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This supplementary material is devoted to proofs of Remark 3.4, Theorem 4.4, Theorem 4.5, Lemma 5.6,
Theorem 6.1, Theorem 7.1, Theorem 7.2, and Theorem 7.6 of [1].

Proof of Remark 3.4. Recall that o is decomposed as 0 = E*dF, where

I 0 0 0 O 0
E=10 I cro_la , =10 o9 0
00 I 0 0 B-a‘cy'a

Then there is a unitary operator U that satisfies
Ve E=U\o,

and the operator R, modulo the singular part Rs, is given by

O 0 0 0 0 0
E* 0 ootpg! O|E = E* 0 Voo (VVaopovas) Vao 0| E
O 0 0 0 0

_ <\/ﬁp\/5)+\@E
- <\/m)+\/5ﬁ3

This proves the claim (3.14). O

Proof of Theorem 4.4. We first prove the ‘if’ part. Due to Remark 3.4, for each n € NU{oo}, the operator

R .— /g(n) Q(H)J’w / (1)

is a version of the square-root likelihood ratio R (a(”) ’ p(")), where

Q) 1= V5 pm/5m
1
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2 A. Fujiwara and K. Yamagata

Let the spectral (Schatten) decomposition of Q™) be

dim H
QM = Z qgn)Ei(n), (rank E{™ = 1)
i=1

where the eigenvalues are arranged in the increasing order. Take an arbitrary positive number A that is smaller
than the minimum positive eigenvalue of Q(°). Then there is an N € N and an index d, (1 <d<dimH),
such that for all n > N,

gM<gM << <a<gM <<

and, if d > 2, then qgi)l — 0 as n — oo. Consequently, for n > N,

d—1 d—1
LE™) =Y E" — 3B =1(Q") = 1(Q™)).
=1 i=1

Let us introduce

0™ .= /() 1,(Q)QM™ "/ o(n.

Then it is shown that O = o2 (p™). In fact,

Trp™MO™* = Tro™M1,(QM)QM QM Q"
Trg(n)]lA(Q(n))

Tr o> 14(Q)

Tr o>+

= 0.

LA

Here, the inequality follows from
n)t n)? n)t n n
Q( ) Q()Q() _ Z Ez( ):I—]lo(Q( ))7
i:qin)>0
the second last equality from

G R(e0) y(o0) ploc)

v g (o0) Q(OO)JFQ(0<>)2Q(OO)+ vV ()
Vo) (I = 1o(Q)))V (o),

and the last equality from o(>) < p(>),
We next introduce

7™ = g _ o) = /5 (I - ]lA(Q(n))> QM Vo),

— (N2
Then R(n) is positive. Moreover, it is shown that Tr p(”)R(n) — 1 as n — oo. In fact,

(1-n@m)em = ¥ || X mE | = X 5, CRY

i:qgn)>k i:qgn)>0 i i:qgn)>x\ i

which converges to

(T-m@N) ™" = ¥ 5B

i:q§w>>/\ 4
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Supplementary material to “Noncommutative Lebesque decomposition and contiguity” 3

In addition, since

oo 1 oo
QN = | > B > BT =0

i:qg‘”):o i:qgoo)>0 i
we have . .
(1-12(@") Q" — =", (8.2)
Thus
7™ /o) Q)" () = R,
so that

(n)?

