SUPPLEMENTARY MATERIAL TO "QUANTUM LOCAL ASYMPTOTIC NORMALITY BASED ON A NEW QUANTUM LIKELIHOOD RATIO"

By Koichi Yamagata* , Akio Fujiwara* and Richard D. Gill ${ }^{\dagger}$

Osaka University* and Leiden University ${ }^{\dagger}$

APPENDIX A: PROOFS OF MAIN THEOREMS

This section is devoted to proofs of main results presented in Sections 2-3 of [4].
A.1. Proof of Lemma 2.6. We shall prove (2.3) in [4] for $\left\{\xi_{t}\right\}_{t=1}^{r} \subset \mathbb{C}^{d}$ and $\left\{\eta_{t}\right\}_{t=1}^{r} \subset \mathbb{C}$.

$$
\begin{aligned}
& \operatorname{Tr} \rho^{\otimes n}\left(\prod_{t=1}^{r} \mathrm{e}^{\sqrt{-1}}\left(\xi_{t}^{i} X_{i}^{(n)}+\eta_{t} R^{(n)}\right)\right. \\
&=\operatorname{Tr} \rho^{\otimes n}\left[\prod_{t=1}^{r} \exp \left\{\frac{\sqrt{-1}}{\sqrt{n}} \sum_{k=1}^{n} I^{\otimes(k-1)} \otimes\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right) \otimes I^{\otimes(n-k)}\right\}\right] \\
&=\operatorname{Tr} \rho^{\otimes n}\left[\prod_{t=1}^{r}\left\{\exp \left(\frac{\sqrt{-1}}{\sqrt{n}}\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)\right)\right\}^{\otimes n}\right] \\
&=\operatorname{Tr} \rho^{\otimes n}\left[\left\{\prod_{t=1}^{r} \exp \left(\frac{\sqrt{-1}}{\sqrt{n}}\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)\right)\right\}^{\otimes n}\right] \\
&=\left[\operatorname{Tr} \rho\left\{\prod_{t=1}^{r} \exp \left(\frac{\sqrt{-1}}{\sqrt{n}}\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)\right)\right\}\right]^{n} \\
&=\left[\operatorname{Tr} \rho\left\{\sum_{k_{1}, \ldots, k_{r} \in \mathbb{Z}_{+}}\left(\frac{\sqrt{-1}}{\sqrt{n}}\right)^{k_{1}+\cdots+k_{r}} \prod_{t=1}^{r} \frac{1}{k_{t}!}\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)^{k_{t}}\right\}\right]^{n},
\end{aligned}
$$

where $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$. The terms corresponding to $k_{1}+\cdots+k_{r}=1$ in the summand are

$$
\operatorname{Tr} \rho\left(\frac{\sqrt{-1}}{\sqrt{n}} \sum_{t=1}^{r}\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)\right)=\left(\sum_{t=1}^{r} \eta_{t}\right) \frac{\sqrt{-1}}{\sqrt{n}} \operatorname{Tr} \rho P(n)=o\left(\frac{1}{n}\right)
$$

because $\operatorname{Tr} \rho A_{i}=0$ and $\operatorname{Tr} \rho P(n)=o\left(\frac{1}{\sqrt{n}}\right)$. The terms corresponding to $k_{1}+\cdots+k_{r}=2$ are

$$
\begin{aligned}
& -\frac{1}{n} \operatorname{Tr} \rho\left\{\sum_{k_{1}+\cdots+k_{r}=2}\left(\prod_{t=1}^{r} \frac{1}{k_{t}!}\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)^{k_{t}}\right)\right\} \\
& \quad=-\frac{1}{2 n} \sum_{t=1}^{r} \operatorname{Tr} \rho\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)^{2}-\frac{1}{n} \sum_{t=1}^{r} \sum_{s=t+1}^{r} \operatorname{Tr} \rho\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)\left(\xi_{s}^{j} A_{j}+\eta_{s} P(n)\right) \\
& \quad=-\frac{1}{2 n} \sum_{t=1}^{r} \xi_{t}^{i} \xi_{t}^{j} \operatorname{Tr} \rho A_{i} A_{j}-\frac{1}{n} \sum_{t=1}^{r} \sum_{s=t+1}^{r} \xi_{t}^{i} \xi_{s}^{j} \operatorname{Tr} \rho A_{i} A_{j}+o\left(\frac{1}{n}\right) \\
& \quad=-\frac{1}{2 n} \sum_{t=1}^{r} \xi_{t}^{i} \xi_{t}^{j} J_{j i}-\frac{1}{n} \sum_{t=1}^{r} \sum_{s=t+1}^{r} \xi_{t}^{i} \xi_{s}^{j} J_{j i}+o\left(\frac{1}{n}\right) .
\end{aligned}
$$

In the third line, we used the fact that $P(n)=o(1)$. Let us denote the terms corresponding to $k_{1}+\cdots+k_{r} \geq 3$ by

$$
r_{n}:=\operatorname{Tr} \rho\left\{\sum_{k_{1}+\cdots+k_{r} \geq 3}\left(\frac{\sqrt{-1}}{\sqrt{n}}\right)^{\left(k_{1}+\cdots+k_{r}\right)} \prod_{t=1}^{r} \frac{1}{k_{t}!}\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)^{k_{t}}\right\}
$$

Then

$$
\begin{aligned}
\left|r_{n}\right| & \leq \sum_{k_{1}+\cdots+k_{r} \geq 3}\left\|\left(\frac{1}{\sqrt{n}}\right)^{\left(k_{1}+\cdots+k_{r}\right)} \prod_{t=1}^{r} \frac{1}{k_{t}!}\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)^{k_{t}}\right\| \\
& \leq \frac{1}{n \sqrt{n}} \sum_{k_{1}+\cdots+k_{r} \geq 3}\left\|\prod_{t=1}^{r} \frac{1}{k_{t}!}\left(\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right)^{k_{t}}\right\| \\
& \leq \frac{1}{n \sqrt{n}} \sum_{k_{1}+\cdots+k_{r} \geq 3} \prod_{t=1}^{r} \frac{1}{k_{t}!}\left\|\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right\|^{k_{t}} \\
& \leq \frac{1}{n \sqrt{n}} \sum_{k_{1}, \ldots, k_{r} \in \mathbb{Z}_{+}} \prod_{t=1}^{r} \frac{1}{k_{t}!}\left\|\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right\|^{k_{t}} \\
& =\frac{1}{n \sqrt{n}} \prod_{t=1}^{r} \exp \left\|\xi_{t}^{i} A_{i}+\eta_{t} P(n)\right\| \\
& \leq \frac{1}{n \sqrt{n}} \exp \left(\sum_{t=1}^{r}\left(\left\|\xi_{t}^{i} A_{i}\right\|+\left\|\eta_{t} P(n)\right\|\right)\right)
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} P(n)=0$, the operators $P(n)$ are uniformly bounded. As a consequence, $\lim _{n \rightarrow \infty} n\left|r_{n}\right|=$ 0 , so that $r_{n}=o\left(\frac{1}{n}\right)$. Thus we conclude that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{\otimes n}\left(\prod_{t=1}^{r} \mathrm{e}^{\sqrt{-1}\left(\xi_{t}^{i} X_{i}^{(n)}+\eta_{t} R^{(n)}\right)}\right) & =\lim _{n \rightarrow \infty}\left(1-\frac{1}{2 n} \sum_{t=1}^{r} \xi_{t}^{i} \xi_{t}^{j} J_{j i}-\frac{1}{n} \sum_{t=1}^{r} \sum_{s=t+1}^{r} \xi_{t}^{i} \xi_{s}^{j} J_{j i}+o\left(\frac{1}{n}\right)\right)^{n} \\
& =\exp \left(-\frac{1}{2} \sum_{t=1}^{r} \xi_{t}^{i} \xi_{t}^{j} J_{j i}-\sum_{t=1}^{r} \sum_{s=t+1}^{r} \xi_{t}^{i} \xi_{s}^{j} J_{j i}\right) \\
& =\phi\left(\prod_{t=1}^{r} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} X_{i}}\right)
\end{aligned}
$$

The last equation is due to (2.2) in [4] with $h=0$.
A.2. Proof of Theorem 2.9. Let $X_{1}, \ldots, X_{r}, \Delta_{1}, \ldots, \Delta_{d}$ be the basic canonical observables of $\operatorname{CCR}\left(\operatorname{Im}\left(\begin{array}{cc}\Sigma & \tau \\ \tau^{*} & J\end{array}\right)\right)$, and $\tilde{\phi}$ the quantum Gaussian state $N\left(\binom{0}{0},\left(\begin{array}{cc}\Sigma & \tau \\ \tau^{*} & J\end{array}\right)\right)$ on that CCR. Assumption (2.6) in [4] guarantees that the quantities

$$
R_{h}^{(n)}:=\mathcal{L}_{h}^{(n)}-\left\{h^{i} \Delta_{i}^{(n)}-\frac{1}{2} J_{i j} h^{i} h^{j} I^{(n)}\right\}
$$

enjoy $R_{h}^{(n)}=o\left(\binom{X^{(n)}}{\Delta^{(n)}}, \rho_{\theta_{0}}^{(n)}\right)$ for each $h \in \mathbb{R}^{d}$. Consequently, for a finite subset $\left\{\xi_{t}\right\}_{t=1}^{r}$ of \mathbb{C}^{d},

$$
\begin{aligned}
& \operatorname{Tr} \rho_{\theta_{0}+h / \sqrt{n}}^{(n)}\left(\prod_{t=1}^{r} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right) \\
& \quad=\operatorname{Tr}\left(\mathrm{e}^{\frac{1}{2} \mathcal{L}_{h}^{(n)}} \rho_{\theta_{0}}^{(n)} \mathrm{e}^{\frac{1}{2} \mathcal{L}_{h}^{(n)}}\right)\left(\prod_{t=1}^{r} \mathrm{e}^{\sqrt{-1} \xi_{t} X_{i}^{(n)}}\right) \\
& =\mathrm{e}^{-\frac{1}{2} h^{i} h^{j} J_{i j}} \operatorname{Tr} \rho_{\theta_{0}}^{(n)} \mathrm{e}^{\frac{1}{2}\left(h^{i} \Delta_{i}^{(n)}+R_{h}^{(n)}\right)}\left(\prod_{t=1}^{r} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right) \mathrm{e}^{\frac{1}{2}\left(h^{i} \Delta_{i}^{(n)}+R_{h}^{(n)}\right)} \\
& \left.=\mathrm{e}^{-\frac{1}{2} h^{i} h^{j} J_{i j}} \operatorname{Tr} \rho_{\theta_{0}}^{(n)}\left(\mathrm{e}^{-\sqrt{-1}\left(\frac{\sqrt{-1}}{2} h^{i} \Delta_{i}^{(n)}+\frac{\sqrt{-1}}{2} R_{h}^{(n)}\right.}\right)\right)\left(\prod_{t=1}^{r} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right)\left(\mathrm{e}^{-\sqrt{-1}\left(\frac{\sqrt{-1}}{2} h^{i} \Delta_{i}^{(n)}+\frac{\sqrt{-1}}{2} R_{h}^{(n)}\right)}\right) .
\end{aligned}
$$

Since $R_{h}^{(n)}$ is infinitesimal relative to the convergence (2.5) in [4], we see from (2.3) in [4] that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{Tr} \rho_{\theta_{0}+h / \sqrt{n}}^{(n)}\left(\prod_{t=1}^{r} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right) \\
&= \mathrm{e}^{-\frac{1}{2} h^{i} h^{j} J_{i j}} \tilde{\phi}\left(\mathrm{e}^{-\sqrt{-1} \frac{\sqrt{-1}}{2} h^{i} \Delta_{i}}\left(\prod_{t=1}^{r} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} X_{i}}\right) \mathrm{e}^{-\sqrt{-1} \frac{\sqrt{-1}}{2} h^{i} \Delta_{i}}\right) \\
&= \mathrm{e}^{-\frac{1}{2} h^{i} h^{j} J_{i j}} \exp \left(-\frac{1}{2} \sum_{t=0}^{r+1} \tilde{\xi}_{t}^{i} \tilde{\xi}_{t}^{j} \tilde{\Sigma}_{j i}-\sum_{t=0}^{r+1} \sum_{s=t+1}^{r+1} \tilde{\xi}_{t}^{i} \tilde{\xi}_{s}^{j} \tilde{\Sigma}_{j i}\right) \\
&= \mathrm{e}^{-\frac{1}{2} h^{i} h^{j} J_{i j}} \exp \left(-\frac{1}{2}\left\{-\frac{1}{4} h^{j} h^{j} J_{j i}+\sum_{t=1}^{r} \xi_{t}^{i} \xi_{t}^{j} \Sigma_{j i}-\frac{1}{4} h^{j} h^{j} J_{j i}\right\}\right) \\
& \times \exp \left(\frac{\sqrt{-1}}{2} \sum_{t=1}^{r} h^{i} \xi_{t}^{j} \tau_{j i}+\frac{\sqrt{-1}}{2} \sum_{t=1}^{r} \xi_{t}^{i} h^{j} \tau_{j i}+\frac{1}{4} h^{i} h^{j} J_{j i}-\sum_{t=1}^{r} \sum_{s=t+1}^{r} \xi_{t}^{i} \xi_{s}^{j} \Sigma_{j i}\right) \\
&= \exp \left(\sum_{t=1}^{r}\left(\sqrt{-1} \xi_{t}^{i} h^{j}(\operatorname{Re} \tau)_{i j}-\frac{1}{2} \xi_{t}^{i} \xi_{t}^{j} \Sigma_{j i}\right)-\sum_{t=1}^{r} \sum_{s=t+1}^{r} \xi_{t}^{i} \xi_{s}^{j} \Sigma_{j i}\right),
\end{aligned}
$$

where $\tilde{\Sigma}:=\left(\begin{array}{cc}\Sigma & \tau \\ \tau^{*} & J\end{array}\right)$ and $\left(\tilde{\xi}_{0}, \tilde{\xi}_{1}, \ldots, \tilde{\xi}_{r}, \tilde{\xi}_{r+1}\right):=\left(-\frac{\sqrt{-1}}{2} h, \xi_{1}, \ldots, \xi_{r},-\frac{\sqrt{-1}}{2} h\right)$, and (2.2) of [4] was used at the second equation. This is the quasi-characteristic function of $N((\operatorname{Re} \tau) h, \Sigma)$.

