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Quantum information geometry is extended to manifolds of not necessarily faithful
quantum states. A principal fiber bundle structure is introduced over such mani-
folds. The connection is defined in a natural way from an information geometrical
viewpoint. Uhlmann’s connection for faithful states and Pancharatnam-Berry’s
connection for pure states can be regarded as special cases of this geometry. It is
also pointed out that an analogous geometrical consideration offers an important
viewpoint in quantum error correcting codes.

1 Introduction

The main purpose of this paper is to clarify a close relation between quantum
information geometry and Berry-Uhlmann’s geometry of principal fiber bun-
dles. We first present a dualistic geometry for a manifold of quantum states
which are not necessarily faithful but have the same (finite) rank. We next
introduce a principal fiber bundle over such a manifold endowed with a connec-
tion that is closely related to quantum information geometry. It is shown that
Pancharatnam-Berry’s connection for pure states1-5 and Uhlmann’s connection
for faithful states 6-8 are extreme cases of this geometry.

We further mention that an analogous geometrical argument plays an im-
portant role in showing that the quantum error correcting codes advocated
first by Shor 9 can be formulated in terms of completely positive maps. Since
every dynamical change of a physical system is represented by the dual of a
completely positive map, such a viewpoint is quite important.

This article is a summary of our recent works: Sections 3-4 are based on a
joint work with Keiji Matsumoto and Section 6 is based on a joint work with
Paul Algoet. All the proofs omitted here are found in forthcoming papers,
where more detailed discussions are also presented.
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2 Information geometry for general quantum states

Let H be a finite dimensional (say dimC H = n) Hilbert space a which repre-
sents a physical system of interest, and let B(H) and Bh(H) denote the sets
of linear operators and Hermitian operators on H. We are interested in the
family of density operators (quantum states) with a given rank r:

{ρ ∈ Bh(H) ; ρ ≥ 0, Tr ρ = 1, rank ρ = r}.

This family can be naturally regarded as a (2nr − r2 − 1)-dimensional real
manifold. Let S be an open subset of this family. In order to introduce a
dualistic geometrical structure on S, the following lemma is useful.
Lemma 1 For ρ ∈ S and D ∈ Bh(H), the following conditions are equiva-
lent.

(a) There exists a unique tangent vector X ∈ TρS that satisfies

D = Xρ.

(b) There exists an operator L ∈ Bh(H) that satisfies

D =
1
2
(ρL + Lρ), Tr ρL = 0.

The operator L in (b) is called the symmetric logarithmic derivative (SLD)
and plays an essential role in quantum estimation theory.11-14

It can be shown that when ρ > 0, the SLD is unique and (a) (b) are also
equivalent to (c) TrD = 0. Therefore if S is composed of full-rank (faithful)
density operators, then there is a pair of standard one-one homomorphisms 15

from TρS into Bh(H): one is

X←→D such that TrD = 0,

and is called the mixture representation: the other is

X←→L such that Tr ρL = 0,

and is called the exponential representation. The counterparts of D and L
in classical information geometry are Xp and X log p, where p denotes the
probability density function.16

aWe assume the finite dimensionality not only for mathematical simplicity but also for
clarifying the correspondence between classical and quantum information geometry. Most
results in this paper can be extended to the separable Hilbert space case.10
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For general density operators, the SLD is uniquely determined only up to

Kh(ρ) = {K ∈ Bh(H) ; Kρ = 0}. (1)

Because of this ambiguity, we must arbitrarily choose a representative of the
SLD in order to define a one-one homomorphism

Lρ : TρS −→ Bh(H)

which satisfies
dρ =

1
2
(ρLρ + Lρρ).

In addition we assume that Lρ is smooth in ρ. Such an operator-valued one-
form Lρ is called an SLD representation. When no confusion is likely to arise,
we simply denote Lρ(X) as LX for each X ∈ TρS.

Let us introduce a dualistic geometrical structure on S. We first define a
Riemannian metric. Although there are infinitely many quantum counterparts
of the Fisher metric,17-19 we adopt the following one and refer to it as the SLD
Fisher metric:

g(X, Y ) :=
1
2
Tr ρ(LXLY + LY LX) = Tr (Xρ)LY .

