties of Lempel-Ziv incremental parsing established in the
previous section, thereby bringing ideas inspired by universal
coding into game-theoretic probability. Section IV explores
applications of Theorem 2 to thermodynamics, specifically
a game-theoretic interpretation of Szilárd’s engine and a
discussion of entropy in predictive games. Finally, Section V
provides concluding remarks. For the reader’s convenience,
additional information on stationary distributions of Markov
chains and an alternative proof of Theorem 1 are provided in
Appendices B and C, respectively.

II. PRELIMINARIES

In this section, we develop a betting strategy using the
technique of incremental parsing and establish several lemmas
in preparation for the proof of Theorem 2.

A. Betting Strategy Inspired by Lempel-Ziv Coding Scheme

We outline an algorithm for incremental parsing [20], which
divides a string into substrings separated by slashes, with each
substring being the shortest one not previously encountered.
The algorithm runs as follows: Start with an initial slash.
After each slash, scan the input sequence until the shortest
string that has not yet been marked off is identified. Since

3Using Shafer and Vovk’s terminology [1] once again, Theorem 2 can be
restated as follows: Skeptic can force the event limn→∞ S n(a`)/n = P(a`) for
all ` ∈ Z≥k and a` ∈ Ω`.
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this string is the shortest unseen string, all its prefixes must
have appeared earlier in the sequence. For example, a sequence
1000011101011 of length 13 is decomposed into

/1/0/00/01/11/010/11.

Suppose a sequence ωn
1 is parsed as

ωn
1 = /ωn1

n0+1/ω
n2
n1+1/ · · · /ω

nT
nT−1+1/ω

n
nT+1,

where n0 = 0, n1 = 1, and all parsed substrings except the
last one, ωn

nT+1, are distinct. In what follows, the substrings
ωn1

n0+1, ω
n2
n1+1, . . ., ω

nT
nT−1+1 are referred to as parsed phrases.

Note that the number T of parsed phrases depends on the
sequence ωn

1, and the last string ωn
nT+1 may be empty.

We now construct a betting strategy at step n, given
Reality’s past moves ωn−1

1 (n ≥ 2). Using incremental parsing,
we decompose ωn−1

1 into

ωn−1
1 = /ωn1

n0+1/ω
n2
n1+1/ · · · /ω

nT
nT−1+1/ω

n−1
nT+1.

Next, we define the set

V
�
ωnT

1

�
:=8<: ξ ∈ Ω∗
ξ , ω

n j

n j−1+1 for all j ∈ {0, 1, . . . ,T }, and
ξ = ω

n j

n j−1+1b for some j ∈ {0, 1, . . . ,T }
and b ∈ Ω

9=; ,
where ωn0

n−1+1 = λ is the empty string. Equivalently, V(ωnT
1 )

consists of all one-symbol extensions of already parsed phrases
that have not yet appeared as phrases; it is the “frontier” of the
current dictionary, whose elements are candidates to become
new phrases at some later step (not necessarily the next). The
size of this set is given by

|V(ωnT
1 )| = A + T (A − 1).

This can be shown by induction on T: For T = 0, we have
n = 1, and

V(ωn−1
1 ) = V(λ) = Ω.

For T ≥ 1, the set V(ωnT
1 ) is constructed as

V(ωnT
1 ) =

�
V(ωnT−1

1 ) \ {ωnT
nT−1+1}

�
∪ {ωnT

nT−1+1b | b ∈ Ω},

which yields a recursive formula |V(ωnT
1 )| = |V(ωnT−1

1 )| −1+A,
ensuring the desired result.

Finally, we define the conditional probability QLZ(ωn |

ωn−1
1 ), which determines the betting strategy αn(ωn), as fol-

lows. For n = 1, let QLZ(a) := 1/A. For n ≥ 2, we define

QLZ(a | ωn−1
1 ) :=

|{ξ ∈ V(ωnT
1 ) | ωn−1

nT+1a @ ξ}|

|{ξ ∈ V(ωnT
1 ) | ωn−1

nT+1 @ ξ}|
. (6)

Note that

{ξ ∈ V(ωnT
1 ) | ωn−1

nT+1 @ ξ}

=
G
a∈Ω

{ξ ∈ V(ωnT
1 ) | ωn−1

nT+1a @ ξ},

which follows from the definition of V(ωnT
1 ). Moreover, the

set
{ξ ∈ V(ωnT

1 ) | ωn−1
nT+1a @ ξ}

is nonempty for any a ∈ Ω. Thus, we conclude thatX
a∈Ω

QLZ(a | ωn−1
1 ) = 1 and QLZ(a | ωn−1

1 ) > 0.

The motivation behind the definition (6) is now in order.
When n − 1 = nT (i.e., when ωn−1

nT+1 = λ), we have

QLZ(a | ωnT
1 ) =

|{ξ ∈ V(ωnT
1 ) | a @ ξ}|

|V(ωnT
1 )|

.

Thus, for each ξ = ξτ1 ∈ V(ωnT
1 ),

QLZ(ξ | ωnT
1 ) := QLZ(ξ1 | ω

nT
1 )

τY
t=2

QLZ(ξt | ω
nT
1 ξ

t−1
1 )

=
1

|V(ωnT
1 )|

.

In other words, the conditional probability QLZ(a | ωn−1
1 ) is

designed to induce the uniform distribution over V(ωnT
1 ). This

observation also implies that

QLZ(ωn
nT+1 | ω

nT
1 ) >

1
|V(ωnT

1 )|
(7)

whenever n > nT .
In what follows, we refer to the betting strategy αn based

on the conditional probability QLZ(a | ωn−1
1 ) as the Lempel-

Ziv betting strategy. Since αn is canonically constructed via
αn(a) = QLZ(a | ωn−1

1 )/pn(a), we may identify αn with QLZ( · |
ωn−1

1 ) and, for simplicity, also refer to QLZ( · | ωn−1
1 ) itself as

the Lempel-Ziv betting strategy.
Example: Let Ω = {0, 1}, and suppose that Skeptic

has observed the sequence of Reality’s outcomes ω13
1 =

/1/0/00/01/11/010/11. At this stage, the current set of can-
didate phrases is

V(ω11
1 ) = {10, 000, 001, 011, 110, 111, 0100, 0101},

and the conditional probabilities QLZ(a | ω13
1 ) at step n = 14

are given by

QLZ(0 | ω13
1 ) =

|{110}|
|{110, 111}|

=
1
2
,

QLZ(1 | ω13
1 ) =

|{111}|
|{110, 111}|

=
1
2
.

Upon hearing Forecaster’s announcement p14(a), Skeptic
announces the bet

α14(a) =
QLZ(a | ω13

1 )
p14(a)

=
1

2 p14(a)
, (a ∈ Ω).

