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We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of
the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic
normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197–
2217], yielding substantial enlargement of the scope of quantum statistics.

Keywords: contiguity; Lebesgue decomposition; likelihood ratio; local asymptotic normality; quantum
statistics

1. Introduction

Quantum statistics is a rapidly growing field of research in quantum information science. When
we consider the future direction of the field, we may learn much from the history of classical
statistics. One of the deepest achievements in mathematical statistics is the theory of local asymp-
totic normality introduced by LeCam [22]. A sequence {P (n)

θ | θ ∈ � ⊂ Rd} of d-dimensional
parametric models, each comprising probability measures on a measurable space (�(n),F (n)), is
said to be locally asymptotically normal (LAN) at θ0 ∈ � (in the “weak” sense) if there exist a
sequence �(n) = (�

(n)
1 , . . . ,�

(n)
d ) of d-dimensional random vectors and a d × d real symmetric

positive definite matrix J such that �(n) 0� N(0, J ) and

log
dP

(n)

θ0+h/
√

n

dP
(n)
θ0

= hi�
(n)
i − 1

2
hihjJij + o

P
(n)
θ0

(1)
(
h ∈ R

d
)
. (1.1)

Here, the arrow
h� stands for the convergence in distribution under P

(n)

θ0+h/
√

n
, the remainder

term o
P

(n)
θ0

(1) converges in probability to zero under P
(n)
θ0

, and Einstein’s summation convention

is used.
The notion of local asymptotic normality provides a useful tool to cope with various statistical

models in a unified manner by reducing them to relevant Gaussian shift models in the asymp-
totic limit. Observe that the expansion (1.1) is similar in form to the log-likelihood ratio of the
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Gaussian shift model:

log
dN(h,J−1)

dN(0, J−1)

(
X1, . . . ,Xd

)= hi
(
XjJij

)− 1

2
hihjJij .

This similarity suggests a deep relationship between the models {P (n)

θ0+h/
√

n
| h ∈ R

d} and

{N(h,J−1) | h ∈ R
d}. In order to put the similarity to practical use, LeCam introduced the notion

of contiguity [22]. A sequence Q(n) of probability measures is called contiguous with respect to
another sequence P (n) of probability measures, denoted Q(n) � P (n), if P (n)(A(n)) → 0 implies
Q(n)(A(n)) → 0 for any sequence A(n) of measurable sets. An important conclusion pertinent to
the notion of contiguity is the following theorem, which is usually referred to as LeCam’s third
lemma: if Q(n) � P (n) and (

X(n),
dQ(n)

dP (n)

)
P (n)

� (X,V ),

then X(n) Q(n)

� L, where L is the law defined by L(B) := E[1B(X)V ]. Since the local asymptotic
normality (1.1) entails mutual contiguity P

(n)

θ0+h/
√

n
�� P

(n)
θ0

, LeCam’s third lemma proves that

X(n)j := (J−1)jk�
(n)
k exhibits X(n) h�N(h,J−1). This gives a precise meaning of the statement

that the model {P (n)

θ0+h/
√

n
| h ∈ Rd} satisfying (1.1) is statistically similar to the Gaussian shift

model {N(h,J−1) | h ∈Rd}.
Note that such an interpretation is realized in the asymptotic framework. A measure theo-

retic counterpart of LeCam’s third lemma is the identity dQ = (dQ/dP )dP , which is valid
when Q is absolutely continuous to P . In the nonasymptotic framework, the likelihood ratio
dP

(n)

θ0+h/
√

n
/dP

(n)
θ0

carries full information about the measure P
(n)

θ0+h/
√

n
only when P

(n)

θ0+h/
√

n
is

absolutely continuous to P
(n)
θ0

. This fact demonstrates the differences between the contiguity
and the absolute continuity, highlighting the notable flexibility and usefulness of the notion of
contiguity when it is used in conjunction with the weak LAN.

Extending the notion of local asymptotic normality to the quantum domain was pioneered by
Guţă and Kahn [11,18]. They proved that, given a quantum parametric model S(CD) = {ρθ > 0 |
θ ∈ � ⊂R

D2−1} comprising the totality of faithful density operators on a D-dimensional Hilbert
space and a point θ0 on the parameter space � such that ρθ0 is nondegenerate (i.e., every eigen-

value of ρθ0 is simple), there exist, for any compact subset K(⊂ R
D2−1), quantum channels Sn

and Tn such that

lim
n→∞ sup

h∈K

∥∥σh − Tn

(
ρ⊗n

θ0+h/
√

n

)∥∥
1 = 0 and lim

n→∞ sup
h∈K

∥∥Sn(σh) − ρ⊗n

θ0+h/
√

n

∥∥
1 = 0,

where {σh | h ∈ R
D2−1} are density operators of a certain quantum Gaussian shift model rep-

resented on a suitably chosen separable Hilbert space. (See Appendix A for a brief account of
quantum Gaussian states.)

Note that this formulation is not a direct analogue of the weak LAN defined by (1.1); in partic-
ular, the convergence to a quantum Gaussian shift model is evaluated not by the convergence in
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distribution but by the convergence in trace norm. In this sense, their formulation could be called
a “strong” q-LAN (cf. [23], Chapter 10).

Guţă and Kahn’s theorem in terms of the strong q-LAN was so powerful that it was applied
to the study of asymptotic quantum parameter estimation problems in [35]. However, the strong
q-LAN after Guţă and Kahn is not fully satisfactory because it is applicable only to i.i.d. exten-
sions of a quantum statistical model around a nondegenerate reference state ρθ0 . It is natural to
seek a more flexible formulation that is applicable to non-i.i.d. cases with possibly degenerate
reference states. In [10], they tried a different approach to a “weak” q-LAN via the Connes co-
cycle derivative, which was sometimes regarded as a proper quantum analogue of the likelihood
ratio. However, they did not establish an asymptotic expansion formula which would be directly
analogous to (1.1) in the classical LAN.

A different approach to a weak q-LAN was put forward in [34], in which a sequence of quan-
tum statistical models comprising mutually absolutely continuous density operators was treated.
Here, density operators ρ and σ on a finite dimensional Hilbert space are said to be mutually
absolutely continuous, ρ ∼ σ in symbols, if there exists a Hermitian operator L that satisfies

σ = e
1
2Lρe

1
2L.

The operator L satisfying this relation is called (a version of) the quantum log-likelihood ratio.
When the reference states ρ and σ need to be specified, L is denoted as L(σ |ρ), so that

σ = e
1
2L(σ |ρ)ρe

1
2L(σ |ρ).

For example, when both ρ and σ are strictly positive, the quantum log-likelihood ratio is uniquely
given by

L(σ |ρ) = 2 log
(
σ#ρ−1).

Here, # denotes the operator geometric mean [1,21]: for strictly positive operators A and B ,
the operator geometric mean A#B is defined as the unique positive operator X that satisfies the
equation B = XA−1X, and is explicitly given by

A#B = √
A

√√
A−1B

√
A−1

√
A.

The theory of weak q-LAN developed in [34] was successfully applied to quantum statistical
models satisfying only some mild regularity conditions, and clarified that the Holevo bound was
asymptotically achievable. However, this formulation, too, is not fully satisfactory because it is
applicable only to quantum statistical models that comprises mutually absolutely continuous den-
sity operators. This is in good contrast to the classical definition (1.1), in which mutual absolute
continuity for the model was not assumed [32]. The key idea behind this classical formulation is
the use of the Radon–Nikodym density, or more fundamentally, the use of the Lebesgue decom-
position of P

(n)

θ0+h/
√

n
with respect to P

(n)
θ0

. Thus, in order to extend such a flexible formulation
to the quantum domain, we must invoke an appropriate quantum counterpart of the Lebesgue
decomposition. Several noncommutative analogues of the Lebesgue decomposition and/or the
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Radon–Nikodym derivative have been devised, for example, [2,4–6,17,20,24–26,28–31]. How-
ever, each of them has its own scope, and to the best of our knowledge, no appropriate quantum
counterpart that is applicable to the theory of weak q-LAN has been established.

The objective of the present paper is threefold: Firstly, we devise a novel quantum analogue
of the Lebesgue decomposition that is pertinent to the framework of weak q-LAN introduced
in the previous paper [34]. Secondly, we develop a theory of contiguity in the quantum domain
based on the novel quantum Lebesgue decomposition. One of the remarkable achievements of
the theory is the abstract version of LeCam’s third lemma (Theorem 6.1). Finally, we apply the
theory of quantum contiguity to weak q-LAN, yielding substantial enlargement of the scope of
q-LAN as compared with the previous paper [34].

The present paper is organized as follows. In Section 2, we extend the notions of absolute
continuity and singularity to the quantum domain in order that they are fully consistent with the
notion of mutual absolute continuity introduced in [34]. In Section 3, we formulate a quantum
Lebesgue decomposition based on the quantum absolute continuity and singularity introduced in
Section 2. In Section 4, we develop a theory of quantum contiguity by taking full advantage of
the novel quantum Lebesgue decomposition established in Section 3. In Section 5, we introduce
the notion of convergence in distribution in terms of the quasi-characteristic function, and prove
a noncommutative version of the Lévy–Cramér continuity theorem under the “sandwiched” con-
vergence in distribution, which plays a key role in the subsequent discussion. In Section 6, we
prove a quantum counterpart of the LeCam third lemma. This achievement manifests the validity
of the novel quantum Lebesgue decomposition and quantum contiguity as well as the notion of
sandwiched convergence in distribution. In Section 7, we give some illustrative examples that
demonstrate the flexibility and applicability of the present formulation in asymptotic quantum
statistics, including a quantum contiguity version of the Kakutani dichotomy, and enlargement
of the scope of q-LAN. Section 8 is devoted to brief concluding remarks. For the reader’s conve-
nience, some additional material is presented in the Appendix, including the quantum Gaussian
states, and a noncommutative Lévy–Cramér continuity theorem.

2. Absolute continuity and singularity

Given positive operators ρ and σ on a (finite dimensional) Hilbert space H with ρ 	= 0, let
σ �suppρ denote the excision of σ relative to ρ by the operator on the subspace suppρ := (kerρ)⊥
of H defined by

σ �suppρ := ι∗ρσ ιρ,

where ιρ : suppρ ↪→H is the inclusion map. More specifically, let

ρ =
(

ρ0 0
0 0

)
, σ =

(
σ0 α

α∗ β

)
(2.1)

be a simultaneous block matrix representations of ρ and σ , where ρ0 > 0. Then the excision
σ �suppρ is nothing but the operator represented by the (1,1)th block σ0 of σ . The notion of
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excision was exploited in [34]. In particular, it was shown that ρ and σ are mutually absolutely
continuous if and only if

σ �suppρ > 0 and rankρ = rankσ,

or equivalently, if and only if

σ �suppρ > 0 and ρ�suppσ > 0. (2.2)

Now we introduce noncommutative analogues of the notions of absolute continuity and singu-
larity that played essential roles in the classical measure theory. Given positive operators ρ and
σ , we say ρ is singular with respect to σ , denoted ρ ⊥ σ , if

σ �suppρ = 0.

