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We herein establish an asymptotic representation theorem for locally
asymptotically normal quantum statistical models. This theorem enables us to
study the asymptotic efficiency of quantum estimators, such as quantum reg-
ular estimators and quantum minimax estimators, leading to a universal tight
lower bound beyond the i.i.d. assumption. This formulation complements the
theory of quantum contiguity developed in the previous paper [Fujiwara and
Yamagata, Bernoulli 26 (2020) 2105–2141], providing a solid foundation of
the theory of weak quantum local asymptotic normality.

1. Introduction. In classical statistics a sequence {P (n)
θ : θ ∈ � ⊂ Rd} of statistical

models on measurable spaces (�(n),F (n)) is called locally asymptotically normal (LAN)
at θ0 ∈ � (in the “weak” sense) if the log-likelihood ratio log (dP

(n)
θ /dP

(n)
θ0

) is expanded in
the local parameter h := √

n(θ − θ0) as

(1) log
dP

(n)

θ0+h/
√

n

dP
(n)
θ0

= hi�
(n)
i − 1

2
hihjJij + oPθ0

(1).

Here �(n) = (�
(n)
1 , . . . , �

(n)
d ) is a list of d-dimensional random vectors on each (�(n),F (n))

that exhibits

�(n) 0� N(0, J )

with J being a d × d real symmetric strictly positive matrix, the arrow
h� stands for the con-

vergence in distribution under P
(n)

θ0+h/
√

n
, the remainder term oPθ0

(1) converges in probability

to zero under P
(n)
θ0

, and Einstein’s summation convention is used.
There is an obvious similarity between (1) and the log-likelihood ratio of the Gaussian

shift model,

log
dN(Jh,J )

dN(0, J )
(X1, . . . , Xd) = hiXi − 1

2
hihjJij .

In fact, this similarity is a manifestation of a profound connection between the local parameter
model {P (n)

θ0+h/
√

n
: h ∈ Rd} and the Gaussian shift model {N(Jh,J ) : h ∈ Rd}, playing an

important role in asymptotic statistics [21].
In general, a statistical theory comprises two parts: one is to prove the existence of a

statistic that possesses a certain desired property (direct part), and the other is to prove the
nonexistence of a statistic that exceeds that property (converse part). In the problem of asymp-
totic efficiency, the converse part, the impossibility to do asymptotically better than the best,
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which can be done in the limit situation, is ensured by the so-called asymptotic representation
theorem [21], Theorem 7.10.

THEOREM 1.1 (Asymptotic representation theorem). Assume that {P (n)
θ : θ ∈ � ⊂ Rd}

is LAN at θ0 ∈ �. Let T (n) be statistics on the local models P
(n)

θ0+h/
√

n
that are weakly con-

vergent under every h ∈ Rd . Then there exists a randomized statistic T on the Gaussian shift

model N(Jh,J ) such that T (n) h� T for every h.

For an accessible proof, see Section A of the Supplementary Material [4]. Theorem 1.1
allows us to deduce in several precise mathematical senses that no estimator can asymptoti-
cally do better than what can be achieved in the limiting Gaussian shift model. For example,
this theorem leads to the convolution theorem, which tells us that regular estimators (estima-
tors whose asymptotic behavior in a small neighborhood of θ0 is more or less stable as the
parameter varies) have a limiting distribution which in a very strong sense is more disperse
than the optimal limiting distribution, which we expect from the limiting statistical problem.
Another option is to use the representation theorem to derive the asymptotic minimax theo-
rem, telling us that the worst behavior of an estimator as θ varies in a shrinking neighborhood
of θ0 cannot improve on what we expect from the limiting problem. This theorem applies to
all possible estimators but only discusses their worst behavior in a neighborhood of θ0.

Extending the notion of local asymptotic normality to the quantum domain was pio-
neered by Guţă and Kahn [8, 17]. They proved that, given a quantum parametric model
S(CD) = {ρθ > 0 : θ ∈ � ⊂ RD2−1} comprising the totality of faithful density operators
on a D-dimensional Hilbert space and a point θ0 on the parameter space � at which ρθ0 is
nondegenerate (i.e., every eigenvalue of ρθ0 is simple), there exist quantum channels �(n) and

�(n) as well as compact sets K(n) ⊂ RD2−1, satisfying K(n) ↑ RD2−1, such that

lim
n→∞ sup

h∈K(n)

∥∥σh − �(n)(ρ⊗n

θ0+h/
√

n

)∥∥
1 = 0 and lim

n→∞ sup
h∈K(n)

∥∥�(n)(σh) − ρ⊗n

θ0+h/
√

n

∥∥
1 = 0,

where {σh : h ∈ RD2−1} is a family of classical/quantum-mixed Gaussian shift model. Later,
Lahiry and Nussbaum [19] extended their formulation to models that comprise nonfaithful
density operators but have the same rank. Note that these formulations are not a direct ana-
logue of the weak LAN defined by (1); in particular, the convergence to a quantum Gaussian
shift model is evaluated not by the convergence in distribution but by the convergence in
trace norm. In this sense their formulation could be referred to as a “strong” q-LAN (cf. [5]).
Meanwhile, Guţă and Jenčová [7] also tried to formulate a “weak” q-LAN, based on the
Connes cocycle derivative, which was sometimes regarded as a proper quantum analogue of
the likelihood ratio. However, they did not establish an asymptotic expansion formula, which
would be directly analogous to (1).