Suppose further that Reality’s announcement at step n = 14
is ω14 = 0. Skeptic then updates the set of candidate phrases
accordingly:

V(ω14
1 ) = {10, 000, 001, 011, 111, 0100, 0101, 1100, 1101},

and the updated strategy becomes

QLZ(0 | ω14
1 ) =

|{000, 001, 011, 0100, 0101}|
|V(ω14

1 )|
=

5
9
,

QLZ(1 | ω14
1 ) =

|{10, 111, 1100, 1101}|
|V(ω14

1 )|
=

4
9
.
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Remark: From the above discussion,

− log QLZ(ωnT
1 ) =

T−1X
j=0

log(A + j(A − 1)), (8)

where

QLZ(ωn
1) :=

nY
i=1

QLZ(ωi | ω
i−1
1 ).

On the other hand, the Lempel-Ziv codelength `LZ [20] is given
by

`LZ(ωn
1) =

T+1X
j=1

dlogA( jA)e.

B. Properties of Lempel-Ziv Betting Strategy

In this section, we outline several fundamental properties
of the Lempel-Ziv betting strategy. All proofs are deferred to
Appendix A.

Define the complexity c(ωn
1) of a sequence ωn

1 ∈ Ωn as
the total number T of parsed phrases obtained through its
incremental parsing [21, p. 448]. The quantity c(ωn

1) log c(ωn
1)

is known to play an essential role in Lempel-Ziv coding, and
it is also important in this paper as a bridge between several
key quantities. The following lemma provides an asymptotic
lower bound for the difference between c(ωn

1) log c(ωn
1) and

− log QLZ(ωn
1).

Lemma 3: For any ω∞1 ∈ Ω∞, the following inequality holds:

lim inf
n→∞

1
n

˚
c(ωn

1) log c(ωn
1) − (− log QLZ(ωn

1))
	
≥ 0.

For n, ` ∈ Z>0 with n > `, let Tn(a`1) denote the number
of occurrences of a`1 ∈ Ω` in the cyclically extended word
ωn

1ω
`−1
1 of length n + ` − 1. Similarly, let Tn(b | a`1) represent

the number of occurrences of b immediately following a`1 ∈ Ω`

in the extended word ωn
1ω

`
1 of length n + `. In other words,

Tn(b | a`1) = Tn(a`1b).
Note that, by definition,X

a`1∈Ω
`

Tn(a`1) = n.

Moreover, the quantity Tn(a`1) is asymptotically equivalent to
S n(a`1), the number of occurrences of a`1 in ωn

1, in the sense
that

lim
n→∞

1
n

�
Tn(a`1) − S n(a`1)

�
= 0.

The following lemma states that the marginals of conditional
counts Tn(b | a`1) correspond to Tn(a`1) and Tn(a`2b).

Lemma 4: Let n, ` ∈ Z>0 with n > `. Then, for all a`1 ∈ Ω`

and b ∈ Ω, the following identities hold:X
b∈Ω

Tn(b | a`1) = Tn(a`1) and
X
a1∈Ω

Tn(b | a`1) = Tn(a`2b).

Let us now fix ` ∈ Z>0 arbitrarily. Given ωn
1 with n > `, we

define

M̂`
n(b | a`) :=

Tn(b | a`)
Tn(a`)

for a` ∈ Ω` satisfying Tn(a`) > 0. Due to Lemma 4, we observe
that X

b∈Ω

M̂`
n(b | a`) =

X
b∈Ω

Tn(b | a`)
Tn(a`)

= 1.

Thus, with an appropriate definition of M̂`
n(b | a`) for a` ∈ Ω`

satisfying Tn(a`) = 0, M̂`
n can be regarded as an `th-order

Markov kernel formally associated with ωn
1. The following

lemma provides a condition that ensures Tn(ak)/n converges
to the stationary distribution π of the kth-order Markov kernel
M.

Lemma 5: If

lim
n→∞

M̂k
n(b | ak

1) = M(b | ak
1)

for all ak
1 ∈ Ωk and b ∈ Ω, then,

lim
n→∞

Tn(ak
1)

n
= π(ak

1)

for all ak
1 ∈ Ωk.

Next, for n, ` ∈ Z>0 with n > `, we define

R̂`
n(ωn

1) :=

(Ỳ
i=1

M̂`
n(ωi | ω

n
n−`+iω

i−1
1 )

)

×

(
nY

i=`+1

M̂`
n(ωi | ω

i−1
i−` )

)
.

In the first factor, which represents R̂`
n(ω`1), we formally

introduce concatenated strings ωn
n−`+iω

i−1
1 of length ` for i =

1, . . ., `, to facilitate the application of the `th Markov kernel
M̂`

n. The following lemma presents an important inequality
relating c(ωn

1) log c(ωn
1) to − log R̂`

n(ωn
1). While its proof resem-

bles Ziv’s inequality and the asymptotic optimality of the
Lempel-Ziv algorithm [21, Section 13.5.2], our setting differs
in that M̂`

n depends solely on Reality’s moves and does not
assume any underlying stochastic process.

Lemma 6: For any n, ` ∈ Z>0 with n > ` and ωn
1 ∈ Ωn, the

following inequality holds:

1
n

c(ωn
1) log c(ωn

1) ≤ −
1
n

log R̂`
n(ωn

1) + δ`(n),

where δ`(n)→ 0 as n→ ∞.
Finally, for n ∈ Z≥k, let us introduce

P̃(ωn
1) :=

(
kY

i=1

pi(ωi)

)
·

(
nY

i=k+1

M(ωi | ω
i−1
i−k)

)
,

which represents Forecaster’s announcements. The next
lemma establishes the relationship between P̃ and R̂`

n.
Lemma 7: For any n, ` ∈ Z≥k with n > `, the following

identity holds:

− log P̃(ωn
1) + log R̂`

n(ωn
1)

= − log P̃(ω`1) + log
Ỳ
i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

+
X

a`1∈Ω
`

Tn(a`1) · D
�

M̂`
n( · | a`1)



M( · | a``−k+1)
�
,

where D( · || · ) is the Kullback-Leibler divergence.
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III. PROOF OF THEOREM 2

Let Kα : Ω∗ → R represent the capital process associated
with a betting strategy α, so that Kn = Kα(ωn

1) for ωn
1 ∈ Ω∗.

The following lemma demonstrates that the limit supremum
for the capital process can be replaced by a limit.

Lemma 8: Suppose a strategy α satisfies

lim sup
n→∞

Kα(ωn
1) = ∞

for a specific sequence of Reality’s moves {ωn
1}n∈Z>0 . Then

there exists another strategy α∗ such that

lim
n→∞

Kα∗ (ωn
1) = ∞

for the same sequence {ωn
1}n∈Z>0 .

Proof: The required strategy α∗ can be defined as follows:
Strategy α∗ uses α as long as the capital Kn retains below
2. Once Kn reaches or exceeds 2, α∗ transfers the net gain
∆K := Kn − 1 (≥ 1) into an external storage. It then restart the
game with a capital of 1, employing the strategy α again. �

Lemma 9: In the time-homogeneous kth-order Markovian
predictive game, the Lempel-Ziv betting strategy QLZ ensures
limn→∞ Kn = ∞ unless

lim
n→∞

M̂k
n(b | ak

1) = M(b | ak
1)

for all ak
1 ∈ Ωk and b ∈ Ω.

