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Abstract

Vovk’s randomness criterion characterizes sequences that are random relative to two distinct
computable probability measures. The uniqueness of the criterion lies in the fact that, unlike the
standard criterion based on the likelihood ratio test, it is expressed in terms of a geometrical
quantity, the Hellinger distance, on the space of probability measures. In this paper, we
generalize the randomness criterion to a wider class of geometrical quantities, the α-divergences
with −1 < α < 1. The non-extendibility of the criterion across the boundaries α = ±1 is
investigated in connection with the likelihood ratio test and information geometry.

Keywords and phrases. α-divergence, constructive support, Hellinger distance, information ge-
ometry, Kakutani dichotomy, Kolmogorov complexity, Kullback-Leibler divergence, Martin-Löf ran-
domness, ∇e-geodesic.

1 Introduction

Let A be a finite set, and let An, A∗, and A∞ denote the sets of sequences, each comprising elements
in A, of length n, of finite length, and of infinite length (one-sided). We denote the null sequence by
λ. Further, let RML(P ) be the set of Martin-Löf random infinite sequences relative to a computable
probability measure P on A∞ [1, 2]. The set RML(P ) is sometimes called the constructive support
of P , and is closely related to the measure theoretic notions of singularity and absolute continuity.
In fact, given computable probability measures P and Q, they are mutually singular (denoted by
P ⊥ Q) if and only if RML(P ) ∩ RML(Q) = ∅ [3]. On the other hand, P is absolutely continuous
with respect to Q (denoted by P ≪ Q) if RML(P ) ⊂ RML(Q). The converse implication does not
hold in general: a counterexample was given by An. Muchnik [4]. (See also [5], and Section 3.3
below.) This illustrates a delicate aspect of the relationship between RML(P ) and RML(Q).

Elements of RML(P )∩RML(Q) for computable probability measures P and Q are usually char-
acterized by the likelihood ratio test as [5, 6]

RML(P ) ∩ RML(Q) =
{

ω ∈ RML(P )
∣∣∣∣ lim

n→∞

Q(ωn)
P (ωn)

converges to a positive number
}

. (1)
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Here ωn is the prefix of ω of length n, and P (ωn) := P (Γωn), with Γa the cylinder set specified by
the prefix a ∈ A∗. The criterion (1) is proved by the effective version of the martingale convergence
theorem.

When RML(P ) ∩ RML(Q) ̸= ∅, it is expected that the measures P and Q are in some sense
“close” to each other. However, the likelihood ratio criterion (1) is not directly connected with the
topological structure of the probability space, since it hinges on each individual sequence ω. Vovk
[7], on the other hand, derived a rather different criterion by using the Hellinger distance

D(0)(p∥q) := 2
∑
x∈A

(√
p(x) −

√
q(x)

)2

(2)

between two probability measures on A as follows.

Theorem 1. Let P and Q be computable probability measures and let ω ∈ RML(P ). Then ω ∈
RML(Q) if and only if Q(ωn) ̸= 0 for all n and

∞∑
i=1

D(0)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞.

Vovk’s criterion tells us that for ω ∈ RML(P )∩RML(Q), the conditional probabilities P ( · |ωi−1)
and Q( · |ωi−1) approach each other sufficiently quickly as measured by the Hellinger distance.
In particular, when P and Q are both product measures, say P =

∏
i Pi and Q =

∏
i Qi, the

corresponding criterion
∑∞

i=1 D(0)(Pi∥Qi) < ∞, which makes no reference to a sequence ω ∈
RML(P ), is nothing but the celebrated Kakutani criterion [8, 9, 10], and we obtain the effective
version of the Kakutani dichotomy as follows.

Theorem 2. When P and Q are computable product measures satisfying P
loc
≪ Q (i.e., Pi ≪ Qi

for all i), then either P ≪ Q or P ⊥ Q holds, and
(i) P ≪ Q ⇐⇒ RML(P ) ⊂ RML(Q),
(ii) P ⊥ Q ⇐⇒ RML(P ) ∩ RML(Q) = ∅.

Proof. We need only prove the ⇒ of (i). Suppose ω ∈ RML(P ). Then it holds that P (ωn) ̸= 0 for
all n, so that Q(ωn) ̸= 0 for all n because of the assumption of local absolute continuity. Moreover,
under this assumption, P ≪ Q is equivalent to

∑∞
i=1 D(0)(Pi∥Qi) < ∞. It then follows from

Theorem 1 that ω ∈ RML(Q).

Theorem 1 can be regarded as the emergence of the intrinsic topological structure of randomness.
In view of information geometry [11], the Hellinger distance is a special example of α-divergence:
for α ̸= ±1

D(α)(p∥q) :=
4

1 − α2

[
1 −

∑
x∈A

p(x)
1−α

2 q(x)
1+α

2

]
, (3)

and D(±1)(p∥q) := limα→±1 D(α)(p∥q). In particular, the (−1)-divergence

D(−1)(p∥q) :=
∑
x∈A

p(x) log
p(x)
q(x)

, (4)
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which is also called the Kullback-Leibler divergence, plays a crucial role in statistical hypothesis
testing. Since the notion of randomness is closely related to hypothesis testing, it is natural to ask
if Theorem 1 can be extended to other α-divergences. The answer is given by the following

Theorem 3. Let P and Q be computable probability measures and let ω ∈ RML(P ). Then ω ∈
RML(Q) if and only if Q(ωn) ̸= 0 for all n and

∞∑
i=1

D(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞

for some (in fact, any) α ∈ (−1, 1).

It is important to notice that the criterion does not extend to α = ±1 and beyond. In this
sense, Theorem 3 characterizes all the possible criteria for randomness along this line.

This paper is organized as follows. In Section 2, we prove Theorem 3 by modifying Vovk’s
ingenious argument [7]. In Section 3, we give some examples to get a better perspective on Theorem
3. In particular, we demonstrate the non-extendibility of α to the region |α| ≥ 1, and illustrate
the relationship to the likelihood ratio criterion (1). In Section 4, we recast the non-extendibility
of α in connection with the (non-)extendibility of a conditional ∇e-geodesic. Finally, we give brief
concluding remarks in Section 5.