A different approach to a “weak” q-LAN was put forward by the present authors [3, 23].
Given two quantum states ρ,σ ∈ S(H) on a finite dimensional Hilbert space H, define the
square-root likelihood ratio R(σ | ρ) of σ relative to ρ as the positive operator R, satisfying
the quantum Lebesgue decomposition σ = RρR + σ⊥, where the singular part σ⊥ is the
positive operator that satisfies Trρσ⊥ = 0. The notion of (weak) q-LAN is defined as follows.
(See [3] for details.)

DEFINITION 1.2 (q-LAN). A sequence S(n) = {ρ(n)
θ | θ ∈ � ⊂ Rd} of quantum statisti-

cal models on Hilbert spaces H(n) is called quantum locally asymptotically normal (q-LAN)
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at θ0 ∈ � if the square-root likelihood ratio R
(n)
h = R(ρ

(n)

θ0+h/
√

n
| ρ(n)

θ0
) is expanded in h ∈ Rd

as

(2) log
(
R

(n)
h + oL2

(
ρ

(n)
θ0

))2 = hi�
(n)
i − 1

2

(
hihjJij

)
I (n) + oD

(
hi�

(n)
i , ρ

(n)
θ0

)
.

Here �(n) = (�
(n)
1 , . . . ,�

(n)
d ) is a list of observables on each H(n) that exhibits

�(n)
ρ

(n)
θ0� N(0, J )

with J being a d × d complex nonnegative matrix1 satisfying ReJ > 0; the arrow
ρ

(n)
θ0� stands

for the quantum convergence in distribution under ρ
(n)
θ0

, defined by the convergence of the

quasi-characteristic function, and oL2(ρ
(n)
θ0

) and oD(hi�
(n)
i , ρ

(n)
θ0

) are infinitesimal remainder

terms in L2 and in distribution, respectively.

One may recognize a clear parallelism between the classical definition (1) and the quantum
one (2). In fact, the theory of weak q-LAN, based on (2), has been successfully applied to
quantum statistical models satisfying mild regularity conditions, culminating in the derivation
of (an abstract version of) the quantum Le Cam third lemma [3]. However, this theory is not
yet fully satisfactory because it lacks tools to cope with the converse problems, that is, to
prove the impossibility of doing asymptotically better than the best which can be done on the
limiting model specified by the quantum Le Cam third lemma. For example, we do not know
conditions to get rid of asymptotically super-efficient estimators that break the Holevo bound
in an i.i.d. model.

In the context of these circumstances, we aim to establish a noncommutative counterpart
of Theorem 1.1 that enables us to study the converse part in quantum asymptotic statistics.
The paper is organized as follows. In Section 2 we summarize the main results, including the
asymptotic quantum representation theorem for q-LAN models, and a universal tight bound
for efficiency that generalizes the Holevo bound to generic (not necessarily i.i.d.) models.
This section will also serve as an overview of the paper. In Section 3 we provide some mathe-
matical tools and a number of lemmas that are used in the proof of the representation theorem,
and the proof of the theorem itself is carried over to the succeeding Section 4. In Section 5
we apply the representation theorem to the analysis of efficiency for sequences of quantum
estimators such as the quantum Hodges estimator, quantum regular estimators, quantum min-
imax estimators, and the quantum James–Stein estimator. Section 6 is devoted to concluding
remarks.

Some additional materials are provided in the Supplementary Material [4], including a
proof of Theorem 1.1 (Section A), a comprehensible account of degenerate canonical com-
mutation relation (CCR) and hybrid classical/quantum Gaussian states (Section B), a detailed
account of the notion of D-extendibility (Section C), and proofs of lemmas and theorems pre-
sented in Sections 3 and 5 (Section D and E, respectively).

2. Main results. Assume that a sequence S(n) = {ρ(n)
θ : θ ∈ � ⊂ Rd} of quantum statis-

tical models is q-LAN at θ0 ∈ �, as in Definition 1.2. In view of the classical representation
theorem (Theorem 1.1), one may envisage the following.