A.3. Proof of Theorem 2.10. Since

$$
\begin{aligned}
\rho_{\theta}^{\otimes n} & =\left(\mathrm{e}^{\frac{1}{2} \mathcal{L}\left(\rho_{\theta} \mid \rho_{\theta_{0}}\right)} \rho_{\theta_{0}} \mathrm{e}^{\frac{1}{2} \mathcal{L}\left(\rho_{\theta} \mid \rho_{\theta_{0}}\right)}\right)^{\otimes n} \\
& =\left(\mathrm{e}^{\frac{1}{2} \sum_{k=1}^{n} I^{\otimes(k-1)} \otimes \mathcal{L}\left(\rho_{\theta} \mid \rho_{\theta_{0}}\right) \otimes I^{\otimes(n-k)}}\right) \rho_{\theta_{0}}^{\otimes n}\left(\mathrm{e}^{\frac{1}{2} \sum_{k=1}^{n} I^{\otimes(k-1)} \otimes \mathcal{L}\left(\rho_{\theta} \mid \rho_{\theta_{0}}\right) \otimes I^{\otimes(n-k)}}\right),
\end{aligned}
$$

we see that

$$
\begin{equation*}
\mathcal{L}\left(\rho_{\theta}^{\otimes n} \mid \rho_{\theta_{0}}^{\otimes n}\right)=\sum_{k=1}^{n} I^{\otimes(k-1)} \otimes \mathcal{L}\left(\rho_{\theta} \mid \rho_{\theta_{0}}\right) \otimes I^{\otimes(n-k)} . \tag{A.1}
\end{equation*}
$$

This proves $\rho_{\theta}^{\otimes n} \sim \rho_{\theta_{0}}^{\otimes n}$ for all $\theta \in \Theta$ and $n \in \mathbb{N}$.

Before proceeding to the proof of (ii) and (iii) in Definition 2.8, we give some preliminary consideration. Let the quantum log-likelihood ratio $\mathcal{L}_{h}:=\mathcal{L}\left(\rho_{\theta_{0}+h} \mid \rho_{\theta_{0}}\right)$ be expanded into

$$
\mathcal{L}_{h}=h^{i} A_{i}+B_{i j} h^{i} h^{j}+o\left(h^{2}\right),
$$

where $A_{i}(1 \leq i \leq d)$ and $B_{i j}(1 \leq i, j \leq d)$ are Hermitian operators on \mathcal{H}. Observe that A_{i} is the SLD in the i th direction. In fact,

$$
\begin{aligned}
\rho_{\theta_{0}+h} & =\exp \left[\frac{1}{2}\left(h^{i} A_{i}+o(h)\right)\right] \rho_{\theta_{0}} \exp \left[\frac{1}{2}\left(h^{i} A_{i}+o(h)\right)\right] \\
& =\rho_{\theta_{0}}+\frac{1}{2} h^{i}\left(\rho_{\theta_{0}} A_{i}+A_{i} \rho_{\theta_{0}}\right)+o(h),
\end{aligned}
$$

so that

$$
\partial_{i} \rho_{\theta_{0}}=\frac{1}{2}\left(\rho_{\theta_{0}} A_{i}+A_{i} \rho_{\theta_{0}}\right) .
$$

This observation also shows that $\operatorname{Tr} \rho_{\theta_{0}} A_{i}=0$ for all i. On the other hand,

$$
\begin{aligned}
\operatorname{Tr} \rho_{\theta_{0}+h} & =\operatorname{Tr} \rho_{\theta_{0}} \exp \left(h^{i} A_{i}+B_{i j} h^{i} h^{j}+o\left(h^{2}\right)\right) \\
& =\operatorname{Tr} \rho_{\theta_{0}}\left(I+\left(h^{i} A_{i}+B_{i j} h^{i} h^{j}\right)+\frac{1}{2}\left(h^{i} A_{i}+B_{i j} h^{i} h^{j}\right)^{2}+o\left(h^{2}\right)\right) \\
& =1+h^{i}\left(\operatorname{Tr} \rho_{\theta_{0}} A_{i}\right)+h^{i} h^{j} \operatorname{Tr} \rho_{\theta_{0}}\left(B_{i j}+\frac{1}{2} A_{i} A_{j}\right)+o\left(h^{2}\right) \\
& =1+h^{i} h^{j} \operatorname{Tr} \rho_{\theta_{0}}\left(B_{i j}+\frac{1}{2} A_{i} A_{j}\right)+o\left(h^{2}\right) .
\end{aligned}
$$

Since $\operatorname{Tr} \rho_{\theta_{0}+h}=1$ for all h, the above equation leads to

$$
\begin{equation*}
\operatorname{Tr} \rho_{\theta_{0}}\left(B_{i j}+\frac{1}{2} A_{i} A_{j}\right)=0 \tag{A.2}
\end{equation*}
$$

Now we prove (ii). Let $J_{i j}:=\operatorname{Tr} \rho_{\theta_{0}} A_{j} A_{i}$, and let

$$
\Delta_{i}^{(n)}:=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} I^{\otimes(k-1)} \otimes A_{i} \otimes I^{\otimes(n-k)} .
$$

It then follows from the quantum central limit theorem (Proposition 2.5) that $\left(\Delta^{(n)}, \rho_{\theta_{0}}^{\otimes n}\right) \underset{q}{\leadsto}$ $N(0, J)$.

Finally, we prove (iii). It follows from (A.1) that

$$
\mathcal{L}_{h}^{(n)}=\sum_{k=1}^{n} I^{\otimes(k-1)} \otimes \mathcal{L}_{h / \sqrt{n}} \otimes I^{\otimes(n-k)} .
$$

Let us show that

$$
R_{h}^{(n)}:=\mathcal{L}_{h}^{(n)}-\left(h^{i} \Delta_{i}^{(n)}-\frac{1}{2}\left(J_{i j} h^{i} h^{j}\right) I^{\otimes n}\right)
$$

is infinitesimal relative to the convergence $\left(\Delta^{(n)}, \rho_{\theta_{0}}^{\otimes n}\right) \underset{q}{\rightsquigarrow} N(0, J)$. It is rewritten as

$$
\begin{aligned}
R_{h}^{(n)} & =\sum_{k=1}^{n} I^{\otimes(k-1)} \otimes\left[\mathcal{L}_{h / \sqrt{n}}-\frac{1}{\sqrt{n}} h^{i} A_{i}+\frac{1}{2 n}\left(J_{i j} h^{i} h^{j}\right) I\right] \otimes I^{\otimes(n-k)} \\
& =\sum_{k=1}^{n} I^{\otimes(k-1)} \otimes\left[\frac{1}{\sqrt{n}} h^{i} A_{i}+\frac{1}{n} B_{i j} h^{i} h^{j}+o\left(\frac{1}{n}\right)-\frac{1}{\sqrt{n}} h^{i} A_{i}+\frac{1}{2 n}\left(J_{i j} h^{i} h^{j}\right) I\right] \otimes I^{\otimes(n-k)} \\
& =\sum_{k=1}^{n} I^{\otimes(k-1)} \otimes\left[\frac{1}{n} B_{i j} h^{i} h^{j}+\frac{1}{2 n}\left(J_{i j} h^{i} h^{j}\right) I+o\left(\frac{1}{n}\right)\right] \otimes I^{\otimes(n-k)} \\
& =\sum_{k=1}^{n} I^{\otimes k-1} \otimes \frac{1}{\sqrt{n}} P(n) \otimes I^{\otimes(n-k)}
\end{aligned}
$$

where

$$
P(n):=\sqrt{n}\left(\frac{1}{n}\left(B_{i j}+\frac{1}{2} J_{i j} I\right) h^{i} h^{j}+o\left(\frac{1}{n}\right)\right)
$$

Note that $\lim _{n \rightarrow \infty} P(n)=0$, and that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt{n} \operatorname{Tr} \rho_{\theta_{0}} P(n) & =\operatorname{Tr} \rho_{\theta_{0}}\left(B_{i j}+\frac{1}{2} J_{i j} I\right) h^{i} h^{j} \\
& =\operatorname{Tr} \rho_{\theta_{0}}\left(B_{i j}+\frac{1}{2} J_{j i} I\right) h^{i} h^{j} \\
& =\operatorname{Tr} \rho_{\theta_{0}}\left(B_{i j}+\frac{1}{2} A_{i} A_{j}\right) h^{i} h^{j} \\
& =0
\end{aligned}
$$

because of (A.2). It then follows from Lemma 2.6 that $R_{h}^{(n)}=o\left(\Delta^{(n)}, \rho_{\theta_{0}}^{\otimes n}\right)$ for each $h \in \mathbb{R}^{d}$. This completes the proof.
A.4. Proof of Corollary 2.11. That $\rho_{\theta}^{\otimes n} \sim \rho_{\theta_{0}}^{\otimes n}$ was proven in the proof of Theorem 2.10. Let $\Delta_{1}^{(n)}, \ldots, \Delta_{d}^{(n)}$ be as in the proof of Theorem 2.10. It then follows from the quantum central limit theorem that

$$
\left(\binom{X^{(n)}}{\Delta^{(n)}}, \rho_{\theta_{0}}^{\otimes n}\right) \underset{q}{\rightsquigarrow} N\left(\binom{0}{0},\left(\begin{array}{cc}
\Sigma & \tau \tag{A.3}\\
\tau^{*} & J
\end{array}\right)\right) .
$$

Further, because of Lemma 2.6, the sequence $R_{h}^{(n)}$ of observables given in the proof of Theorem 2.10 is also infinitesimal relative to the convergence (A.3). Now that $\left(\rho_{\theta}^{\otimes n}, X^{(n)}\right)$ are jointly QLAN at θ_{0}, the property $\left(X^{(n)}, \rho_{\theta_{0}+h / \sqrt{n}}^{\otimes n}\right) \underset{q}{\leadsto} N((\operatorname{Re} \tau) h, \Sigma)$ is an immediate consequence of Theorem 2.9. This completes the proof.
A.5. Proof of Theorem 3.1. Let $\mathcal{D}:=\mathcal{D}_{\rho_{\theta_{0}}}$ be the commutation operator with respect to the state $\rho_{\theta_{0}}$ (see Section B.1), and let \mathcal{T} be the minimal \mathcal{D} invariant extension of the SLD tangent $\operatorname{space}_{\operatorname{span}_{\mathbb{R}}}\left\{L_{i}\right\}_{i=1}^{d}$ of the model $\left\{\rho_{\theta}\right\}$ at $\theta=\theta_{0}$, i.e., the smallest \mathcal{D} invariant real linear subspace of Hermitian operators on \mathcal{H} containing all the $\operatorname{SLDs}\left\{L_{i}\right\}_{i=1}^{d}$ of ρ_{θ} at θ_{0}. The minimality ensures that $\operatorname{Tr} \rho_{\theta_{0}} A=0$ for all $A \in \mathcal{T}$ because $\mathcal{T}^{\prime}=\left\{A \in \mathcal{T} ; \operatorname{Tr} \rho_{\theta_{0}} A=0\right\}$ is also \mathcal{D} invariant.

Let $\left\{D_{j}\right\}_{j=1}^{r}$ be a basis of \mathcal{T}, thus $d \leq r$. Let Σ be an $r \times r$ matrix whose (i, j) th entry is given by $\Sigma_{i j}=\operatorname{Tr} \rho_{\theta_{0}} D_{j} D_{i}$, and let τ be an $r \times d$ matrix whose (i, j) th entry is given by $\tau_{i j}=\operatorname{Tr} \rho_{\theta_{0}} L_{j} D_{i}$.