lim Tr p(n)ﬁ =Tr p(OO)R(OO)2 — Tra.(oo) -1

n— oo

Here, the second equality follows from () <« p(°°). This identity is combined with O™ = 0;2(p(™) to

conclude that lim,, ’I‘rp(”)R(")2 = 1. Furthermore, due to (S.1), the family E(n)
that

is uniformly bounded, in

R < - < —.
=37 =
—(n 2
Thus, the sequence R( ) is uniformly integrable under p(™. This proves (™ < p(™).
We next prove the ‘only if’ part. Let R(™ be a version of the square-root likelihood ratio R (0(") | p(”)).
Due to assumption, there is an L?-infinitesimal sequence O™ of observables such that ¢(™ <im) p™). Let

dim H
R = Z TEH)EZ-(n), (rank EZ-(n) =1)
i=1

be the spectral (Schatten) decomposition of E(n) = R(™ 4+ O where the eigenvalues are arranged in the
increasing order, so that

i<t <<l

Let us choose the index d, (1 < d < dimH), that satisfies
sup{rfi")’neN}<oo and sup{ré@l‘neN}:oQ

and let us define

d dim H
AM) = Zrin)Egn) and BM .= Z rgn)Ei(").
i=1 i=d+1

Then A™ is the uniformly bounded part of E(n), and B™ = A 4 B,
Take a convergent subsequence A(™) of A so that

Aoy 1= lim A,

Then for any M that is greater than My := sup { r;n) ’ n e N},

(nk)

k—o0

It then follows from the assumption o™ <o) p(”) that

-—n 2 Nk
Trp(OO)A%OO) = lim lim Trp("k)R( K ]lM(R( k)) =1 (S.3)

M—00 k—o0
Furthermore, since
2
)

—(n 2
Te p™R™ = Tr pM (A™ 1 B2 = Ty p() A? Ty p(m) g
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4 A. Fujiwara and K. Yamagata

we see that B(™) = 072(p(™)), and so is C("#) := R(™) — A(m) = Bne) — O(™) | As a consequence, for any
unit vector z € H,

<x ’ RO ) R<"k>x>
- <x ‘A<nk>p<nk>A<nk>m> 1 2Re <x ‘A<nk>p<nk>c<nk>$> + <x ’O<nk>p<nk)c<nk>m>
— <:L‘ ‘A(oo)p(oo)A(oo)$>
as k — oo. In fact
‘<x ‘C<nk>p<nk>o<nk>x> ‘ < Ty ) plne) one) __y 9
and, due to the Schwartz inequality,
’<x ‘A<nk>p(nk>c<nk>x> ’2 < <x ‘A<nk>p<nk>A<nk>x> <x ‘C(nk>p<nk>c<nk>x> 0.
It then follows from the inequality
o (k) > R(”k)p("k)R(nk)
that
0< <x‘(g<nk) _ R(mp(nk)R(nk)) $> . <x‘(0(°°) _ A(oo)p(‘”)A(oo)) x> _

k—o0

Since x € H is arbitrary, we have
015 > Aoy p > Aoy.

Combining this inequality with (S.3), we conclude that
o(®) — A(oo)p(OO)A(oo)

This implies that o(°°) <« p(°°). O

Proof of Theorem 4.5. We first prove the ‘if” part. Let

7" = r™ = /o) \/\/o—(n)p(n) \/U(”)T\/o'(n)

Due to assumption, there is an ¢ > 0 and N € N such that n > N implies Tr p(™a (") > ¢. Since p™) is pure,
the operator Vo p(™+/a() is rank-one, and its positive eigenvalue is greater than e. Thus

< Lomo L

\ﬁ Ve
—(n -—n 2
for all n > N. This implies that R( ) is uniformly bounded, so that R( ) is uniformly integrable.
We next prove the ‘only if” part. Due to assumption, there is an L2-infinitesimal sequence O™ of observ-
ables such that o(™) <o p("). Let

be the spectral decomposition of E(n) = RM™ + O(")7 and let p(") = ’1/1(")> <1/J(")’ for some unit vector

w(”) e H™ . Since lim,_, o0 ’I‘fp(")R(")2 =1 is equivalent to lim,,_, ., Tr p(")R( - 1, we have
(n)
Jm 3o

—(n 2
where pgn) = <1/J(”) ’Ei(")zb(")>. Further, since R( ) is uniformly integrable, for any £ > 0, there exists an

M > 0 such that )
lim sup Z n) (" <e.