Proof: Using (3) and applying Lemma 6, we obtain
log Kn

n
=

1
n

˚
− log P̃(ωn

1) − (− log QLZ(ωn
1))
	

=
1
n

˚
− log P̃(ωn

1) − c(ωn
1) log c(ωn

1)
	

+
1
n

n
c(ωn

1) log c(ωn
1) − (− log QLZ(ωn

1))
o

≥
1
n

˚
− log P̃(ωn

1) + log R̂k
n(ωn

1) − nδk(n)
	

+
1
n

n
c(ωn

1) log c(ωn
1) − (− log QLZ(ωn

1))
o
.

Applying Lemma 7 with ` = k, we further evaluate Kn as
log Kn

n

≥
X

ak
1∈Ω

k

Tn(ak
1)

n
· D
�

M̂k
n( · | ak

1)


M( · | ak

1)
�

+
1
n

(
− log P̃(ωk

1) + log
kY

i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

)
− δk(n) +

1
n

n
c(ωn

1) log c(ωn
1) − (− log QLZ(ωn

1))
o
.

From the definition of P̃,

lim
n→∞

1
n

(
− log P̃(ωk

1) + log
kY

i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

)
= 0.

Furthermore, by Lemma 6, we know that δk(n)→ 0 as n→ ∞,
and by Lemma 3,

lim inf
n→∞

1
n

˚
c(ωn

1) log c(ωn
1) − (− log QLZ(ωn

1))
	
≥ 0.

In light of Lemma 8, therefore, it now suffices to prove
the following claim: For a given ω∞1 ∈ Ω∞, if there exists

bk+1
1 ∈ Ωk+1 such that M̂k

n(bk+1 | bk
1) does not converge to

M(bk+1 | bk
1) as n→ ∞, then

lim sup
n→∞

X
ak

1∈Ω
k

Tn(ak
1)

n
· D
�

M̂k
n( · | ak

1)


M( · | ak

1)
�
> 0.

We prove this claim by contradiction. Assume that for
a given ω∞1 ∈ Ω∞, there exists bk+1

1 ∈ Ωk+1 such that
M̂k

n(bk+1 | bk
1) does not converge to M(bk+1 | bk

1) as n → ∞,
and yet

lim
n→∞

X
ak

1∈Ω
k

Tn(ak
1)

n
· D
�

M̂k
n( · | ak

1)


M( · | ak

1)
�

= 0. (9)

From this assumption, there exists a subsequence (ni)i ⊂ (n)
such that

lim
i→∞

D
�

M̂k
ni

( · | bk
1)


M( · | bk

1)
�
> 0.

Combining this with (9), we obtain

lim
i→∞

Tni (b
k
1)

ni
= 0. (10)

Further, using (9) and (10), we can deduce that for all dk ∈ Ω,

lim
i→∞

Tni (dkbk−1
1 )

ni
= 0. (11)

To establish (11), we first recall the second identity in Lemma
4, which yields

Tn(da`2b) ≤
X
a1∈Ω

Tn(a1a`2b) = Tn(a`2b)

for any d ∈ Ω and a`2b ∈ Ω`. Thus, for any dk ∈ Ω,

0 ≤
Tni (dkbk

1)
ni

≤
Tni (b

k
1)

ni
.

From (10), it follows that

lim
i→∞

Tni (dkbk
1)

ni
= 0. (12)

Let us prove (11) by contradiction. Suppose there exists dk ∈ Ω

such that

lim sup
i→∞

Tni (dkbk−1
1 )

ni
> 0.

Then, there exists a subsequence (ni j ) j ⊂ (ni)i such that

lim
j→∞

Tni j
(dkbk−1

1 )

ni j

> 0. (13)

Consequently, for sufficiently large j, we have

Tni j
(dkbk

1)

ni j

=
Tni j

(bk | dkbk−1
1 )

ni j

=
Tni j

(dkbk−1
1 )

ni j

Tni j
(bk | dkbk−1

1 )

Tni j
(dkbk−1

1 )

=
Tni j

(dkbk−1
1 )

ni j

M̂k
ni j

(bk | dkbk−1
1 ),

and thus, combining (12) and (13), we find lim j→∞ M̂k
ni j

(bk |

dkbk−1
1 ) = 0. Recalling M(bk | dkbk−1

1 ) > 0, we find that

lim
j→∞

M̂k
ni j

(bk | dkbk−1
1 ) , M(bk | dkbk−1

1 ). (14)
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Since (13) and (14) contradict (9), we have (11).
By repeatedly applying this reasoning, adding dk−i+1 to the

front and removing bk−i+1 from the rear of the word bk
1 in (10)

for i = 1, . . ., k, we conclude that

lim
i→∞

Tni (d
k
1)

ni
= 0

for all dk
1 ∈ Ωk. This contradicts the fact thatX

dk
1∈Ω

Tn(dk
1) = n

for all n (≥ k). Hence, the claim is proved. �
Now we are ready to prove Theorem 2.

Proof of Theorem 2: We prove the assertion by induction
in ` (≥ k). For ` = k, the assertion holds by Lemmas 5 and 9.

Assume that the assertion holds for some ` (≥ k), namely,

lim
n→∞

Tn(a`1)
n

= P(a`1) = π(ak
1)
Ỳ

i=k+1

M(ai | ai−1
i−k) (> 0)

for all a`1 ∈ Ω`. Since

Tn(a`+1
1 )

n
=

Tn(a`1)
n

M̂`
n(a`+1 | a`1),

we see that

lim
n→∞

Tn(a`+1
1 )

n
= P(a`+1

1 )

holds if and only if

lim
n→∞

M̂`
n(a`+1 | a`1) = M(a`+1 | a``−k+1).

By a similar evaluation in the proof of Lemma 9, we see
that

log Kn

n

≥
X

a`1∈Ω
`

Tn(a`1)
n
· D
�

M̂`
n( · | a`1)



M( · | a``−k+1)
�

+
1
n

(
− log P̃(ω`1) + log

Ỳ
i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

)
− δ`(n) +

1
n

n
c(ωn

1) log c(ωn
1) − (− log QLZ(ωn

1))
o
.

By the assumption of induction, Tn(a`1)/n converges to a
positive number P(a`1) for all a`1 ∈ Ω` as n → ∞. Therefore,
if M̂`

n(a`+1 | a`1) does not converge to M(a`+1 | a``−k+1) as
n → ∞, we have lim supn→∞ Kn = ∞. This completes the
proof. �

IV. APPLICATIONS

In the previous section, we demonstrated that adopting a
coding-theoretic idea leads to a new way of understanding
game-theoretic probability. This methodological innovation
motivates further investigation into its broader implications.
Here we present two applications of our main result. The first
concerns Szilárd’s engine, which bridges thermodynamics and
information theory, while the second raises questions related
to stationary ergodic games and the role of entropy within
game-theoretic contexts.