1For a complex covariance matrix J , the state N(0, J ) is regarded as a hybrid classical/quantum Gaussian state.
Specifically, N(0, J ) is classical if and only if ImJ = 0 and is purely quantum if and only if ImJ is invertible.
For more information, see Section B of the Supplementary Material.
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CONJECTURE. Let M(n) = {M(n)(B)}B∈B(Rs ) be a sequence of POVMs over the Borel
σ -algebra B(Rs) of Rs such that the corresponding sequence of classical probability mea-
sures

L(n)
h := Trρ(n)

θ0+h/
√

n
M(n)

is weakly convergent to some probability measure Lh for every h. Then there would exist a
POVM M(∞) = {M(B)}B∈B(Rs ) on CCR(ImJ ) such that

φh

(
M(∞)(B)

)= Lh(B)

for every h, where φh ∼ N((ReJ )h,J ).

However, such a naive guess fails, as the following example shows.

EXAMPLE 2.1. Let us consider the following one-dimensional pure state model:

ρθ = 2

eθ + e−θ
e

θ
2 σx ρ0 e

θ
2 σx , (θ ∈ R),

where

σx =
(

0 1
1 0

)
and ρ0 =

(
1 0
0 0

)
.

This model has an SLD σx at θ = 0. Let

�(n) := 1√
n

n∑
k=1

I⊗(k−1) ⊗ σx ⊗ I⊗(n−k).

Then it is shown (cf. [23], Section 3.2, [3], Section 7.3) that ρ⊗n
θ is q-LAN at θ = 0, and

�(n)
ρ⊗n

h/
√

n� N(h,1).

However, there is a sequence of POVMs that does not have a limiting POVM on the (classical)
Gaussian shift model N(h,1).

Let M(n) be a binary-valued POVM on ρ⊗n

h/
√

n
, defined by

M(n)(0) = ρ⊗n
0 , M(n)(1) = I (n) − ρ⊗n

0 .

Then

lim
n→∞ Trρ⊗n

h/
√

n
M(n)(0) = lim

n→∞(Trρh/
√

nρ0)
n = e− 1

4 h2
,

and thus the sequence of POVMs has a limiting distribution

Lh(0) = e− 1
4 h2

, Lh(1) = 1 − e− 1
4 h2

for each h ∈ R.
Now suppose that this distribution is realized by a binary-valued POVM M(∞) that is

independent of h. Since the limiting Gaussian shift model N(h,1) is classical, M(∞) is rep-
resented by a measurable function m(x) on R such that

M(∞)(0) = m(x), M(∞)(1) = 1 − m(x).

Specifically, 0 ≤ m(x) ≤ 1 for all x ∈ R, and

(3) e− 1
4 h2 =

∫ ∞
−∞

m(x)ph(x) dx
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for all h ∈ R, where ph(x) = 1√
2π

e−(x−h)2/2 is the density function of N(h,1). However, (3)
has the solution

m(x) = √
2 e− 1

2 x2
(a.e.),

which does not fulfill the requirement that 0 ≤ m(x) ≤ 1. This is a contradiction.

Example 2.1 demonstrates that we need some additional condition to establish an asymp-
totic representation theorem in the quantum domain. In fact, the following condition will
prove to be sufficient.

DEFINITION 2.2 (D-extendibility). Given a sequence S(n) = {ρ(n)
θ : θ ∈ � ⊂ Rd} of

quantum statistical models on H(n), a sequence X(n) = (X
(n)
1 , . . . ,X

(n)
r ) of observables on

H(n) is called asymptotically D-invariant at θ0 ∈ � if it fulfills the following requirements:

(4) X(n)
ρ

(n)
θ0� N(0,�)

for some r × r nonnegative matrix � with Re� > 0, and

(5) lim
n→∞ Tr

√
ρ

(n)
θ0

e
√−1ξ iX

(n)
i

√
ρ

(n)
θ0

e
√−1ηiX

(n)
i = e

− 1
2(

ξ
η)

�( � �#��
�#�� ��

)
(ξ
η)

for all ξ, η ∈ Rr , where # stands for the operator geometric mean [1, 18].
A sequence S(n) = {ρ(n)

θ : θ ∈ � ⊂ Rd} of quantum statistical models that is q-LAN at θ0 ∈
� is called D-extendible at θ0 if there exists a sequence X(n) = (X

(n)
i )1≤i≤r of observables

as well as an r × d real matrix F such that

(6) �
(n)
k = F i

kX
(n)
i (1 ≤ k ≤ d,n ∈ N)

and X(n) is asymptotically D-invariant at θ0 ∈ �. Such a sequence X(n) is called a D-
extension of �(n).