The following lemma implies that the relation ⊥ is symmetric; this fact allows us to say that ρ

and σ are mutually singular, as in the classical case.

Lemma 2.1. For nonzero positive operators ρ and σ , the following are equivalent:

(a) ρ ⊥ σ .
(b) suppρ ⊥ suppσ .
(c) Trρσ = 0.

Proof. Let us represent ρ and σ in the form (2.1). Then (a) is equivalent to σ0 = 0. In this case,
the positivity of σ entails that the off-diagonal blocks α and α∗ of σ also vanish, and σ takes the
form

σ =
(

0 0
0 β

)
.

This implies (b). Next, (b) ⇒ (c) is obvious. Finally, assume (c). With the representation (2.1),
this is equivalent to Trρ0σ0 = 0. Since ρ0 > 0, we have σ0 = 0, proving (a). �

We next introduce the notion of absolute continuity. Given positive operators ρ and σ , we say
ρ is absolutely continuous with respect to σ , denoted ρ  σ , if

σ �suppρ > 0.

Some remarks are in order. Firstly, the above definition of absolute continuity is consistent
with the definition of mutual absolute continuity: in fact, as demonstrated in (2.2), ρ and σ are
mutually absolutely continuous if and only if both ρ  σ and σ  ρ hold. Secondly, ρ  σ

is a much weaker condition than suppρ ⊂ suppσ : this makes a striking contrast to the classical
measure theory. For example, pure states ρ = |ψ〉〈ψ | and σ = |ξ 〉〈ξ | are mutually absolutely
continuous if and only if 〈ξ |ψ〉 	= 0 (see [34], Example 2.3).

The following lemma plays a key role in the next section, leading to a novel noncommutative
Lebesgue decomposition.
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Lemma 2.2. For nonzero positive operators ρ and σ , the following are equivalent:

(a) ρ  σ .
(b) ∃R > 0 such that σ ≥ RρR.
(c) ∃R > 0 such that ρ ≤ RσR.
(d) ∃R ≥ 0 such that ρ = RσR.
(e) ∃R ≥ 0 such that ρ ≥ RσR and Trρ = TrσR2.

Proof. We first prove (a) ⇒ (b). Let

ρ =
(

ρ0 0
0 0

)
, σ =

(
σ0 α

α∗ β

)

where ρ0 > 0. Since σ0 = σ �suppρ > 0, the matrix σ is further decomposed as

σ = E∗
(

σ0 0
0 β − α∗σ−1

0 α

)
E, E :=

(
I σ−1

0 α

0 I

)
.

Note that, since σ ≥ 0 and E is full-rank, we have

β − α∗σ−1
0 α ≥ 0. (2.3)

Now we set

R := E∗
(

X 0
0 γ

)
E,

where X := σ0#ρ−1
0 , and γ is an arbitrary strictly positive operator. Then

RρR = E∗
(

X 0
0 γ

)
E

(
ρ0 0
0 0

)
E∗
(

X 0
0 γ

)
E

= E∗
(

X 0
0 γ

)(
ρ0 0
0 0

)(
X 0
0 γ

)
E

= E∗
(

Xρ0X 0
0 0

)
E

= E∗
(

σ0 0
0 0

)
E

≤ E∗
(

σ0 0
0 β − α∗σ−1

0 α

)
E = σ.

Here, the inequality is due to (2.3). Since R > 0, we have (b).
We next prove (b) ⇒ (a). Due to assumption, there is a positive operator τ ≥ 0 such that

σ = RρR + τ.
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Let

ρ =
(

ρ0 0
0 0

)
, R =

(
R0 R1
R∗

1 R2

)
, τ =

(
τ0 τ1
τ ∗

1 τ2

)
,

where ρ0 > 0. Then

σ =
(

R0ρ0R0 + τ0 R0ρ0R1 + τ1
R∗

1ρ0R0 + τ ∗
1 R∗

1ρ0R1 + τ2

)
and

σ �suppρ = R0ρ0R0 + τ0.

Since R0 > 0 and τ0 ≥ 0, we have σ �suppρ > 0.
For the proof of (a) ⇒ (d), let

ρ =
(

ρ0 0
0 0

)
, σ =

(
σ0 α

α∗ β

)
,

where ρ0 > 0. Since σ0 = σ �suppρ > 0,

R :=
(

ρ0#σ−1
0 0

0 0

)

is a well-defined positive operator satisfying

ρ = RσR.

This proves (d).
For (d) ⇒ (a), let the positive operator R in ρ = RσR be represented as

R =
(

R0 0
0 0

)
,

where R0 > 0, and accordingly, let us represent ρ and σ as

ρ =
(

ρ0 ρ1
ρ∗

1 ρ2

)
, σ =

(
σ0 σ1
σ ∗

1 σ2

)
.

The relation ρ = RσR is then reduced to(
ρ0 ρ1
ρ∗

1 ρ2

)
=
(

R0σ0R0 0
0 0

)
.

This implies that suppρ = suppρ0 and ρ0 ∼ σ0. Consequently,

σ �suppρ = σ �suppρ0
= σ0�suppρ0

> 0.

In the last inequality, we used the fact that ρ0 ∼ σ0 implies ρ0  σ0.
Now that (b) ⇔ (c) and (d) ⇔ (e) are obvious, the proof is complete. �
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3. Lebesgue decomposition

In this section, we extend the Lebesgue decomposition to the quantum domain.

3.1. Case 1: When σ � ρ

To elucidate our motivation, let us first treat the case when σ � ρ. In Lemma 2.2, we found the
following characterization:

σ � ρ ⇐⇒ ∃R > 0 such that σ ≥ RρR.

Note that such an operator R is not unique. For example, suppose that σ ≥ R1ρR1 holds for
some R1 > 0. Then for any t ∈ (0,1], the operator Rt := tR1 is strictly positive and satisfies
σ ≥ RtρRt . It is then natural to seek, if any, the “maximal” operator of the form RρR that is
packed into σ . Put differently, letting τ := σ − RρR, we want to find the “minimal” positive
operator τ that satisfies

σ = RρR + τ, (3.1)

where R > 0. This question naturally leads us to a noncommutative analogue of the Lebesgue
decomposition, in that a positive operator τ satisfying (3.1) is regarded as minimal if τ ⊥ ρ.

In the proof of Lemma 2.2, we found the following decomposition:

σ = E∗
(

σ0 0
0 β − α∗σ−1

0 α

)
E

= E∗
(

σ0 0
0 0

)
E + E∗

(
0 0
0 β − α∗σ−1

0 α

)
E

= RρR +
(

0 0
0 β − α∗σ−1

0 α

)
,

where

ρ =
(

ρ0 0
0 0

)
, σ =

(
σ0 α

α∗ β

)
, E :=

(
I σ−1

0 α

0 I

)
, R = E∗

(
σ0#ρ−1

0 0
0 I

)
E

with ρ0 > 0 and σ0 > 0. Since

(
ρ0 0
0 0

)
⊥
(

0 0
0 β − α∗σ−1

0 α

)
,

we have the following decomposition:

σ = σ ac + σ⊥, (3.2)
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where

σ ac := RρR =
(

σ0 α

α∗ α∗σ−1
0 α

)
(3.3)

is the (mutually) absolutely continuous part of σ with respect to ρ, and

σ⊥ :=
(

0 0
0 β − α∗σ−1

0 α

)
(3.4)

is the singular part of σ with respect to ρ.
We may call the decomposition (3.2) a quantum Lebesgue decomposition for the following

reasons. Firstly, although (3.2) was defined by using a simultaneous block matrix representation
of ρ and σ , which has an arbitrariness of unitary transformations of the form U1 ⊕ U2, the ma-
trices (3.3) and (3.4) are covariant under those unitary transformations, and hence the operators
σ ac and σ⊥ are well-defined regardless of the arbitrariness of the block matrix representation.
Secondly, the decomposition (3.2) is unique, as the following lemma asserts.

Lemma 3.1. Suppose σ � ρ. Then the decomposition

σ = σ ac + σ⊥ (
σ ac  ρ,σ⊥ ⊥ ρ

)
(3.5)

is uniquely given by (3.3) and (3.4).

Proof. We show that the decomposition

σ = RρR + τ (R ≥ 0, τ ≥ 0, τ ⊥ ρ) (3.6)

is unique. Let

ρ =
(

ρ0 0
0 0

)
, σ =

(
σ0 α

α∗ β

)
with ρ0 > 0. Due to assumption ρ  σ , we have σ0 > 0. Let

E :=
(

I σ−1
0 α

0 I

)
.

Since E is invertible, the operator R appeared in (3.6) is represented in the form

R = E∗
(

R0 R1
R∗

1 R2

)
E.

With this representation,

RρR = E∗
(

R0 R1
R∗

1 R2

)
E

(
ρ0 0
0 0

)
E∗
(

R0 R1
R∗

1 R2

)
E

= E∗
(

R0ρ0R0 R0ρ0R1
R∗

1ρ0R0 R∗
1ρ0R1

)
E
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≤ σ

= E∗
(

σ0 0
0 β − α∗σ−1

0 α

)
E.

Here, the inequality is due to (3.6). Let us denote the singular part τ as

τ =
(

0 0
0 τ0

)
= E∗

(
0 0
0 τ0

)
E.

Then the decomposition (3.6) is equivalent to(
σ0 0
0 β − α∗σ−1

0 α

)
=
(

R0ρ0R0 R0ρ0R1
R∗

1ρ0R0 R∗
1ρ0R1

)
+
(

0 0
0 τ0

)
. (3.7)

Comparison of the (1,1)th blocks of both sides yields R0 = σ0#ρ−1
0 . Since this R0 is strictly

positive, comparison of other blocks of (3.7) further yields

R1 = 0 and τ0 = β − α∗σ−1
0 α.

Consequently, the singular part τ is uniquely determined by (3.4). �

An immediate consequence of Lemma 3.1 is the following.

Corollary 3.2. When σ � ρ, the absolutely continuous part σ ac of the quantum Lebesgue de-
composition (3.5) is in fact mutually absolutely continuous to ρ, that is, σ ac ∼ ρ.

Note that the operator R2 appeared in the proof of Lemma 3.1 is arbitrary as long as it is
positive. Because of this arbitrariness, we can take the operator R in (3.6) to be strictly positive.
This gives an alternative view of Corollary 3.2.