A. Szilárd’s Engine Game

We begin by applying the framework of predictive games to
thermodynamics, conceptualizing a thermodynamic cyclic as a
betting game between Scientist and Nature.4 As a fundamental
prototype, we consider a work-extracting game inspired by
Leó Szilárd’s thought experiment [23],5 which has been widely
discussed in the context of the second law of thermodynamics
and its relationship to information theory.

Consider the following work-extracting game played on a
hypothetical engine illustrated in Figure 1:

(i) A partition, connected to two containers by inextensible
strings, is placed at a specific position within a cylinder
and fixed in place.

(ii) Scientist places a weight m(0) on the left container and
another weight m(1) on the right container.

(iii) Nature inserts a single molecule into one side of the
partition, announces whether the molecule is in the left
chamber (ω = 0) or the right chamber (ω = 1), and then
releases the partition.

(iv) If ω = 0, the molecule pushes the partition to the right,
and Scientist gains potential energy m(0)g`1 − m(1)g`1,
where g is the gravitational acceleration and `1 is the
displacement of the weights. If ω = 1, on the other
hand, Scientist instead gains potential energy m(1)g`0 −

m(0)g`0.
(v) Once the partition reaches the end of the cylinder, it is

reset to its original position as in step (i).

Szilárd’s engine game
Players: Scientist and Nature.
Protocol: W0 = 1.

FOR n ∈ Z>0:
Scientist announces mn = (mn(0),mn(1)) ∈ RΩ.
Nature announces ωn ∈ Ω.
Wn := Wn−1 + (mn(1) − mn(0))g(`0 + `1)(ωn − r).

END FOR.

Letting Ω := {0, 1} and

r :=
`1

`0 + `1
∈ (0, 1),

the above procedure can be formulated as a game-theoretic
process:

At first glance, this game appears to favor Nature, as Nature
announces ωn after Scientist has set the weights. However, we
can prove the following.

Theorem 10: In Szilárd’s engine game, Scientist has a
prudent strategy {mn}n that ensures limn→∞Wn = ∞ unless

lim
n→∞

1
n

nX
i=1

δ1(ωi) = r.

4A related perspective is discussed in [22], which aims to give a game-
theoretic characterization of Gibbs’ distribution. Our approach differs by
emphasizing the coding theoretic aspect of Szilárd’s engine while adhering
closely to the original formalism of the Shafer-Vovk theorem.

5The original work [23] is in German; an English translation is available
[24].
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Fig. 1. Szilárd’s engine game.

Fig. 2. Generalized Szilárd’s engine game having three chambers. The pulleys
can move horizontally and are assumed to be negligibly small.

Proof: Observe that the recurrence relation is rewritten as

Wn := Wn−1

"
1 +

X
a∈Ω

αn(a)
�
δωn (a) − p(a)

�#
,

where p := (p(0), p(1)) := (1 − r, r) and

αn(a) :=
mn(a)g(`0 + `1)

Wn−1
.

Thus, Theorem 10 is an immediate consequence of Theorem
1. �

The implication of Theorem 10 is as follows: If Nature
does not behave in accordance with the expected statistical
law, Scientist can extract an infinite amount of work from the
engine. A distinctive feature of this finding is that it does
not require invoking Maxwell’s demon [25] or employing
any measurement scheme to determine a molecule’s position
before setting weights. Instead, Scientist only needs to detect
deviations in Nature’s behavior from the law of large numbers.

This result closely resembles Kelvin’s formulation of the
second law of thermodynamics, which asserts that it is impos-
sible to extract any net amount of work from a thermodynamic
system while leaving the system in the same state. To clarify
the position of our framework within existing theory, it is
helpful to compare it with the traditional information-theoretic
interpretation of Maxwell’s demon. In that framework, the
paradox is resolved by introducing the costs of information
acquisition and erasure, where “information” serves as a
compensating quantity [26], [27]. In contrast, our formulation
is more flexible: it does not forbid any net conversion of
heat into work from a single heat bath by an arbitrary cyclic
process, but rather forbids the unbounded extraction of work
from the system.

Extending the previous argument to the case when the
outcome space Ω is an arbitrary finite set is straightforward.

Consider a device illustrated in Figure 2, corresponding to
the case when Ω = {1, 2, 3}. The cylinder contains two parti-
tions, dividing it into three chambers labeled by ω = 1, 2, 3.
Each partition is connected to two containers by inextensible
strings and negligibly small pulleys that can move horizontally.
Weights can be placed on these containers. The containers
correspond one-to-one with the chambers and are labeled
accordingly.

A generalized Szilard’s engine game for Ω = {1, 2, 3} runs
as follows:

(i) Each of two partitions is placed at a specific position
within the cylinder and fixed in place.

(ii) Scientist places a weight m(a) on each container a for
a = 1, 2, 3.

(iii) Nature places a single molecule in one of the three
chambers, announces its label ω, and releases the parti-
tions.

(iv) The molecule pushes the partitions at the boundaries of
chamber ω, causing the chamber to expand until all the
partitions are pressed against the end(s) of the cylinder,
and Scientist gains potential energy as follows: If ω = 1,
the work extracted is

m(1)g
`2 + `3

2
− m(2)g

`2

2
− m(3)g

`3

2
.

If ω = 2, the work extracted is

m(2)g
`3 + `1

2
− m(3)g

`3

2
− m(1)g

`1

2
.

If ω = 3, the work extracted is

m(3)g
`1 + `2

2
− m(1)g

`1

2
− m(2)g

`2

2
.

(v) Once the partitions come to rest, they return to their
original positions as in step (i).

In a single round of the game, Scientist extracts the following
amount of work:

3X
a=1

m(a)g
2

(`1 + `2 + `3)
�
δω(a) −

`a

`1 + `2 + `3

�
.

Generalized Szilárd’s engine game
Players: Scientist and Nature.
Protocol: W0 = 1.

FOR n ∈ Z>0:
Scientist announces mn ∈ R

Ω.
Nature announces ωn ∈ Ω.
Wn := Wn−1

+
X
a∈Ω

mn(a)g
2

(`1 + · · ·+ `A)
�
δωn (a) − p(a)

�
.

END FOR.

Generalizing Szilárd’s engine game to an arbitrary finite set
Ω = {1, 2, . . ., A} is straightforward: one simply increases the
number of chambers illustrated in Figure 2. Defining

p(a) :=
`a

`1 + · · ·+ `A
, (a ∈ Ω),

we can formulate the generalized work-extracting protocol as
follows.



66 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 72, NO. 1, JANUARY 2026

Now, we extend Theorem 10 to this generalized setting:
Theorem 11: In generalized Szilárd’s engine game, Scientist

has a prudent strategy {mn}n that ensures limn→∞Wn = ∞

unless

lim
n→∞

1
n

nX
i=1

δa(ωi) = p(a), (∀a ∈ Ω).