It can be shown (see Theorem B.1) that the Holevo bound for a weight $G>0$ is expressed as

$$
\begin{align*}
C_{\theta_{0}}\left(\rho_{\theta}, G\right)=\min _{F} & \left\{\operatorname{Tr} G Z+\operatorname{Tr}|\sqrt{G} \operatorname{Im} Z \sqrt{G}| ; Z={ }^{t} F \Sigma F,\right. \\
& \left.F \text { is an } r \times d \text { real matrix satisfying }{ }^{t} F \operatorname{Re}(\tau)=I\right\} . \tag{A.4}
\end{align*}
$$

Letting

$$
X_{i}^{(n)}:=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} I^{\otimes(k-1)} \otimes D_{i} \otimes I^{\otimes(n-k)} \quad(1 \leq i \leq r)
$$

Corollary 2.11 asserts that $\left(\left\{\rho_{\theta}^{\otimes n}\right\}, X^{(n)}\right)$ is jointly QLAN at θ_{0}, and that

$$
\begin{equation*}
\left(X^{(n)}, \rho_{\theta_{0}+h / \sqrt{n}}^{\otimes n}\right) \underset{q}{\rightsquigarrow} N((\operatorname{Re} \tau) h, \Sigma) . \tag{A.5}
\end{equation*}
$$

Let F be the matrix that attains the minimum in (A.4), and let $Z:={ }^{t} F \Sigma F, \tilde{V}:=\operatorname{Re} Z$, $\tilde{S}:=\operatorname{Im} Z, \hat{V}=\sqrt{G^{-1}}|\sqrt{G} \operatorname{Im} Z \sqrt{G}| \sqrt{G^{-1}}$, and $\hat{Z}=\hat{V}-\sqrt{-1} \tilde{S}$. It is shown (see Corollary B. 6 and Theorem B.7) that

$$
C_{\theta_{0}}\left(\rho_{\theta}, G\right)=\operatorname{Tr} G(\tilde{V}+\hat{V}) .
$$

Further, Lemma B. 9 assures that there exist a finite dimensional Hilbert space $\hat{\mathcal{H}}$ and a state σ and observables $B_{i}(1 \leq i \leq d)$ on $\hat{\mathcal{H}}$ such that $\operatorname{Tr} \sigma B_{i}=0$ and $\operatorname{Tr} \sigma B_{j} B_{i}=\hat{Z}_{i j}$. Let

$$
\bar{X}_{i}^{(n)}:=\tilde{X}_{i}^{(n)} \otimes \hat{I}^{\otimes n}+I^{\otimes n} \otimes Y_{i}^{(n)} \quad(1 \leq i \leq d),
$$

where $\tilde{X}^{(n)}:=F_{i}^{k} X_{k}^{(n)}(1 \leq i \leq d)$,

$$
Y_{i}^{(n)}:=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \hat{I}^{\otimes(k-1)} \otimes B_{i} \otimes \hat{I}^{\otimes(n-k)} \quad(1 \leq i \leq d),
$$

and \hat{I} is the identity on $\hat{\mathcal{H}}$. A crucial observation is that $\left(\bar{X}^{(n)}, \bar{\rho}_{h}^{(n)}\right)$, where $\bar{\rho}_{h}^{(n)}:=\rho_{\theta_{0}+h / \sqrt{n}}^{\otimes n} \otimes \sigma^{\otimes n}$, converges to a classical Gaussian state:

$$
\begin{equation*}
\left(\bar{X}^{(n)}, \bar{\rho}_{h}^{(n)}\right) \underset{q}{\rightsquigarrow} N(h, \tilde{V}+\hat{V}), \tag{A.6}
\end{equation*}
$$

for all $h \in \mathbb{R}^{d}$. In fact,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Tr} \bar{\rho}_{h}^{(n)}\left(\prod_{t=1}^{s} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} \bar{X}_{i}^{(n)}}\right) & =\lim _{n \rightarrow \infty} \operatorname{Tr} \bar{\rho}_{h}^{(n)}\left\{\left(\prod_{t=1}^{s} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} \tilde{X}_{i}^{(n)}}\right) \otimes\left(\prod_{t=1}^{s} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} Y_{i}^{(n)}}\right)\right\} \\
& =\lim _{n \rightarrow \infty}\left[\operatorname{Tr} \rho_{\theta_{0}+h / \sqrt{n}}^{\otimes n}\left(\prod_{t=1}^{s} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} \tilde{X}_{i}^{(n)}}\right)\right]\left[\operatorname{Tr} \sigma^{\otimes n}\left(\prod_{t=1}^{s} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} Y_{i}^{(n)}}\right)\right] \\
& =\phi_{h}\left(\prod_{t=1}^{s} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} \tilde{X}_{i}}\right) \psi\left(\prod_{t=1}^{s} \mathrm{e}^{\sqrt{-1} \xi_{t}^{i} Y_{i}}\right),
\end{aligned}
$$

where $\tilde{X}_{i}:=F_{i}^{k} X_{k}(1 \leq i \leq d)$ are canonical observables with X_{1}, \ldots, X_{r} being the basic canonical observables of $\operatorname{CCR}(\operatorname{Im} \Sigma)$ and $\left(X, \phi_{h}\right) \sim N((\operatorname{Re} \tau) h, \Sigma)$, and Y_{1}, \ldots, Y_{d} are the basic canonical observables of $\operatorname{CCR}(\operatorname{Im} \hat{Z})$ with $(Y, \psi) \sim N(0, \hat{Z})$. In the last line in (A.7), we used (A.5) as
well as the quantum central limit theorem for $Y^{(n)}$. By using the explicit form (2.2) of the quasicharacteristic function for the quantum Gaussian state, (A.7) is rewritten as

$$
\begin{array}{r}
\exp \left(\sum_{t=1}^{r}\left(\sqrt{-1} \xi_{t}^{i} h_{i}-\frac{1}{2} \xi_{t}^{i} \xi_{t}^{j} Z_{j i}\right)-\sum_{t=1}^{r} \sum_{s=t+1}^{r} \xi_{t}^{i} \xi_{s}^{j} Z_{j i}\right) \exp \left(-\frac{1}{2} \sum_{t=1}^{r} \xi_{t}^{i} \xi_{t}^{j} \hat{Z}_{j i}-\sum_{t=1}^{r} \sum_{s=t+1}^{r} \xi_{t}^{i} \xi_{s}^{j} \hat{Z}_{j i}\right) \\
=\exp \left(\sum_{t=1}^{r}\left(\sqrt{-1} \xi_{t}^{i} h_{i}-\frac{1}{2} \xi_{t}^{i} \xi_{t}^{j}(\tilde{V}+\hat{V})_{j i}\right)-\sum_{t=1}^{r} \sum_{s=t+1}^{r} \xi_{t}^{i} \xi_{s}^{j}(\tilde{V}+\hat{V})_{j i}\right) .
\end{array}
$$

This proves (A.6).
Now according to Lemma A. 1 below, there exist a quintuple sequence

$$
M^{(n, m, \ell, q, p)}=\left\{M_{\omega}^{(n, m, \ell, q, p)} ; \omega \in \Omega^{(n, m, l, p, q)}\right\}
$$

of POVMs on $(\mathcal{H} \otimes \hat{\mathcal{H}})^{\otimes n}$, taking values in a certain finite subset $\Omega^{(n, m, l, p, q)}$ of \mathbb{R}^{d}, that enjoys the properties

$$
\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \lim _{\ell \rightarrow \infty} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \bar{E}_{h}^{(n)}\left[M^{(n, m, \ell, q, p)}\right]=h
$$

and

$$
\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \lim _{\ell \rightarrow \infty} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \bar{V}_{h}^{(n)}\left[M^{(n, m, \ell, q, p)}\right]=\tilde{V}+\hat{V},
$$

for all $h \in \mathbb{R}^{d}$, where $\bar{E}_{h}^{(n)}[\cdot]$ and $\bar{V}_{h}^{(n)}[\cdot]$ denote the expectation and the covariance with respect to $\bar{\rho}_{h}^{(n)}$. It then follows from Lemma A. 2 below that for any countable dense subset D of \mathbb{R}^{d} and any $h \in D$, there exist a subsequence $\left\{(n, m(n), \ell(n), q(n), p(n)\}_{n \in \mathbb{N}}\right.$ such that

$$
\lim _{n \rightarrow \infty} \bar{E}_{h}^{(n)}\left[M^{(n, m(n), \ell(n), q(n), p(n))}\right]=h,
$$

and

$$
\lim _{n \rightarrow \infty} \bar{V}_{h}^{(n)}\left[M^{(n, m(n), \ell(n), q(n), p(n))}\right]=\tilde{V}+\hat{V} .
$$

This implies that the POVM $M^{(n)}$ on $\mathcal{H}^{\otimes n}$ that is uniquely defined by the requirement

$$
\operatorname{Tr} \rho^{(n)} M_{\omega}^{(n)}=\operatorname{Tr}\left(\rho^{(n)} \otimes \sigma^{\otimes n}\right) M_{\omega}^{(n, m(n), \ell(n), q(n), p(n))}
$$

for all density operator $\rho^{(n)}$ on $\mathcal{H}^{\otimes n}$ and $\omega \in \Omega^{(n, m(n), l(n), p(n), q(n))}$ enjoys

$$
\begin{gathered}
\lim _{n \rightarrow \infty} E_{h}^{(n)}\left[M^{(n)}\right]=h, \\
\lim _{n \rightarrow \infty} V_{h}^{(n)}\left[M^{(n)}\right]=\tilde{V}+\hat{V} .
\end{gathered}
$$

for all $h \in D$. Recalling that $\operatorname{Tr} G(\tilde{V}+\hat{V})=C_{\theta_{0}}\left(\rho_{\theta}, G\right)$, the proof is complete.
Lemma A.1. Given a sequence $\mathcal{H}^{(n)}$ of finite dimensional Hilbert spaces, let $X^{(n)}=\left(X_{1}^{(n)}, \ldots, X_{d}^{(n)}\right)$ be a list of observables on $\mathcal{H}^{(n)}$, and let $\left\{\rho_{h}^{(n)}\right\}_{h}$ be a family of density operators on $\mathcal{H}^{(n)}$ parametrized by $h \in \mathbb{R}^{d}$. If there is a real $d \times d$ positive definite matrix V such that

$$
\begin{equation*}
\left(X^{(n)}, \rho_{h}^{(n)}\right) \underset{q}{\rightsquigarrow} N(h, V) \tag{A.8}
\end{equation*}
$$

holds for all $h \in \mathbb{R}^{d}$, then there exist a quintuple sequence $\left\{M^{(n, m, \ell, q, p)} ;(n, m, \ell, q, p) \in \mathbb{N}^{5}\right\}$ of POVMs on $\mathcal{H}^{(n)}$ that enjoy the properties

$$
\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \lim _{\ell \rightarrow \infty} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} E_{h}^{(n)}\left[M^{(n, m, \ell, q, p)}\right]=h
$$

and

$$
\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \lim _{\ell \rightarrow \infty} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} V_{h}^{(n)}\left[M^{(n, m, \ell, q, p)}\right]=V
$$

Proof. Let

$$
\Omega^{(m, \ell)}:=\left\{\frac{\ell}{m} \vec{k}+\frac{\ell}{2 m}(1, \ldots, 1) ; \vec{k} \in \mathbb{Z}^{d}\right\} \cap[-l, l]^{d}
$$

be a finite subset of \mathbb{R}^{d}, comprising $(2 m)^{d}$ lattice points in the hypercube $[-l, l]^{d}$, and let $\Omega^{(m, \ell, p)}:=$ $\Omega^{(m, \ell)} \cap[-p, p]^{d}$ and $\Omega_{0}^{(m, \ell, p)}:=\Omega^{(m, \ell, p)} \cup\{0\}$. We introduce a Gaussian density function $f_{\omega}^{(q)}(x)$ on \mathbb{R}^{d} centered at $\omega=\left(\omega_{1}, \ldots, \omega_{d}\right) \in \mathbb{R}^{d}$ by

$$
f_{\omega}^{(q)}(x):=\left\{\prod_{i=1}^{d} g_{\omega_{d+1-i}}^{(q)}\left(x_{d+1-i}\right)\right\}\left\{\prod_{i=1}^{d} g_{\omega_{i}}^{(q)}\left(x_{i}\right)\right\}
$$

where $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and

$$
g_{s}^{(q)}(t):=\left(\frac{q}{2 \pi}\right)^{\frac{1}{4}} \exp \left(-\frac{q}{4}(t-s)^{2}\right), \quad(s, t \in \mathbb{R})
$$

By using this function, we define a POVM $M^{(n, m, l, q, p)}=\left\{M_{\omega}^{(n, m, l, q, p)} ; \omega \in \Omega_{0}^{(m, \ell, p)}\right\}$ on $\mathcal{H}^{(n)}$ that takes values in the finite subset $\Omega_{0}^{(m, \ell, p)}$ by

$$
M_{\omega}^{(n, m, \ell, q, p)}:=R^{(m, \ell, q)}\left(X^{(n)}\right)\left[f_{\omega}^{(q)}\left(X^{(n)}\right)+\frac{I^{(n)}}{(2 m)^{d}}\right] R^{(m, \ell, q)}\left(X^{(n)}\right)
$$

for $\omega \in \Omega^{(m, \ell, p)}$, and

$$
M_{0}^{(n, m, \ell, q, p)}:=\sum_{\omega \in \Omega^{(m, \ell)} \backslash \Omega^{(m, \ell, p)}}\left\{R^{(m, \ell, q)}\left(X^{(n)}\right)\left[\left(f_{\omega}^{(q)}\left(X^{(n)}\right)+\frac{I^{(n)}}{(2 m)^{d}}\right)\right] R^{(m, \ell, q)}\left(X^{(n)}\right)\right\}
$$

Here

$$
R^{(m, \ell, q)}(x):=g\left(\sum_{\omega \in \Omega^{(m, \ell)}} f_{\omega}^{(q)}(x)\right)
$$

is the normalization with

$$
g(t):=\frac{1}{\sqrt{t+1}}
$$

Intuitively speaking, the difference set $\Omega^{(m, \ell)} \backslash \Omega^{(m, \ell, p)}$ works as a "buffer" zone that gives the default outcome $\omega=0$. This device is meaningful only when $p<\ell$.