REMARK 2.3. One may have the impression that the condition (5) is strange and in-
tractable; but in reality it is not too restrictive in applications. For example, let S = {ρθ : θ ∈
� ⊂ Rd} be a quantum statistical model on a finite dimensional Hilbert space H. Then, under
some mild regularity conditions, the sequence S(n) := {ρ⊗n

θ : θ ∈ � ⊂ Rd} of i.i.d. models
on H⊗n is not only q-LAN at a given θ0 ∈ � [3], Theorem 7.6, but also D-extendible at θ0.
For a proof, see Section C of the Supplementary Material [4], where the idea behind the term
“asymptotic D-invariance” is also clarified and a proper perspective on the model in Example
2.1 is demonstrated. There are, of course, models S(n) that are non-i.i.d. but are, nevertheless,
q-LAN and D-extendible; a simple example is provided in Section C of the Supplementary
Material [4].

With this additional requirement of D-extendibility, we can prove the following.

THEOREM 2.4 (Asymptotic quantum representation theorem). Assume that a sequence
S(n) = {ρ(n)

θ : θ ∈ � ⊂ Rd} of quantum statistical models is q-LAN and D-extendible at
θ0 ∈ �. Let M(n) = {M(n)(B)}B∈B(Rs ) be a sequence of POVMs over Rs such that the corre-
sponding sequence of classical probability measures

L(n)
h := Trρ(n)

θ0+h/
√

n
M(n)
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is weakly convergent to some probability measure Lh for every h. Then there exists a POVM
M(∞) = {M(B)}B∈B(Rs ) on CCR(Im�) such that

φh

(
M(∞)(B)

)= Lh(B)

for every h, where φh ∼ N((Re τ)h,�) with τ = �F .

Theorem 2.4 allows us to convert a statistical problem for the local parameter model
{ρ(n)

θ0+h/
√

n
: h ∈ Rd} into another one for the limiting quantum Gaussian shift model

{N((Re τ)h,�) : h ∈ Rd}. It is thus natural to expect that the Holevo bound2 for the lim-
iting model N((Re τ)h,�), given a weight matrix G > 0, that is,

c
(rep)
G := min

K

{
TrGZ + Tr |√G ImZ

√
G| : Z = K��K,

K is an r × d real matrix satisfying K�(Re τ) = I
}(7)

will be of fundamental importance in quantum asymptotics. Note that the D-extension in
Definition 2.2 is not unique; however, it can be shown that the bound c

(rep)
G is independent

of the choice of a D-extension (Corollary 5.4). In what follows, we shall call this universal
bound the asymptotic representation bound.

Indeed, the bound c
(rep)
G plays a crucial role in asymptotic quantum statistics. For example,

it gives the ultimate limit of estimation for regular estimators (Theorems 5.2 and 5.3) and
minimax estimators (Theorem 5.6). Moreover, the bound c

(rep)
G for an i.i.d. model S(n) =

{ρ⊗n
θ } is identical to the standard Holevo bound c

(H)
G for the base model ρθ (Theorem 5.3

and Section C of the Supplementary Material [4]). Thus, the asymptotic representation bound
c
(rep)
G can be regarded as a fully generalized version of the Holevo bound that is also applicable

to non-i.i.d. models.
Incidentally, as one can see from the proof, Theorem 2.4 is valid, even if the scaling factors√
n in Definition 1.2 and Theorem 2.4 are both replaced with an arbitrary monotone increas-

ing positive sequence rn ↑ ∞. Also, one can replace the domain Rd of the local parameter
h to an arbitrary subset of Rd . Classical analogues of these generalizations are found, for
example, in [21], Definition 7.14, Theorem 9.4.

3. Preliminaries. In this section we devise some mathematical tools and prepare a num-
ber of lemmas toward the proof of Theorem 2.4. First, we give a condition for a quantum
Gaussian state to be pure. We then introduce a new way of representing bounded operators
on a CCR(S), which is analogous to the Husimi representation [12]. We further extend quan-
tum Lévy–Cramér continuity theorem [13] and quantum Le Cam third lemma [3] so that they
are directly applicable to the proof of Theorem 2.4. All the proofs of the lemmas and corol-
laries presented in this section are deferred to Section D of the Supplementary Material [4].
For the definition of von Neumann algebra CCR(S) with possibly degenerate S and quantum
Gaussian states on it, see Section B of the Supplementary Material [4].

2The Holevo bound c
(H)
G for a generic quantum statistical model {ρθ : θ ∈ � ⊂ Rd } on a Hilbert space H is

given by the minimum of TrGZ(B) + Tr |√G ImZ(B)
√

G| over all Hermitian operators B = (B1, . . . ,Bd) on
H satisfying the local unbiasedness condition Re TrρθLiBj = δij , where Li is the ith SLD and Z(B) is the d ×d

matrix whose (i, j)th entry is Zij (B) := TrρθBjBi . The reduced expression (7) for the quantum Gaussian shift

model {N((Re τ )h,�) : h ∈Rd } is derived in [23], Appendix B.
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3.1. Condition for a quantum Gaussian state to be pure.