We can further generalize the game described above by
allowing the chamber size ratios p(a) to vary in each round
n, introducing a Forecaster who announces these ratios. In
this extended protocol, Theorem 2 provides a generalization
of Theorem 11, incorporating a time-homogeneous finite-order
Markovian Forecaster.

B. Entropy

Given the pivotal role of universal coding schemes in estab-
lishing game-theoretic law of large numbers, it is natural to
expect that the protocol of a predictive game is also intertwined
with the concept of entropy. The next proposition formalizes
this connection, where we continue to assume that M is a kth-
order Markov kernel with strictly positive entries and π is the
stationary distribution of M.

Proposition 12: In the time-homogeneous kth-order Marko-
vian predictive game, Skeptic has a prudent strategy α : Ω∗ →

RΩ that ensures limn→∞ Kn = ∞ unless

lim
n→∞

− log QLZ(ωn
1)

n
= H(M), (15)

where

H(M) := −
X

ak
1∈Ω

k

π(ak
1)
X
b∈Ω

M(b | ak
1) log M(b | ak

1)

is the entropy rate.

Proof: We observed in the proof of Theorem 2 that, under
the Lempel-Ziv betting strategy QLZ , the boundedness of the
capital process, i.e., lim supn→∞ Kn < ∞, guarantees not only
that

log Kn

n
=

1
n

˚
− log P̃(ωn

1) − (− log QLZ(ωn
1))
	
−→ 0

but also that

M̂k
n( · | ak

1) −→ M( · | ak
1) and

Tn(ak
1)

n
−→ π(ak

1)

for all ak
1 ∈ Ωk as n→ ∞.

As a consequence, using a similar computation as in the
proof of Lemma 7, we obtain

−
1
n

log P̃(ωn
1)

= −
X

ak
1∈Ω

k

Tn(ak
1)

n

X
b∈Ω

M̂k
n(b | ak

1) log M(b | ak
1)

+
1
n

(
− log P̃(ωk

1) + log
kY

i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

)
−→ H(M).

Combining these asymptotic properties, (15) follows
immediately. �

The implication of Proposition 12 is as follows: To prevent
Skeptic from becoming infinitely rich, Reality must ensure that
the asymptotic compression rate of its moves coincides with
the entropy rate.

Note that Proposition 12 bears a close resemblance to
Lempel-Ziv’s theorem [20]

lim
n→∞

`LZ(ωn
1)

n
= HA(P), P-a.s.

as well as Brudno’s theorem [28]

lim
n→∞

K(ωn
1)

n
= HA(P), P-a.s.

for the prefix Kolmogorov complexity K(ωn
1) when data ωn

1 are
drawn according to a stationary ergodic probability measure
P on Ω∞, where

HA(P) := lim
n→∞
E

�
−

1
n

logA P(ωn
1)
�

is the entropy rate to the base A. In addition, the last asymptotic
property in the proof of Proposition 12 corresponds to the
Shannon-McMillan-Breiman theorem [21]

lim
n→∞

�
−

1
n

log P(ωn
1)
�

= H(P), P-a.s.

which also has a counterpart in algorithmic randomness theory
[29], [30], [31]. These observations prompt us to call a
Forecaster stationary ergodic if they announce predictions
according to the prescription

pn(ωn) := P(ωn | ω
n−1
1 ), (ωn

1 ∈ Ωn),

where P represents a predetermined stationary ergodic proba-
bility measure.

If we were to discover a compression algorithm capable
of efficiently compressing Reality’s moves within the game-
theoretic context, we could define the entropy of a game as
the asymptotic data compression rate, assuming that Reality
faithfully follows the predictions of a stationary ergodic Fore-
caster and thereby prevents Skeptic from becoming infinitely
rich.

However, this definition, which relies on the existence of
a stationary ergodic Forecaster, may not be fully satisfactory
from the perspective of Dawid’s prequential principle [32],
as the prequential framework does not impose any structural
assumptions on the underlying data-generating mechanisms
but instead evaluates predictive performance based solely
on the observed data sequence. The validation and further
exploration of the concepts of game entropy and stationary
ergodic Forecasters remain topics for future investigation.

V. CONCLUDING REMARKS

In this paper, we established a generalization of the
game-theoretic law of large numbers in a time-homogeneous
kth-order Markovian predictive game. By constructing a
Lempel-Ziv-inspired strategy based on incremental parsing
and the martingale properties of the game, we provided new
insights into the relationship between game-theoretic random-
ness and coding theory.
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We also explored applications to thermodynamics by for-
mulating a game-theoretic version of Szilard’s engine. Our
results demonstrated that Nature must behave stochastically,
satisfying the law of large numbers, to avoid violating the
second law of thermodynamics. Furthermore, we introduced
the concept of entropy in predictive games, associating it to
the codelength of universal coding.

Despite these advances, several important challenges
remain. For instance, integrating additional thermodynamic
concepts such as thermal equilibrium, thermal contact, tem-
perature, and free energies into a game-theoretic framework
remains a significant open problem. Additionally, extending
the framework to non-Markovian processes could provide
deeper insights into the dynamics of predictive games.

APPENDIX A
PROOF OF LEMMAS

In this appendix, we provide detailed proofs of the lemmas
stated in Section II-B.

A. Proof of Lemma 3

Since

− log QLZ(ωn
1)

= − log QLZ(ωnT
1 ω

n
nT+1)

= − log QLZ(ωnT
1 ) − log QLZ(ωn

nT+1 | ω
nT
1 )

for n > nT , it follows from (7) and (8) that, for any n,

− log QLZ(ωn
1) ≤ − log QLZ(ωnT

1 ) + log |V(ωnT
1 )|

=

c(ωn
1)X

j=0

log(A + j(A − 1))

<

c(ωn
1)X

j=0

log(A + c(ωn
1)(A − 1))

= (c(ωn
1) + 1) log(A + c(ωn

1)(A − 1)).

Consequently,

1
n

˚
c(ωn

1) log c(ωn
1) − (− log QLZ(ωn

1))
	

>
1
n

c(ωn
1) log c(ωn

1)

−
1
n

(c(ωn
1) + 1) log(A + c(ωn

1)(A − 1))

=
c(ωn

1)
n

log
c(ωn

1)
A + c(ωn

1)(A − 1)

−
log(A + c(ωn

1)(A − 1))
n

.

Thus, the following Lemma 13 proves the claim.
Lemma 13: For sufficiently large n and for all ωn

1 ∈ Ωn,

(0 <) c(ωn
1) <

n
(1 − εn) logA n

,

where εn → 0 as n→ ∞. Specifically, c(ωn
1)/n→ 0 as n→ ∞.

Proof: See Lemma 13.5.3 of [21]. �

B. Proof of Lemma 4

The first identity follows fromX
b∈Ω

Tn(b | a`1)

=
X
b∈Ω

(number of occurrences of a`1b in ωn
1ω

`
1)

= (number of occurrences of a`1 in ωn
1ω

`−1
1 ) = Tn(a`1).