2 Proof of Theorem 3

2.1 α-divergence for unnormalized measures

The α-divergence (3) is nonnegative when p and q are both probability measures. However, it may
take negative values when either p or q are unnormalized. The natural extension of α-divergence
to unnormalized measures on A is as follows [11, p. 71]: for α ̸= ±1

D̃(α)(p∥q) :=
4

1 − α2

∑
x∈A

[
1 − α

2
p(x) +

1 + α

2
q(x) − p(x)

1−α
2 q(x)

1+α
2

]
, (5)

and D̃(±1)(p∥q) := limα→±1 D̃(α)(p∥q), that is,

D̃(−1)(p∥q) := D̃(1)(q∥p) :=
∑
x∈A

[
q(x) − p(x) + p(x) log

p(x)
q(x)

]
. (6)

The α-divergence D̃(α)(p∥q) is nonnegative, and equals zero if and only if p = q. To see this, it
suffices to rewrite it in the form

D̃(α)(p∥q) =
∑
x∈A

p(x)f̃ (α)

(
q(x)
p(x)

)
,

where

f̃ (α)(t) :=



4
1 − α2

[
1 − α

2
+

1 + α

2
t − t

1+α
2

]
(α ̸= ±1)

1 − t + t log t (α = +1)

−1 + t − log t (α = −1)
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are strictly convex, nonnegative functions in t, with f̃ (α)(t) = 0 if and only if t = 1.
Note that the functions f̃ (α)(t) satisfy the symmetry:

t f̃ (α)(
1
t
) = f̃ (−α)(t). (7)

Further, they enjoy the following monotonicity in α:

0 < t < 1 =⇒ f̃ (α)(t) is monotone decreasing in α

t > 1 =⇒ f̃ (α)(t) is monotone increasing in α. (8)

In fact, letting γ := (−1 + α)/2, we see that,

∂

∂α

[
∂f̃ (α)

∂t

]
=

1
2γ2

[1 − tγ + tγ log tγ ] ≥ 0,

with equality if and only if t = 1. Thus ∂f̃ (α)/∂t is monotone increasing in α. Let α1 < α2. Then
for 0 < t < 1

f̃ (α1)(t) = −
∫ 1

t

∂f̃ (α1)

∂t
dt > −

∫ 1

t

∂f̃ (α2)

∂t
dt = f̃ (α2)(t).

Similarly we can prove that f̃ (α1)(t) < f̃ (α2)(t) for t > 1.

2.2 Basic lemma

For x ∈ A∗, let Km(x) be the monotone Kolmogorov complexity of x [2, p. 282]. It is known [2,
p. 282, Theorem 4.5.4] that, given a computable probability measure P on A∞, there is a constant
C such that for all ω ∈ A∞ and n ∈ N

Km(ωn) ≤ − log P (ωn) + C. (9)

It is also known [2, p. 295, Corollary 4.5.3] that ω ∈ RML(P ) if and only if there is a constant C̃
such that for all n

Km(ωn) ≥ − log P (ωn) − C̃. (10)

Let us introduce a randomness deficiency of a ∈ A∗ relative to a computable probability measure
P by

d(a|P ) := − log P (a) − Km(a).

Then, d(ωn|P ) is bounded from below for all ω ∈ A∞, and is bounded from above if and only if
ω ∈ RML(P ).

A function P : A∗ → R+ is called a semimeasure if it satisfies P (λ) ≤ 1 and P (a) ≥
∑

x∈A P (ax)
for all a ∈ A∗. The randomness deficiency d(a|P ) can be extended formally to a computable
semimeasure P , and we define ω ∈ A∞ to be random relative to a computable semimeasure P
if supn d(ωn|P ) < ∞. Note that (9) holds also for a computable semimeasure P . To see this,
let C(ωi−1) :=

∑
ωi∈A P (ωi|ωi−1) (=

∑
ωi∈A P (ωi−1ωi)/P (ωi−1) ≤ 1) and let P̂ (ωi|ωi−1) :=

P (ωi|ωi−1)/C(ωi−1). Then P̂ (ωn) :=
∏n

i=1 P̂ (ωi|ωi−1) = P (ωn)/
∏n

i=1 C(ωi−1) is a computable
probability measure on An, and

− log P (ωn) = − log P̂ (ωn) − log

(
n∏

i=1

C(ωi−1)

)
≥ − log P̂ (ωn) ≥ Km(ωn) − C.
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Lemma 4. Suppose P and Q are computable semimeasures. Then for all computable α ∈ R, there
is a constant C such that for all n ∈ N

1 − α

2
d(ωn|P ) +

1 + α

2
d(ωn|Q) ≥ 1 − α2

4

n∑
i=1

D(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
− C. (11)

We regard (11) to be true if the left-hand side takes the indefinite form ∞−∞.

Proof. When α = ±1, (11) is reduced to (9) (under the convention that 0×∞ = 0). Thus we need
only treat the case when α ̸= ±1.

We first assume that P (ωn) > 0 and Q(ωn) > 0 for all n. Letting

R( · |ωi−1) :=
1

Z(ωi−1)
P ( · |ωi−1)

1−α
2 Q( · |ωi−1)

1+α
2 ,

with
Z(ωi−1) :=

∑
y∈A

P (y|ωi−1)
1−α

2 Q(y|ωi−1)
1+α

2

the normalization, we introduce a one-parameter family of probability measures on An as follows:

R(ωn) :=
n∏

i=1

R(ωi|ωi−1) =
1∏n

i=1 Z(ωi−1)
P (ωn)

1−α
2 Q(ωn)

1+α
2 =

P (ωn)∏n
i=1 Z(ωi−1)

(
Q(ωn)
P (ωn)

) 1+α
2

.