3.2. Case 2: Generic case

Let us extend the quantum Lebesgue decomposition (3.5) to a generic case when ρ is not nec-
essarily absolutely continuous with respect to σ . When ρ and σ are mutually singular, we just
let σ ac = 0 and σ⊥ = σ . We therefore assume in the rest of this section that ρ and σ are not
mutually singular.

Given positive operators ρ and σ that satisfy ρ 	⊥ σ , let H =H1 ⊕H2 ⊕H3 be the orthogonal
direct sum decomposition defined by

H1 := ker(σ �suppρ), H2 := supp(σ �suppρ), H3 := kerρ.

Then ρ and σ are represented in the form of block matrices as follows:

ρ =
⎛
⎝ρ2 ρ1 0

ρ∗
1 ρ0 0

0 0 0

⎞
⎠ , σ =

⎛
⎝0 0 0

0 σ0 α

0 α∗ β

⎞
⎠ , (3.8)
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Figure 1. Schematic diagram of support sets of measures P and Q on a classical measure space (�,F ,μ)

having densities p and q , respectively. Here, �P := {ω ∈ � | p(ω) > 0} and �Q := {ω ∈ � | q(ω) > 0}.
The induced measures Qac(A) := Q(A ∩ {p > 0}) and Q⊥(A) := Q(A ∩ {p = 0}) give the Lebesgue
decomposition Q = Qac + Q⊥ with respect to P , in which Qac  P and Q⊥ ⊥ P (cf. [32], Chapter 6).

where (
ρ2 ρ1
ρ∗

1 ρ0

)
> 0, σ0 > 0.

Note that when σ � ρ (Case 1), the subspace H1 becomes zero; in this case, the first rows and
columns in (3.8) should be ignored. Likewise, when ρ > 0, the subspace H3 becomes zero; in
this case, the third rows and columns in (3.8) should be ignored.

There is an obvious similarity between the block matrix structure in (3.8) and the diagram
illustrated in Figure 1 that displays the support sets of two measures P and Q on a classical
measure space (�,F,μ) having densities p and q , respectively. However, it should be warned
that

H′
1 := suppρ ∩ kerσ, H′

2 := suppρ ∩ suppσ

are different from H1 and H2, respectively. This is most easily seen by considering the case when
both ρ and σ are pure states: for pure states ρ = |ψ〉〈ψ | and σ = |ξ 〉〈ξ |, we see that H2 	= {0} if
and only if 〈ξ |ψ〉 	= 0 (cf. [34], Example 2.3), whereas H′

2 	= {0} if and only if ρ = σ .
Let us rewrite σ in the form

σ = E∗
⎛
⎝0 0 0

0 σ0 0
0 0 β − α∗σ−1

0 α

⎞
⎠E,

where

E :=
⎛
⎝I 0 0

0 I σ−1
0 α

0 0 I

⎞
⎠ .

Since E is invertible and σ ≥ 0, we see that

β − α∗σ−1
0 α ≥ 0.
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Now let

σ ac := E∗
⎛
⎝0 0 0

0 σ0 0
0 0 0

⎞
⎠E =

⎛
⎝0 0 0

0 σ0 α

0 α∗ α∗σ−1
0 α

⎞
⎠

and let

σ⊥ := E∗
⎛
⎝0 0 0

0 0 0
0 0 β − α∗σ−1

0 α

⎞
⎠E =

⎛
⎝0 0 0

0 0 0
0 0 β − α∗σ−1

0 α

⎞
⎠ .

Then it is shown that σ ac  ρ and σ⊥ ⊥ ρ. In fact, the latter is obvious from Lemma 2.1. To
prove the former, let

R := E∗
⎛
⎝0 0 0

0 σ0#ρ−1
0 0

0 0 0

⎞
⎠E.

Then R is a positive operator satisfying

RρR = E∗
⎛
⎝0 0 0

0 σ0#ρ−1
0 0

0 0 0

⎞
⎠
⎛
⎝ρ2 ρ1 0

ρ∗
1 ρ0 0

0 0 0

⎞
⎠
⎛
⎝0 0 0

0 σ0#ρ−1
0 0

0 0 0

⎞
⎠E

= E∗
⎛
⎝0 0 0

0 σ0 0
0 0 0

⎞
⎠E = σ ac.

It then follows from Lemma 2.2 that σ ac  ρ.
In summary, given ρ and σ that satisfy σ 	⊥ ρ, let

ρ =
⎛
⎝ρ2 ρ1 0

ρ∗
1 ρ0 0

0 0 0

⎞
⎠ , σ =

⎛
⎝0 0 0

0 σ0 α

0 α∗ β

⎞
⎠ (3.9)

be their simultaneous block matrix representations relative to the aforementioned direct sum
decomposition H =H1 ⊕H2 ⊕H3. Then

σ ac =
⎛
⎝0 0 0

0 σ0 α

0 α∗ α∗σ−1
0 α

⎞
⎠ , σ⊥ =

⎛
⎝0 0 0

0 0 0
0 0 β − α∗σ−1

0 α

⎞
⎠ (3.10)

give the following decomposition:

σ = σ ac + σ⊥ (
σ ac  ρ,σ⊥ ⊥ ρ

)
(3.11)

with respect to ρ.



Noncommutative Lebesgue decomposition and contiguity 2117

As in the previous subsection, we may call (3.11) a quantum Lebesgue decomposition for the
following reasons. Firstly, although the simultaneous block representation (3.9) has arbitrariness
of unitary transformations of the form U1 ⊕ U2 ⊕ U3, the operators σ ac and σ⊥ are well-defined
because the matrices (3.10) are covariant under those unitary transformations. Secondly, the de-
composition (3.11) is unique, as the following lemma asserts.

Lemma 3.3. Given ρ and σ with σ 	⊥ ρ, the decomposition

σ = σ ac + σ⊥ (
σ ac  ρ,σ⊥ ⊥ ρ

)
is uniquely given by (3.10).

Proof. We show that the decomposition

σ = RρR + τ (R ≥ 0, τ ≥ 0, τ ⊥ ρ) (3.12)

is unique. Because of Lemma 3.1, it suffices to treat the case when σ 	� ρ, that is, when H1 	= {0}.
Let ρ and σ be represented as (3.9). It then follows from (3.12) that, for any x ∈H1,

0 = 〈x|σx〉 ≥ 〈x|RρRx〉 = 〈Rx|ρRx〉.
This implies that Rx ∈ kerρ (= H3): in particular, 〈x|Rx〉 = 0, so that the (1,1)th block of R is
zero. This fact, combined with the positivity of R, entails that R must have the form

R =
⎛
⎝0 0 0

0 R0 R1
0 R∗

1 R2

⎞
⎠ .

Consequently, the problem is reduced to finding the decomposition

σ̂ = R̂ρ̂R̂ + τ̂ (R̂ ≥ 0, τ̂ ≥ 0, τ̂ ⊥ ρ̂), (3.13)

where

ρ̂ =
(

ρ0 0
0 0

)
, σ̂ =

(
σ0 α

α∗ β

)
, R̂ =

(
R0 R1
R∗

1 R2

)
.

Since ρ̂  σ̂ , the uniqueness of the decomposition (3.13) immediately follows from Lemma 3.1.
This completes the proof. �

Now that a quantum Lebesgue decomposition is established, we shall call the operator R sat-
isfying (3.12) the square-root likelihood ratio of σ relative to ρ, and shall denote it as R(σ | ρ).

Remark 3.4. The square-root likelihood ratio R =R(σ | ρ) is explicitly written as

R = √
σ(

√√
σρ

√
σ)+

√
σ + γ, (3.14)

where A+ denotes the generalized inverse of an operator A, and γ is an arbitrary positive operator
that is singular with respect to ρ. The proof is given in the Supplementary Material [8].
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4. Contiguity

As we have seen in the Introduction, the asymptotic version of absolute continuity called the con-
tiguity played an important role in classical statistics [22,23,32]. In this section, we extend it to
the quantum domain. There are several equivalent characterizations of the contiguity. Among oth-
ers, the following characterization is particularly relevant to our purpose because it makes no use
of the notion of measurable sets that are characteristic of classical measure theory. Let P (n) and
Q(n) be sequences of probability measures on measurable spaces (�(n),F (n)). Then Q(n) is con-
tiguous with respect to P (n) if and only if the sequence dQ(n)/dP (n) of likelihood ratios is uni-
formly integrable under P (n), and limn→∞ EP(n)[dQ(n)/dP (n)] = 1 (cf. [14], Lemma V.1.10).

Let H(n) be a sequence of finite dimensional Hilbert spaces, and let ρ(n) and σ (n) be quantum
states on H(n). Further, let R(n) be (a version of) the square-root likelihood ratio R(σ (n) | ρ(n)).
Motivated by the above consideration, one may envisage that the sequence σ (n) could be desig-
nated as “contiguous” with respect to ρ(n) if:

(i) limn→∞ Trρ(n)R(n)2 = 1, and
(ii) the sequence R(n)2

is uniformly integrable under ρ(n); that is, for any ε > 0 there exist an
M > 0 such that

sup
n

Trρ(n)R(n)2(
I − 1M

(
R(n)

))
< ε.

Here, 1M is the truncation function:

1M(x) =
{

1 if |x| ≤ M,

0 otherwise.

In other words, the operator 1M(R(n)) is the orthogonal projection onto the subspace of
H(n) spanned by the eigenvectors of R(n) corresponding to the eigenvalues less than or
equal to M .

However, such a naive definition fails, as the following example demonstrates.

Example 4.1. Let

ρ(n) = 1

2n3

(
2n3 − 1 0

0 1

)
, σ (n) = 1

2(n2 + n + 1)

(
n2 n2 + 1

n2 + 1 n2 + 2n + 2

)

be sequences of faithful states on a fixed Hilbert space H(n) = C
2. For all n ∈ N, they are mutu-

ally absolutely continuous. Moreover, the limiting states

ρ(∞) =
(

1 0
0 0

)
, σ (∞) = 1

2

(
1 1
1 1

)

are also mutually absolutely continuous since they are nonorthogonal pure states. Therefore, one
would expect that ρ(n) and σ (n) should be contiguous. However, this does not follow from the
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above naive definition. In fact, the square-root likelihood ratio R(n) = R(σ (n) | ρ(n)) is uniquely
given by

R(n) = n√
2(n2 + n + 1)

(
1 1
1 2n + 1

)
.

Therefore, for any M > 1/
√

2,

lim
n→∞1M

(
R(n)

)= (1 0
0 0

)

and

lim
n→∞ Trρ(n)R(n)2(

I − 1M

(
R(n)

))= Trσ (∞)

(
0 0
0 1

)
= 1

2
.