LEMMA 3.1 (Minimum uncertainty). Let J = V + √−1S be a d × d nonnegative ma-
trix in which S = ImJ is invertible. Then the quantum Gaussian state N(0, J ) on the von
Neumann algebra CCR(S) is pure if and only if detV = detS.

PROOF. See Section D of the Supplementary Material [4]. �

COROLLARY 3.2. Let J = V + √−1S be a d × d nonnegative matrix in which both
V = ReJ and S = ImJ are invertible. Then the quantum Gaussian state

N

((
0
0

)
,

(
J J#J�

J#J� J�

))

is pure.

PROOF. See Section D of the Supplementary Material [4]. �

3.2. Sandwiched coherent state representation of operators on a CCR algebra. Let H
be a Hilbert space that represents the von Neumann algebra CCR(S), where S is a skew-
symmetric real d ×d matrix that is not necessarily invertible, and let {Xi}1≤i≤d be the canon-
ical observables of CCR(S). Fix a cyclic3 unit vector ψ ∈ H for CCR(S), and let

ψ(ξ) := e
√−1ξ iXiψ,

(
ξ ∈Rd).

Associated with a bounded operator A ∈ B(H) is a continuous function ϕA : Rd × Rd → C

defined by

ϕA(ξ ;η) := 〈
ψ(ξ),Aψ(η)

〉
,

(
ξ, η ∈ Rd).

We shall call ϕA the sandwiched coherent state representation of a bounded operator A.
We are interested in the converse problem: when does a function ϕ : Rd × Rd → C

uniquely determine an operator A ∈ B(H) satisfying ϕ(ξ ;η) = 〈ψ(ξ),Aψ(η)〉? Let D be
a dense subset of Rd . A function ϕ : D × D → C is called positive semidefinite if, for all
r ∈ N and {ξ (i)}1≤i≤r ⊂ D, the r × r matrix whose (i, j)th entry is ϕ(ξ (i); ξ (j)) is positive
semidefinite, that is, [

ϕ
(
ξ (i); ξ (j))]

1≤i,j≤r ≥ 0.

In this case we denote ϕ � 0. Further, for two functions ϕ1 and ϕ2, we denote ϕ1 � ϕ2 if
ϕ1 − ϕ2 � 0.

LEMMA 3.3. Suppose that ϕ : D × D → C satisfies 0 ≺ ϕ ≺ ϕI . Then there exists a
unique operator A satisfying 0 ≤ A ≤ I and ϕ = ϕA. Consequently, ϕ is continuously ex-
tended to the totality of Rd ×Rd .

PROOF. See Section D of the Supplementary Material [4]. �

Lemma 3.3 establishes a one-to-one correspondence between bounded operators A, satis-
fying 0 ≤ A ≤ I , and functions ϕ satisfying 0 ≺ ϕ ≺ ϕI . In what follows, the operator A that
is recovered from the function ϕ is denoted by V (ϕ).

3A vector ψ ∈ H is called cyclic for a linear subspace A of B(H) if the linear space Aψ := {Aψ : A ∈ A} is
norm-dense in H.
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Now let S = Oc ⊕ Sq ⊕ Sa , where Oc is a dc × dc zero matrix, Sq a dq × dq skew-
symmetric real invertible matrix, and Sa a da × da skew-symmetric real invertible matrix.4

Then CCR(S) = CCR(Oc) ⊗ CCR(Sq) ⊗ CCR(Sa), and the canonical observables are

{X̂c,i := Xc,i ⊗ Iq ⊗ Ia}i ∪ {X̂q,j := Ic ⊗ Xq,j ⊗ Ia}j ∪ {X̂a,k := Ic ⊗ Iq ⊗ Xa,k}k,
where {Xc,i}i , {Xq,j }j , and {Xa,k}k are the canonical observables of CCR(Oc), CCR(Sq),
and CCR(Sa), respectively. In the Schrödinger representation, the algebra CCR(S) is repre-
sented on the Hilbert space H := Hc ⊗ Hq ⊗ Ha , where Hc := L2(Rdc), Hq := L2(Rdq/2),
and Ha := L2(Rda/2), and

CCR(Oc) = Span
SOT{

e
√−1ξ i

cXc,i
}
ξc∈Rdc = L∞(

Rdc
)
,

CCR(Sq) = Span
SOT{

e
√−1ξ

j
q Xq,j

}
ξq∈Rdq = B(Hq),

CCR(Sa) = Span
SOT{

e
√−1ξk

a Xa,k
}
ξa∈Rda = B(Ha),

where Span
SOT

denotes the closure of the linear span with respect to the strong operator
topology (SOT). Since L∞(Rdc) is a maximal abelian subalgebra5 of B(Hc), the celebrated
commutant theorem [10, 16] yields

(8)
(
CCR(Oc) ⊗ CCR(Sq) ⊗ Ia

)′ = CCR(Oc) ⊗ Iq ⊗ CCR(Sa).