(12)
Thus

− log R(ωn) = − log P (ωn) − 1 + α

2
(d(ωn|P ) − d(ωn|Q)) +

n∑
i=1

log Z(ωi−1).

According to (9), on the other hand, there is a constant C such that for all n,

− log R(ωn) ≥ Km(ωn) − C = −d(ωn|P ) − log P (ωn) − C.

By combining these two relations, we have

1 − α

2
d(ωn|P ) +

1 + α

2
d(ωn|Q) ≥ −

n∑
i=1

log Z(ωi−1) − C.

Since
D(α)

(
P ( · |ωi−1)∥Q( · |ωi−1)

)
=

4
1 − α2

(1 − Z(ωi−1)),

we have

log Z(ωi−1) = log
[
1 − 1 − α2

4
D(α)

(
P ( · |ωi−1)∥Q( · |ωi−1)

)]
≤ −1 − α2

4
D(α)

(
P ( · |ωi−1)∥Q( · |ωi−1)

)
. (13)

Here we used the inequality log(1 + t) ≤ t. The assertion now follows immediately.
We next assume that P (ωn) = 0 or Q(ωn) = 0 for some n. In this case, (11) is reduced to either

an inequality between infinities which is naturally regarded to be true, or an inequality having the
indefinite form ∞−∞ which is also regarded to be true because of the convention stated just after
the assertion. The proof of Lemma 4 is completed.
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Corollary 5. Suppose P and Q are computable semimeasures.
(i) For α > −1, there is a constant C such that for all n

d(ωn|Q) ≥ 1 − α

2

n∑
i=1

D(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
− 1 − α

1 + α
d(ωn|P ) − 2C

1 + α
.

(ii) For α < −1, there is a constant C such that for all n

d(ωn|Q) ≤ 1 − α

2

n∑
i=1

D(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
− 1 − α

1 + α
d(ωn|P ) − 2C

1 + α
.

Remark 6. Let us observe the relation:

D̃(α)(p∥q) − D(α)(p∥q) =
4

1 − α2

[
1 − α

2

(∑
x∈A

p(x) − 1

)
+

1 + α

2

(∑
x∈A

q(x) − 1

)]
,

where
∑

x∈A p(x) ≤ 1 and
∑

x∈A q(x) ≤ 1. If −1 < α < 1, then D̃(α)(p∥q) − D(α)(p∥q) ≤ 0. Thus
Corollary 5 (i) can be modified as

d(ωn|Q) ≥ 1 − α

2

n∑
i=1

D̃(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
− 1 − α

1 + α
d(ωn|P ) − 2C

1 + α
.

If α < −1, on the other hand, and q is a probability measure, then D̃(α)(p∥q) − D(α)(p∥q) ≥ 0.
Therefore, if Q( · |ωi−1) are probability measures on A, Corollary 5 (ii) can be modified as

d(ωn|Q) ≤ 1 − α

2

n∑
i=1

D̃(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
− 1 − α

1 + α
d(ωn|P ) − 2C

1 + α
.

2.3 Proof of ‘only if’ part of Theorem 3

That Q(ωn) ̸= 0 for all n follows immediately from (10). On the other hand, since ω ∈ RML(P ) ∩
RML(Q), both d(ωn|P ) and d(ωn|Q) are bounded from above. It then follows from Lemma 4 that

∞∑
i=1

D(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞

for all computable α ∈ (−1, 1). Moreover, since computable α’s are dense in the interval (−1, 1),
and the α-divergence is monotone in α (see Appendix B), the above convergence holds for any real
number α ∈ (−1, 1).

2.4 Proof of ‘if ’ part of Theorem 3

We need to show that supn d(ωn|Q) < ∞. In view of Corollary 5 (ii) or Remark 6, one might expect
that the assumption

∞∑
i=1

D̃(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞, −1 < ∃α < 1
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Figure 1: Whatever constant K > 1 we may choose, we cannot have f̃ (−3)(t) ≤ Kf̃ (0)(t) for ∀t > 0,
because limt↓0 f̃ (0)(t) = 2 and limt↓0 f̃ (−3)(t) = +∞. However, given a positive constant ε, it is
possible to have f̃ (−3)(t) ≤ Kf̃ (0)(t) for ∀t ≥ ε. This figure demonstrates the case when K = 3.

could imply that
∞∑

i=1

D̃(β)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞, ∃β < −1.

However, this is not true, as will be exemplified in Section 3.1. In fact, since

lim
t↓0

f̃ (α)(t) =
2

1 + α
, lim

t↓0
f̃ (β)(t) = +∞

for β < −1 < α, there is no constant K > 1 that satisfies f̃ (β)(t) ≤ Kf̃ (α)(t) for all t > 0. To
surmount this difficulty, we need a device to restrict ourselves to a certain region t ≥ ε (> 0) in
which f̃ (β)(t) ≤ Kf̃ (α)(t) actually holds, see Figure 1.

We realize this program (with ε = 1/3) by introducing a reference probability measure Q and a
semimeasure P as follows [7]:

(i) Let {A(a) | a ∈ A∗} be a computable family of subsets of A such that

Q(x|a) ≤ 1
2

P (x|a) (14)

for x ∈ A(a), and

Q(x|a) ≥ 1
3

P (x|a) (15)

for x /∈ A(a). Note that (15) cannot be replaced by the negation of (14) in general because
the relation (14) is not always computable. Also it should be remarked that for a computable
P , the set {a ∈ A∗ |P (a) = 0} is tacitly assumed to be decidable [7].

(ii) For a ∈ A∗ such that Q(a) ̸= 0

Q(x|a) :=


P (x|a)

2
, x ∈ A(a)

Q(x|a) · C(a), x /∈ A(a)
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where C(a) ∈ (0, 1] is the normalization to assure that
∑

x Q(x|a) = 1, that is,

C(a) :=
1 − P (A(a)|a)

2

Q(A(a)c|a)

(
≤ 1 − Q(A(a)|a)

Q(A(a)c|a)
= 1

)
.