n— 00 n
i, "'>M
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Supplementary material to “Noncommutative Lebesque decomposition and contiguity” 5

It then follows that

liminf v/Tr p(Mo(™ > liminf v/Tr p(*) R(?) p(n) R(7)

oo n—oo
¢(n)>

¢<n>>

— liminf <¢<"> R™

n— oo

— liminf <¢<”> IR
n— 00

— (n) (1)
= lminf) n"

o (n) (n)
> ) :
> lminf >, n
irM<m
"
. i n
LU DT
i:rgn)gM
7|1 30
= — — limsu
M &
ir™>M
1
> —(1—¢).
- (1-¢)
This completes the proof. O

Proof of Lemma 5.6. We shall prove the following series of equalities for any {&}7_; € R? and 7,72 € R:

n—oo

T
lim Tr p(™ev=Tm (2 +0) {H VIEX(™ } V=TIna(2V+0™)
t=1

n—oo

r
— lim Ty p™eV=Im (2 +0™) {H oV TEX™ } oV T2 2™
t=1

= lim Trp(n)ex/jlmz(”) {Heﬁﬁfon)}eﬁnzz(").

n—00
t=1

The first equality follows from the Schwartz inequality and (5.2):

2

T
To )/ T (2 01) {H emfzx;">} [/ T(750) _ v

< Tr p™ { VIn (200 10) _ J/TTnez™ } {eﬁnz(zwww) _ e\/jlﬂzz(")}

=2—-2ReTr p(n)e—ﬁnz(z<”>+o<">)emngzw
2 2ReTr pMe=V=ImZ™ vV=1mz™ _ o

The proof of the second equality is similar. O

Proof of Theorem 6.1. We first prove that i is a well-defined normal state. Let R(n) =R 4+ 0™ It
then follows from assumption (ii) and the sandwiched version of the quantum Lévy-Cramér theorem (Lemma
5.3) that

nh_{rgo Tr p™ 1y (R(n)) B {tli[l oV —LE X" } E(n)]lM (R(n)> (S.4)
_ R()) () T o 1eix | po) (00)
¢<1M( )R {t]:[le Te} }R ILM<R ))
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6 A. Fujiwara and K. Yamagata

where M is taken to be a non-atomic point of the probability measure p having the characteristic function
wu(n) = qb( V=InR( ). Setting & = 0 for all ¢, taking the limit M — oo, and recalling the uniform

2 —(n)?
integrability of R( n) as well as the identity lim,,_, ., Tr p(”)R( - 1, we have

lim ¢ (]lM(R(OO))R °°>2) = 1. (S.5)

M — o0

Let p be the density operator that represents the state ¢. For notational simplicity, we set R := R(°>*) and
Rys = 1y (R)R. Then, for any A € B(H (),

(ZS(RMARM) = TI’pRMARM = (RM\/,B, ARM\/IB)HS s

where (B,C)ps := Tr B*C is the Hilbert-Schmidt inner product. To verify the well-definedness of 1, it
suffices to prove that ¢ (RAR) exists and

¢(RAR) = lim ¢ (RyARy)

for any A € B(H(*)). To put it differently, it suffices to prove that HR\/EHHS = 1, and that HRM\/Z) - R\/EHHS —

0 as M — oo, where || - |lus := +/(+, - )us. Let

R:/ AdE)
0

be the spectral decomposition of R, and let dv()) := ¢(dE)) be the induced probability measure on R. It
then follows from (S.5) that

0o M
IRVplig = TrpR? = [ Xdv(\) = lim Mdv(\) = lim ¢(R3,) =1
0 M —o0 0 M — o0

and that
2
|Rarv/p — Ry/pllsg = T pRE = Te pRSy = 1 — 6(1;) —» 0
as M — oo.
We next show that for any € > 0 there is an M > 0 that satisfies

Tr p(™ R {He 16 XW} B (S.6)
“Tr p(n)]lM (R(n)> E(”) {ﬁe\/ﬁgzxw }R(n)]l (R(n))

t=1

sup

<e.