In this identity Iq and Ia symbolically represent the centers of CCR(Sq) and CCR(Sa), re-
spectively.

Let ψ ∈ H be a cyclic unit vector for CCR(S). Then the sandwiched coherent state repre-
sentation of A ∈ CCR(S) is given by

ϕA(ξc, ξq, ξa;ηc, ηq, ηa) = 〈
ψ(ξc, ξq, ξa),Aψ(ηc, ηq, ηa)

〉
,

where ξc, ηc ∈Rdc , ξq, ηq ∈Rdq , ξa, ηa ∈ Rda , and

ψ(ξc, ξq, ξa) = e
√−1(ξ i

c X̂c,i+ξ
j
q X̂q,j+ξk

a X̂a,k)ψ.

Conversely, due to Lemma 3.3, a bounded continuous function ϕ(ξc, ξq, ξa;ηc, ηq, ηa), sat-
isfying 0 ≺ ϕ ≺ ϕI , uniquely determines an operator A = V (ϕ) satisfying 0 ≤ A ≤ I . More-
over, the following lemma gives a criterion for V (ϕ) to be an element of CCR(Oc) ⊗
CCR(Sq)⊗ Ia , which means that V (ϕ) can be regarded as an operator acting on CCR(Oc)⊗
CCR(Sq).

LEMMA 3.4. Suppose that a bounded continuous function ϕ(ξc, ξq, ξa;ηc, ηq, ηa) that
fulfills the condition 0 ≺ ϕ ≺ ϕI satisfies the identity

ϕ(ξc, ξq, ξa;ηc, ηq, ηa) = e−√−1ξ�
a Saηaϕ(ξc − ηc, ξq, ξa − ηa;0, ηq,0)

for all ξc, ηc ∈ Rdc , ξq, ηq ∈ Rdq , ξa, ηa ∈ Rda . Then

V (ϕ) ∈ CCR(Oc) ⊗ CCR(Sq) ⊗ Ia.

PROOF. See Section D of the Supplementary Material [4]. �

4The subscripts c, q , and a stand for the classical, quantum, and ancillary systems, respectively.
5A von Neumann subalgebra M of B(H) that satisfies M ′ = M is called a maximal abelian subalgebra

(MASA). The name comes from the fact that if N is an abelian von Neumann algebra such that M ⊂ N ⊂ B(H),
then M = N . In fact, since M ⊂ N , we have (M ⊂ N ⊂)N ′ ⊂ M ′ = M so that M = N .
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3.3. Sandwiched quantum Lévy–Cramér continuity theorem. In this subsection we gen-
eralize the quantum Lévy–Cramér continuity theorem [13] and quantum Le Cam third lemma
[3] in forms suitable for our discussion. Throughout this subsection we use the following no-
tation. For each n ∈ N, let ρ(n) be a quantum state and X(n) = (X

(n)
1 , . . . ,X

(n)
d ) be a list of ob-

servables on a finite dimensional Hilbert space H(n). Further, let X(∞) = (X
(∞)
1 , . . . ,X

(∞)
d )

be the canonical observables for a quantum Gaussian state ρ(∞) ∼ N(h,J ) with Jij =
Trρ(∞)X

(∞)
j X

(∞)
i .

The following lemma is a variant of the noncommutative Lévy–Cramér continuity theorem
[13, 14].

LEMMA 3.5 (Sandwiched Lévy–Cramér continuity theorem). Assume that

(9)
(
X(n), ρ(n))� N(h,J ),

and that a uniformly bounded sequence {A(n)}n∈N∪{∞} of observables satisfies

(10) lim
n→∞ Trρ(n)e

√−1ξ iX
(n)
i A(n)e

√−1ηiX
(n)
i = Trρ(∞)e

√−1ξ iX
(∞)
i A(∞)e

√−1ηiX
(∞)
i

for all ξ, η ∈ Qd . Then for any {ξs}r1
s=1, {ηt }r2

t=1 ⊂ Rd and any real-valued bounded Borel
functions {fs}r1

s=1, {gt }r2
t=1 whose discontinuity points form Lebesgue null sets, the following

identity holds:

lim
n→∞ Trρ(n)

{
r1∏

s=1

fs

(
ξ i
sX

(n)
i

)}
A(n)

{
r2∏

t=1

gt

(
ηi

tX
(n)
i

)}∗

= Trρ(∞)

{
r1∏

s=1

fs

(
ξ i
sX

(∞)
i

)}
A(∞)

{
r2∏

t=1

gt

(
ηi

tX
(∞)
i

)}∗
.