This metric has important features. First of all, it is invariant under the
arbitrariness of SLD representations (1). Actually, it is this fact that enables us
to treat degenerate densities of an arbitrary rank in a unified manner. Secondly,
it plays an essential role in one-parameter quantum estimation theory; i.e., it
gives the achievable quantum Cramér-Rao bound for a one-parameter family
of density operators.14

We next introduce a pair of affine connections that are mutually dual with
respect to the SLD Fisher metric. One is defined by

(∇XY ) ρ :=
1
2
{ρ(XLY − Tr ρ(XLY )) + (XLY − Tr ρ(XLY ))ρ},

and is called the exponential connection. It is well-defined because the right-
hand side uniquely defines a derivative of ρ by Lemma 1. The other connection
is defined via duality:

g(∇∗
XY, Z) := Xg(Y, Z) − g(Y,∇XZ) = Tr (X(Y ρ))LZ ,

and is called the mixture connection. Note that the mixture connection can-
not be defined by (∇∗

XY )ρ = X(Y ρ) unless ρ > 0, since X(Y ρ) does not
correspond to a derivative of ρ in general.
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The torsion fields T and T ∗ which correspond to ∇ and ∇∗ are

T (X, Y )ρ =
1
4
[ [LX , LY ], ρ], T ∗(X, Y ) = 0.

The curvature fields do not vanish in general unless ρ > 0. Thus one cannot
expect the existence of the divergence on the space (S, g,∇,∇∗) in general.

3 Principal fiber bundle over S

Given a density operator ρ ∈ S, an ordered list of nonzero vectors W =
[φ̂1, . . . , φ̂r] (r = rank ρ) is called an ordered ρ-ensemble if

ρ =
r∑

j=1

|φ̂j〉〈φ̂j |.

Associated with each ρ ∈ S is the set

Wρ := {W ; W is an ordered ρ-ensemble}.

Letting
W :=

⋃
ρ∈S

Wρ,

we have a canonical projection

π : W −→ S : [φ̂1, . . . , φ̂r] �−→
r∑

j=1

|φ̂j〉〈φ̂j |.

There is a natural right action of the r-dimensional unitary group U(r) on Wρ:

W = [φ̂j ]1≤j≤r �−→ WU =

[
r∑

k=1

φ̂kukj

]
1≤j≤r

.

Moreover the action of U(r) on Wρ is free and transitive. We thus have a
principal fiber bundle (W, π,S, U(r)).

In order to introduce the connection, let us consider the projection

P : TWW −→ TWW
X �−→ X,
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where X is defined by

XW =
1
2
LW (X)W, LW = π∗Lπ(W ).

Note that this definition is independent of the arbitrariness of the SLD repre-
sentation Lρ since K ∈ Kh(ρ) implies that KW = 0 for all W ∈ π−1(ρ). Now
we decompose the tangent space TWW into the direct sum

TWW = VW ⊕ HW ,

where

HW = P (TWW), VW = (1 − P )(TWW) = Ker(π∗)W .

The subspace HW has the property that HWU = RU∗HW . Thus there is a
unique Ehresmann connection A in which HW becomes the horizontal sub-
space:

dW = WA +
1
2
LW W.

The curvature form F (A)(X, Y ) := −A([X, Y ]) becomes

WF (A)(X, Y ) = −[X, Y ]W +
1
2
Lρ(π∗[X, Y ])W

=
1
4

{
[LX , LY ] − 1

2
Lρ([ [LX , LY ], ρ])

}
W.