On the other hand, observe thatX
a1∈Ω

Tn(b | a`1)

=
X
a1∈Ω

(number of occurrences of a`1b in ωn
1ω

`
1)

= (number of occurrences of a`2b in ωn
2ω

`
1)

= (number of occurrences of a`2b in ωn
1ω

`−1
1 ) + ∆1 + ∆`,

where

∆1 : = (adjustment for the effect of adding ω1

to the head of ωn
2ω

`
1)

=

(
−1 (ω`1 = a`2b),
0 (otherwise),

and

∆` : = (adjustment for the effect of removing ω`

from the tail of ωn
2ω

`
1)

=

(
1 (ω`1 = a`2b),
0 (otherwise).

Since ∆1 + ∆` = 0, the second identity holds.

C. Proof of Lemma 5

The assumption M̂k
n → M ensures that for sufficiently large

n, we have M̂k
n(b | ak

1) > 0 for all ak
1 ∈ Ωk and b ∈ Ω. For

ωk ∈ Ωk, define q̂n(ωk) := Tn(ωk)/n. Then, by Lemma 4, the
empirical distribution q̂n is stationary under the kth Markov
kernel M̂k

n [33]:X
a1∈Ω

M̂k
n(b | ak

1)q̂n(ak
1) =

X
a1∈Ω

Tn(b | ak
1)

Tn(ak
1)

Tn(ak
1)

n

=
1
n

X
a1∈Ω

Tn(b | ak
1) =

Tn(ak
2b)

n

= q̂n(ak
2b).

Thus, by Lemma 16 in Appendix B, q̂n is the unique stationary
distribution of Markov matrix M̂k

n.
Consider a convergent subsequence {q̂ni − π}i of {q̂n − π}n,

which converges to some r ∈ [−1, 1]Ωk
. By the assumption

M̂k
n → M, we obtain

r = lim
i→∞

(q̂ni − π) = lim
i→∞

(M̂k
ni

q̂ni−Mπ)

= lim
i→∞

˚
M̂k

ni
(q̂ni − π) + (M̂k

ni
− M)π

	
= Mr.
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By the Perron-Frobenius theorem (Section 4.4 of [34]), there
exists a constant c ∈ R satisfying r = cπ. Furthermore,X

ak
1∈Ω

k

r(ak
1) = lim

i→∞

X
ak

1∈Ω
k

(q̂ni (a
k
1) − π(ak

1)) = 0.

Thus, we must have c = 0, completing the proof.

D. Proof of Lemma 6

Suppose the sequence ωn
1 is parsed into Cn distinct sub-

strings as

ωn
1 = /ωn1

n0+1/ω
n2
n1+1/ · · · /ω

nCn
nCn−1+1,

where n0 = 0 and nCn = n. For example, if ωn
1 is parsed using

the incremental parsing algorithm as

ωn
1 = /ωn1

n0+1/ω
n2
n1+1/ · · · /ω

nT
nT−1+1/ω

n
nT+1,

we define Cn = T and set ωnCn
nCn−1+1 := ωnT

nT−1+1ω
n
nT+1.

Now, define si := ωi−1
i−` for ` + 1 ≤ i ≤ n, and extend them

cyclically for 1 ≤ i ≤ ` as follows:

s1 := ωn
n−`+1, s2 := ωn

n−`+2ω1, . . ., s` := ωnω
`−1
1 .

For m ∈ Z>0 and s ∈ Ω`, let cm,s denote the num-
ber of occurrences of the word ω

n j

n j−1+1 of length m such
that sn j−1+1 = ω

n j−1

n j−1−`+1 = s among the Cn substrings
ωn1

n0+1, ω
n2
n1+1, . . ., ω

nCn
nCn−1+1, i.e.,

cm,s

:=
ˇ̌̌n

j ∈ {1, 2, . . .,Cn}

ˇ̌̌
|ω

n j

n j−1+1| = m, sn j−1+1 = s
oˇ̌̌
.

Letting U := {(m, s) ∈ Z>0 ×Ω` | cm,s > 0}, we haveX
(m,s)∈U

cm,s = Cn and
X

(m,s)∈U

m · cm,s = n.

For each (m, s) ∈ U , let

Jm,s

= { j ∈ {1, 2, . . .,Cn} | n j − n j−1 = m, sn j−1+1 = s}.

With a slight abuse of notation, we define, for any m ∈ Z>`
and am

1 ∈ Ωm,

M̂`
n(am

`+1 | a
`
1) :=

mY
i=`+1

M̂`
n(ai | ai−1

i−` ).

Then, we can evaluate log R̂`
n(ωn

1) as follows:

log R̂`
n(ωn

1)

=

CnX
j=1

log M̂`
n(ωn j

n j−1+1 | sn j−1+1)

=
X

(m,s)∈U

X
j∈Jm,s

log M̂`
n(ωn j

n j−1+1 | sn j−1+1)

=
X

(m,s)∈U

cm,s

X
j∈Jm,s

1
cm,s

log M̂`
n(ωn j

n j−1+1 | sn j−1+1)

≤
X

(m,s)∈U

cm,s log

0@ 1
cm,s

X
j∈Jm,s

M̂`
n(ωn j

n j−1+1 | sn j−1+1)

1A .

In the last inequality, we used Jensen’s inequality. Since the
parsed substrings {ωn j

n j−1+1}1≤ j≤Cn are distinct, we haveX
j∈Jm,s

M̂`
n(ωn j

n j−1+1 | sn j−1+1) ≤ 1

for all (m, s) ∈ U . As a consequence,

log R̂`
n(ωn

1)

≤ −
X

(m,s)∈U

cm,s log cm,s

= −c(ωn
1) log c(ωn

1) − c(ωn
1)

X
(m,s)∈U

cm,s

c(ωn
1)

log
cm,s

c(ωn
1)
,

where c(ωn
1) = Cn. Writing πm,s := cm,s/c(ωn

1), we haveX
(m,s)∈U

πm,s = 1 and
X

(m,s)∈U

m · πm,s =
n

c(ωn
1)
.

We now define the random variables U and V as follows:

Pr(U = m, V = s) := πm,s.

From the above bound on log R̂`
n(ωn

1), it follows that

−
1
n

log R̂`
n(ωn

1) ≥
c(ωn

1)
n

log c(ωn
1) −

c(ωn
1)

n
H(U,V),

where
H(U,V) := −

X
(m,s)∈U

cm,s

c(ωn
1)

log
cm,s

c(ωn
1)
.

By the subadditivity of entropy, we have

H(U,V) ≤ H(U) + H(V).

Since the expectation of U is given by

E[U] =
n

c(ωn
1)
,

applying Lemma 14 below, we can bound H(U) as

H(U) ≤ (E[U] + 1) log(E[U] + 1) − (E[U]) log(E[U])

= log
n

c(ωn
1)

+

�
n

c(ωn
1)

+ 1
�

log
�

c(ωn
1)

n
+ 1

�
.