Namely, R(n)2
is not uniformly integrable under ρ(n).

The above strange phenomenon stems from the fact that the (2,2)th entry of the square-root
likelihood ratio R(n) diverges as n → ∞, although this entry is asymptotically inessential in
that it corresponds to the singular part of the limiting reference state ρ(∞). In other words, this
divergence might be illusory in discussing the asymptotic behavior. This observation may lead
us to a “modified” positive operator

R
(n) = n√

2(n2 + n + 1)

(
1 1
1 1

)

which would contain essential information about asymptotic relationship between ρ(n) and σ (n).
In fact,

R
(n)

ρ(n)R
(n) = 1

2(n2 + n + 1)

(
n2 n2

n2 n2

)

approaches σ (∞) as n → ∞, and the sequence R
(n)2

is uniformly integrable under ρ(n).

In order to formulate the idea presented in Example 4.1, we introduce a class of modifications
that is asymptotically negligible. We say a sequence O(n) of observables is infinitesimal in L2

(or simply L2-infinitesimal) under ρ(n), denoted O(n) = oL2(ρ(n)), if

lim
n→∞ Trρ(n)O(n)2 = 0.

It is easily verified that in Example 4.1, the operator O(n) := R
(n) − R(n) is L2-infinitesimal

under ρ(n).
Now we introduce a quantum extension of the contiguity.

Definition 4.2. Let H(n) be a sequence of finite dimensional Hilbert spaces, and let ρ(n) and
σ (n) be quantum states on H(n). Further, let R(n) be (a version of) the square-root likelihood
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ratio R(σ (n) | ρ(n)). The sequence σ (n) is contiguous with respect to the sequence ρ(n), denoted
σ (n) � ρ(n), if:

(i) limn→∞ Trρ(n)R(n)2 = 1, and
(ii) there is an L2-infinitesimal sequence O(n) of observables, each defined on H(n), such that

R
(n) := R(n) + O(n) is positive and R

(n)2

is uniformly integrable under ρ(n).

We also use the notation σ (n) �O(n) ρ(n) when O(n) needs to be specified.

Several remarks are in order. Firstly, the above definition is independent of the choice of the
square-root likelihood ratio R(n), since its arbitrariness (see Remark 3.4) does not affect condi-
tion (i), and is absorbed into the L2-infinitesimal modification O(n) in condition (ii). Secondly,
condition (i) and the uniform integrability in (ii) can be merged into a single condition

lim
M→∞ lim inf

n→∞ Trρ(n)1M

(
R

(n))
R

(n)2 = 1

or

lim
M→∞ lim inf

n→∞ Trσ (n)ac
1M

(
R

(n))= 1.

Here, σ (n)ac = R(n)ρ(n)R(n) is the absolutely continuous part of σ (n) with respect to ρ(n). Thirdly,
the definition is unitarily covariant, in that

σ (n) �O(n) ρ(n) if and only if U(n)σ (n)U(n)∗ �U(n)O(n)U(n)∗ U(n)ρ(n)U(n)∗,

where U(n) is an arbitrary unitary operator on H(n). This fact could be useful in representing

a state in a matrix form. Fourthly, the positivity of R
(n)

can be replaced with an asymptotic

positivity; that is, the negative part of R
(n)

is L2-infinitesimal under ρ(n). However, the positivity

of R
(n)

, whether asymptotically or not, is indispensable as the following example illustrates.

Example 4.3. Let

ρ(n) =
(

1 0
0 0

)
, σ (n) = 1

1 + n2

(
1 n

n n2

)

be sequences of pure states on H(n) = C
2. The square-root likelihood ratio R(σ (n) | ρ(n)) is

given by

R(n) = 1√
1 + n2

(
1 n

n n2 + γ

)
,

where γ is an arbitrary nonnegative number. Now let

O(n) = 1√
1 + n2

(
0 0
0 −n2

)
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and let R
(n) = R(n) + O(n). Then R

(n)
is uniformly bounded, and conditions (i) and (ii) in Defi-

nition 4.2, except the positivity of R
(n)

, are fulfilled. However, the limiting states

ρ(∞) =
(

1 0
0 0

)
, σ (∞) =

(
0 0
0 1

)

are mutually singular.

The validity of Definition 4.2 is demonstrated by the following.

Theorem 4.4. Let ρ(n) and σ (n) be sequences of quantum states on a fixed finite dimensional
Hilbert space H, and suppose that they have the limiting states limn→∞ ρ(n) = ρ(∞) and
limn→∞ σ (n) = σ (∞). Then σ (n) � ρ(n) if and only if σ (∞)  ρ(∞).

When the reference states ρ(n) are pure, there is a simple criterion for the contiguity.

Theorem 4.5. Let H(n) be a sequence of finite dimensional Hilbert spaces, and let ρ(n) and
σ (n) be quantum states on H(n). Suppose that ρ(n) is pure for all n ∈ N. Then σ (n) � ρ(n) if and
only if limn→∞ Trρ(n)R(n)2 = 1 and lim infn→∞ Trρ(n)σ (n) > 0, where R(n) is (a version of) the
square-root likelihood ratio R(σ (n) | ρ(n)).

The proofs of Theorems 4.4 and 4.5 are lengthy, and are deferred to the Supplementary Mate-
rial [8].

5. Convergence in distribution

In this section, we introduce a quantum extension of the notion of convergence in distribution
in terms of the “quasi-characteristic” function [16,34]. This mode of convergence turns out to
be useful in asymptotic theory of quantum statistics. For a brief account of quantum Gaussian
states, see Appendix A.

Definition 5.1. For each n ∈ N, let ρ(n) be a quantum state and X(n) = (X
(n)
1 , . . . ,X

(n)
d ) be a

list of observables on a finite dimensional Hilbert space H(n). Further, let φ be a normal state
(represented by a linear functional) and X(∞) = (X

(∞)
1 , . . . ,X

(∞)
d ) be a list of observables on

a possibly infinite dimensional Hilbert space H(∞) such that ξ iX
(∞)
i is densely defined for ev-

ery ξ = (ξ i) ∈ R
d . We say the sequence (X(n), ρ(n)) converges in distribution to (X(∞), φ), in

symbols (
X(n), ρ(n)

)
�
(
X(∞), φ

)
,

if

lim
n→∞ Trρ(n)

(
r∏

t=1

e
√−1ξ i

t X
(n)
i

)
= φ

(
r∏

t=1

e
√−1ξ i

t X
(∞)
i

)



2122 A. Fujiwara and K. Yamagata

holds for any r ∈ N and subset {ξt }rt=1 of Rd . When the limiting state φ is a quantum Gaussian
state, in that (X(∞), φ) ∼ N(h,J ), we also use the abridged notation

X(n) ρ(n)

� N(h,J ),

in accordance with the convention in classical statistics.

A slight generalization is the following mode of convergence, which plays an essential role in
the present paper.

Definition 5.2. In addition to the setting for Definition 5.1, let Y (n) and Y (∞) be observables on
H(n) and H(∞), respectively, with Y (∞) being densely defined. If

lim
n→∞ Trρ(n)e

√−1η1Y
(n)

{
r∏

t=1

e
√−1ξ i

t X
(n)
i

}
e
√−1η2Y

(n)

= φ

(
e
√−1η1Y

(∞)

{
r∏

t=1

e
√−1ξ i

t X
(∞)
i

}
e
√−1η2Y

(∞)

)

holds for any r ∈ N, subset {ξt }rt=1 of Rd , and η1, η2 ∈R, then we denote

(〈
Y (n),X(n), Y (n)

〉
, ρ(n)

)
�
(〈
Y (∞),X(∞), Y (∞)

〉
, φ
)

or 〈
Y (n),X(n), Y (n)

〉
ρ(n) �

〈
Y (∞),X(∞), Y (∞)

〉
φ
.

We shall call this type of convergence a sandwiched convergence in distribution to emphasize
that the observables Y (n) and Y (∞) that appear at both ends of the quasi-characteristic function
play special roles.

The sandwiched convergence in distribution will be used in conjunction with the following
form of the quantum Lévy–Cramér continuity theorem.

Lemma 5.3. Let (X(n), Y (n), ρ(n)) and (X(∞), Y (∞), φ) be as in Definition 5.2. If〈
Y (n),X(n), Y (n)

〉
ρ(n) �

〈
Y (∞),X(∞), Y (∞)

〉
φ
,

then

lim
n→∞ Trρ(n)g1

(
Y (n)

){ r∏
t=1

ft

(
ξ i
t X

(n)
i

)}
g2
(
Y (n)

)

= φ

(
g1
(
Y (∞)

){ r∏
t=1

ft

(
ξ i
t X

(∞)
i

)}
g2
(
Y (∞)

))
(5.1)
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holds for any r ∈N, subset {ξt }rt=1 of Rd , bounded continuous functions f1, . . . , fr , and bounded
Borel functions g1, g2 on R such that the set D(gi) of discontinuity points of gi has μ-measure
zero for i = 1,2, where μ is the classical probability measure on R having the characteristic
function ϕμ(η) := φ(e

√−1ηY (∞)
).

Proof. Let s := r + 2, and let J be an arbitrary natural number between 1 and s − 1 (say J = 1).
Then the list of observables

Z(n) = (Z(n)
1 , . . . ,Z(n)

s

) := (Y (n), ξ i
1X

(n)
i , . . . , ξ i

rX
(n)
i , Y (n)

)
fulfils conditions (B.3), (B.4) and (B.5) in the quantum Lévy–Cramér continuity Theorem B.1
cited in Appendix B. Furthermore, the functions g1 and g2 satisfy condition (B.6) in the theorem.
Thus the claim is an immediate consequence of Theorem B.1. �

In classical statistics, if random variables X(n) converge in distribution to a random variable X,
and random variables O(n) converge in L2 (and hence in probability) to 0, then X(n) +O(n) con-
verge in distribution to X [32], Lemma 2.8. However, its obvious analogue in quantum statistics
fails to be true, as the following example illustrates.

Example 5.4. Let

ρ(n) :=
(

1 0
0 0

)
, X(n) :=

(
1 n

n 1 + n2

)
, O(n) :=

(
0 0
0 −n2

)
.

It is not difficult to verify that

lim
n→∞ Trρ(n)e

√−1ξX(n) = 1

for all ξ ∈R, and O(n) = oL2(ρ(n)). However,

Trρ(n)e
√−1ξ(X(n)+O(n)) = e

√−1ξ cosnξ,

which has no limit as n → ∞.

The above example shows that an L2-infinitesimal sequence of observables is not always neg-
ligible in quasi-characteristic functions. We therefore introduce another class of infinitesimal
objects pertinent to the convergence in distribution.