As is naturally expected from the definition, the above principal fiber
bundle is closely related to the dualistic geometry introduced in Section 2. For
example, the following theorem holds.
Theorem 2 Consider the following conditions:

(a) [LX , LY ] = 0
(b) [LX , LY ]W = 0
(c) W ∗[LX , LY ]W = 0
(d) F (A)(X, Y ) = 0
(e) T (X, Y ) = 0

These conditions are related as follows:

(a)
⇓

(b) ⇔ {(c), (e)} ⇔ {(d), (e)}
⇓
(c) ⇔ (d)
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Further, when ρ > 0,

(a) ⇔ (b) ⇔ (c) ⇔ (d) ⇒ (e)

It is not yet clear whether the fiber space W has some physical signif-
icance. The following fact suggests that each element of W corresponds to
some “information” about the system.
Theorem 3 Suppose we are given a pure state |ψ〉〈ψ| and a general state
ρ. For an arbitrary ρ-ensemble W = [φ̂1, . . . , φ̂r], there exists an instrument
V = [V1, . . . , Vr] such that W is the post-measurement ensemble when V is
applied to the pure state ψ; i.e. φ̂j = Vjψ, (j = 1, . . . , r).

4 Relation with Uhlmann’s formulation

As Da̧browski and Jadczyk 7 pointed out, Uhlmann’s formulation for a gen-
eralization of Berry’s phase to density operators works only for faithful den-
sity operators. In practice, this restriction never reduces the importance of
Uhlmann’s idea because every state can be approximated by a faithful state.
However its relation to Berry’s phase seems to have become vague. In this sec-
tion, we comment that the principal fiber bundle and its connection introduced
in Section 3 realizes Uhlmann’s original program; i.e., it actually generalizes
Berry’s phase for an arbitrary family of density operators of the same rank.

Let us introduce an abridged notation

W =
[
|φ̂1〉, . . . , |φ̂r〉

]
, W ∗ =




〈φ̂1|
...

〈φ̂r|


 .

Using this notation, the parallelism between our formulation and Uhlmann’s
can be exhibited as follows:

ρ =
r∑

j=1

|φ̂j〉〈φ̂j | ⇐⇒ ρ = WW ∗

ψ̂j =
r∑

k=1

φ̂kukj ⇐⇒ V = WU

π : W −→ S ⇐⇒ π : W �−→ WW ∗

U(r) preserves each fiber ⇐⇒ WW ∗ = (WU)(WU)∗
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As for the connection, one must regard W as a metric space with metric

d(W (1), W (2)) :=

√√√√ r∑
j=1

(
〈φ̂(1)

j | − 〈φ̂(2)
j |

) (
|φ̂(1)

j 〉 − |φ̂(2)
j 〉

)
,

where W (i) =
[
|φ̂(i)

1 〉, . . . , |φ̂(i)
r 〉

]
. Given W ∈ π−1(ρ), we define

fW : S −→ W
σ �−→ arg min

W ′∈π−1(σ)

d(W, W ′).

It is easily verified that its differential dfW : TρS → TWW maps X ∈ TρS to
X ∈ TWW such that

XW =
1
2
Lρ(X)W.

This relation implies that dfW gives the horizontal lift (in our sense) of tangent
vectors on S. This fact shows that Uhlmann’s connection is equivalent to ours.

In passing, we note that the so-called Bures distance

B(ρ, σ) := min
W∈π−1(ρ)
W ′∈π−1(σ)

d(W, W ′)2 = 2
(

1 − Tr
√√

ρ σ
√

ρ

)

is a noncommutative analogue of the Hellinger distance.b From the observation
above, it is straightforward to show that the Bures metric (the infinitesimal
Bures distance) is identical to the SLD Fisher metric up to a constant factor.

We next show that our geometrical structure naturally leads to Berry’s
phase as a special case. We start with the following lemma.14

Lemma 4 Let ρ be a pure state and let W ∈ π−1(ρ). For K ∈ B(H), the
following conditions are equivalent.

(a) KW = 0
(b) Kρ + ρK∗ = 0, Tr ρK = 0
Now let ρ(t) be a curve of pure states satisfying the equation

ρ̇(t) = i[ρ(t), H(t)], H(t) ∈ Bh(H).

bIf ρ, σ > 0, then there is a simple measurement E = {Ej} which satisfies B(ρ, σ) =∑
j

(√
pj −√

qj

)2
, where pj = Tr ρEj , qj = Tr σEj . Actually, E = {Ej} is given by the

spectral measure of the positive operator

(√
ρ−1

√√
ρ σ

√
ρ

√
ρ−1

)2

.
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Let ρ(t) = |ψ(t)〉〈ψ(t)|, and consider the horizontal lift

d

dt
|ψ(t)〉 =

1
2
L(t)|ψ(t)〉, (2)

where L(t) := Lρ(t)(ρ̇(t)). Then

dρ(t)
dt

=
1
2
(ρ(t)L(t) + L(t)ρ(t)) = i(ρ(t)Ĥ(t) − Ĥ(t)ρ(t)),

where
Ĥ(t) := H(t) − Tr ρ(t)H(t).