In fact,

(LHS) < sup

B J 1T v Teix™ | gm0 _ 5o (n)
Trp™R {ge T X }{R “ R 1y (R )}|

o e {1 (1) 1) [T o (1)
and by using the uniform integrability of R(n)Q, we see that
(first term in RHS) < sup \/Tr p(")ﬁ(n)z \/Tr p(m) (I - ]lM(R(n))> R < g,
and
(second term in RHS) < sup \/Tr p() (I — 1y (") ) R \/Tr pM1 ("))R(n)2 < %
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Supplementary material to “Noncommutative Lebesque decomposition and contiguity”

An important consequence of (S.6) is the following identity

Tlim Tr pmR™ {H eVTIE X" } 7™ —y ({H VI X[ }) : (S.7)
t=1

=1
which follows by taking the limit M — oo in (S.4).
We next observe that

lim Tr p(")ﬁ(n) {H e\/flgixf"” } E(n) = lim Trp™RM™ {H e\/jlngETL) } R(n) (S.8)
lim Trp™ R™ {H eV-IEX" } R™,
n—o00 bab
In fact, the first equality follows from
Tr p™M o™ {H VI X[" } R"| < VT PO/ Tr p(”)ﬁ(n)2 — 0,
t=1
and the second from
Tr p™ R(™ {H eV TG X(™ } 0| < \/Tr p() R(W?\/Tr p(m O(M? —; 0.
t=1
We further observe that
i ) J T ev=tex™ | _ ) g T ov=1ex | pony
nlggoTro {tl:[le } = nILrI;OTrp R {tl:[le R'™. (S.9)

In fact,

IA

Tr ’Um) — R pm ()
t=1 t=1

Tr o™ {H oV —IEX } — Tr p™ R™ {H oV IEX } R™

= 1-Trp™RM™* 0.
Combining (S.9), (S.8), and (S.7), we have

T s
li_)rn Tr o™ {H eﬁgix;")} =1 (H e\/jlffx'ib(j)) . (S5.10)

t=1 t=1
This completes the proof.

O
Proof of Theorem 7.1. Let
0 0 0
R™ =10 Ry R
0o R™ Ry
be a version of the square-root likelihood ratio R (J(") ’p(")) that satisfies
0 0 0
RMpmRm = o RMpMRIM RV RM | < o (S.11)
0 R VR R ppRYY
and
<U<n> — Ry R(n)) L pm. (S.12)
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8 A. Fujiwara and K. Yamagata

Since R{™ p{MR(™ < o{™ and lim, o Trol™ = 0, we see that

lim Tr AW RMRM™ <. (S.13)
Further, let
o™ (n) 1
5((Jn) o__ ﬁ(()") — _Po 7 (()n) ((Jn)
Tr O'én) Tr p(n) )

where

Then it follows from (S.11) and (S.12) that R(()n)ﬁgn)f{én) < 56’” and (~(n) — R(()n)ﬁ(()n)f{én)> € ﬁ(()n). This

(n) ~n>>_

implies that R( ™) is a version of the square-root likelihood ratio R (&0
(n) (n) 5

The assumption 6(()n) < /3(()”) ensures the existence of a sequence O(()n) = o0r2(py /) such that 65 < ofm Po

=) _

Let RBy” := R + 0™, and let
0 0 0
0 0 0
Then we see that
0 0 0

om .— ﬁ(n) _Rrm_|o K/(n)o[()’rl) 7R§n)
0o -Rr{"™ —RM™

is L2-infinitesimal with respect to p(™. In fact, due to (S.13),

lim Trp(")O(") = hm Trp {/{(")QO(()n)2 —&—Rgn)Rg")*} =0.