We shall prove that

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \lim _{\ell \rightarrow \infty} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \sum_{\omega \in \Omega_{0}^{(m, \ell, p)}} P(\omega) \operatorname{Tr} \rho_{h}^{(n)} M_{\omega}^{(n, m, \ell, q, p)}=\int_{\mathbb{R}^{d}} P(\omega) p_{h}(\omega) \mathrm{d} \omega \tag{A.9}
\end{equation*}
$$

where $P(\omega)$ is an arbitrary polynomial of ω such that $P(0)=0$ and $p_{h}(\omega)$ is a probability density function of the classical normal distribution $N(h, V)$. Once (A.9) has been proved, we can verify

$$
\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \lim _{\ell \rightarrow \infty} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} E_{h}^{(n)}\left[M^{(n, m, \ell, q, p)}\right]=h
$$

and

$$
\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \lim _{\ell \rightarrow \infty} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} V_{h}^{(n)}\left[M^{(n, m, \ell, q, p)}\right]=V
$$

just by letting $P(\omega)=\omega_{i}$ or $P(\omega)=\omega_{i} \omega_{j}(1 \leq i, j \leq d)$ in (A.9).
The first limit $n \rightarrow \infty$ in (A.9) yields

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \sum_{\omega \in \Omega_{0}^{(m, \ell, p)}} P(\omega) \operatorname{Tr} \rho_{h}^{(n)} M_{\omega}^{(n, m, \ell, q, p)} \\
& =\lim _{n \rightarrow \infty} \sum_{\omega \in \Omega^{(m, \ell, p)}} P(\omega) \operatorname{Tr} \rho_{h}^{(n)} M_{\omega}^{(n, m, \ell, q, p)} \\
& =\lim _{n \rightarrow \infty} \sum_{\omega \in \Omega^{(m, \ell, p)}} P(\omega) \operatorname{Tr} \rho_{h}^{(n)} R^{(m, \ell, q)}\left(X^{(n)}\right)\left[f_{\omega}^{(q)}\left(X^{(n)}\right)+\frac{I^{(n)}}{(2 m)^{d}}\right] R^{(m, \ell, q)}\left(X^{(n)}\right) \\
& =\sum_{\omega \in \Omega^{(m, \ell, p)}} P(\omega) E_{h}\left[R^{(m, \ell, q)}(X)^{2}\left(f_{\omega}^{(q)}(X)+\frac{I}{(2 m)^{d}}\right)\right] \\
& =\int_{\mathbb{R}^{d}} \frac{\sum_{\omega \in \Omega^{(m, \ell, p)}} P(\omega)\left(f_{\omega}^{(q)}(x)+\frac{1}{(2 m)^{d}}\right)}{\sum_{\omega \in \Omega^{(m, \ell)}}\left(f_{\omega}^{(q)}(x)+\frac{1}{(2 m)^{d}}\right)} p_{h}(x) \mathrm{d} x . \tag{A.10}
\end{align*}
$$

In the fourth line, we used the assumption (A.8) and Corollary A. 4 in Section A.6, as well as the fact that functions $g_{s}^{(q)}(t)$ on \mathbb{R} and $g(t)$ on $t \geq 0$ are both bounded and continuous. Further, $X=\left(X_{1}, \ldots, X_{d}\right)$ is a classical random vector that follow the normal distribution $N(h, V)$, and $E_{h}[\cdot]$ denotes the expectation with respect to $N(h, V)$. As for the second limit $m \rightarrow \infty$, due to

$$
\left|\frac{\sum_{\omega \in \Omega^{(m, \ell, p)}} P(\omega)\left(f_{\omega}^{(q)}(x)+\frac{1}{(2 m)^{d}}\right)}{\sum_{\omega \in \Omega^{(m, \ell)}}\left(f_{\omega}^{(q)}(x)+\frac{1}{(2 m)^{d}}\right)}\right| \leq \max _{\omega \in[-p, p]^{d}}|P(\omega)|<\infty,
$$

the bounded convergence theorem yields

$$
\begin{align*}
\lim _{m \rightarrow \infty}(\mathrm{~A} .10) & =\int_{\mathbb{R}^{d}} \lim _{m \rightarrow \infty} \frac{\left(\frac{\ell}{m}\right)^{d} \sum_{\omega \in \Omega^{(m, \ell, p)}} P(\omega)\left(f_{\omega}^{(q)}(x)+\frac{1}{(2 m)^{d}}\right)}{\left(\frac{\ell}{m}\right)^{d} \sum_{\omega \in \Omega^{(m, \ell)}}\left(f_{\omega}^{(q)}(x)+\frac{1}{(2 m)^{d}}\right)} p_{h}(x) \mathrm{d} x \\
& =\int_{\mathbb{R}^{d}} \frac{\int_{\omega \in[-p, p]^{d}} P(\omega) p^{(q)}(\omega, x) \mathrm{d} \omega}{\int_{\omega \in[-\ell,]^{d}} p^{(q)}(\omega, x) \mathrm{d} \omega} p_{h}(x) \mathrm{d} x, \tag{A.11}
\end{align*}
$$

where $p^{(q)}(\omega, x)=\left(\frac{q}{2 \pi}\right)^{\frac{d}{2}} \exp \left(-\frac{q}{2} \sum_{i=1}^{d}\left(x_{i}-\omega_{i}\right)^{2}\right)$, and Darboux's theorem for the Riemann integral was used in the second line. Finally, the dominated convergence theorem and Fubini's theorem
yield

$$
\begin{align*}
\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \lim _{\ell \rightarrow \infty}(\mathrm{A} .11) & =\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \int_{\mathbb{R}^{d}} \frac{\int_{\omega \in[-p, p]^{d}} P(\omega) p^{(q)}(\omega, x) \mathrm{d} \omega}{\int_{\mathbb{R}^{d}} p^{(q)}(\omega, x) \mathrm{d} \omega} p_{h}(x) \mathrm{d} x \\
& =\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \int_{\mathbb{R}^{d}}\left(\int_{\omega \in[-p, p]^{d}} P(\omega) p^{(q)}(\omega, x) \mathrm{d} \omega\right) p_{h}(x) \mathrm{d} x \\
& =\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \int_{\omega \in[-p, p]^{d}}\left(\int_{\mathbb{R}^{d}} p^{(q)}(\omega, x) p_{h}(x) \mathrm{d} x\right) P(\omega) \mathrm{d} \omega \\
& =\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} \int_{\omega \in[-p, p]^{d}} p_{h}^{(q)}(\omega) P(\omega) \mathrm{d} \omega \\
& =\lim _{p \rightarrow \infty} \int_{\omega \in[-p, p]^{d}} p_{h}(\omega) P(\omega) \mathrm{d} \omega \\
& =\int_{\mathbb{R}^{d}} p_{h}(\omega) P(\omega) \mathrm{d} \omega, \tag{A.12}
\end{align*}
$$

where $p_{h}^{(q)}(\omega)$ is the density function of $N\left(h, V+\frac{1}{q} I\right)$. This completes the proof.
Lemma A.2. For each $i \in \mathbb{N}$, let $\left\{a_{n_{1} n_{2} \cdots n_{r} n}^{i} ;\left(n_{1}, n_{2}, \ldots, n_{r}, n\right) \in \mathbb{N}^{(r+1)}\right\}$ be an $(r+1)$-tuple sequence on a normed space V. If, for each $i \in \mathbb{N}$, there exists an $\alpha^{i} \in V$ such that

$$
\lim _{n_{1} \rightarrow \infty} \lim _{n_{2} \rightarrow \infty} \cdots \lim _{n_{r} \rightarrow \infty} \lim _{n \rightarrow \infty} a_{n_{1} n_{2} \cdots n_{r} n}^{i}=\alpha^{i}
$$

then there exist a subsequence $\left\{\left(n_{1}(n), n_{2}(n), \ldots, n_{r}(n), n\right)\right\}_{n \in \mathbb{N}}$ that satisfies

$$
\lim _{n \rightarrow \infty} a_{n_{1}(n) n_{2}(n) \cdots n_{r}(n) n}^{i}=\alpha^{i}
$$

for all $i \in \mathbb{N}$.
Proof. We first prove the case when $r=1$. Let $a_{n_{1}}^{i}:=\lim _{n \rightarrow \infty} a_{n_{1} n}^{i}$. We construct a subsequence $\left\{\left(n_{1}(k), n(k)\right)\right\}_{k \in \mathbb{N}}$ in a recursive manner as follows. We set $n_{1}(1)=n(1)=1$. For $k \geq 2$, it follows from $\lim _{n_{1} \rightarrow \infty} a_{n_{1}}^{i}=\alpha^{i}$ that there exist an $N_{1}(k) \in \mathbb{N}$ such that $n_{1} \geq N_{1}(k)$ implies

$$
\max _{1 \leq i \leq k}\left|a_{n_{1}}^{i}-\alpha^{i}\right|<\frac{1}{k}
$$

Thus the number $n_{1}(k):=\max \left\{N_{1}(k), n_{1}(k-1)+1\right\}$ satisfies

$$
\begin{equation*}
\max _{1 \leq i \leq k}\left|a_{n_{1}(k)}^{i}-\alpha^{i}\right|<\frac{1}{k} . \tag{A.13}
\end{equation*}
$$

For this $n_{1}(k)$, it follows from $\lim _{n \rightarrow \infty} a_{n_{1}(k) n}^{i}=a_{n_{1}(k)}^{i}$ that there exist an $N(k) \in \mathbb{N}$ such that $n \geq N(k)$ implies

$$
\begin{equation*}
\max _{1 \leq i \leq k}\left|a_{n_{1}(k) n}^{i}-a_{n_{1}(k)}^{i}\right|<\frac{1}{k} . \tag{A.14}
\end{equation*}
$$

Thus we set $n(k):=\max \{N(k), n(k-1)+1\}$.
Now let $k(n):=\max \{k ; n(k) \leq n\}$, which is non-decreasing in n and $\lim _{n \rightarrow \infty} k(n)=\infty$. We show that the subsequence $\left.\left\{n_{1}(k(n)), n\right) ; n \in \mathbb{N}\right\}$ enjoys the required property: for all $i \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} a_{n_{1}(k(n)) n}^{i}=\alpha^{i}
$$

Given $i \in \mathbb{N}$ and $\varepsilon>0$ arbitrarily, there exist an $N \in \mathbb{N}$ such that $n \geq N$ implies $k(n) \geq$ $\max \left\{i,\left\lceil\frac{2}{\varepsilon}\right\rceil\right\}$. Then for all $n \geq N$, we have

$$
\begin{aligned}
\left|a_{n_{1}(k(n)) n}^{i}-\alpha^{i}\right| & \leq\left|a_{n_{1}(k(n)) n}^{i}-a_{n_{1}(k(n))}^{i}\right|+\left|a_{n_{1}(k(n))}^{i}-\alpha^{i}\right| \\
& \leq \max _{1 \leq j \leq k(n)}\left|a_{n_{1}(k(n)) n}^{j}-a_{n_{1}(k(n))}^{j}\right|+\max _{1 \leq j \leq k(n)}\left|a_{n_{1}(k(n))}^{j}-\alpha^{j}\right| \\
& <\frac{2}{k(n)} \leq \varepsilon .
\end{aligned}
$$

In the third inequality, we used (A.13) and (A.14), as well as its premise $n \geq n(k(n)) \geq N(k(n))$.
The proof for a generic r is similar.
A.6. Quantum central limit theorem. Jakšić, Pautrat, and Pillet [3] proved the following strong version of a quantum central limit theorem.