(iii) P (x|a) := P (x|a) · C(a). This is actually a semimeasure since∑
x∈A

P (ax) =
∑
x∈A

P (x|a)P (a) = C(a)P (a) ≤ P (a).

Note that P and Q are both computable. According to the following chain decomposition of the
likelihood ratio:

Q(ωn)
P (ωn)

=
P (ωn)
P (ωn)

· Q(ωn)
P (ωn)

· Q(ωn)
Q(ωn)

we subsequently prove that ω is random relative to P (Step 1), relative to Q (Step 2), and finally
relative to Q (Step 3).

Step 0. Before proceeding to the proof, we make the following remark.

Lemma 7. If
∑∞

i=1 D̃(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞ for some α ∈ (−1, 1), then

∞∑
i=1

P (A(ωi−1)|ωi−1) < ∞.

Proof. Recall that f̃ (α)(t) is nonnegative for all t ∈ R+, and is monotone decreasing in t for 0 < t < 1
(cf. Figure 1). Since

x ∈ A(ωi−1) =⇒ Q(x|ωi−1)
P (x|ωi−1)

≤ 1
2

we have

D̃(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
=

∑
x∈A

P (x|ωi−1)f̃ (α)

(
Q(x|ωi−1)
P (x|ωi−1)

)
≥

∑
x∈A(ωi−1)

P (x|ωi−1)f̃ (α)

(
Q(x|ωi−1)
P (x|ωi−1)

)

≥
∑

x∈A(ωi−1)

P (x|ωi−1)f̃ (α)

(
1
2

)

= f̃ (α)

(
1
2

)
P (A(ωi−1)|ωi−1).

Since f̃ (α) (1/2) > 0, the assertion was verified.

8



Step 1. We need only show that

lim
i

P (ωi−1)
P (ωi−1)

=
∞∏

i=1

C(ωi−1) ̸= 0.

Observe that

C(ωi−1) ≥ 1 − P (A(ωi−1)|ωi−1)
2

(> 0)

and that due to Lemma 7,
∞∑

i=1

P (A(ωi−1)|ωi−1)
2

< ∞.

As a consequence
∞∏

i=1

C(ωi−1) ≥
∞∏

i=1

(
1 − P (A(ωi−1)|ωi−1)

2

)
> 0.

Here we have used the following well-known fact [10, p. 40]: for 0 ≤ qi < 1,

∞∑
i=1

qi < ∞ ⇐⇒
∞∏

i=1

(1 − qn) > 0.

Step 2. Fix a computable β < −1 arbitrarily. Then due to Remark 6, there is a constant C such
that for all n

d(ωn|Q) ≤ 1 − β

2

n∑
i=1

D̃(β)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
− 1 − β

1 + β
d(ωn|P ) − 2C

1 + β
.

We know from Step 1 that ω ∈ RML(P ), so that supn d(ωn|P ) < ∞. It then suffices to prove that

∞∑
i=1

D̃(β)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞.

A crucial observation is that for −1 < α < 1, there is a constant K(α,β) > 1 such that

t ≥ 1
3

=⇒ f̃ (β)(t) ≤ K(α,β)f̃ (α)(t), (16)

see Figure 1. In fact, let

K(α,β) := sup

{
f̃ (β)(t)
f̃ (α)(t)

∣∣∣∣∣ t ∈ [
1
3
, 1)

}
,

which is finite because limt→1 f̃ (β)(t)/f̃ (α)(t) = 1. Then f̃ (β)(t) ≤ K(α,β)f̃ (α)(t) for 1/3 ≤ t < 1.
On the other hand, due to the monotonicity (8), we have f̃ (β)(t) ≤ f̃ (α)(t) ≤ K(α,β)f̃ (α)(t) for
t ≥ 1, proving (16).

Further, let
L(β) := sup

{
f̃ (−β)(t)

∣∣∣ t ∈ (0, 2]
}

,
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which is finite because −β > 1. Then

D̃(β)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
=

 ∑
x∈A(ωi−1)

+
∑

x/∈A(ωi−1)

 P (x|ωi−1)f̃ (β)

(
Q(x|ωi−1)
P (x|ωi−1)

)

=
∑

x∈A(ωi−1)

P (x|ωi−1)C(ωi−1)f̃ (β)

(
P (x|ωi−1)/2

P (x|ωi−1)C(ωi−1)

)

+
∑

x/∈A(ωi−1)

P (x|ωi−1)C(ωi−1)f̃ (β)

(
Q(x|ωi−1)C(ωi−1)
P (x|ωi−1)C(ωi−1)

)

=
f̃ (−β)

(
2C(ωi−1)

)
2

∑
x∈A(ωi−1)

P (x|ωi−1) + C(ωi−1)
∑

x/∈A(ωi−1)

P (x|ωi−1)f̃ (β)

(
Q(x|ωi−1)
P (x|ωi−1)

)

≤ L(β)

2
P (A(ωi−1)|ωi−1) + K(α,β)

∑
x/∈A(ωi−1)

P (x|ωi−1)f̃ (α)

(
Q(x|ωi−1)
P (x|ωi−1)

)

≤ L(β)

2
P (A(ωi−1)|ωi−1) + K(α,β)D̃(α)

(
P ( · |ωi−1)∥Q( · |ωi−1)

)
.

In the third equality we have used the symmetry (7). Due to Lemma 7 and the assumption, we
have

∞∑
i=1

D̃(β)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
≤ L(β)

2

∞∑
i=1

P (A(ωi−1)|ωi−1) + K(α,β)
∞∑

i=1

D̃(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞.

Step 3. We prove that

lim
n→∞

Q(ωn)
Q(ωn)

=
∞∏

i=1

Q(ωi|ωi−1)
Q(ωi|ωi−1)

̸= 0.