Thus K(t) := 1
2L(t) + iĤ(t) satisfies the condition (b) in Lemma 4. Then

K(t)|ψ(t)〉 = 0. This shows that (2) admits another form

i
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉,

which is nothing but the Schrödinger equation with the dynamical phase
removed.4,5 Thus we see that Berry’s phase is a special example of holonomy
in our framework.

This fact can be generalized as follows. Actually the condition (b) in the
theorem is always satisfied for pure states.
Theorem 5 Suppose the state evolves unitarily in S along a curve ρ(t) with
equation

ρ̇(t) = i[ρ(t), H(t)], H(t) ∈ Bh(H).

For this curve, the following conditions are equivalent.

(a) The horizontal lift W (t) of ρ(t) is also a unitary evolution of the form

iẆ (t) = Ĥ(t)W (t), for some Ĥ(t) ∈ Bh(H).

(b) ρ(t)ρ̇(t)ρ(t) = 0.

5 Example

In this section we present a simple example of holonomy in a two-level quantum
system. It is well-known that density operators of a two-level quantum system
can be represented as

ρ =
1
2

[
1 + z x − iy
x + iy 1 − z

]
,
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where the vector (x, y, z) of Stokes parameters 13 satisfies x2 + y2 + z2 ≤ 1.
It can be shown that a geodesic with respect to the exponential connection ∇
forms an ellipse in the Stokes parameter space. Now consider two ellipses in
the plane z = 0 depending on a parameter R ∈ (0, 1):

x2 +
( y

R

)2

= 1,
( x

R

)2

+ y2 = 1.

The intersection of the convex hulls of the two ellipses admits a curvilinear
quadrilateral boundary C(R) which is oriented counterclockwise. Since each
latus of C(R) is a ∇-geodesic, the horizontal lift of C(R) can be easily calcu-
lated. The corresponding holonomy becomes[

e−iφ(R) 0
0 eiφ(R)

]
∈ U(2), φ(R) = cos−1(1 − 2R4).

In particular,
lim
R→1

φ(R) = π,

which is identical to Berry’s phase for a great circle on the Bloch sphere.4

6 A related topic

In this section, we observe that an analogous geometrical argument provides a
useful viewpoint in quantum error correcting codes.

6.1 Completely positive maps

A linear map κ : B(H) → B(H) is called completely positive (CP) if it can be
represented in the form

κ(X) =
∑

j

A∗
jXAj ,

where {Aj}j is a (finite) collection of operators on H.20-23 When a CP map κ
is represented in this way, the (ordered) collection of operators A = {Aj}j is
called a generator of κ and κ is denoted by κA. The dual map κ∗ defined by
Tr κ∗(X)Y = Tr Xκ(Y ) is explicitly given by

κ∗
A(X) =

∑
j

AjXA∗
j .

As is well-known, CP maps play an essential role in quantum theory.21

Indeed, every dynamical change of a physical system is described by the dual
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of a CP map κ which satisfies κ(I) = I, or equivalently Trκ∗(X) = TrX for
all X ∈ B(H).

Let us recall the following fundamental characterization.23

Proposition 6 Two collections of operators {Aj}1≤j≤J , {Bk}1≤k≤K (J ≤
K) give the same CP map iff there is a matrix Q = [Qjk] ∈ CJ×K such that
QQ∗ = IJ (IJ denotes the J × J identity matrix) and Bk =

∑
j AjQjk.

Now given a CP map κ, define the set

G(κ) := {A ; A is a finite collection of operators such that κA = κ}.

The number J of operators in a list A = {A1, . . . , AJ} is denoted by |A|. We
define the rank of κ as

rankκ := min
A∈G(κ)

|A|,

and the set of minimal generators of κ as

Gm(κ) := {A ∈ G(κ) ; |A| = rankκ}.