Proposition A.3. Given a sequence $\mathcal{H}^{(n)}$ of Hilbert space, let $\rho^{(n)}$ and $A^{(n)}=\left(A_{1}^{(n)}, \ldots, A_{d}^{(n)}\right)$ be a state and a list of observables on $\mathcal{H}^{(n)}$ that enjoy the quantum central limit theorem in the sense of convergence of the quasi-characteristic function:

$$
\left(A^{(n)}, \rho^{(n)}\right) \underset{q}{\rightsquigarrow} N(h, J) \sim(X, \phi),
$$

where J is a $d \times d$ positive semidefinite matrix. Then for any bounded continuous functions f_{1}, \ldots, f_{m} and a noncommutative polynomial P, it follows that

$$
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)=\phi(P(\overrightarrow{f(X)}))
$$

where $\overrightarrow{f(B)}:=\left(f_{1}\left(B_{1}\right), \ldots, f_{1}\left(B_{d}\right), \ldots, f_{m}\left(B_{1}\right), \ldots, f_{m}\left(B_{d}\right)\right)$ for a given list $B=\left(B_{1}, \ldots, B_{d}\right)$ of observables, and $P(\overrightarrow{f(B)}):=P\left(f_{1}\left(B_{1}\right), \ldots, f_{1}\left(B_{d}\right), \ldots, f_{m}\left(B_{1}\right), \ldots, f_{m}\left(B_{d}\right)\right)$.

Proposition A. 3 is strong enough to prove the following, which is essential in constructing a sequence of POVMs that asymptotically achieves the Holevo bound (Section 3 in [4]).

Corollary A.4. Under the same assumption as in Proposition A.3, for any bounded continuous functions g, f_{1}, \ldots, f_{m}, and noncommutative polynomials P, Q, with P being Hermitian operator-valued, it follows that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) Q\left(\overrightarrow{f\left(A^{(n)}\right)}\right) g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) \\
=\phi(g(P(\overrightarrow{f(X)})) Q(\overrightarrow{f(X)}) g(P(\overrightarrow{f(X)}))) .
\end{gathered}
$$

Proof. Let $l:=\max _{1 \leq i \leq m} \sup _{x}\left|f_{i}(x)\right|$. There exist $l_{P}>0$ and $l_{Q}>0$ such that $l_{P}>\|P(\vec{B})\|$ and $l_{Q}>\|Q(\vec{B})\|$ for any list $\vec{B}=\left(B_{1}, \ldots, B_{d m}\right)$ of observables such that $\left\|B_{i}\right\| \leq l$. Let $l_{g}:=$ $\sup \left\{|g(x)| ; x \in\left[-l_{P}, l_{P}\right]\right\}$. There exist a sequence $R^{(k)}(x)$ of polynomials that uniformly converges to $g(x)$ on $\left[-l_{P}, l_{P}\right]$.

Let

$$
a_{k n}:=\operatorname{Tr} \rho^{(n)} R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) Q\left(\overrightarrow{f\left(A^{(n)}\right)}\right) R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right)
$$

and let

$$
a_{n}:=\operatorname{Tr} \rho^{(n)} g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) Q\left(\overrightarrow{f\left(A^{(n)}\right)}\right) g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) .
$$

We show that $a_{k n}$ uniformly converges to a_{n} as $k \rightarrow \infty$. In fact, letting $l_{R}:=\sup \left\{R^{(k)}(x) ; k \in\right.$ $\left.\mathbb{N}, x \in\left[-l_{P}, l_{P}\right]\right\}$,

$$
\begin{aligned}
& \sup _{n \in \mathbb{N}}\left|a_{n}-a_{k n}\right| \\
&= \sup _{n \in \mathbb{N}} \mid \operatorname{Tr} \rho^{(n)} g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) Q\left(\overrightarrow{f\left(A^{(n)}\right)}\right) g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) \\
&=-\operatorname{Tr} \rho^{(n)} R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) Q\left(\overrightarrow{f\left(A^{(n)}\right)}\right) R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) \mid \\
& \leq \sup _{n \in \mathbb{N}}\left|\operatorname{Tr} \rho^{(n)} g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) Q\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\left[g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right)-R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right)\right]\right| \\
&\left.+\sup _{n \in \mathbb{N}} \mid \operatorname{Tr} \rho^{(n)}\left[g\left(P\left(\overrightarrow{f\left(A^{(n)}\right.}\right)\right)\right)-R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right)\right] Q\left(\overrightarrow{f\left(A^{(n)}\right)}\right) R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) \mid \\
& \leq l_{g} l_{Q} \sup _{n \in \mathbb{N}} \mid g\left(P\left(\overrightarrow{ } \mid \overrightarrow{\left(A^{(n)}\right)}\right)\right)-R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) \| \\
&+l_{Q} l_{R} \sup _{n \in \mathbb{N}} \mid g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right)-R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) \| \\
& \leq l_{Q}\left(l_{g}+l_{R}\right) \sup _{x \in\left[-l_{P}, l_{P}\right]}\left|g(x)-R^{(k)}(x)\right|,
\end{aligned}
$$

which converges to zero as $k \rightarrow \infty$.
The uniform convergence $a_{k n} \rightrightarrows a_{n}$ as well as the existence of $\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} a_{k n}$, which follows from Proposition A.3, ensure that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) Q\left(\overrightarrow{f\left(A^{(n)}\right)}\right) g\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) \\
& \quad=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \operatorname{Tr} \rho^{(n)} R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) Q\left(\overrightarrow{f\left(A^{(n)}\right)}\right) R^{(k)}\left(P\left(\overrightarrow{f\left(A^{(n)}\right)}\right)\right) \\
& \quad=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} a_{k n} \\
& \quad=\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} a_{k n} \\
& \quad=\lim _{k \rightarrow \infty} \phi\left(R^{(k)}(P(\overrightarrow{f(X)})) Q(\overrightarrow{f(X)}) R^{(k)}(P(\overrightarrow{f(X)}))\right) \\
& \quad=\phi(g(P(\overrightarrow{f(X)})) Q(\overrightarrow{f(X)}) g(P(\overrightarrow{f(X)}))) .
\end{aligned}
$$

This proves the claim.

APPENDIX B: ELEMENTS OF QUANTUM ESTIMATION THEORY

This section is devoted to a brief account of quantum estimation theory.
B.1. Commutation operator and the Holevo bound. In the study of quantum statistics, Holevo [2] introduced useful mathematical tools called the square summable operators and the commutation operators associated with quantum states. Let \mathcal{H} be a separable Hilbert space and let ρ be a density operator. We define a real Hilbert space $\mathcal{L}_{h}^{2}(\rho)$ associated with ρ by the completion of the set $\mathcal{B}_{h}(\mathcal{H})$ of bounded Hermitian operators with respect to the pre-inner product $\langle X, Y\rangle_{\rho}:=$
$\operatorname{Re} \operatorname{Tr} \rho X Y$. Letting $\rho=\sum_{j} s_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ be the spectral representation, an element $X \in \mathcal{L}_{h}^{2}(\rho)$ can be regarded as an equivalence class of those Hermitian operators, called the square summable operators, which satisfy $\sum_{j} s_{j}\left\|X \psi_{j}\right\|^{2}<\infty$ (so that $\psi_{j} \in \operatorname{Dom}(X)$ if $\left.s_{j} \neq 0\right)$ under the identification $X_{1} \sim X_{2}$ if $X_{1} \psi_{j}=X_{2} \psi_{j}$ for $s_{j} \neq 0$. The space $\mathcal{L}_{h}^{2}(\rho)$ thus provides a convenient tool to cope with unbounded observables. Note that when \mathcal{H} is finite dimensional, the setup is considerably simplified to be $\mathcal{L}_{h}^{2}(\rho)=\mathcal{B}_{h}(\mathcal{H}) / \operatorname{ker} \rho$.

Let $\mathcal{L}^{2}(\rho)$ be the complexification of $\mathcal{L}_{h}^{2}(\rho)$, which is also regarded as the completion of $\mathcal{B}(\mathcal{H})$ with respect to the pre-inner product

$$
\langle X, Y\rangle_{\rho}:=\frac{1}{2} \operatorname{Tr} \rho\left(Y X^{*}+X^{*} Y\right) .
$$

Thus $\mathcal{L}^{2}(\rho)$ is a complex Hilbert space with this inner product. Let us further introduce two sesquilinear forms on $\mathcal{B}(\mathcal{H})$ by

$$
(X, Y)_{\rho}:=\operatorname{Tr} \rho Y X^{*}, \quad[X, Y]_{\rho}:=\frac{1}{2 \sqrt{-1}} \operatorname{Tr} \rho\left(Y X^{*}-X^{*} Y\right)
$$

and extend them to $\mathcal{L}^{2}(\rho)$ by continuity. (Note that $(X, X)_{\rho} \leq 2\langle X, X\rangle_{\rho}$ and $(X, Y)_{\rho}=\langle X, Y\rangle_{\rho}+$ $\sqrt{-1}[X, Y]_{\rho}$.)

The commutation operator $\mathcal{D}_{\rho}: \mathcal{L}^{2}(\rho) \rightarrow \mathcal{L}^{2}(\rho)$ with respect to ρ is defined by

$$
[X, Y]_{\rho}=\left\langle X, \mathcal{D}_{\rho} Y\right\rangle_{\rho},
$$

which is formally represented by the operator equation

$$
\mathcal{D}_{\rho}(X) \rho+\rho \mathcal{D}_{\rho}(X)=\sqrt{-1}(X \rho-\rho X) .
$$

(To be precise, Holevo's original definition is different from the above one by a factor of 2.) The operator \mathcal{D}_{ρ} is a \mathbb{C}-linear bounded skew-adjoint operator. Moreover, since the forms $[\cdot, \cdot]_{\rho}$ and $\langle\cdot, \cdot\rangle_{\rho}$ are real on the real subspace $\mathcal{L}_{h}^{2}(\rho)$, this subspace is invariant under the operation of \mathcal{D}_{ρ}. Thus \mathcal{D}_{ρ} can be regarded as an \mathbb{R}-linear bounded skew-adjoint operator when restricted to $\mathcal{L}_{h}^{2}(\rho)$ as $\mathcal{D}_{\rho}: \mathcal{L}_{h}^{2}(\rho) \rightarrow \mathcal{L}_{h}^{2}(\rho)$. When no confusion is likely to arise, we drop the subscript ρ of \mathcal{D}_{ρ} and simply denote it as \mathcal{D}.

Let $\mathcal{S}=\left\{\rho_{\theta} ; \theta \in \Theta \in \mathbb{R}^{d}\right\}$ be a quantum statistical model satisfying the conditions: 1) the parametrization $\theta \mapsto \rho_{\theta}$ is smooth and nondegenerate so that the derivatives $\left\{\partial \rho_{\theta} / \partial \theta^{i}\right\}_{1 \leq i \leq d}$ exist in trace class and form a linearly independent set at each point $\theta \in \Theta$, and 2) there exists a constant c such that

$$
\left|\frac{\partial}{\partial \theta^{i}} \operatorname{Tr} \rho_{\theta} X\right|^{2} \leq c\langle X, X\rangle_{\rho_{\theta}}
$$

for all $X \in \mathcal{B}(\mathcal{H})$ and i. The second condition assures that the linear functionals $X \mapsto\left(\partial / \partial \theta^{i}\right) \operatorname{Tr} \rho_{\theta} X$ can be extended to continuous linear functionals on $\mathcal{L}^{2}\left(\rho_{\theta}\right)$. Given a quantum statistical model satisfying the above conditions, the symmetric logarithmic derivative (SLD) $L_{\theta, i}$ in the i th direction is defined as the operator in $\mathcal{L}^{2}\left(\rho_{\rho_{\theta}}\right)$ satisfying

$$
\frac{\partial}{\partial \theta^{i}} \operatorname{Tr} \rho_{\theta} X=\left\langle L_{\theta, i}, X\right\rangle_{\rho_{\theta}}
$$

It is easily verified that $L_{\theta, i} \in \mathcal{L}_{h}^{2}\left(\rho_{\theta}\right)$; so the definition is formally written as

$$
\begin{equation*}
\frac{\partial \rho_{\theta}}{\partial \theta^{i}}=\frac{1}{2}\left(L_{\theta, i} \rho_{\theta}+\rho_{\theta} L_{\theta, i}\right) . \tag{B.1}
\end{equation*}
$$

When no confusion occurs, we simply denote $L_{\theta, i}$ as L_{i}. Since L_{i} is a faithful operator representation of the tangent vector $\partial / \partial \theta^{i}$, we shall call the \mathbb{R}-linear space $\operatorname{span}_{\mathbb{R}}\left\{L_{i}\right\}_{i=1}^{d}$ the $S L D$ tangent space of the model ρ_{θ} at θ. Incidentally the $d \times d$ real symmetric matrix $J_{\theta}:=\left[\operatorname{Re} \operatorname{Tr} \rho_{\theta} L_{i} L_{j}\right]_{1 \leq i, j \leq d}$ is called the SLD Fisher information matrix of the model \mathcal{S} at θ.