Since

Q(ωi|ωi−1)
Q(ωi|ωi−1)

=


Q(ωi|ωi−1)

P (ωi|ωi−1)/2
(≤ 1), if ωi ∈ A(ωi−1)

1
C(ωi−1)

(≥ 1), otherwise

it suffices to show that ωi ∈ A(ωi−1) only a finite number of times.
Since ω ∈ RML(P ) ∩ RML(Q), it holds from (1) that

lim
n→∞

Q(ωn)
P (ωn)

=
∞∏

i=1

Q(ωi|ωi−1)
P (ωi|ωi−1)

converges to a positive number.
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In particular

lim
n→∞

Q(ωi|ωi−1)
P (ωi|ωi−1)

= 1.

Now suppose that ωi ∈ A(ωi−1) infinitely often. Then Q(ωi|ωi−1) = P (ωi|ωi−1)/2 infinitely many
times, so that

lim inf
n→∞

Q(ωi|ωi−1)
P (ωi|ωi−1)

≤ 1
2
.

This is a contradiction. ¤

3 Examples

In order to get a better perspective on Theorem 3, we give some illustrative examples, putting
emphasis on the relationship to the likelihood ratio criterion (1).

3.1 Non-extendibility to the boundary α = ±1

Is it possible to extend Theorem 3 to α = ±1 and beyond? The answer is negative. We show this
by a counterexample.

Let P and Q be independent stochastic processes, P =
∏

Pn and Q =
∏

Qn, on {0, 1}∞ defined
by

Pn(0) :=
1

2n2
, Qn(0) := e−n.

Note that P
loc∼ Q. For these processes

1
4

D(0)(Pn∥Qn) = 1 −
∑

x∈{0,1}

√
Pn(x)Qn(x) ≤ 1 −

∑
x∈{0,1}

Pn(x)Qn(x) =
1

2n2
+ e−n − e−n

n2
.

Thus
∑∞

n=1 D(0)(Pn∥Qn) < ∞, so that P ∼ Q, and that RML(P ) = RML(Q) due to Theorem 2.
On the other hand,

D(−1)(Pn∥Qn) = D̃(−1)(Pn∥Qn) ≥ Qn(0) − Pn(0) + Pn(0) log
Pn(0)
Qn(0)

= e−n − 1
2n2

+
1

2n2
log

(
en

2n2

)
= O

(
1
n

)
.

Thus
∑∞

n=1 D(−1)(Pn∥Qn) = ∞ =
∑∞

n=1 D(+1)(Qn∥Pn). Similarly we can easily prove that∑∞
n=1 D(α)(Pn∥Qn) = ∞ =

∑∞
n=1 D(−α)(Qn∥Pn) for α < −1. As a consequence, the ‘only if’

part of Theorem 3 does not hold for |α| ≥ 1. In other words, Theorem 3 gives the best possible
criterion in terms of α-divergence.

Let us recast this example in connection with the likelihood ratio test. Since RML(P ) = RML(Q),
it follows from (1) that for all ω ∈ RML(P )

lim
n→∞

Q(ωn)
P (ωn)

=
∞∏

n=1

Qn(ωn)
Pn(ωn)

converges to a positive number.
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In particular

lim
n→∞

Qn(ωn)
Pn(ωn)

= 1.

How can this be consistent with the fact that

lim
n→∞

Qn(0)
Pn(0)

= 0?

The answer is that ω ∈ RML(P ) contains only a finite number of 0’s. In fact, suppose ω contains
infinitely many 0’s. Then

lim inf
n→∞

Qn(ωn)
Pn(ωn)

= 0.

This is a contradiction.
This observation illustrates that a randomness criterion cannot be too sensitive to the behavior

Qn(x)/Pn(x) → 0 for some x ∈ A. This is why our criterion is restricted to −1 < α < 1, for which
limt↓0 f̃ (α)(t) < ∞.

3.2 On the condition Q(ωn) ̸= 0 in Theorem 3

In Theorem 3, the condition that Q(ωn) ̸= 0 (∀n) cannot be dispensed with. In fact, ω ∈ RML(P )
and

∑∞
n=1 D(0)

(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞ together do not imply Q(ωn) ̸= 0 (∀n).

Let P and Q be independent processes on {0, 1}∞ defined by

Pn(0) =
1

2n2
, Qn(0) = 0.

This pair exhibits Q
loc
≪ P , and

1
4

∞∑
n=1

D(0)(Pn∥Qn) ≤
∞∑

n=1

1 −
∑

x∈{0,1}

Pn(x)Qn(x)

 =
∞∑

n=1

1
2n2

< ∞.

Thus Q ≪ P , and RML(Q) ⊂ RML(P ) due to Theorem 2. In fact, RML(Q) = {1∞}, and

lim
n→∞

Q(1n)
P (1n)

=
1

∞∏
n=1

(
1 − 1

2n2

) ,

which converges to a positive number. All the other elements ω (̸= 1∞) in RML(P ) contain at least
one 0’s, and Q(ωn) = 0 eventually.

Note that the condition Q(ωn) ̸= 0 (∀n) assures the existence of the reference measure Q(ωn)
in Section 2.4.
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3.3 Bienvenu-Merkle process

We next investigate somewhat peculiar pair of computable probability measures P and Q on {0, 1}∞
which exhibit P ∼ Q and RML(P ) ̸= RML(Q). Let

P (ωn) :=
1
2n

, Q(ωn) := r(ωn)P (ωn),

where the likelihood ratio r(ωn) is defined by (a slight modification of) the Bienvenu and Merkle
construction [5] as follows.

Let Ω be Chaitin’s halting probability [2, p. 217], which may be identified with the binary
infinite sequence after the decimal point. Note that Ω ∈ RML(P ). Since Ω is ∆0

2-definable, we can
choose a computable sequence {ws}s≥0 of words which converges bitwise to Ω. Here we assume that
lims |ws| = ∞, that |ws| ≤ 3s for all s, and that ws @ Ω (i.e., ws is a prefix of Ω) for infinitely many
s. For example, let {vs}s≥0 be a standard computable increasing sequence of positive rationals of
the form

∑s
i=0 2−ℓi (ℓi ∈ N) which converges to the real number Ω. Identify each vs with the binary

sequence after the decimal point, terminating in ‘1’. We then take ws to be the longest common
prefix of vs and vs+1, unless it is longer than 3s.