Definition 5.5. Let H(n) be a sequence of finite dimensional Hilbert spaces, and let Z(n) and
ρ(n) be an observable and a state on H(n). We say a sequence O(n) of observables, each defined
on H(n), is infinitesimal in distribution (or simply D-infinitesimal) with respect to (Z(n), ρ(n)),
denoted O(n) = oD(Z(n), ρ(n)), if

lim
n→∞ Trρ(n)

{
r∏

t=1

e
√−1(ξtZ

(n)+ηtO
(n))

}
= lim

n→∞ Trρ(n)

{
r∏

t=1

e
√−1ξtZ

(n)

}
(5.2)

holds for any r ∈N, and subsets {ξt }rt=1 and {ηt }rt=1 of R.
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The following lemma asserts that a D-infinitesimal sequence is negligible in the sandwiched
convergence.

Lemma 5.6. If 〈Z(n),X(n),Z(n)〉 ρ(n)

� 〈Z(∞),X(∞),Z(∞)〉 and O(n) = oD(Z(n), ρ(n)) then

〈
Z(n) + O(n),X(n),Z(n) + O(n)

〉 ρ(n)

�
〈
Z(∞),X(∞),Z(∞)

〉
.

The proof of Lemma 5.6 is straightforward, and is deferred to the Supplementary Material [8].

6. LeCam’s third lemma

We are now ready to extend LeCam’s third lemma to the quantum domain. Our first result is
the following abstract version of LeCam’s third lemma, a noncommutative analogue of [32],
Theorem 6.6.

Theorem 6.1. Given a sequence H(n) of finite dimensional Hilbert spaces, let ρ(n) and σ (n) be
quantum states and let X(n) = (X

(n)
1 , . . . ,X

(n)
d ) be a list of observables on H(n). Further, let R(n)

be (a version of) the square-root likelihood ratio R(σ (n) | ρ(n)). Suppose that:

(i) there exists an L2-infinitesimal sequence O(n) of observables such that σ (n) �O(n) ρ(n),
and

(ii) there exist a normal state φ, a list of observables X(∞) = (X
(∞)
1 , . . . ,X

(∞)
d ), and a posi-

tive observable R(∞) on a possibly infinite dimensional Hilbert space H(∞) such that〈
R(n) + O(n),X(n),R(n) + O(n)

〉
ρ(n) �

〈
R(∞),X(∞),R(∞)

〉
φ
.

Then (
X(n), σ (n)

)
�
(
X(∞),ψ

)
,

where ψ is a normal state on H(∞) defined by

ψ(A) := φ
(
R(∞)AR(∞)

)
(6.1)

for bounded operators A ∈ B(H(∞)).

In order to get a better understanding of Theorem 6.1, we give an informal interpretation. Let(
σ (n)

)ac = R(n)ρ(n)R(n)

be the absolutely continuous part of σ (n) with respect to ρ(n). Then, thanks to the contiguity
(i) and the sandwiched convergence in distribution (ii), the absolutely continuous part (σ (n))ac

converges (in a certain sense) to a density operator

σ (∞) := R(∞)ρ(∞)R(∞)
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on H(∞), where ρ(∞) is the density operator of φ, so that

Trσ (∞)A = Tr
(
R(∞)ρ(∞)R(∞)

)
A = Trρ(∞)

(
R(∞)AR(∞)

)
.

Letting ψ(A) := Trσ (∞)A, we have (6.1). The proof of Theorem 6.1 is slightly complicated, and
is deferred to the Supplementary Material [8].

A crucial application of Theorem 6.1 is the following theorem, which is a natural quantum
counterpart of the standard LeCam third lemma [32], Example 6.7.

Theorem 6.2 (Quantum LeCam third lemma). Given a sequence H(n) of finite dimensional
Hilbert spaces, let ρ(n) and σ (n) be quantum states and let X(n) = (X

(n)
1 , . . . ,X

(n)
d ) be a list of

observables on H(n). Further, let R(n) be (a version of) the square-root likelihood ratio R(ρ(n) |
σ (n)). Suppose that there exist a sequence O(n) = oL2(ρ(n)) satisfying R(n) + O(n) > 0, and a
sequence Õ(n) = oD(log(R(n) + O(n)), ρ(n)) satisfying

(
X(n)

2 log
(
R(n) + O(n)

)− Õ(n)

)
ρ(n)

� N

((
μ

−1

2
s2

)
,

(
� κ

κ∗ s2

))
. (6.2)

Here, μ ∈ Rd , s ∈ R, κ ∈ Cd and � is a d × d complex Hermitian positive semidefinite matrix.
Then

σ (n) � ρ(n) (6.3)

and

X(n) σ (n)

� N
(
μ + Re(κ),�

)
. (6.4)

Proof. Let (X1, . . . ,Xd,L) be the defining canonical observables of the algebra

CCR

(
Im

(
� κ

κ∗ s2

))
,

and let

φ ∼ N

((
μ

−1

2
s2

)
,

(
� κ

κ∗ s2

))
.

Further, let R
(n) := R(n) + O(n), and let L(n) := 2 log(R

(n)
). It then follows from (6.2) that

〈
L(n) − Õ(n),X(n),L(n) − Õ(n)

〉
ρ(n) � 〈L,X,L〉φ.

With Lemma 5.6, this implies that

〈
L(n),X(n),L(n)

〉
ρ(n) � 〈L,X,L〉φ. (6.5)
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Let us introduce a complex-valued bounded continuous function

fη(x) := exp

[√−1η

{
exp

(
x

2

)}]

on R having a real parameter η ∈ R. It then follows from (6.5) and the sandwiched version of the
quantum Lévy–Cramér continuity theorem (Lemma 5.3) that

lim
n→∞ Trρ(n)fη1

(
L(n)

){ r∏
t=1

e
√−1ξ i

t X
(n)
i

}
fη2

(
L(n)

)= φ

(
fη1(L)

{
r∏

t=1

e
√−1ξ i

t Xi

}
fη2(L)

)
,

where η1, η2 ∈ R. This equality is rewritten as

〈
e

1
2 L(n)

,X(n), e
1
2 L(n) 〉

ρ(n) �
〈
e

1
2 L,X, e

1
2 L
〉
φ
,

or equivalently,

〈
R

(n)
,X(n),R

(n)〉
ρ(n) �

〈
e

1
2 L,X, e

1
2 L
〉
φ
.

Specifically, R
(n) ρ(n)

� e
1
2 L, and Lemma 5.3 leads to

lim
n→∞ Trρ(n)1M

(
R

(n))
R

(n)2 = φ
(
1M

(
e

1
2 L
)
eL
)= E

[
1M

(
e

1
2 Z
)
eZ
]
,

where Z is a classical random variable that obeys the normal distribution N(− 1
2 s2, s2), and

the right-hand side converges to E[eZ] = 1 as M → ∞. This implies that σ (n) � ρ(n), proving
(6.3).

To prove (6.4), we need only evaluate the quasi-characteristic function of the state ψ defined
by (6.1), that is,

ψ

(
r∏

t=1

e
√−1ξ i

t Xi

)
= φ

(
e

1
2 L

{
r∏

t=1

e
√−1ξ i

t Xi

}
e

1
2 L

)
.

In calculating this function, it is convenient to introduce the following enlarged vectors and ma-
trices:

μ̃ :=
(

μ

−1

2
s2

)
, �̃ :=

(
� κ

κ∗ s2

)
,

ξ̃0 = ξ̃r+1 :=
⎛
⎝ 0

−
√−1

2

⎞
⎠ , ξ̃t :=

(
ξt

0

)
(1 ≤ t ≤ r).
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Then by using the quasi-characteristic function (A.1) of the quantum Gaussian state φ, we have

ψ

(
r∏

t=1

e
√−1ξ i

t Xi

)

= φ

(
e
√−1(−

√−1
2 )L

{
r∏

t=1

e
√−1ξ i

t Xi

}
e
√−1(−

√−1
2 )L

)

= exp

[
r+1∑
t=0

(√−1ξ̃ i
t μ̃i − 1

2

r+1∑
t=0

ξ̃ i
t ξ̃

j
t �̃j i

)
−

r+1∑
t=0

r+1∑
u=t+1

ξ̃ i
t ξ̃

j
u �̃ji

]

= exp

[
r∑

t=1

(√−1ξ i
t

(
μi + Re(κi)

)− 1

2
ξ i
t ξ

j
t �ji

)
−

r∑
t=1

r∑
s=t+1

ξ i
t ξ

j
s �ji

]
.

This is identical to the quasi-characteristic function of the quantum Gaussian state N(μ +
Re(κ),�). The assertion (6.4) now follows immediately from Theorem 6.1. �

7. Applications

In this section, we present three examples to demonstrate the validity, flexibility and applicability
of our theory.

7.1. Contiguity without absolute continuity

For each n ∈ N, let us consider quantum states

ρ(n) =
⎛
⎜⎝ ρ

(n)
2 ρ

(n)
1 0

ρ
(n)∗
1 ρ

(n)
0 0

0 0 0

⎞
⎟⎠ , σ (n) =

⎛
⎜⎝

0 0 0
0 σ

(n)
0 σ

(n)
1

0 σ
(n)∗
1 σ

(n)
2

⎞
⎟⎠

on H(n) �C2n+2, where

ρ
(n)
0 = 1

4n3

(
2n3 − 1 0

0 1

)
, σ

(n)
0 = 1 − 1/(2n)

2(n2 + n + 1)

(
n2 n2 + 1

n2 + 1 n2 + 2n + 2

)
,

ρ
(n)∗
1 = 1

(n + 1)3

(
1 · · · 1
1 · · · 1

)
, σ

(n)
1 = 1

(n + 1)3

(
1 · · · 1
1 · · · 1

)
,

and

ρ
(n)
2 = 1

2n
In, σ

(n)
2 = 1

2n2
In,
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with In the n × n identity matrix. Note that, for all n ∈ N, σ (n) is not absolutely continuous to
ρ(n) because the singular part

σ (n)⊥ =
⎛
⎝0 0 0

0 0 0

0 0 σ
(n)
2 − σ

(n)∗
1 σ

(n)−1

0 σ
(n)
1

⎞
⎠

is nonzero. However, σ (n) is “asymptotically” absolutely continuous to ρ(n) in that
limn→∞ σ (n)⊥ = 0. Furthermore, the (2,2)th blocks ρ

(n)
0 and σ

(n)
0 are identical, up to scaling,

to the states studied in Example 4.1. Therefore, it is expected that σ (n) would be contiguous to
ρ(n). This expectation is justified by the following more general assertion.