An estimator \hat{M} for the parameter θ of the model \mathcal{S} is called unbiased if

$$
\begin{equation*}
E_{\theta}[\hat{M}]=\theta \tag{B.2}
\end{equation*}
$$

for all $\theta \in \Theta$, where $E_{\theta}[\cdot]$ denotes the expectation with respect to ρ_{θ}. An estimator \hat{M} is called locally unbiased at $\theta_{0} \in \Theta$ if the condition (B.2) is satisfied around $\theta=\theta_{0}$ up to the first order of the Taylor expansion. It is well known that an estimator \hat{M} that is locally unbiased at θ_{0} satisfies the quantum (SLD) Cramér-Rao inequality, $V_{\theta_{0}}[\hat{M}] \geq J_{\theta_{0}}^{-1}$, where $V_{\theta_{0}}[\cdot]$ denotes the covariance matrix with respect to $\rho_{\theta_{0}}$. The lower bound $J_{\theta_{0}}^{-1}$ cannot be attained in general due to the noncommutativity of the SLDs. Because of this fact, we often switch the problem to minimizing the weighted sum of covariances, $\operatorname{Tr} G V_{\theta_{0}}[\hat{M}]$, given a $d \times d$ real positive definite matrix G. It is known that this quantity also has a variety of Cramér-Rao type lower bounds [2]:

$$
\operatorname{Tr} G V_{\theta_{0}}[\hat{M}] \geq C_{\theta_{0}}\left(\rho_{\theta}, G\right)
$$

Among others, we concentrate our attention to the Holevo bound [2]:

$$
\begin{align*}
C_{\theta_{0}}\left(\rho_{\theta}, G\right):= & \min _{V, B}\left\{\operatorname{Tr} G V ; V \text { is a real matrix such that } V \geq Z(B), Z_{i j}(B)=\operatorname{Tr} \rho_{\theta_{0}} B_{j} B_{i},\right. \\
& \left.B_{1}, \ldots, B_{d} \text { are Hermitian operators on } \mathcal{H} \text { such that } \operatorname{Re} \operatorname{Tr} \rho_{\theta_{0}} L_{i} B_{j}=\delta_{i j}\right\} . \tag{B.3}
\end{align*}
$$

The minimization problem over V is explicitly solved, to obtain

$$
\begin{aligned}
C_{\theta_{0}}\left(\rho_{\theta}, G\right)= & \min _{B}\left\{\operatorname{Tr} G Z(B)+\operatorname{Tr}|\sqrt{G} \operatorname{Im} Z(B) \sqrt{G}| ; Z_{i j}(B)=\operatorname{Tr} \rho_{\theta_{0}} B_{j} B_{i},\right. \\
& \left.B_{1}, \ldots, B_{d} \text { are Hermitian operators on } \mathcal{H} \text { such that } \operatorname{Re} \operatorname{Tr} \rho_{\theta_{0}} L_{i} B_{j}=\delta_{i j}\right\} .
\end{aligned}
$$

Our aim here is to derive a further concise expression for it in terms of a \mathcal{D} invariant extension of the SLD tangent space, a subspace of $\left\{X \in \mathcal{L}_{h}^{2}\left(\rho_{\theta_{0}}\right) ; \operatorname{Tr} \rho_{\theta_{0}} X=0\right\}$ including the SLD tangent space such that $\mathcal{D}(\mathcal{T}) \subset \mathcal{T}$.

Theorem B.1. Suppose that a quantum statistical model $\mathcal{S}=\left\{\rho_{\theta} ; \theta \in \Theta \subset \mathbb{R}^{d}\right\}$ on \mathcal{H} has a finite dimensional \mathcal{D} invariant extension \mathcal{T} of the $S L D$ tangent space of \mathcal{S} at $\theta=\theta_{0}$. Letting $\left\{D_{j}\right\}_{j=1}^{r}$ be a basis of \mathcal{T}, the Holevo bound defined by (B.3) is rewritten as

$$
\begin{align*}
& C_{\theta_{0}}\left(\rho_{\theta}, G\right)=\min _{F}\left\{\operatorname{Tr} G Z+\operatorname{Tr}|\sqrt{G} \operatorname{Im} Z \sqrt{G}| ; Z={ }^{t} F \Sigma F,\right. \\
&\left.F \text { is an } r \times d \text { real matrix satisfying }{ }^{t} F \operatorname{Re}(\tau)=I\right\}, \tag{B.4}
\end{align*}
$$

where Σ and τ are $r \times r$ and $r \times d$ complex matrices whose (i, j) th entries are given by $\Sigma_{i j}=$ $\operatorname{Tr} \rho_{\theta_{0}} D_{j} D_{i}$ and $\tau_{i j}=\operatorname{Tr} \rho_{\theta_{0}} L_{j} D_{i}$.

Proof. Let \mathcal{T}^{\perp} be the orthogonal complement of \mathcal{T} in $\mathcal{L}_{h}^{2}\left(\rho_{\theta_{0}}\right)$ with respect to the inner product $\langle\cdot, \cdot\rangle_{\rho_{\theta_{0}}}$, and let $\mathcal{P}: \mathcal{L}_{h}^{2}\left(\rho_{\theta_{0}}\right) \rightarrow \mathcal{T}$ and $\mathcal{P}^{\perp}: \mathcal{L}_{h}^{2}\left(\rho_{\theta_{0}}\right) \rightarrow \mathcal{T}^{\perp}$ be the projections associated with the decomposition $\mathcal{L}_{h}^{2}\left(\rho_{\theta_{0}}\right)=\mathcal{T} \oplus \mathcal{T}^{\perp}$. Note that if $X \in \mathcal{T}^{\perp}$ and $Y \in \mathcal{T}$, then

$$
(X, Y)_{\rho_{\theta_{0}}}=\langle X, Y\rangle_{\rho_{\theta_{0}}}+\sqrt{-1}\langle X, \mathcal{D} Y\rangle_{\rho_{\theta_{0}}}=0
$$

We show that the operators $\left\{B_{j}\right\}_{j=1}^{d}$ that achieve the minimum in (B.3) can be taken from \mathcal{T}. Let $\left\{B_{j}\right\}_{j=1}^{d} \subset \mathcal{L}_{h}^{2}\left(\rho_{\theta_{0}}\right)$ satisfies the local unbiasedness condition $\operatorname{Re} \operatorname{Tr} \rho_{\theta_{0}} L_{i} B_{j}=\delta_{i j}$, which is rewritten as

$$
\left\langle L_{i}, B_{j}\right\rangle_{\rho_{\theta_{0}}}=\delta_{i j} .
$$

Then $\left\{\mathcal{P}\left(B_{j}\right)\right\}_{j=1}^{d}$ also satisfies the local unbiasedness

$$
\left\langle L_{i}, \mathcal{P}\left(B_{j}\right)\right\rangle_{\rho_{\theta_{0}}}=\left\langle L_{i}, B_{j}\right\rangle_{\rho_{\theta_{0}}}=\delta_{i j} .
$$

Further,

$$
\begin{aligned}
Z_{i j}(B) & =\left(B_{i}, B_{j}\right)_{\rho_{\theta_{0}}}=\left(\mathcal{P}\left(B_{i}\right)+\mathcal{P}^{\perp}\left(B_{i}\right), \mathcal{P}\left(B_{j}\right)+\mathcal{P}^{\perp}\left(B_{j}\right)\right)_{\rho_{\theta_{0}}} \\
& =\left(\mathcal{P}\left(B_{i}\right), \mathcal{P}\left(B_{j}\right)\right)_{\rho_{\theta_{0}}}+\left(\mathcal{P}^{\perp}\left(B_{i}\right), \mathcal{P}^{\perp}\left(B_{j}\right)\right)_{\rho_{\theta_{0}}}=Z_{i j}(\mathcal{P}(B))+Z_{i j}\left(\mathcal{P}^{\perp}(B)\right) .
\end{aligned}
$$

Since $Z(\cdot)$ is a Gram matrix and is positive semidefinite, this decomposition implies that $Z(B) \geq$ $Z(\mathcal{P}(B))$. Thus the observables B that minimize (B.3) can be taken from \mathcal{T}.

Let $B_{j} \in \mathcal{T}$ be expanded as $B_{j}=F_{j}^{k} D_{k}$, where F is an $r \times d$ real matrix. Then the local unbiasedness condition is rewritten as

$$
\left\langle L_{i}, B_{j}\right\rangle_{\rho_{\theta_{0}}}=F_{j}^{k}\left\langle L_{i}, D_{k}\right\rangle_{\rho_{\theta_{0}}}=\delta_{i j},
$$

or in a matrix form,

$$
{ }^{t} F(\operatorname{Re} \tau)=I .
$$

Further, the Gram matrix $Z(B)$ is rewritten as

$$
Z_{i j}(B)=\left(B_{i}, B_{j}\right)_{\rho_{\theta_{0}}}=F_{i}^{k} F_{j}^{\ell}\left(D_{k}, D_{\ell}\right)_{\rho_{\theta_{0}}},
$$

or,

$$
Z(B)={ }^{t} F \Sigma F .
$$

This proves the claim.
When the SLD tangent space itself is \mathcal{D} invariant, the Holevo bound can be represented in terms of the RLD Fisher information matrix as follows.

Corollary B.2. Let $\left\{\rho_{\theta} ; \theta \in \Theta \subset \mathbb{R}^{d}\right\}$ be a quantum statistical model, and let $L_{i}(1 \leq i \leq d)$ be the SLDs at θ_{0}. If the SLD tangent space $\operatorname{span}_{\mathbb{R}}\left\{L_{i}\right\}_{i=1}^{d}$ at θ_{0} is \mathcal{D} invariant, then

$$
C_{\theta_{0}}\left(\rho_{\theta}, G\right)=\operatorname{Tr} G\left(J^{(R)}\right)^{-1}+\operatorname{Tr}\left|\sqrt{G} \operatorname{Im}\left(J^{(R)}\right)^{-1} \sqrt{G}\right|,
$$

where $\left(J^{(R)}\right)^{-1}:=(\operatorname{Re} J)^{-1} J(\operatorname{Re} J)^{-1}$ with $J_{i j}=\operatorname{Tr} \rho_{\theta_{0}} L_{j} L_{i}$.
Proof. Let us set $D_{i}:=L_{i}$ for $1 \leq i \leq d$ in Theorem B.1. Then $\Sigma=\tau$, and the local unbiasedness condition ${ }^{t} F(\operatorname{Re} \tau)=I$ has a unique solution $F=(\operatorname{Re} \Sigma)^{-1}$, whereby $Z=$ $(\operatorname{Re} J)^{-1} J(\operatorname{Re} J)^{-1}$.

Note that RLDs may not exist if the model is degenerate (i.e., non-faithful). This means that $J^{(R)}$ may not be well-defined for such a model. Nevertheless we use the notation $\left(J^{(R)}\right)^{-1}$ even for a degenerate model, and call it the inverse of the RLD Fisher information matrix, as long as the SLD tangent space is \mathcal{D} invariant. For an idea behind this nomenclature, consult [1].

Finally, we show that the Holevo bound for the nth i.i.d. extension model is precisely $\frac{1}{n}$ times that for the base model.

Corollary B.3. Given a quantum statistical model $\mathcal{S}=\left\{\rho_{\theta} ; \theta \in \Theta \subset \mathbb{R}^{d}\right\}$ that has a finite dimensional \mathcal{D} invariant extension of the $S L D$ tangent space, let $\mathcal{S}^{(n)}=\left\{\rho_{\theta}^{\otimes n} ; \theta \in \Theta \subset \mathbb{R}^{d}\right\}$ be the nth i.i.d. extension model. Then

$$
C_{\theta_{0}}\left(\rho_{\theta}^{\otimes n}, G\right)=\frac{1}{n} C_{\theta_{0}}\left(\rho_{\theta}, G\right)
$$

Proof. Let us distinguish quantities that belong to models of different extension by specifying the degree n of extension in the superscript. Letting $\left\{L_{i}\right\}_{i=1}^{d}$ and $\left\{D_{j}\right\}_{j=1}^{r}$ be SLDs and a basis of \mathcal{T} in Theorem B.1, the corresponding quantities for $\mathcal{S}^{(n)}$ are given by

$$
L_{i}^{(n)}=\sum_{k=1}^{n} I^{\otimes k-1} \otimes L_{i} \otimes I^{\otimes n-k}
$$

and

$$
D_{j}^{(n)}=\sum_{k=1}^{n} I^{\otimes k-1} \otimes D_{j} \otimes I^{\otimes n-k}
$$

Thus

$$
\Sigma^{(n)}=n \Sigma^{(1)}, \quad \tau^{(n)}=n \tau^{(1)}, \quad F^{(n)}=\frac{1}{n} F^{(1)}
$$

so that

$$
Z^{(n)}={ }^{t} F^{(n)} \Sigma^{(n)} F^{(n)}=\frac{1}{n} Z^{(1)}
$$

and

$$
C_{\theta_{0}}\left(\rho_{\theta}^{\otimes n}, G\right)=\frac{1}{n} C_{\theta_{0}}\left(\rho_{\theta}, G\right)
$$

doe to Theorem B.1.
B.2. Estimation of quantum Gaussian shift model. In this section, we briefly overview the estimation theory for a quantum Gaussian shift model. For a mathematically rigorous treatment, consult [2].