On the other hand, since H(V) ≤ log |Ω|` = ` log A, we obtain

δ`(n) : =
c(ωn

1)
n

H(U,V)

≤
c(ωn

1)
n

log
n

c(ωn
1)

+

�
1 +

c(ωn
1)

n

�
log

�
c(ωn

1)
n

+ 1
�

+
c(ωn

1)
n

` log A.

Since c(ωn
1)/n → 0 as n → ∞ by Lemma 13, it follows that

δ`(n)→ 0 as n→ ∞. This completes the proof.
Lemma 14: Let Z be a nonnegative integer-valued random

variable with mean µ. Then the entropy H(Z) is bounded by

H(Z) ≤ (µ+ 1) log(µ+ 1) − µ log µ.

Proof: See Lemma 13.5.4 of [21]. �
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E. Proof of Lemma 7

For n, ` ∈ Z>0 satisfying n > ` ≥ k,

− log P̃(ωn
1) + log R̂`

n(ωn
1)

= − log P̃(ω`1) − log P̃(ωn
`+1 | ω

`
1) + log R̂`

n(ωn
1)

= − log P̃(ω`1) − log
nY

i=`+1

M(ωi | ω
i−1
i−k) + log R̂`

n(ωn
1)

= − log P̃(ω`1) + log
Ỳ
i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

− log
Ỳ
i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

− log
nY

i=`+1

M(ωi | ω
i−1
i−k) + log R̂`

n(ωn
1)

= − log P̃(ω`1) + log
Ỳ
i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

−
X

a`1∈Ω
`

X
b∈Ω

Tn(b | a`1) log M(b | a``−k+1)

+ log R̂`
n(ωn

1).

In the last equality, we used the fact that

M(ωi | ω
n
n−k+iω

i−1
1 ) = M(ωi | ω

n
n−`+iω

i−1
1 ) and

M(ωi | ω
i−1
i−k) = M(ωi | ω

i−1
i−` ),

since ` ≥ k and M is the kth-order Markov kernel.
Substituting the definition of R̂l

n(ωn
1), the computation fol-

lows as:
− log P̃(ωn

1) + log R̂`
n(ωn

1)

= − log P̃(ω`1) + log
Ỳ
i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

+
X

a`1∈Ω
`

X
b∈Ω

Tn(b | a`1)

×
�
− log M(b | a``−k+1) + log M̂`

n(b | a`1)
�

= − log P̃(ω`1) + log
Ỳ
i=1

M(ωi | ω
n
n−k+iω

i−1
1 )

+
X

a`1∈Ω
`

Tn(a`1) · D
�

M̂`
n( · | a`−1

1 )


M( · | a``−k+1)

�
.

This completes the proof.

APPENDIX B
STATIONARY DISTRIBUTIONS OF MARKOV CHAINS

Given a Markov matrix M : Ω×Ω→ (0, 1) : (a, b) 7→ M(a |
b) satisfying X

a∈Ω

M(a | b) = 1

for all b ∈ Ω, let M(m) be the mth power of M, in that M(1) :=
M and

M(m)(a | b) :=
X
c∈Ω

M(a | c)M(m−1)(c | b).

We recall the following well-known fact.

Lemma 15: There exists a unique probability distribution µ
on Ω such that for any a, b ∈ Ω,

lim
m→∞

M(m)(a | b) = µ(a),

and µ is the stationary distribution of M.
Proof: See Theorem 6 in Chapter 4 of [34]. �
Now, consider a kth-order Markov kernel M : Ω × Ωk →

(0, 1) : (a, ωk
1) 7→ M(a | ωk

1) that satisfiesX
a∈Ω

M(a | ωk
1) = 1 (∀ωk

1 ∈ Ωk).

Lemma 16: For the kth-order Markov kernel M, there is a
unique stationary distribution π : Ωk → (0, 1) satisfying

π(ak+1
2 ) =

X
a1∈Ω

M(ak+1 | ak
1)π(ak

1).

Proof: Define M̃ : Ωk ×Ωk → [0, 1) by

M̃(ak
1 | b

k
1) :=

(
M(ak | bk

1) (ak
1 = bk

2ak),
0 (otherwise).

Since X
ak

1∈Ω
k

M̃(ak
1 | b

k
1) =

X
ak∈Ω

X
ak−1

1 ∈Ω
k−1

M̃(ak
1 | b

k
1)

=
X
ak∈Ω

M(ak | bk
1) = 1,

we can regard M̃ as a first-order Markov kernel on Ωk.
Moreover it is straightforward to verify that

M̃(k)(ak
1 | b

k
1) =

kY
i=1

M(ai | bk
i ai−1

1 ).

This expression ensures that M̃(k)(ak
1 | b

k
1) > 0 for all ak

1, b
k
1 ∈

Ωk. Thus, by applying Lemma 15 to the Markov matrix M̃(k),
we conclude that there exists a unique distribution π on Ωk

satisfying
M̃(k)π = π.

Furthermore, since

M̃(k)(Mπ) = M(M̃(k)π) = Mπ,

the uniqueness of the stationary distribution for M̃(k) implies
that Mπ = π. �

APPENDIX C
LYNCH-DAVISSON BETTING STRATEGY FOR SIMPLE

PREDICTIVE GAME

In this appendix, we present an alternative proof of Theo-
rem 1 using one of the simplest universal data compression
schemes [35], [36]. As a by-product, we also analyze the
convergence rate of the empirical distribution.

We begin with a binary case and consider describing a
binary sequence xn = 11001 of length n = 5. For a ∈ {0, 1},
let S n(a) denote the number of occurrences of a in xn. The
sequence can be identified by first specifying its type (also
known as the empirical distribution):

P̂xn =

�
S n(0)

n
,

S n(1)
n

�
=

�
2
5
,

3
5

�
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and then specifying the index of this sequence among all
sequences of length n = 5 that share this type. Thus, the
given binary sequence xn can be described by another binary
sequence as follows:

specify the type„ ƒ‚ …
dlog2(n+1)e bits

+ specify the sequence in the type class„ ƒ‚ …2666log2

0@ n
S n(0), S n(1)

1A3777 bits

This scheme is called the Lynch-Davisson code, and its code-
length is given by

`LD(xn) = dlog2(n + 1)e+
�

log2
n!

S n(0)! S n(1)!

�
= log2

(n + 1)!
S n(0)! S n(1)!

+ O(1).

Generalizing to a generic alphabet Ω = {1, 2, . . ., A} is
straightforward, and the corresponding Lynch-Davisson code-
length is

`LD(xn) =

�
logA

(n + A − 1)!
n!(A − 1)!

�
+

�
logA

n!
S n(1)! S n(2)! · · · S n(A)!

�
= logA

(n + A − 1)!
(A − 1)! S n(1)! S n(2)! · · · S n(A)!

+ O(1).