Theorem 7.1. For each n ∈N, let

ρ(n) =
⎛
⎜⎝ ρ

(n)
2 ρ

(n)
1 0

ρ
(n)∗
1 ρ

(n)
0 0

0 0 0

⎞
⎟⎠ , σ (n) =

⎛
⎜⎝

0 0 0
0 σ

(n)
0 σ

(n)
1

0 σ
(n)∗
1 σ

(n)
2

⎞
⎟⎠

be quantum states on a Hilbert space H(n) represented by block matrices, where

(
ρ

(n)
2 ρ

(n)
1

ρ
(n)∗
1 ρ

(n)
0

)
> 0,

(
σ

(n)
0 σ

(n)
1

σ
(n)∗
1 σ

(n)
2

)
> 0.

Suppose that

lim inf
n→∞ Trρ(n)

0 > 0, lim
n→∞ Trσ (n)

0 = 1,

and

ρ
(n)
0

Trρ(n)
0

�
σ

(n)
0

Trσ (n)
0

.

Then we have ρ(n) � σ (n).

The proof of Theorem 7.1 is deferred to the Supplementary Material [8].

7.2. Contiguity for tensor product states

Let us consider tensor product states

ρ(n) :=
n⊗

i=1

ρi, σ (n) :=
n⊗

i=1

σi,
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where ρi and σi are quantum states on a finite dimensional Hilbert space Hi . Suppose that σi 
ρi for all i. Then σ (n)  ρ(n) for all n ∈ N. It is thus natural to enquire whether or not σ (n) is
contiguous with respect to ρ(n). The answer is given by the following.

Theorem 7.2. Let ρi and σi be quantum states on a finite dimensional Hilbert space Hi that
satisfy σi  ρi , and let

ρ(n) :=
n⊗

i=1

ρi, σ (n) :=
n⊗

i=1

σi.

Then σ (n) � ρ(n) if and only if

∞∏
i=1

TrρiRi > 0, (7.1)

or equivalently

∞∑
i=1

(1 − TrρiRi) < ∞, (7.2)

where Ri is (a version of) the square-root likelihood ratio R(σi | ρi).

The proof of Theorem 7.2 is deferred to the Supplementary Material [8].

Remark 7.3. Theorem 7.2 bears obvious similarities to Kakutani’s theorem for infinite prod-
uct measures [19,33] and its noncommutative extension due to Bures [3]. In fact, by using Re-
mark 3.4, conditions (7.1) and (7.2) are rewritten as

∞∏
i=1

Tr
√√

σiρi
√

σi > 0 and
∞∑
i=1

(1 − Tr
√√

σiρi
√

σi) < ∞.

The summand in the latter condition is identical, up to a factor of 2, to the square of the Bures
distance between ρi and σi . The main difference is that we are dealing with sequences of finite
tensor product states rather than infinite tensor product states.

Let us give a simple example that demonstrates the criterion established in Theorem 7.2. Let

ρ = 1

2

(
1 0
0 1

)
, σt = 1

4t2 + 2

(
2t2 + 2t + 1 2t

2t 2t2 − 2t + 1

)
,

where t is a parameter with t ≥ 1, and let us consider three sequences of tensor product states:

ρ(n) :=
n⊗

i=1

ρ, σ (n) :=
n⊗

i=1

σi, σ̃ (n) :=
n⊗

i=1

σ√
i .
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Since σt → ρ as t → ∞, it is meaningful to enquire whether or not σ (n) and σ̃ (n) are contiguous
to ρ(n). As a matter of fact, σ (n) is contiguous to ρ(n), whereas σ̃ (n) is not; this is proved as
follows. The square-root likelihood ratio Rt =R(σt | ρ) is

Rt = 1√
4t2 + 2

(
2t + 1 1

1 2t − 1

)
,

and thus

TrρRt =
√

2t2

2t2 + 1
.

In view of the criterion (7.2), it suffices to verify that

∞∑
n=1

(
1 −

√
2n2

2n2 + 1

)
< ∞ and

∞∑
n=1

(
1 −

√
2n

2n + 1

)
= ∞,

and this is elementary. These results could be paraphrased by saying that the sequence σn con-
verges to ρ quickly enough for σ (n) to be contiguous with respect to ρ(n), whereas the sequence
σ√

n does not.

7.3. Local asymptotic normality

In [34], we formulated a direct analogue of the weak LAN in the quantum domain. However,
that formulation was not fully satisfactory because it was applicable only to quantum statistical
models that comprise mutually absolutely continuous density operators. Here, we enlarge the
scope of weak q-LAN to a much wider class of models by taking advantage of the quantum
Lebesgue decomposition and quantum contiguity.

Definition 7.4. For each n ∈ N, let S(n) = {ρ(n)
θ | θ ∈ � ⊂ R

d} be a d-dimensional quantum
statistical model on a finite dimensional Hilbert space H(n), where � is an open set. We say S(n)

is locally asymptotically normal at θ0 ∈ � if:

(i) there exist a list �(n) = (�
(n)
1 , . . . ,�

(n)
d ) of observables on each H(n) that satisfies

�(n)
ρ

(n)
θ0� N(0, J ), (7.3)

where J is a d × d Hermitian positive semidefinite matrix with ReJ > 0, and
(ii) the square-root likelihood ratio R

(n)
h =R(ρ

(n)

θ0+h/
√

n
| ρ(n)

θ0
) is expanded in h ∈ R

d as

R
(n)
h = exp

{
1

2

(
hi�

(n)
i − 1

2

(
Jijh

ihj
)
I (n) + oD

(
hi�

(n)
i , ρ

(n)
θ0

))}− oL2

(
ρ

(n)
θ0

)
,

where I (n) is the identity operator on H(n).
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Note that, in contrast to the previous paper [34], we here define the local asymptotic normality
in terms of the square-root likelihood ratio rather than the log-likelihood ratio; in particular, we
do not assume that ρ

(n)
θ is mutually absolutely continuous with respect to ρ

(n)
θ0

. Moreover, the
present definition is pertinent to the setting for the quantum LeCam third lemma (Theorem 6.2).
In fact, we have the following.

Corollary 7.5 (Quantum LeCam third lemma under q-LAN). Let S(n) be as in Definition 7.4,
and let X(n) = (X

(n)
1 , . . . ,X

(n)

d ′ ) be a list of observables on H(n). Suppose that S(n) is locally
asymptotically normal at θ0 ∈ � and

(
X(n)

�(n)

)
ρ

(n)
θ0� N

((
0
0

)
,

(
� τ

τ∗ J

))
. (7.4)

Here, � and J are Hermitian positive semidefinite matrices of size d ′×d ′ and d ×d , respectively,
with ReJ > 0, and τ is a complex matrix of size d ′ × d . Then

ρ
(n)

θ0+h/
√

n
� ρ

(n)
θ0

and X(n)
ρ

(n)

θ0+h/
√

n� N
(
(Re τ)h,�

)
(7.5)

for all h ∈R
d .

Proof. From the definition of q-LAN, the square-root likelihood ratio is written as

R
(n)
h = exp

{
1

2

(
hi�

(n)
i − 1

2
Jijh

ihj I (n) + Õ(n)

)}
− O(n),

where Õ(n) = oD(hi�
(n)
i , ρ

(n)
θ0

) and O(n) = oL2(ρ
(n)
θ0

). Let

L(n) := 2 log
(
R

(n)
h + O(n)

)− Õ(n) = hi�
(n)
i − 1

2
Jijh

ihj I (n).

Then (7.4) implies that

(
X(n)

L(n)

)
ρ

(n)
θ0� N

⎛
⎝
⎛
⎝ 0

−1

2

t

hJh

⎞
⎠ ,

(
� τh

(τh)∗ t hJh

)⎞⎠ .

Thus, (7.5) immediately follows from Theorem 6.2. �

A prototype of Corollary 7.5 first appeared in [34], Theorem 2.9, under the assumptions
that each model S(n) comprised mutually absolutely continuous density operators and the pairs
(S(n),X(n)) were jointly q-LAN. In contrast, Corollary 7.5 makes no use of such restrictive as-
sumptions, and is a straightforward consequence of a much general result (Theorem 6.2). This is
a notable achievement, demonstrating the advantages and usefulness of the present formulation
based on the quantum Lebesgue decomposition and contiguity.
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A remark on the quantum convergence in distribution is now in order. In classical statistics,
marginal distributions for several random variables do not uniquely specify their joint distribu-
tions. In quantum statistics, a similar but different type of arbitrariness occurs. For example, when
d = 1, the expression N(0, J ) in the right-hand side of (7.3) represents a “classical” Gaussian
state. Nevertheless, this does not imply that the limit state is classical, as demonstrated by (7.4)
and (7.5) that identify the joint limiting distribution for the sequence (X(n),�(n)). This issue will
be discussed afterwards with a concrete example.

Now we restrict ourselves to the i.i.d case. In classical statistics, it is known that the i.i.d.
extension of a model {Pθ | θ ∈ � ⊂ R

d} on a measure space (�,F,μ) having densities pθ with
respect to μ is LAN at θ0 if the model is differentiable in quadratic mean at θ0 [32], p. 93, that
is, if there are random variables �1, . . . , �d that satisfy

∫
�

[√
pθ0+h − √

pθ0 − 1

2
hi�i

√
pθ0

]2

dμ = o
(‖h‖2)

as h → 0. This condition is rewritten as

∫
�

[√
pac

θ0+h

pθ0

− 1 − 1

2
hi�i

]2

pθ0 dμ +
∫

�

p⊥
θ0+h dμ = o

(‖h‖2), (7.6)

where

pac
θ0+h(ω) :=

{
pθ0+h(ω), ω ∈ �0,

0, ω /∈ �0,

and

p⊥
θ0+h(ω) :=

{
0, ω ∈ �0,

pθ0+h(ω), ω /∈ �0,

with �0 := {ω ∈ � | pθ0(ω) > 0}. The first term in the left-hand side of (7.6) pertains to the
differentiability of the (square-root) likelihood ratio at h = 0, while the second term to the negli-
gibility of the singular part.

The quantum counterpart of this characterization is given by the following.

Theorem 7.6 (q-LAN for i.i.d. models). Let {ρθ | θ ∈ � ⊂ R
d} be a quantum statistical model

on a finite dimensional Hilbert space H, and suppose that, for some θ0 ∈ �, a version Rh of
the square-root likelihood ratio R(ρθ0+h | ρθ0) is differentiable at h = 0, and the absolutely
continuous part of ρθ0+h with respect to ρθ0 satisfies

Trρθ0R
2
h = 1 − o

(‖h‖2). (7.7)

Then {ρ⊗n
θ | θ ∈ � ⊂R

d} is locally asymptotically normal at θ0, in that

�
(n)
i := 1√

n

n∑
k=1

I⊗(k−1) ⊗ Li ⊗ I⊗(n−k),
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satisfies (i) and (ii) in Definition 7.4. Here Li is (a version of) the ith symmetric logarithmic
derivative (SLD, for short, [12]) at θ0, and J = (Jij ) is given by

Jij := Trρθ0LjLi.