Lemma B.4. Let $\left(X, \phi_{h}\right) \sim N(h, J)$, where J is a $d \times d$ positive semidefinite complex matrix. Then

$$
\begin{equation*}
\phi_{h}\left(X_{i}\right)=h_{i} \tag{B.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{h}\left(\left(X_{j}-h_{j}\right)\left(X_{i}-h_{i}\right)\right)=J_{i j} \tag{B.6}
\end{equation*}
$$

hold.
Proof. Letting $U(\xi):=\mathrm{e}^{\sqrt{-1} \xi^{i} X_{i}}$,

$$
\begin{aligned}
\phi_{h}(U(\xi)) & =1+\sqrt{-1} \phi_{h}\left(\xi^{i} X_{i}\right)-\frac{1}{2} \phi_{h}\left(\left(\xi^{i} X_{i}\right)^{2}\right)+o\left(\xi^{2}\right) \\
& =1+\sqrt{-1} \phi_{h}\left(X_{i}\right) \xi^{i}-\frac{1}{2} \phi_{h}\left(X_{i} X_{j}\right) \xi^{i} \xi^{j}+o\left(\xi^{2}\right) \\
& =1+\sqrt{-1} \phi_{h}\left(X_{i}\right) \xi^{i}-\frac{1}{2} \phi_{h}\left(X_{i} \circ X_{j}\right) \xi^{i} \xi^{j}+o\left(\xi^{2}\right)
\end{aligned}
$$

where $X_{i} \circ X_{j}=\frac{1}{2}\left(X_{i} X_{j}+X_{J} X_{i}\right)$. Further, letting $V=\operatorname{Re} J$ and $S=\operatorname{Im} J$,

$$
\begin{aligned}
\mathrm{e}^{\sqrt{-1} \xi^{i} h_{i}-\frac{1}{2} V_{i j} \xi^{i} \xi^{j}} & =1+\left(\sqrt{-1} \xi^{i} h_{i}-\frac{1}{2} V_{i j} \xi^{i} \xi^{j}\right)+\frac{1}{2}\left(\sqrt{-1} \xi^{i} h_{i}-\frac{1}{2} V_{i j} \xi^{i} \xi^{j}\right)^{2}+o\left(\xi^{2}\right) \\
& =1+\sqrt{-1} \xi^{i} h_{i}-\frac{1}{2}\left(V_{i j}+h_{i} h_{j}\right) \xi^{i} \xi^{j}+o\left(\xi^{2}\right)
\end{aligned}
$$

A comparison immediately leads to (B.5) and the identity $\phi_{h}\left(X_{i} \circ X_{j}\right)=V_{i j}+h_{i} h_{j}$. Thus

$$
\begin{aligned}
\phi_{h}\left(\left(X_{j}-h_{j}\right)\left(X_{i}-h_{i}\right)\right) & =\phi_{h}\left(X_{j} X_{i}-h_{j} X_{i}-h_{i} X_{j}+h_{i} h_{j}\right) \\
& =\phi_{h}\left(X_{j} X_{i}\right)-h_{i} h_{j} \\
& =\phi_{h}\left(X_{i} \circ X_{j}-\frac{1}{2}\left[X_{i}, X_{j}\right]\right)-h_{i} h_{j}=J_{i j} .
\end{aligned}
$$

In what follows, we treat the quantum Gaussian shift model $\left\{N(\tau h, \Sigma) ; h \in \mathbb{R}^{d}\right\}$ on $\operatorname{CCR}(\operatorname{Im} \Sigma)$, where Σ is an $r \times r$ complex matrix such that $\Sigma \geq 0$ and $\operatorname{Re} \Sigma>0$, and τ is an $r \times d$ real matrix with $d \leq r$ such that $\operatorname{rank} \tau=d$. Let $X=\left(X_{1}, \ldots, X_{r}\right)$ be the basic canonical observables of $\operatorname{CCR}(\operatorname{Im} \Sigma)$, and $\left(X, \phi_{h}\right) \sim N(\tau h, \Sigma)$.

Lemma B.5. Let $U(\xi):=\mathrm{e}^{\sqrt{-1} \xi^{i} X_{i}}$. The $\operatorname{SLD} L_{i}(1 \leq i \leq d)$ at h defined by

$$
\begin{equation*}
\frac{\partial}{\partial h_{k}} \phi_{h}(U(\xi))=\frac{1}{2} \phi_{h}\left(U(\xi) L_{k}+L_{k} U(\xi)\right) \tag{B.7}
\end{equation*}
$$

is given by

$$
\begin{equation*}
L_{k}=\sum_{\ell=1}^{r}\left[(\operatorname{Re} \Sigma)^{-1} \tau\right]_{\ell k}\left(X_{\ell}-(\tau h)_{\ell} I\right) \tag{B.8}
\end{equation*}
$$

Proof. In this proof we lift Einstein's summation convention. Let $V=\operatorname{Re} \Sigma$ and $S=\operatorname{Im} \Sigma$, and fix a $k \in\{1, \ldots, d\}$ arbitrarily. Due to the Baker-Hausdorff formula,

$$
U(\xi)=\mathrm{e}^{\sqrt{-1} \sum_{i=1}^{r} \xi^{i} X_{i}}=\exp \left(-\sqrt{-1} \sum_{i=1}^{r} S_{k i} \xi^{k} \xi^{i}\right) \exp \left(\sqrt{-1} \xi^{k} X_{k}\right) \exp \left(\sqrt{-1} \sum_{i \neq k} \xi^{i} X_{i}\right)
$$

By differentiating in ξ^{k}, we have

$$
\frac{\partial}{\partial \xi^{k}} U(\xi)=-\sqrt{-1}\left(\sum_{i=1}^{r} S_{k i} \xi^{i}-X_{k}\right) U(\xi) .
$$

Thus

$$
\begin{aligned}
\phi_{h}\left(\left(X_{k}-(\tau h)_{k} I\right) U(\xi)\right) & =\phi_{h}\left(\left(\sum_{i=1}^{r} S_{k i} \xi^{i}-\sqrt{-1} \frac{\partial}{\partial \xi^{k}}-(\tau h)_{k} I\right) U(\xi)\right) \\
& =\left(\sum_{i=1}^{r} S_{k i} \xi^{i}-\sqrt{-1} \frac{\partial}{\partial \xi^{k}}-(\tau h)_{k}\right) \phi_{h}(U(\xi)) \\
& =\left(\sum_{i=1}^{r} S_{k i} \xi^{i}-\sqrt{-1} \frac{\partial}{\partial \xi^{k}}-(\tau h)_{k}\right) \mathrm{e}^{\sqrt{-1} t} \xi \tau h-\frac{1}{2}{ }^{t} \xi V \xi \\
& =\left(\sum_{i=1}^{r} S_{k i} \xi^{i}-(\tau h)_{k}\right) \phi_{h}(U(\xi))-\sqrt{-1}\left(\sqrt{-1}(\tau h)_{k}-(V \xi)_{k}\right) \phi_{h}(U(\xi)) \\
& =(S \xi+\sqrt{-1} V \xi)_{k} \phi_{h}(U(\xi)) \\
& =\sqrt{-1}(\bar{J} \xi)_{k} \phi_{h}(U(\xi)) .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{equation*}
\phi_{h}\left(U(\xi)\left(X_{k}-(\tau h)_{k} I\right)\right)=\sqrt{-1}(J \xi)_{k} \phi_{h}(U(\xi)) . \tag{B.10}
\end{equation*}
$$

By combining (B.9) and (B.10),

$$
\begin{equation*}
\phi_{h}\left(\left(X_{k}-(\tau h)_{k} I\right) U(\xi)+U(\xi)\left(X_{k}-(\tau h)_{k} I\right)\right)=2 \sqrt{-1}(V \xi)_{k} \phi_{h}(U(\xi)) . \tag{B.11}
\end{equation*}
$$

On the other hand, by a direct calculation

$$
\begin{equation*}
\frac{\partial}{\partial h_{k}} \phi_{h}(U(\xi))=\frac{\partial}{\partial h_{k}} \mathrm{e}^{\sqrt{-1} t} \xi \tau h-\frac{1}{2}^{t} \xi V \xi=\sqrt{-1}\left({ }^{t} \xi \tau\right)_{k} \phi_{h}(U(\xi)) . \tag{B.12}
\end{equation*}
$$

A comparison between (B.11) and (B.12) yields

$$
L_{k}=\sum_{\ell=1}^{r}\left[V^{-1} \tau\right]_{\ell k}\left(X_{\ell}-(\tau h)_{\ell} I\right) .
$$

Let $\tilde{L}_{k}:=X_{k}-(\tau h)_{k} I$. It follows from (B.9) and (B.10) that $\mathcal{D}_{\phi_{h}}\left(\tilde{L}_{i}\right)=\sum_{i=1}^{r}\left(V^{-1} S\right)_{k i} \tilde{L}_{k}$, where $\mathcal{D}_{\phi_{h}}$ is the commutation operator with respect to ϕ_{h} defined by

$$
\phi_{h}\left(U(\xi) \mathcal{D}_{\phi_{h}}(X)+\mathcal{D}_{\phi_{h}}(X) U(\xi)\right)=\sqrt{-1} \phi_{h}(U(\xi) X-X U(\xi)) .
$$

This means $\mathcal{T}=\operatorname{span}\left\{\tilde{L}_{k}\right\}_{k=1}^{r}$ is $\mathcal{D}_{\phi_{h}}$ invariant. Further, we can check from (B.8) that span $\left\{L_{i}\right\}_{i=1}^{d} \subset$ \mathcal{T} and

$$
\begin{equation*}
\phi_{h}\left(\tilde{L}_{j} \tilde{L}_{i}\right)=\Sigma_{i j} \tag{B.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} \phi_{h}\left(L_{j} \tilde{L}_{i}\right)=\tau_{i j} . \tag{B.14}
\end{equation*}
$$

These relations play a fundamental role in connecting a general quantum statistical model $\mathcal{S}=$ $\left\{\rho_{\theta} ; \theta \in \Theta \subset \mathbb{R}^{d}\right\}$ on \mathcal{H} with a quantum Gaussian shift model $\mathcal{G}=\left\{N(\tau h, \Sigma) ; h \in \mathbb{R}^{d}\right\}$ as follows.

Let $\left\{L_{i}^{\mathcal{S}}\right\}_{i=1}^{d}$ be the SLDs of the model \mathcal{S} at $\theta=\theta_{0}$, and let $\mathcal{T}^{\mathcal{S}}$ be a $\mathcal{D}^{\mathcal{S}}$ invariant extension of the SLD tangent space $\operatorname{span}\left\{L_{i}^{\mathcal{S}}\right\}_{i=1}^{d}$. Further let $\left\{D_{j}^{\mathcal{S}}\right\}_{j=1}^{r}$ be a basis of $\mathcal{T}^{\mathcal{S}}$ and let Σ and τ are $r \times r$ and $r \times d$ matrices whose (i, j) th entries are given by $\Sigma_{i j}=\operatorname{Tr} \rho_{\theta_{0}} D_{j} D_{i}$ and $\tau_{i j}=\operatorname{Re} \operatorname{Tr} \rho_{\theta_{0}} L_{j} D_{i}$. Based on those information, we introduce a quantum Gaussian shift model $\mathcal{G}=\left\{N(\tau h, \Sigma) ; h \in \mathbb{R}^{d}\right\}$ on CCR $(\operatorname{Im} \Sigma)$, which exhibits relations (B.13) and (B.14). Recall that the Holevo bound of a quantum statistical model is completely determined by the information Σ and τ (Theorem B.1). We thus obtain the following important consequence.

Corollary B.6. The Holevo bound $C_{\theta_{0}}\left(\rho_{\theta}, G\right)$ for the model \mathcal{S} at $\theta=\theta_{0}$ is identical to the Holevo bound $C_{h}(N(\tau h, \Sigma), G)$ for the Gaussian shift model \mathcal{G}.

As to the achievability of the Holevo bound $C_{h}(N(\tau h, \Sigma), G)$ for the Gaussian shift model \mathcal{G}, we have the following.