Now, we are ready to prove Theorem 1.

Proof of Theorem 1: Let us introduce the reference proba-
bility measure P on Ω∗ defined by

P(ωn
1) :=

nY
i=1

p(ωi),

and consider the “randomness deficiency” function LLD(ωn
1)

for the Lynch-Davisson codelength `LD(ωn
1) relative to the

Shannon codelength − logA P(ωn
1) defined by

LLD(ωn
1) := − logA P(ωn

1) − `LD(ωn
1).

A crucial observation is that

LLD(ωn
1)

= − logA

nY
i=1

p(ωi)

+ logA
(A − 1)! S n(1)! S n(2)! · · · S n(A)!

(n + A − 1)!
+ O(1)

= −
X
a∈Ω

S n(a) logA p(a)

+ logA
(A − 1)! S n(1)! S n(2)! · · · S n(A)!

(n + A − 1)!
+ O(1) (16)

= (logA e)

(X
a∈Ω

S n(a) log
S n(a)
p(a)

−n log n − O(log n)

)
= n(logA e)

�
D(P̂ωn

1
‖p) − O

�
log n

n

��
, (17)

where Stirling’s formula was used in the third equality.

The relation (17) shows that lim supn→∞ LLD(ωn
1) = ∞ if

P̂ωn
1

does not converge to p. It then suffices to show that there
exists a prudent betting strategy αn that realizes

Kn ∝ ALLD(ωn
1) =

(A − 1)! S n(1)! S n(2)! · · · S n(A)!Qn
i=1 p(ωi) · (n + A − 1)!

. (18)

If this were the case, then

Kn

Kn−1
=

1
p(ωn)(n + A − 1)

(19)

× S n(1)! S n(2)! · · · S n(A)!
S n−1(1)! S n−1(2)! · · · S n−1(A)!

=
1

p(ωn)(n + A − 1)
· (S n−1(ωn) + 1). (20)

Comparing this with the recursion formula

Kn := Kn−1

(
1 + αn(ωn) −

X
a∈Ω

αn(a)p(a)

)
,

we find that
αn(a) :=

S n−1(a) + 1
p(a)(n + A − 1)

(21)

gives a desired prudent betting strategy that satisfies (18). In
fact, sinceX

a∈Ω

αn(a)p(a) =
1

n + A − 1

X
a∈Ω

{S n−1(a) + 1}

=
1

n + A − 1
{(n − 1) + A} = 1,

we have (
1 + αn(ωn) −

X
a∈Ω

αn(a)p(a)

)
= αn(ωn),

which is identical to the right-hand side of (20).
In summary, the prudent betting strategy (21) ensures that

lim sup
n→∞

logA Kn = lim sup
n→∞

LLD(ωn
1) = ∞

if P̂ωn
1

does not converge to p as n → ∞. The proof is
complete. �

Remark: In Theorem 1, the two events Kn → ∞ and P̂ωn
1
→

p are not necessarily mutually exclusive, and both may occur
simultaneously.6 For example, suppose that P̂ωn

1
converges to

p at the rate
‖P̂ωn

1
− p‖ = O(

p
log n/n )

and satisfies

lim sup
n→∞

n
log n

X
a∈Ω

(P̂ωn
1
(a) − p(a))2

p(a)
> A − 1.

Then, we have
lim sup

n→∞
Kn = ∞.

Proof: Applying Stirling’s formula

log n! =

�
n +

1
2

�
log n−n + O(1),

6A similar argument is found in [13].
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we get

log
S n(1)! S n(2)! · · · S n(A)!

(n + A − 1)!

=
X
a∈Ω

��
S n(a) +

1
2

�
log S n(a) − S n(a)

�
−

��
(n + A − 1) +

1
2

�
log(n + A − 1) − (n + A − 1)

�
+ O(1)

=
X
a∈Ω

S n(a) log S n(a) +
1
2

X
a∈Ω

log S n(a)

−

�
n + A −

1
2

�
log(n + 1) + O(1).

Thus, the randomness deficiency function LLD(ωn
1) is evaluated

using (16) as

LLD(ωn
1)

n logA e
= −

X
a∈Ω

S n(a)
n

log p(a)

+
1
n

log
S n(1)! S n(2)! · · · S n(A)!

(n + A − 1)!
+ O

�
1
n

�
=
X
a∈Ω

S n(a)
n

(− log p(a) + log S n(a))

+
1
2n

X
a∈Ω

log S n(a)

−
1
n

�
n + A −

1
2

�
log(n + A − 1) + O

�
1
n

�
=
X
a∈Ω

P̂ωn
1
(a)

 
log

P̂ωn
1
(a)

p(a)
+ log n

!
+

1
2n

X
a∈Ω

�
log P̂ωn

1
(a) + log n

�
−

�
1 +

A
n
−

1
2n

�
log(n + A − 1) + O

�
1
n

�
=
X
a∈Ω

P̂ωn
1
(a) log

P̂ωn
1
(a)

p(a)

+
1
2n

X
a∈Ω

log P̂ωn
1
(a) −

A − 1
2n

log n + O
�

1
n

�
.

(22)

Letting Qn(a) := P̂ωn
1
(a) − p(a), we evaluate the first term of

(22) as

X
a∈Ω

P̂ωn
1
(a) log

P̂ωn
1
(a)

p(a)

=
X
a∈Ω

p(a)
�

1 +
Qn(a)
p(a)

�
log

�
1 +

Qn(a)
p(a)

�
=
X
a∈Ω

p(a)

(
Qn(a)
p(a)

+
1
2

�
Qn(a)
p(a)

�2

− O
�

Qn(a)
p(a)

�3
)

= 0 +
1
2

X
a∈Ω

Qn(a)2

p(a)
+ O

�
|Qn|

3� . (23)

Combining (22) and (23), we have

LLD(ωn
1)

n logA e
=

1
2

X
a∈Ω

Qn(a)2

p(a)
−

A − 1
2n

log n

+
1

2n

X
a∈Ω

log P̂ωn
1
(a) + O

�
|Qn|

3�+ O
�

1
n

�
,

and thus

LLD(ωn
1)

logA e
=

log n
2

"
n

log n

X
a∈Ω

Qn(a)2

p(a)
− (A − 1)

#
+
X
a∈Ω

log P̂ωn
1
(a) + nO

�
|Qn|

3�+ O(1). (24)

Now, by the assumption that |Qn| = |P̂ωn
1
− p| = O(

p
log n/n ),

we haveX
a∈Ω

log P̂ωn
1
(a) = O(1) and nO

�
|Qn|

3�→ 0.

It then follows from (24) that

lim sup
n→∞

n
log n

X
a∈Ω

(P̂ωn
1
(a) − p(a))2

p(a)
> A − 1,

implies lim supn→∞ LLD(ωn
1) = ∞. This completes the proof.�

Note that the quantityX
a∈Ω

(P̂ωn
1
(a) − p(a))2

p(a)

corresponds to the Fisher information.
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