Proposition 6 immediately leads us to the following.
Corollary 7 A ∈ G(κ) belongs to Gm(κ) iff A is a linearly independent set
of operators.
Corollary 8 A ∈ Gm(κ) is unique up to an r × r unitary matrix, where
r = rankκ.
Corollary 8 shows that by regarding the set of minimal generators Gm(κ) as
the fiber over κ, one can introduce a principal fiber bundle structure over the
family of all CP maps with a given rank r. The structure group of this fiber
bundle is U(r).

6.2 Application to quantum error correcting codes

Now we show that the quantum error correcting schemes advocated first by
Shor 9 can be formulated in terms of CP maps. This gives a slightly different
viewpoint from Schumacher and Nielsen.24 Suppose the error process is de-
scribed by the CP map κ. A quantum error correcting code (QECC) for the
error process κ is a pair (C, τ), where C is a subspace of H and τ a CP map
such that

τ∗(κ∗|ψ〉〈ψ|) = |ψ〉〈ψ|, ∀ψ ∈ C. (3)

The physical meaning of (3) is as follows: If all the pure states to be manipu-
lated belong only to the subspace C, then there is a map τ∗ : S(H) → S(H)
which inverts the noise κ∗ : S(H) → S(H) and restores the original state
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ψ ∈ C. (S(H) is the totality of density operators on H.) The space C is called
the code subspace. Note that due to the linearity of (3), the error correcting
scheme also works for density operators whose images lie in C.

In terms of generators A = {Ai} and R = {Rα} for κ and τ , (3) can be
rewritten as ∑

i

∑
α

RαAi|ψ〉〈ψ|A∗
i R

∗
α = |ψ〉〈ψ|, ∀ψ ∈ C.

Since both sides are rank-one operators, the necessary and sufficient condition
for the existence of (C, τ) is that there is a set of scalars {λiα}i,α which satisfies

RαAi|ψ〉 = λiα|ψ〉, ∀ψ ∈ C, ∀i, ∀α (4)

∑
i

∑
α

|λiα|2 = 1. (5)

These conditions are essentially identical to those in Theorem III.1 of Knill
and Laflamme.25 However, it should be noted that these conditions are rep-
resentation free: they are not for a particular choice of generators A,R but
for the CP maps κ, τ themselves. Actually, let B = {Bj} and S = {Sβ} be
other sets of generators for κ and τ . Then from Proposition 6 there are partial
unitaries Q, W such that

Bj =
∑

i

AiQij , Sβ =
∑
α

RαWαβ .

Then under (4) (5), the quantities

µjβ :=
∑

i

∑
α

λiαQijWαβ

satisfy
SβBj |ψ〉 = µjβ |ψ〉, ∀ψ ∈ C, ∀j, ∀β,∑

j

∑
β

|µjβ |2 = 1.

This fact could be paraphrased by saying that the conditions (4) (5) are “gauge
invariant.”

The following theorem is also the “gauge invariant” version of that ob-
tained independently by Knill and Laflamme 25 and by Bennett et al..26
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Theorem 9 Suppose we are given a CP map κ. The subspace C of H can
be extended to a QECC (C, τ) for κ iff

〈eµ|A∗
i Aj |eµ〉 = 〈eν |A∗

i Aj |eν〉, ∀i, j, µ �= ν,

〈eµ|A∗
i Aj |eν〉 = 0, ∀i, j, µ �= ν.

Here {eµ} is an arbitrary complete orthonormal system of C, and A = {Ai}
an arbitrary generator of κ.

7 Conclusions

We first extended the quantum information geometry to manifolds of quan-
tum states which are not necessarily faithful but have the same rank. We next
introduced a principal fiber bundle structure over such a manifold. The con-
nection was naturally defined via the symmetric logarithmic derivative which
plays an essential role in quantum estimation theory. Pancharatnam-Berry’s
connection for pure states and Uhlmann’s connection for faithful states were
special cases of this geometry.

We also mentioned a new formulation of quantum error correcting codes
by means of completely positive maps, in which a similar principal fiber bundle
structure played an important role.
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