Theorem B.7. Given a weight $G>0$, there exist an unbiased estimator \hat{M} that achieves the Holevo bound for the model $\left\{N(\tau h, \Sigma) ; h \in \mathbb{R}^{d}\right\}$, i.e.,

$$
\operatorname{Tr} G V_{h}[\hat{M}]=C_{h}(N(\tau h, \Sigma), G) .
$$

Proof. Let F be the matrix that achieve the minimum of (B.4) for the model $\{N(\tau h, \Sigma)\}_{h}$, and let $Z={ }^{t} F \Sigma F$. Further, let $\tilde{V}=\operatorname{Re} Z, \tilde{S}=\operatorname{Im} Z . \hat{V}=\sqrt{G^{-1}}|\sqrt{G} \operatorname{Im} Z \sqrt{G}| \sqrt{G^{-1}}$, and $\hat{Z}=\hat{V}-\sqrt{-1} \tilde{S}$. We introduce an ancillary quantum Gaussian state $(Y, \psi) \sim N(0, \hat{Z})$ on another $\operatorname{CCR}(-\tilde{S})$, and a set of canonical observables

$$
\bar{X}_{i}:=\tilde{X}_{i} \otimes I+I \otimes Y_{i} \quad(1 \leq i \leq d),
$$

on $\operatorname{CCR}(\tilde{S}) \otimes \operatorname{CCR}(-\tilde{S})$, where $\tilde{X}_{i}=F_{i}^{k} X_{k}$. It is important to notice that the CCR subalgebra $\mathcal{A}[\bar{X}]$ generated by $\left\{\bar{X}_{i}\right\}_{1 \leq i \leq d}$ is a commutative one because

$$
\frac{\sqrt{-1}}{2}\left[\bar{X}_{i}, \bar{X}_{j}\right]=\tilde{S}_{i j}-\tilde{S}_{i j}=0
$$

for $1 \leq i, j \leq d$. Moreover

$$
\left(\phi_{h} \otimes \psi\right)\left(\mathrm{e}^{\sqrt{-1} \xi^{i} \bar{X}_{i}}\right)=\left[\phi_{h}\left(\mathrm{e}^{\sqrt{-1} \xi^{i} \tilde{X}_{i}}\right)\right]\left[\psi\left(\mathrm{e}^{\sqrt{-1} \xi^{i} Y_{i}}\right)\right]=\mathrm{e}^{\sqrt{-1} \xi^{i} h_{i}-\frac{1}{2} \xi^{i} \xi^{j}(\tilde{V}+\hat{V})_{i j}} .
$$

This means that the observables $\bar{X}_{i}(1 \leq i \leq d)$ follow the classical Gaussian distribution $N(h, \tilde{V}+$ $\hat{V})$. In particular,

$$
E_{h}[\bar{X}]=h
$$

for all $h \in \mathbb{R}^{d}$, and

$$
\operatorname{Tr} G V_{h}[\bar{X}]=\operatorname{Tr} G(\tilde{V}+\hat{V})=C_{h}(N(\tau h, \Sigma), G) .
$$

The claim was verified.

B.3. Estimation theory for pure state models.

Lemma B.8. Let ρ be a pure state and A_{1}, \ldots, A_{d} observables on a finite dimensional Hilbert space \mathcal{H}. If $J_{i j}:=\operatorname{Tr} \rho A_{j} A_{i}$ are all real for $1 \leq i, j \leq d$, there exist observables K_{1}, \ldots, K_{d} such that

$$
\left[A_{i}+K_{i}, A_{j}+K_{j}\right]=0
$$

for $1 \leq i, j \leq d$ and

$$
K_{i} \rho=0
$$

for $1 \leq i \leq d$.
Proof. Let $\rho:=|\psi\rangle\langle\psi|$, and let $\left|l_{i}\right\rangle:=A_{i}|\psi\rangle$ for $1 \leq i \leq d$. Because $\left\langle\psi \mid l_{i}\right\rangle$ and $\left\langle l_{i} \mid l_{j}\right\rangle\left(=J_{j i}\right)$ are all real, there exist a CONS $\left\{\left|e_{k}\right\rangle\right\}_{k=1}^{\operatorname{dim}_{k} \mathcal{H}}$ of \mathcal{H} such that $\left\langle e_{k} \mid \psi\right\rangle$ and $\left\langle e_{k} \mid l_{i}\right\rangle$ are all real, and that $\left\langle e_{k} \mid \psi\right\rangle \neq 0$ for all k. Let

$$
\tilde{A}_{i}:=\sum_{k=1}^{\operatorname{dim} \mathcal{H}} \frac{\left\langle e_{k} \mid l_{i}\right\rangle}{\left\langle e_{k} \mid \psi\right\rangle}\left|e_{k}\right\rangle\left\langle e_{k}\right|,
$$

and $K_{i}:=\tilde{A}_{i}-A_{i}$. Obviously $\left[A_{i}+K_{i}, A_{j}+K_{j}\right]=\left[\tilde{A}_{i}, \tilde{A}_{j}\right]=0$, and

$$
K_{i}|\psi\rangle=\left(\tilde{A}_{i}-A_{i}\right)|\psi\rangle=\left|l_{i}\right\rangle-\left|l_{i}\right\rangle=0
$$

This means $K_{i} \rho=0$.

Lemma B.9. Given a $d \times d$ positive semidefinite Hermitian matrix J, there exist a finite dimensional Hilbert space \mathcal{H} and a pure state ρ and observables $A_{i}(1 \leq i \leq d)$ on \mathcal{H} such that $\operatorname{Tr} \rho A_{i}=0$ and $\operatorname{Tr} \rho A_{j} A_{i}=J_{i j}$.

Proof. Let $\mathcal{H}=\mathbb{C}^{d+1}$, and let $\{|i\rangle\}_{i=0}^{d}$ be a CONS of \mathcal{H}. We set $|\psi\rangle:=|0\rangle$ and $\left|\ell_{i}\right\rangle:=$ $\sum_{k=1}^{d}[\sqrt{J}]_{i k}|k\rangle$ for $i=1, \ldots, d$. Then $\rho:=|\psi\rangle\langle\psi|$ and $A_{i}:=\left|\ell_{i}\right\rangle\langle\psi|+|\psi\rangle\left\langle\ell_{i}\right|$ satisfy $\operatorname{Tr} \rho A_{i}=0$ and $\operatorname{Tr} \rho A_{j} A_{i}=J_{i j}$.

ThEOREM B.10. Let $\left\{\rho_{\theta} ; \theta \in \Theta \subset \mathbb{R}^{d}\right\}$ be a quantum statistical model comprising pure states on a finite dimensional Hilbert space \mathcal{H}, and let $C_{\theta_{0}}\left(\rho_{\theta}, G\right)$ be the Holevo bound at $\theta_{0} \in \Theta$ for a given weight $G>0$. There exist a locally unbiased estimator \hat{M} at $\theta_{0} \in \Theta$ such that $\operatorname{Tr} G V[\hat{M}]=$ $C_{\theta_{0}}\left(\rho_{\theta}, G\right)$.

Proof. Let \mathcal{T} be a \mathcal{D} invariant extension of the SLD tangent space span $\left\{L_{i}\right\}_{i=1}^{d}$ of the model $\left\{\rho_{\theta}\right\}$ at $\theta=\theta_{0}$, i.e., containing all the $\operatorname{SLDs}\left\{L_{i}\right\}_{i=1}^{d}$ of $\left\{\rho_{\theta}\right\}$ at θ_{0}, let $\left\{D_{j}\right\}_{j=1}^{r}$ be a basis of \mathcal{T}. Let Σ, τ be $r \times r, r \times d$ complex matrices defined by $\Sigma_{i j}=\operatorname{Tr} \rho_{\theta_{0}} D_{j} D_{i}, \tau_{i j}=\operatorname{Tr} \rho_{\theta_{0}} L_{j} D_{i}$. According to Theorem B.1, the Holevo bound for a weight $G>0$ can be expressed

$$
\begin{align*}
& C_{\theta_{0}}\left(\rho_{\theta}, G\right)=\min _{F}\left\{\operatorname{Tr} G Z+\operatorname{Tr}|\sqrt{G} \operatorname{Im} Z \sqrt{G}| ; Z={ }^{t} F \Sigma F\right. \\
&\left.F \text { is an } r \times d \text { real matrix satisfying }{ }^{t} F \operatorname{Re}(\tau)=I\right\} \tag{B.15}
\end{align*}
$$

Let F be the matrix that attains the minimum in (B.15), and let $Z:={ }^{t} F \Sigma F, \tilde{V}:=\operatorname{Re} Z, \tilde{S}:=\operatorname{Im} Z$, $\hat{V}=\sqrt{G^{-1}}|\sqrt{G} \operatorname{Im} Z \sqrt{G}| \sqrt{G^{-1}}$, and $\hat{Z}=\hat{V}-\sqrt{-1} \tilde{S}$. Lemma B. 9 assures that there exist a Hilbert
space $\hat{\mathcal{H}}$ and a pure state σ and observables $B_{i}(1 \leq i \leq d)$ on $\hat{\mathcal{H}}$ such that $\operatorname{Tr} \sigma B_{i}=0$ and $\operatorname{Tr} \sigma B_{j} B_{i}=\hat{Z}_{i j}$. Further, let

$$
\bar{X}_{i}:=\tilde{X}_{i} \otimes \hat{I}+I \otimes B_{i} \quad(1 \leq i \leq d),
$$

where $\tilde{X}_{i}:=F_{i}^{k} D_{k}(1 \leq i \leq d)$, and \hat{I} is the identity matrix on $\hat{\mathcal{H}}$. It then follows that

$$
\begin{equation*}
\operatorname{Tr}\left(\rho_{\theta_{0}} \otimes \sigma\right) \bar{X}_{j} \bar{X}_{i}=(\tilde{V}+\hat{V})_{i j} \tag{B.16}
\end{equation*}
$$

According to Lemma B.8, there exist observables K_{1}, \ldots, K_{d} on $\mathcal{H} \otimes \hat{\mathcal{H}}$ such that $\left[\bar{X}_{i}+K_{i}, \bar{X}_{j}+\right.$ $\left.K_{j}\right]=0$ and $K_{i}\left(\rho_{\theta_{0}} \otimes \sigma\right)=0$. Let $\hat{T}_{i}:=\theta_{0}^{i} I \otimes \hat{I}+\left(\bar{X}_{i}+K_{i}\right)$. Then $\hat{T}_{1}, \ldots, \hat{T}_{d}$ are simultaneously measurable, and satisfy the local unbiasedness condition:

$$
\operatorname{Tr}\left(\rho_{\theta_{0}} \otimes \sigma\right) \hat{T}_{j}=\theta_{0}^{j}
$$

and

$$
\begin{aligned}
\operatorname{Tr}\left(\partial_{i} \rho_{\theta_{0}} \otimes \sigma\right) \hat{T}_{j} & =\operatorname{Tr} \partial_{i} \rho_{\theta_{0}} \tilde{X}_{j} \\
& =F_{j}^{k} \operatorname{Tr} \partial_{i} \rho_{\theta_{0}} D_{k} \\
& =F_{j}^{k} \operatorname{Re} \operatorname{Tr} \rho_{\theta_{0}} L_{i} D_{k} \\
& =\{F(\operatorname{Re} \tau)\}_{j i}=\delta_{i j} .
\end{aligned}
$$

Further

$$
V_{\theta_{0}}[\hat{T}]_{i j}=\operatorname{Tr}\left(\rho_{\theta_{0}} \otimes \sigma\right)\left(\bar{X}_{i}+K_{i}\right)\left(\bar{X}_{i}+K_{i}\right)=(\tilde{V}+\hat{V})_{i j} .
$$

This completes the proof.

REFERENCES

[1] Fujiwara, A. and Nagaoka, H. (1999). An estimation theoretical characterization of coherent states. J. Math. Phys., 40, 4227.
[2] Holevo, A. S. (2011). Probabilistic and Statistical Aspects of Quantum Theory (2nd English edition). Edizioni della Normale, Pisa.
[3] Jakšić, V., Pautrat, Y., and Pillet, C.-A. (2010). A quantum central limit theorem for sums of independent identically distributed random variables. J. Math. Phys., 51, 015208.
[4] Yamagata, K., Fujiwara, A., and Gill, R. D. (2013). Quantum local asymptotic normality based on a new quantum likelihood ratio. ArXiv: 1210.3749.

[^0] fujiwara@math.sci.osaka-u.ac.jp

[^0]: Department of Mathematics, Osaka University
 1-1 Machikaneyama
 Toyonaka, Osaka 560-0043, Japan
 E-mAIL: k-yamagata@cr.math.sci.osaka-u.ac.jp

 Mathematical Institute, Leiden University, P.O. Box 9512,

 2300 RA Leiden, The Netherlands
 E-MAIL: gill@math.leidenuniv.nl