Step 0: Set r(0) = r(1) = 1.

Step s (≥ 1): We first define r(u) for |u| = 3s by using ws−1; we then define r(u) for 3s−1 < |u| < 3s

by induction.

(i) for each u ∈ {0, 1}3s

let u be the prefix of u of length 3s−1, that is, u = u a with ∃a ∈
{0, 1}3s−3s−1

, and let

r(u) :=



r(u), if ws−1 @/ u

1
2

r(u), if ws−1 @ u and u ̸= u 111 · · · 1

x(u), if ws−1 @ u and u = u 111 · · · 1

(17)

where x(u) is determined in such a way that the average value of
{

r(u a)
∣∣∣ a ∈ {0, 1}3s−3s−1

}
for each u (A ws−1) of length 3s−1 is equal to r(u). More precisely

(23s−3s−1
− 1)

r(u)
2

+ x(u)

23s−3s−1 = r(u),

so that

x(u) =

(
23s−3s−1

+ 1
2

)
r(u).

(ii) for 3s−1 < |u| < 3s, set inductively (in a reverse direction) as

r(u) :=
r(u0) + r(u1)

2
.
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It should be noted that the recursion formula in (ii) is identical to the martingale condition:

r(u)P (u) = r(u0)P (u0) + r(u1)P (u1).

Therefore, due to the definition of x(u) in (17), the induction (ii) can be extended consistently to
|u| = 3s−1.

Since ws → Ω, the sequence r(ωn) enjoys the following properties:

(a) r(Ωn) → 0,

(b) for ∀ω ̸= Ω, r(ωn) will be a positive constant eventually.

As a consequence, for Q(ωn) := r(ωn)P (ωn),{
ω

∣∣∣∣ inf
n

Q(ωn)
P (ωn)

= 0
}

= {Ω},
{

ω

∣∣∣∣ sup
n

Q(ωn)
P (ωn)

= ∞
}

= ∅.

Therefore, due to the following characterization [9, p. 527, Theorem 2]: for Q
loc
≪ P ,

Q ≪ P ⇐⇒ Q

(
lim sup

n

Q(ωn)
P (ωn)

= ∞
)

= 0,

we have P ∼ Q. Moreover, according to the randomness criterion (1) based on the likelihood ratio
test, we have

RML(Q) = RML(P )\{Ω}.

Let us recast this result in the light of Theorem 3. We conceive of each element ω ∈ {0, 1}∞ as
a path in the infinite binary tree. According to the assumption, there are infinitely many nodes ws

on the path Ω. Among those s (satisfying ws @ Ω), the node Ω3s

falls into the third case in (17) at
most finitely many times of s, since otherwise it would contradict the incompressibility of Ω. All
the other s (satisfying ws @ Ω) fall into the second case in (17), and there is an i, (3s−1 < i ≤ 3s),
for which

r(Ωi) ≤ 1
2

r(Ωi−1).

It follows that

D̃(α)
(
P ( · |Ωi−1)∥Q( · |Ωi−1)

)
=

∑
x∈{0,1}

P (x|Ωi−1)f̃ (α)

(
Q(x|Ωi−1)
P (x|Ωi−1)

)

≥ P (Ωi|Ωi−1)f̃ (α)

(
Q(Ωi|Ωi−1)
P (Ωi|Ωi−1)

)
=

1
2

f̃ (α)

(
r(Ωi)

r(Ωi−1)

)
≥ 1

2
f̃ (α)

(
1
2

)
for infinitely many i’s. We thus conclude that

∑
i D̃(α)

(
P ( · |Ωi−1)∥Q( · |Ωi−1)

)
= ∞, proving

Ω /∈ RML(Q).
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For ω ̸= Ω, on the other hand, it follows from (b) that

Q(x|ωi−1)
P (x|ωi−1)

=
r(ωi−1 x)
r(ωi−1)

= 1, ∀x ∈ {0, 1},

for all but finitely many i’s. As a consequence,
∑

i D̃(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞ for ∀ω ∈

RML(P )\{Ω} and ∀ω ∈ RML(Q), proving that RML(Q) = RML(P )\{Ω}.

4 Extendibility of conditional ∇e-geodesic

In this section, we recast the non-extendibility of the randomness criterion to |α| ≥ 1 from a different
angle. Let us recall the probability measure R(ωn) on An defined by (12), i.e.,

R(ωn) =
n∏

i=1

R(ωi|ωi−1) =
P (ωn)∏n

i=1 Z(ωi−1)

(
Q(ωn)
P (ωn)

) 1+α
2

,

with
Z(ωi−1) =

∑
x∈A

P (x|ωi−1)
1−α

2 Q(x|ωi−1)
1+α

2 .

Since the sequence {R(ωn)}n of probability measures enjoys the consistency:∑
ωn+1∈A

R(ωn+1) =
∑

ωn+1∈A
R(ωn+1|ωn)

n∏
i=1

R(ωi|ωi−1) = R(ωn),

it can be uniquely extended to A∞, for which we use the same symbol R. When α needs to be
specified, we denote it as R(α), and correspondingly Z(α)(ωi−1) for Z(ωi−1).

Unless P and Q are both product measures, R(α)(ωn) is not the genuine ∇e-geodesic [11]
connecting two measures P (ωn) and Q(ωn) on An, since the normalization

∏n
i=1 Z(α)(ωi−1) is an

Fn−1-measurable random variable depending on ωn−1. We may call R(α) a conditional ∇e-geodesic
connecting P and Q. In this section, we investigate if ω ∈ RML(P ) is still random relative to R(α).

4.1 Conservation of randomness for −1 ≤ α ≤ 1

We first note that randomness is conserved under the ∇e-convex combination of probability mea-
sures.