Further, given observables {Bi}1≤i≤d ′ on H satisfying Trρθ0Bi = 0 for i = 1, . . . , d ′, let

X(n) = {X(n)
i }1≤i≤d ′ be observables on H⊗n defined by

X
(n)
i := 1√

n

n∑
k=1

I⊗(k−1) ⊗ Bi ⊗ I⊗(n−k).

Then we have

ρ⊗n

θ0+h/
√

n
� ρ⊗n

θ0
and X(n)

ρ⊗n

θ0+h/
√

n� N
(
(Re τ)h,�

)
(7.8)

for h ∈R
d , where � is the d ′ × d ′ positive semidefinite matrix defined by �ij = Trρθ0BjBi and

τ is the d ′ × d matrix defined by τij = Trρθ0LjBi .

The proof of Theorem 7.6 is deferred to the Supplementary Material [8].
Let us demonstrate the power of Theorem 7.6. First, we recall the following two-dimensional

spin-1/2 pure state model treated in [34], Example 3.3:

ρ̃θ := e
1
2 (θ1σ1+θ2σ2−ψ(θ))

(
1 0
0 0

)
e

1
2 (θ1σ1+θ2σ2−ψ(θ))

= 1

2

{
I + tanh‖θ‖

‖θ‖
(
θ1σ1 + θ2σ2

)+ 1

cosh‖θ‖σ3

}
,

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −√−1√−1 0

)
, σ3 =

(
1 0
0 −1

)

are the Pauli matrices, θ = (θ1, θ2) ∈ R
2 are parameters to be estimated, and ψ(θ) :=

log cosh‖θ‖. A version of the square-root likelihood ratio R(ρ̃θ | ρ̃0) is given by R̃θ =
e

1
2 (θ1σ1+θ2σ2−ψ(θ)), and is expanded in θ as

R̃θ = I + 1

2
Liθ

i + o
(‖θ‖),

where Li := σi is a version of the ith SLD of the model ρ̃θ at θ = 0. Let X(n) = (X
(n)
1 ,X

(n)
2 ) be

defined by

X
(n)
i := �

(n)
i := 1√

n

n∑
k=1

I⊗(k−1) ⊗ Li ⊗ I⊗(n−k). (7.9)
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Then it is shown that {ρ̃⊗n
θ } is locally asymptotically normal at θ = 0, and

X(n)
ρ̃⊗n

h/
√

n� N(h,J ), (7.10)

where

J = [Tr ρ̃0LjLi]ij =
(

1 −√−1√−1 1

)
.

Incidentally, let us investigate what happens when the scaling factor 1/
√

n of the parameter
θ = h/

√
n is replaced with 1/g(n), where g(n) > 0 and limn→∞ g(n) = ∞. By direct computa-

tion, we have

lim inf
n→∞ Tr ρ̃⊗n

0 ρ̃⊗n
h/g(n) = lim inf

n→∞ {Tr ρ̃0ρ̃h/g(n)}n

= lim inf
n→∞

{
1

2

(
1 + 1

cosh(‖h‖/g(n))

)}n

= lim inf
n→∞

{
1 − ‖h‖2

4g(n)2
+ o

(
1

g(n)2

)}n

= lim inf
n→∞

{
1 − ‖h‖2

4g(n)2
+ o

(
1

g(n)2

)}g(n)2 n

g(n)2

= lim inf
n→∞ e

− ‖h‖2

4
n

g(n)2 .

It then follows from Theorem 4.5 that ρ̃⊗n
h/g(n) � ρ̃⊗n

0 if and only if n/g(n)2 is bounded.
Now we consider a perturbed model

ρθ := e−f (θ)ρ̃θ + (1 − e−f (θ)
)(0 0

0 1

) (
θ ∈ R

2),
where f (θ) is a smooth function that is positive for all θ 	= 0 and f (0) = 0. Geometrically, this
model is tangential to the Bloch sphere at the north pole ρ0 (= ρ̃0), and has a singularity at θ = 0
in that the rank of the model drops there. Such a model was beyond the scope of our previous
paper [34].

Since ρθ ≥ e−f (θ)ρ̃θ , we see from Lemma 2.2 that ρθ � ρ0 for all θ . It is also easily seen that
the quantum Lebesgue decomposition ρθ = ρac

θ + ρ⊥
θ with respect to ρ0 is given by

ρac
θ := e−f (θ)ρ̃θ , ρ⊥

θ := (1 − e−f (θ)
)(0 0

0 1

)
.

Similarly, the quantum Lebesgue decomposition ρ⊗n
θ = (ρ⊗n

θ )ac + (ρ⊗n
θ )⊥ with respect to ρ⊗n

0
is given by (

ρ⊗n
θ

)ac = (ρac
θ

)⊗n
,

(
ρ⊗n

θ

)⊥ = ρ⊗n
θ − (ρ⊗n

θ

)ac
.
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For a positive sequence g(n) satisfying limn→∞ g(n) = ∞, we have

Tr
(
ρ⊗n

h/g(n)

)ac = e−nf (h/g(n))

and

lim inf
n→∞ Trρ⊗n

0

(
ρ⊗n

h/g(n)

)ac = lim inf
n→∞ e−nf (h/g(n))

{
1

2

(
1 + 1

cosh(‖h‖/g(n))

)}n

= lim inf
n→∞ e

−nf (h/g(n))− ‖h‖2

4
n

g(n)2 .

It then follows from Theorem 4.5 that ρ⊗n
h/g(n) � ρ⊗n

0 if and only if nf (h/g(n)) converges to zero

and n/g(n)2 is bounded.
For the standard scaling g(n) = √

n, the above observation shows that ρ⊗n

h/
√

n
�ρ⊗n

0 if and only

if f (θ) = o(‖θ‖2). Then the operator Rθ := e− 1
2 f (θ)R̃θ , a version of the square-root likelihood

ratio R(ρθ | ρ0), is expanded in θ as

Rθ = I + 1

2
Liθ

i + o
(‖θ‖),

where Li := σi is a version of the ith SLD of the model ρθ at θ = 0. On the other hand, the
singular part ρ⊥

θ exhibits Trρ⊥
θ = o(‖θ‖2); this ensures the condition (7.7). It then follows from

Theorem 7.6 that {ρ⊗n
θ }θ is locally asymptotically normal at θ = 0, and the sequence X(n) of

observables defined by (7.9) exhibits

X(n)
ρ⊗n

h/
√

n� N(h,J ). (7.11)

In summary, as far as the observables X(n) = (X
(n)
1 ,X

(n)
2 ) defined by (7.9) are concerned,

the i.i.d. extension {ρ⊗n

h/
√

n
| h ∈ R

2} of the perturbed model ρθ around the singular point θ = 0

is asymptotically similar to the quantum Gaussian shift model {N(h,J ) | h ∈ R
2} as shown in

(7.11), and is also asymptotically similar to the i.i.d. extension {ρ̃⊗n

h/
√

n
| h ∈ R

2} of the unper-

turbed pure state model ρ̃θ around θ = 0 as shown in (7.10).
Now we touch upon the issue of limit states in quantum convergence in distribution. Let us

consider a one-dimensional qubit rotation model ρθ := U(θ)ρ0U(θ)∗, where U(θ) := e−√−1θσ3

and ρ0 := 1
2 (I + xσ1 + zσ3) with x 	= 0 and x2 + z2 < 1. This model is faithful, and the SLD L

of the model at θ = 0 is uniquely given by L = 2xσ2. It is easily verified from Theorem 7.6 that
the i.i.d. sequence ρ⊗n

θ is locally asymptotically normal at θ = 0, in that the sequence

�(n) := 1√
n

n∑
k=1

I⊗(k−1) ⊗ L ⊗ I⊗(n−k)

satisfies conditions (i) and (ii) in Definition 7.4. In particular,

�(n)
ρ

(n)
0� N(0, J ),
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where J := Trρ0L
2 = 4x2 is the SLD Fisher information. Observe that the limit law N(0, J )

is a classical Gaussian distribution. However, this does not imply that the limit state of ρ⊗n
θ is

classical. To see this, consider the following observables:

X
(n)
i = 1√

n

n∑
k=1

I⊗(k−1) ⊗ Bi ⊗ I⊗(n−k) (i = 1,2,3),

where

B1 = σ2, B2 = 1

r
(zσ1 − xσ3), B3 = 1

r
(xσ1 + zσ3) − rI

with r := √
x2 + z2. It then follows from Theorem 7.6 that

(
X(n)

�(n)

)
ρ

(n)
0� N

⎛
⎜⎜⎝
⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
√−1r 0 2x

−√−1r 1 0 −2
√−1xr

0 0 1 − r2 0
2x 2

√−1xr 0 4x2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ (7.12)

and

X(n)
ρ⊗n

h/
√

n� N

⎛
⎝
⎛
⎝2xh

0
0

⎞
⎠ ,

⎛
⎝ 1

√−1r 0
−√−1r 1 0

0 0 1 − r2

⎞
⎠
⎞
⎠ (7.13)

for all h ∈ R
d . Since the covariance matrices appeared in (7.12) and (7.13) have nonzero imag-

inary parts, we see that the limit state is nonclassical. Incidentally, the expression (7.13) is re-
ducible, and is decomposed as

N

((
2xh

0

)
,

(
1

√−1r

−√−1r 1

))
⊗ N

(
0,1 − r2).

Here, the first factor represents an irreducible quantum Gaussian shift model having a local shift
parameter h, and the second a classical Gaussian state that is independent of h. Such a display is
comparable to [11].

We conclude this subsection with a short remark that, for any quantum statistical model that
fulfils assumptions of Theorem 7.6, the Holevo bound [13] is asymptotically achievable at θ0.
In fact, let {Bi}1≤i≤d ′ be a basis of the minimal D-invariant extension of the SLD tangent space
at θ0, where D is the commutation operator [13]. Then the Holevo bound for the original model
{ρθ }θ at θ = θ0 coincides with that for the quantum Gaussian shift model N((Re τ)h,�) at
h = 0, and hence at any h. Thus the asymptotic property

X(n)
ρ⊗n

θ0+h/
√

n� N
(
(Re τ)h,�

)
enables us to construct a sequence of observables that asymptotically achieves the Holevo bound.
For a concrete construction of estimators, see the proof of [34], Theorem 3.1. In order to make a
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comparison between the Holevo bound and the standard Cramér–Rao-type bound, let us consider
the three-dimensional qubit model ρθ = 1

2 (I + θ1σ1 + θ2σ2 + θ3σ3). As shown in [34], Exam-
ple 3.2, the Holevo bound CH

θ0
(ρθ ,Wθ) and the Hayashi–Gill–Massar bound CHGM

θ0
(ρθ ,Wθ) for

the model with the SLD Fisher information weight Wθ := J
(S)
θ are given by

CH
θ0

(
ρθ , J

(S)
θ

)= 3 + 2‖θ0‖, CHGM
θ0

(
ρθ , J

(S)
θ

)= 9.