(11)

PROOF. See Section D of the Supplementary Material [4]. �

When A(n) = I (n) for all n ∈ N ∪ {∞}, Lemma 3.5 is subsumed by [3], Lemma 5.3. In
this sense Lemma 3.5 is a slight generalization of [3], Lemma 5.3. However, the assumption
of boundedness for functions fs and gt in Lemma 3.5 sometimes causes inconvenience in
applications. We, therefore, further aim for generalizing Lemma 3.5 to unbounded functions.
The key to the generalization is the notion of uniform integrability [3].

For quantum states {ρ(n)}n∈N and observables {B(n)}n∈N on Hilbert spaces {H(n)}n∈N, we
say that B(n) is uniformly integrable under ρ(n) if for all ε > 0, there exists L > 0 that satisfies

Trρ(n)
∣∣B(n) − hL

(
B(n))∣∣< ε

for all n, where the function hL is defined by

hL(x) =
{
x

(|x| ≤ L
)
,

0
(|x| > L

)
.

Using the notion of uniform integrability, Lemma 3.5 is generalized as follows.

LEMMA 3.6 (Sandwiched Lévy–Cramér continuity theorem: An extended version). Un-
der the same setting as in Lemma 3.5, except that the functions f1 and g1 can be unbounded,
assume further that both {f1(ξ

i
1X

(n)
i + o

(n)
1 )2}n∈N∪{∞} and {g1(η

i
1X

(n)
i + o

(n)
2 )2}n∈N∪{∞}
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are uniformly integrable under {ρ(n)}n∈N∪{∞}, where o
(n)
1 = oD(ξ i

1X
(n)
i , ρ(n)), and o

(n)
2 =

oD(ηi
1X

(n)
i , ρ(n)) for n ∈N and o

(∞)
1 = o

(∞)
2 = 0. Then the following identity holds:

lim
n→∞ Trρ(n)f1

(
ξ i

1X
(n)
i + o

(n)
1

){ r1∏
s=2

fs

(
ξ i
sX

(n)
i

)}
A(n)

{
r2∏

t=2

gt

(
ηi

tX
(n)
i

)}∗
g1
(
ηi

1X
(n)
i + o

(n)
2

)

= Trρ(∞)

{
r1∏

s=1

fs

(
ξ i
sX

(∞)
i

)}
A(∞)

{
r2∏

t=1

gt

(
ηi

tX
(∞)
i

)}∗
.

PROOF. See Section D of the Supplementary Material [4]. �

By using Lemma 3.6, we can further generalize quantum Le Cam third lemma under q-
LAN [3], Corollary 7.5, as follows.

COROLLARY 3.7 (Sandwiched Le Cam third lemma under D-extendibility). Assume
that a sequence S(n) = {ρ(n)

θ : θ ∈ � ⊂ Rd} of quantum statistical models is q-LAN and D-
extendible at θ0 ∈ �, as in Definition 2.2. Then

(12)
(
X(n), ρ

(n)

θ0+h/
√

n

) h� N
(
(Re τ)h,�

)
,

where τ = �F .
Assume further that a uniformly bounded sequence A(n) of observables for n ∈ N ∪ {∞}

satisfies

lim
n→∞ Trρ(n)

θ0
e
√−1ξ iX

(n)
i A(n)e

√−1ηiX
(n)
i = Trρ(∞)

0 e
√−1ξ iX

(∞)
i A(∞)e

√−1ηiX
(∞)
i

for all ξ, η ∈ Qr , where ρ
(∞)
0 ∼ N(0,�) and X(∞) = (X

(∞)
1 , . . . ,X

(∞)
r ) are the canonical

observables. Then it holds that

(13) lim
n→∞ Trρ(n)

θ0
R

(n)
h1

A(n)R
(n)
h2

= Trρ(∞)
0 R

(∞)
h1

A(∞)R
(∞)
h2

for any h1, h2 ∈Rd , where R
(n)
h are square-root likelihood ratios defined by

R
(n)
h = R

(
ρ

(n)

θ0+h/
√

n
|ρ(n)

θ0

)
and R

(∞)
h = exp

[
1

2

(
(Fh)iX

(∞)
i − 1

2

(
h�F��Fh

)
I (∞)

)]
.

Specifically,

(14) lim
n→∞ Trρ(n)

θ0+h/
√

n
A(n) = lim

n→∞ Trρ(n)
θ0

R
(n)
h A(n)R

(n)
h = Trρ(∞)

h A(∞)

for any h ∈ Rd , where ρ
(∞)
h ∼ N((Re τ)h,�).