n—oo
Furthermore,
2 —(n)2 n n)?
lim Trp(")R(n) = lim /f(")zTrp(()n)Ré " = lim (Tra(() ))Tr 5 )R( - 1,
n—oo n—oo n—oo
and
lim liminfTrp(”)ﬁ(n)z]lM(R(n)) = lim liminfx®™’ Trp R(n) (K R(n))
M—00 n—o0 Moo n—soo 0 0 0
— (M), ~(0)F(1)* —(n)
= lim Tminf(Trog™)Trpg" Ry~ Lag/wen (Ry )
(n) (M) p () ()
> =
> Jlim lminf(Trog™)Tr g Ry~ Law(Ry ) = 1,
where )
A:=liminf — = liminf 4/ Tr p(n) > 0.
n—00 ,‘{(") n—00
Thus ¢™ <o p™. O

Proof of Theorem 7.2. We first prove the ‘only if’ part. Due to assumption, there is an L2-infinitesimal
sequence O™ of observables satisfying the condition that for any € > 0, there is an M > 0 such that
(n)®

lim inf Tr p™) ]lM(R(n) )R

n—00

>1—¢,
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Supplementary material to “Noncommutative Lebesque decomposition and contiguity” 9

)

where B™ := R™ + 0 with R = &, R;. It then follows that

HTr piR; = lim Trp™RM
i=1

n—oo

= lim Trp(”)ﬁ(n)

n—oo

lim inf Tr p(")ﬁ(n) IBY; (E(n))

n— 00

vV

—(n)?

> liminf Tr p(™ RT IRy, (E(n))

n— 00

> %(1 —e).

Further, the equivalence of (7.1) and (7.2) is well known, (see [4, Section 14.12], for example).
We ne>§t prove the ‘if’ part. Since 0™ < p(™ | we have Tr p(”)R(")2 =1 for all n. It then suffices to prove
that R("" is uniformly integrable under p(™. For each i € N, let

Ry =Y ri(@) [Wi(2)) ($i(@)]

reEX;

be a Schatten decomposition of R;, where X; = {1,...,dimH;} is a standard reference set that put labels
on the eigenvalues r;(z) and eigenvectors o;(x). Note that the totality {¢;(z)}.cx, of eigenvectors forms an
orthonormal basis of H;. Let

pi(z) == (i) |pihi(z)) qi(z) == (Yi(z) [oihi(z)) -

Then P; := (p;(x))zex, and Q; := (¢;(2))zex, are regarded as classical probability distributions on X;. Due
to the identity o; = R;p; R;, we have

qi(z) = pi(z)ri(z)?, (Vo € &y),

which implies that Q; < P; for all i € N. Now, since

TrpiRi = Yy pi(z)ri(z) = Y /pi@)ai(@),

TEX; zeX,;

assumption (7.1) is equivalent to
H <Z \/pi(x)qi(x)> > 0.
i=1 \zea;

This is nothing but the celebrated Kakutani criterion for the infinite product measure [ [, @; to be absolutely
continuous to [[, P;, (cf. [3, 4]). As a consequence, the classical likelihood ratio process

n T @i(Xi)
LO(Xy,..., X,,) ::H x)
=5 pi(Xi

is uniformly integrable under ], P;, (cf. [4, Section 14.17]). The uniform integrability of R™” under P
now follows immediately from the identity

Tr p™ 13 (R™)R™® = Epey |Lag2 (L)L |

where P(") =T, P;. O
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10 A. Fujiwara and K. Yamagata

Proof of Theorem 7.6. Since the symmetric logarithmic derivative L; at 6y satisfies Tr pg,L; = 0 for all
i € {1,...,d}, the property (i) in Definition 7.4 is an immediate consequence of an i.i.d. version of the
quantum central limit theorem [2, 5].