Clearly, the former is much smaller than the latter for all values of the true parameter θ0. This
implies that asymptotically we can extract more information about the parameter using collec-
tive measurements than when we use separable measurements such as the Pauli measurements.
It is believed that under some regularity conditions, there are no “superefficient” estimators that
breaks the Holevo bound. Therefore, the universal achievability of the Holevo bound is of fun-
damental importance in asymptotic quantum statistics.

8. Concluding remarks

In the present paper, we first formulated a novel quantum Lebesgue decomposition (Lemma 3.3),
and then developed a theory of quantum contiguity (Definition 4.2). We further studied the no-
tion of convergence in distribution in the quantum domain, and proved a noncommutative exten-
sion of the Lévy–Cramér continuity theorem under the sandwiched convergence in distribution
(Lemma 5.3). Combining these key results, we arrived at our main result, the quantum LeCam
third lemma (Theorems 6.1 and 6.2). The power and usefulness of our theory were demonstrated
by several examples, including a quantum contiguity version of the Kakutani dichotomy (Theo-
rem 7.2) and enlargement of the scope of q-LAN (Corollary 7.5).

We believe that the paper presented some notable progresses in asymptotic quantum statis-
tics. Nevertheless, there are many open problems left to study in the future. Among others, it
is not clear whether every sequence of positive operator-valued measures on a weak q-LAN
model can be realized on the limiting quantum Gaussian shift model. In classical statistics, this
question has been solved affirmatively by the representation theorem [32], which asserts that,
given a weakly convergent sequence T (n) of statistics on a LAN model {p(n)

θ0+h/
√

n
| h ∈ R

d},
there exist a limiting statistics T on the Gaussian shift model {N(h,J−1) | h ∈ R

d} such that

T (n) h� T . The representation theorem is useful in proving, for example, the nonexistence of an
estimator that can asymptotically do better than what can be achieved in the limiting Gaussian
shift model. Moreover, the so-called convolution theorem and local asymptotic minimax theo-
rem, which are the standard tools in discussing asymptotic lower bounds for estimation in LAN
models, immediately follows [32]. Extending the representation theorem, convolution theorem,
and local asymptotic minimax theorem to the quantum domain is one of the most important open
problems.

In quantum information theory, the notion of sufficiency of a subalgebra plays an important
role. Let ρ and ω be faithful density operators on a matrix algebra A. Further, let A0 be a
subalgebra of A, and let ρ0 and ω0 be the reduced density operators of ρ and ω onto A0. Due
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to Petz’s sufficiency theorem [24,27,28], the subalgebra A0 is sufficient for {ρ,ω} if and only if
[Dρ,Dω]t = [Dρ0,Dω0]t for all t ∈R, where [Dρ,Dω]t is the Connes cocycle defined by

[Dρ,Dω]t := ρ
√−1tω−√−1t .

The sufficiency is also equivalent to the conservation of the quantum relative entropy, and thus
the notion of sufficiency plays an essential role in quantum hypothesis testing problems. On the
other hand, the square-root likelihood ratio was introduced as a direct analogue of the classical
likelihood ratio in which the absolutely continuous part relative to the dominating measure was
taken into account, and was applicable even to non-faithful density operators in a quite natu-
ral way, playing an essential role in quantum estimation problems as demonstrated through the
present paper. Investigating the relationship between the Connes cocycle and the square-root
likelihood ratio is an interesting future problem.

It also remains to be investigated whether our asymptotically optimal statistical procedures
for the local model indexed by the parameter θ0 + h/

√
n can be translated into useful statistical

procedures for the real world case in which θ0 is unknown. Some authors [9,35] advocated two-
step estimation procedures, in which one first measures a small portion of the quantum system,
in number n1 say, using some standard measurement scheme and constructs an initial estimate,
say θ̃1, of the parameter. One next applies the theory of q-LAN to compute the asymptotically
optimal measurement scheme which corresponds to the situation θ0 = θ̃1, and then proceeds to
implement this measurement on the remaining n2 (:= n − n1) quantum systems collectively,
estimating h in the model θ = θ̃1 + h/

√
n2. However such procedures are inherently limited to

within the scope of weak consistency. Studying the strong consistency and asymptotic efficiency
[7] in the framework of collective quantum estimation scheme is also an important open problem.

Appendix A: Quantum Gaussian state

Given a d × d real skew-symmetric matrix S = [Sij ], let CCR(S) denote the algebra generated
by the observables X = (X1, . . . ,Xd) that satisfy the following canonical commutation relations
(CCR):

√−1

2
[Xi,Xj ] = Sij (1 ≤ i, j ≤ d),

or more precisely

e
√−1Xi e

√−1Xj = e−√−1Sij e
√−1(Xi+Xj ) (1 ≤ i, j ≤ d).

A state φ on CCR(S) is called a quantum Gaussian state, denoted φ ∼ N(h,J ), if the character-
istic function Fξ {φ} := φ(e

√−1ξ iXi ) takes the form

Fξ {φ} = e
√−1ξ ihi− 1

2 ξ iξ j Vij ,

where ξ = (ξ i)di=1 ∈ R
d , h = (hi)

d
i=1 ∈ R

d , and V = [Vij ] is a real symmetric matrix such that
the Hermitian matrix J := V + √−1S is positive semidefinite. When the canonical observables
X need to be specified, we also use the notation (X,φ) ∼ N(h,J ).
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When we discuss relationships between a quantum Gaussian state φ on a CCR and a state on
another algebra, we need to use the quasi-characteristic function [16]

φ

(
r∏

t=1

e
√−1ξ i

t Xi

)
= exp

(
r∑

t=1

(√−1ξ i
t hi − 1

2
ξ i
t ξ

j
t Jji

)
−

r∑
t=1

r∑
u=t+1

ξ i
t ξ

j
u Jji

)
(A.1)

of a quantum Gaussian state, where (X,φ) ∼ N(h,J ) and {ξt }rt=1 ⊂ R
d . Note that (A.1) is ana-

lytically continued to {ξt }rt=1 ⊂C
d .

Appendix B: Quantum Lévy–Cramér continuity theorem

In [15], they derived a noncommutative version of the Lévy–Cramér continuity theorem. Let us
first cite their main result in a form consistent with the present paper.

For each n ∈ N, let ρ(n) be a state (density operator) and Z(n) = (Z
(n)
1 , . . . ,Z

(n)
s ) be ob-

servables on a finite dimensional Hilbert space H(n). Further, let φ be a normal state (linear
functional) and Z(∞) = (Z

(∞)
1 , . . . ,Z

(∞)
s ) be densely defined observables on a possibly infi-

nite dimensional Hilbert space H(∞). Assume that for all m ∈ N, α = (α1, . . . , αm) ∈ R
m, and

j1, . . . , jm ∈ {1, . . . , s}, one has

lim
n→∞ Trρ(n)

m∏
t=1

e
√−1αtZ

(n)
jt = φ

(
m∏

t=1

e
√−1αtZ

(∞)
jt

)
. (B.1)

Then it holds that

lim
n→∞ Trρ(n)

s∏
i=1

fi

(
Z

(n)
i

)= φ

(
s∏

i=1

fi

(
Z

(∞)
i

))
(B.2)

for any bounded continuous functions f1, . . . , fs on R. Furthermore, (B.2) remains true for
bounded Borel functions f1, . . . , fs on R that enjoy certain measure conditions for the sets of
discontinuity points (which will be stated below).

Now observe that assumption (B.1) requires every finite repetition and permutation of the
given observables {Z(·)

i }1≤i≤s . Nevertheless, what Jakšić et al. elucidated was something stronger
in that their proof did not make full use of assumption (B.1) and is effective under certain weaker
assumptions. In particular, the following variant, in which assumption (B.1) is replaced with
(B.3)–(B.5), plays a key role in the present paper.

Theorem B.1. For n ∈ N ∪ {∞}, i ∈ {1, . . . , s}, and α = (α1, . . . , αs) ∈ R
s , let U

−(n)
i (α) and

U
+(n)
i (α) be unitary operators defined by

U
−(n)
i (α) :=

i∏
t=1

e
√−1αtZ

(n)
t and U

+(n)
i (α) :=

s∏
t=i

e
√−1αtZ

(n)
t ,
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and let U
−(n)
0 (α) and U

+(n)
s+1 (α) be identity operators. Assume that there is a J ∈ {0,1, . . . , s}

such that, for all α,β ∈R
s , the following three conditions are satisfied:

lim
n→∞ Trρ(n)U−(n)

s (α) = φ
(
U−(∞)

s (α)
)
, (B.3)

lim
n→∞ Trρ(n)U

−(n)
J (α)U

−(n)
J (β)∗ = φ

(
U

−(∞)
J (α)U

−(∞)
J (β)∗

)
, (B.4)

lim
n→∞ Trρ(n)U

+(n)
J+1 (α)∗U+(n)

J+1 (β) = φ
(
U

+(∞)
J+1 (α)∗U+(∞)

J+1 (β)
)
. (B.5)

Then (B.2) holds for any bounded continuous functions f1, . . . , fs on R.
Furthermore, let f1, . . . , fs be bounded Borel functions on R, and let D(fi) be the set of

discontinuity points of fi . Assume, in addition to (B.3)–(B.5), that one has

μα
i

(
D(fi)

)= 0 (B.6)

for all i ∈ {1, . . . , s} and α ∈ R
s , where μα

i is the classical probability measure having the char-
acteristic function

ϕμα
i
(γ ) :=

{
φ
(
U

−(∞)
i−1 (α)

(
e
√−1γZ

(∞)
i
)
U

−(∞)
i−1 (α)∗

)
if i ≤ J,

φ
(
U

+(∞)
i+1 (α)∗

(
e
√−1γZ

(∞)
i
)
U

+(∞)
i+1 (α)

)
if i ≥ J + 1.

(B.7)

Then (B.2) remains true.

The proof of Theorem B.1 is exactly the same as [15]. Note that when J ∈ {1, . . . , s − 1}, the
characteristic functions (B.7) for i = 1 and s are reduced to

ϕμα
1
(γ ) = φ

(
e
√−1γZ

(∞)
1
)

and ϕμα
s
(γ ) = φ

(
e
√−1γZ

(∞)
s
)
.

In particular, they are independent of α. This fact is exploited in our sandwiched-type continuity
theorem (Lemma 5.3).
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