Proposition 8. Let P and Q be computable probability measures, and let ω ∈ RML(P ) ∩RML(Q).
Then ω ∈ RML(R(α)) for all computable α ∈ [−1, 1].

Proof. Recall that

− log P (ωn) ≤ Km(ωn) + C̃P and − log Q(ωn) ≤ Km(ωn) + C̃Q

The assertion is trivial for α = ±1. For α ∈ (−1, 1), it follows from Jensen’s inequality that
Z(ωi−1) ≤ 1, so that

− log R(α)(ωn) =
1 − α

2
(− log P (ωn)) +

1 + α

2
(− log Q(ωn)) + log

(
n∏

i=1

Z(α)(ωi−1)

)
(18)

≤ Km(ωn) +
1 − α

2
C̃P +

1 + α

2
C̃Q.

15



Note that (18) forces to conclude that
∏∞

i=1 Z(α)(ωi−1) > 0, since otherwise it contradicts
(9). For α ∈ (−1, 1), this is equivalent to

∑∞
i=1 D(α)

(
P ( · ∥ωi−1)∥Q( · ∥ωi−1)

)
< ∞, because

Z(α)(ωi−1) = 1 −
(
(1 − α2)/4

)
D(α)

(
P ( · ∥ωi−1)∥Q( · ∥ωi−1)

)
. This gives an alternative proof of

the ‘only if’ part of Theorem 3.

4.2 Extendibility to α < −1

The following theorem concerns the possibility of extending the conditional ∇e-geodesic segment
connecting P and Q beyond P , i.e. α < −1, keeping ω ∈ RML(P ) still random relative to R(α).

Theorem 9. Let P and Q be computable probability measures, and let ω ∈ RML(P ). Then for
computable α < −1,

∞∏
i=1

Z(α)(ωi−1) < ∞ =⇒ ω ∈ RML(R(α)). (19)

Proof. It follows from Jensen’s inequality that Z(α)(ωi−1) ≥ 1 for α < −1. Further

− log R(α)(ωn) =
1 − α

2
(− log P (ωn)) +

1 + α

2
(− log Q(ωn)) + log

(
n∏

i=1

Z(α)(ωi−1)

)

≤ Km(ωn) +
1 − α

2
C̃P +

1 + α

2
(−CQ) + log

(
n∏

i=1

Z(α)(ωi−1)

)

Here we have used (9). Thus
∞∏

i=1

Z(α)(ωi−1) < ∞ implies ω ∈ RML(R(α)).

The condition
∏∞

i=1 Z(α)(ωi−1) < ∞ in Theorem 9 is closely related to Corollary 5 (ii). In fact,
we have the following chain of implications: suppose ω ∈ RML(P ) and α < −1, then

∞∑
i=1

D(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞ (13)

=⇒
∞∏

i=1

Z(α)(ωi−1) < ∞ (19)
=⇒ ω ∈ RML(R(α)). (20)

On the other hand, we see from the identity

n∏
i=1

Z(α)(ωi−1) =
(

R(α)(ωn)
P (ωn)

)−1 (
Q(ωn)
P (ωn)

) 1+α
2

that
∞∏

i=1

Z(α)(ωi−1) < ∞ and ω ∈ RML(P ) ∩ RML(R(α)) =⇒ ω ∈ RML(P ) ∩ RML(Q).

Putting these together, for ω ∈ RML(P ) and α < −1,
∞∑

i=1

D(α)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞ =⇒ ω ∈ RML(Q).
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This is essentially equivalent to Corollary 5 (ii).
Although the convergence of

∑∞
i=1 D(α)

(
P ( · |ωi−1)∥Q( · |ωi−1)

)
for α < −1 is too strong a re-

quirement for a randomness criterion (Section 3.1), (20) suggests that the convergence of
∏∞

i=1 Z(α)(ωi−1)
for α < −1 might be worth investigation. Since

∂2

∂α2
log Z(ωi−1) =

1
Z(ωi−1)

∑
y∈A

P (y|ωi−1)
(

Q(y|ωi−1)
P (y|ωi−1)

) 1+α
2

(
1
2

log
Q(y|ωi−1)
P (y|ωi−1)

− Z(ωi−1)′

Z(ωi−1)

)2

> 0,

the functions α 7→ log Z(α)(ωi−1) are convex for all i, and so is

ψ(α) :=
∞∑

i=1

log Z(α)(ωi−1) = log

( ∞∏
i=1

Z(α)(ωi−1)

)
.

Further, since Z(−1)(ωi−1) = 1, it holds that ψ(−1) = 0 and

∂ψ

∂α

∣∣∣∣
α=−1

=
∞∑

i=1

∂

∂α
log Z(α)(ωi−1)

∣∣∣∣
α=−1

= −1
2

∞∑
i=1

D(−1)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
.

It is thus crucial to investigate if
∑∞

i=1 D(−1)
(
P ( · |ωi−1)∥Q( · |ωi−1)

)
< ∞.

Suppose this was true for a given pair P,Q of probability measures. Then one could extend ψ(α)
continuously to α < −1, to conclude that the ‘if’ part of Theorem 3 is proved directly from Theorem
9, and that the conditional ∇e-geodesic is extended to outside the segment. Unfortunately, this is
not always the case, as the counterexample in Section 3.1 shows.

5 Concluding remarks

Vovk’s randomness criterion was extended to α-divergences for α ∈ (−1, 1). It was also shown that
the criterion cannot be extended to |α| ≥ 1. In this sense, Theorem 3 characterizes all the possible
randomness criteria in terms of α-divergence.

Criteria of randomness are closely connected with criteria of absolute continuity and singularity
of probability measures. For example, as stated in [7], Kabanov-Liptser-Shiryaev’s criterion [12] (see
also [9, Chapter VII, Section 6.3, Theorem 4]) of absolute continuity and singularity of probability
measures on A∞ can be derived from Vovk’s criterion of randomness. Similarly, our criteria of
randomness naturally lead to α-divergence extension of Kabanov-Liptser-Shiryaev’s criterion. A
special case of this extension is discussed in Appendix A from a different point of view.