In order to prove (ii) in Definition 7.4, we first calculate the square-root likelihood ratio R (p§”| pgf)”)

n

between p?” and pg}; . Let pg = pg© + pé‘ be the Lebesgue decomposition with respect to pg,. Then

g™ = (059" = (Ropa, Ro)™" = RG™ pi RE™, (S.14)
where Ry = R (po|po, ). On the other hand,
Tr po,po = Tr pe, p§° + Tt po,pg- = Tt po,p§° = Tr po, (Ropa, Ro) -
Therefore,
Trpg" |pg" — (RepeoRa)m] = (Tr po,pe)" — (Tt pa, (Rope, Re))" = 0.
Due to Lemma 2.1, this implies that
pa L [P?” - (R9p90R9)®"] : (S.15)
From (S.14) and (S.15), we have the quantum Lebesgue decomposition
P = (g™) e+ (pg™)
with respect to p?;", where

(pg™)% = RY" pg™ RY™  and  (p§")* = p§" — RS" p5" RE™.

0

Consequently, R?" gives a version of the square-root likelihood ratio R (p?" ’pg(’]").
Let us proceed to the proof of (ii) in Definition 7.4. Since Ry, is differentiable at h = 0 and Ry = I, it is
expanded as

1 .
Ry = I+ S Aih' + of||h]).

Due to assumption (7.7),

1 )
Poo+h = Rupoo By + o(||h]%) = pa, + = (Aipe, + poy Ai) b + o(||h]]).

2 (
As a consequence, the selfadjoint operator A; is also a version of the ith SLD at 6y. To evaluate the higher
order term of Ry, let

1 .
B(h) = Ry — I = S A",

Then
1 _ 2
Trpe,Ri = Trpg, <I + §AihZ + B(h)>

1 . . 1 1 _
= Trpg, <1 + JAA NN 1+ 2B(h) + Al + B(h)® + S AN B(R) + QB(h)Aihz>

1 o
L+ k' +2Tx pg, B(h) + of||1]]).
This relation and assumption (7.7) lead to

1 L
Tr po, B(h) = —5 Ty + o(|h]1?). (S.16)
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Supplementary material to “Noncommutative Lebesque decomposition and contiguity” 11

In order to prove (ii), it suffices to show that

O,S )= exp {2 (h AE ) §inh hj)} - (Rh/\/ﬁ)®

i1 g i ®n
R N P8 M L—h'L; @n
= e iV {€2f } — (Rh)ym)

is L?-infinitesimal under pgi”, setting the D-infinitesimal residual term op (hiAZ(-n), péz)) in (ii) to be zero

for all n. In fact,

Trpée;"O,(l”)Q — e 3Juh'W {Trpeoeﬁhwi} +{Trp00Ri/ﬁ} (5.17)

_9e~1iih'h Re {Tr peoeﬁhiLiRh/ﬁ}

The first term in the right-hand side of (S.17) is evaluated as follows:

_ Ll pipd Lpip ™ _1g o pipd 1 i 1 i1 1 "
e~ 2 ik {Trpgoeﬂ } = e zJil'h {Trp(;O (I+\/ﬁh Li+%LiLjh h3+o<n

iy 1 o 1\\"
= e zlih'W (1 + —Jjih'h? + o ()) — 1.
2n n

The second term is evaluated from (7.7) as

{TrpgoRi/\/ﬁ}n = (1 -0 (i))n — L.

Finally, the third term is evaluated from (S.16) as

. n
— L1y hiRI A g
e 17 {Trpaoezﬁ Ry m

1 pipd hi 1 o 1 Lk h "
= e aliih'h Iy I+ ——L;+—L;L;h'h’ - I+——A,+B[—
¢ {rp"°<+2\/ﬁ Tyt o g HEN AW

i 1 - "
= e aliih' W {1+Jkihzhk—|—0<>} — 1.
4dn n

This proves (ii).
Having established that {p?”}n is ¢-LAN at 6y, the property (7.8) is now an immediate consequence of
Corollary 7.5 as well as the quantum central limit theorem

(30) = () 9): o1

This completes the proof. O
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