It should be noted that one could prove Theorem 3 by combining Theorem 1 with the following
fact: If

∑
n D(α)(pn∥qn) < ∞ for some α ∈ (−1, 1), then

∑
n D(β)(pn∥qn) < ∞ for all β ∈ (−1, 1).

(See Appendix B.) Nevertheless, such a way of understanding Theorem 3, in which a certain value
of α plays a crucial role, is somewhat awkward. In contrast, the proof presented in Section 2 does
not favor any specific value of α ∈ (−1, 1) and is mathematically natural. Moreover, it makes clear
the distinction between the underlying mechanism of the cases |α| < 1 and |α| ≥ 1.

17



Acknowledgments

I am particularly grateful to Phil Dawid for his hospitality during my visit to UCL. I also would
like to thank Volodya Vovk for stimulating discussions, Alexander Shen for bringing paper [5] to
my attention, and the anonymous referees for valuable comments.

Appendix

A A generalization of Kakutani’s Theorem

In this appendix, we derive α-divergence versions of Kakutani’s criterion from a different point of
view.

Theorem 10. Let X1, X2, . . . be independent nonnegative random variables, each of mean 1. Define
Mn := X1X2 · · ·Xn, with M0 := 1. Then M is a nonnegative martingale, so that M∞ := limMn

exists a.s. Given p > 1, let an := E[X1/p
n ]. The following five statements are equivalent:

(i) E[M∞] = 1
(ii) Mn → M∞ in L1

(iii) M is uniformly integrable
(iv)

∏
n an > 0

(v)
∑

n(1 − an) < ∞
If one (then every one) of the above five statements fails to hold, then P (M∞ = 0) = 1.

Proof. We need only show that (iv) implies that (Mn)n is L1-dominated [10, Section 14.12]. Let

Nn :=
X

1/p
1

a1
· · · X

1/p
n

an
.

Note that 0 < an ≤ 1 by Jensen’s inequality, and (Nn)n is a martingale. Suppose
∏

n an > 0. Then

E[Np
n] =

1
(a1 · · · an)p

≤ 1
(
∏

k ak)p
< ∞,

so that (Nn)n is bounded in Lp. Since

Np
n =

Mn

(a1 · · · an)p
≥ Mn,

it holds from Doob’s Lp inequality [10, Section 14.11] that,

E[sup
n

|Mn|] ≤ E[sup
n

|Np
n|] ≤ qp sup

n
E[Np

n] < ∞,

where (1/p) + (1/q) = 1. As a consequence, (Mn)n is dominated by M∗ := supn |Mn| ∈ L1.

If we conceive of Xn in Theorem 10 as the likelihood ratio Qn/Pn of two probability measures
satisfying Qn ≪ Pn for all n, then

1 − an = 1 − EP

[(
Qn

Pn

)1/p
]

= 1 −
∑
x∈A

Pn(x)1−1/pQn(x)1/p,
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and the condition (v) is equivalent to∑
n

D(α)(Pn∥Qn) < ∞, (21)

where α := (2/p) − 1 ∈ (−1, 1). Since Q ≪ P if and only if (Mn)n is uniformly integrable [10,
Section 14.16], it holds that Q ≪ P if and only if

∑
n D(α)(Pn∥Qn) < ∞ for ∃α ∈ (−1, 1); otherwise

P ⊥ Q. The original Kakutani theorem corresponds to the case when p = 2 (or α = 0).

B Monotonicity of α-divergence in α

Lemma 11. Let {pn}n and {qn}n be sequences of probability measures. If
∑

n D(α)(pn∥qn) < ∞
for some α ∈ (−1, 1), then

∑
n D(β)(pn∥qn) < ∞ for all β ∈ (−1, 1).

Proof. Let us rewrite the α-divergence as

D(α)(p∥q) =
2

1 − α

∑
x∈A

p(x)f (α)

(
q(x)
p(x)

)
,

where
f (α)(t) :=

2
1 + α

(1 − t
1+α

2 ).

Since
∂

∂γ

(
1 − tγ

γ

)
=

1
γ2

(−tγ log tγ − 1 + tγ) ≤ 0,

we see that f (α)(t) is monotone decreasing in α for each t > 0. As a consequence,∑
x∈A

p(x)f (α)

(
q(x)
p(x)

)
≥

∑
x∈A

p(x)f (β)

(
q(x)
p(x)

)

for all β ≥ α. Now suppose that
∑

n D(α)(pn∥qn) < ∞ for some α ∈ (−1, 1). Since this is equivalent
to ∑

n

{∑
x∈A

pn(x)f (α)

(
qn(x)
pn(x)

)}
< ∞,

we conclude from the above monotonicity that

∑
n

{∑
x∈A

pn(x)f (β)

(
qn(x)
pn(x)

)}
< ∞

for all β ≥ α, and that
∑

n D(β)(pn∥qn) < ∞ for all β ∈ [α, 1).
We next rewrite the α-divergence as

D(α)(p∥q) =
2

1 + α

∑
x∈A

q(x)f (−α)

(
p(x)
q(x)

)
.
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Since, for each t > 0, f (−α)(t) is monotone increasing in α, it holds that∑
x∈A

q(x)f (−β)

(
p(x)
q(x)

)
≤

∑
x∈A

q(x)f (−α)

(
p(x)
q(x)

)
for all β ≤ α. Since

∑
n D(α)(pn∥qn) < ∞ is equivalent to

∑
n

{∑
x∈A

qn(x)f (−α)

(
pn(x)
qn(x)

)}
< ∞,

we conclude from the monotonicity that

∑
n

{∑
x∈A

qn(x)f (−β)

(
pn(x)
qn(x)

)}
< ∞

for all β ≤ α, and that
∑

n D(β)(pn∥qn) < ∞ for all β ∈ (−1, α].
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