PROOF. See Section D of the Supplementary Material [4]. �

Finally, the following asymptotic version of the Weyl CCR will turn out to be useful.

LEMMA 3.8 (Asymptotic Weyl CCR). Let W(n)(ξ) := e
√−1ξ iX

(n)
i for ξ ∈ Rd , and as-

sume that (X(n), ρ(n)) � N(0, J ). Then

lim
n→∞

∥∥W(n)(ξ)W(n)(η)

√
ρ(n) − e

√−1ξ�SηW(n)(ξ + η)

√
ρ(n)

∥∥
HS = 0

for all ξ, η ∈ Rd , where S := ImJ , and ‖ · ‖HS denotes the Hilbert–Schmidt norm.

PROOF. See Section D of the Supplementary Material [4]. �
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4. Proof of Theorem 2.4. Since the proof is somewhat lengthy, we first outline the
proof. By choosing a suitable regular r × r matrix K , one finds another D-extension
X′(n)

i := K
j
i X

(n)
j of �(n) that exhibits

X′ (n)
ρ

(n)
θ0� N(0,�c ⊕ �q),

where �c is a real rc × rc matrix and �q is a complex rq × rq matrix with rc + rq = r so
that the imaginary part Sq := Im�q of �q is invertible.6 In what follows, we always adopt
such a D-extension and simply denote X′ (n) as X(n), omitting the prime. Further, we label
the elements of X(n) as

X
(n)
c,1, . . . ,X

(n)
c,rc

,X
(n)
q,1, . . . ,X

(n)
q,rq

in accordance with the decomposition � = �c ⊕ �q .
We need to show that there exists a POVM M on CCR(Oc) ⊗ CCR(Sq) that exhibits

φh(M(B)) = Lh(B) for any B ∈ B(Rs), where φh ∼ N((Re τ)h,�). To this end, we first
formally enlarge N((Re τ)h,�) to N((Re τ̂ )h, �̂), where

τ̂ :=
(
τ

0

)
, �̂ :=

⎛
⎜⎝

�c 0 0
0 �q �q#��

q

0 �q#��
q ��

q

⎞
⎟⎠ .

We next construct a POVM on CCR(Oc) ⊗ CCR(Sq) ⊗ CCR(−Sq) and prove that it is a
POVM on CCR(Oc) ⊗ CCR(Sq) ⊗ Ia . Finally, we prove that the POVM thus constructed
enjoys the desired property.

PROOF. As stated above, we divide the proof into three steps. In Step 1 we define a
Hilbert space on which N((Re τ̂ )h, �̂) is represented, and designate a fiducial cyclic vector
for CCR(Oc) ⊗ CCR(Sq) ⊗ CCR(−Sq). In Step 2 we construct (a precursor of) a POVM on
CCR(Oc) ⊗ CCR(Sq) ⊗ CCR(−Sq) and prove that it defines a POVM M on CCR(Oc) ⊗
CCR(Sq). In Step 3 we prove that M enjoys the desired property.

Step 1. As a similar way to the prescription that precedes Lemma 3.4, we introduce
a Hilbert space H = Hc ⊗ Hq ⊗ Ha on which the von Neumann algebra CCR(Ŝ) =
CCR(Oc) ⊗ CCR(Sq) ⊗ CCR(Sa) is represented, where

Ŝ = Im �̂, Oc = Im�c (= 0), Sq = Im�q, and Sa = Im��
q = −Sq.

The canonical observables are

{X̂c,i := Xc,i ⊗ Iq ⊗ Ia}i ∪ {X̂q,j := Ic ⊗ Xq,j ⊗ Ia}j ∪ {X̂a,k := Ic ⊗ Iq ⊗ Xa,k}k,
where {Xc,i}i , {Xq,j }j , and {Xa,k}k are the canonical observables of CCR(Oc), CCR(Sq),
and CCR(Sa), respectively.

In order to invoke the sandwiched coherent state representation for CCR(Ŝ), we need a
cyclic vector ψ on H. We first designate a cyclic vector ψc ∈ Hc for CCR(Oc) = L∞(Rrc )

in which each ξ ∈ L∞(Rrc ) is identified with the bounded operator Tξ ∈ B(Hc) defined by

(Tξϕ)(x) := ξ(x)ϕ(x),
(
ϕ ∈Hc, x ∈ Rrc

)
.

6In fact, for any � ≥ 0 with Re� > 0, we have (Re�)−1�(
√

Re�)−1 = I + √−1S, where S :=
(
√

Re�)−1(Im�)(
√

Re�)−1 is a real skew-symmetric matrix. Further, by choosing a suitable real orthogonal
matrix P , the matrix S is transformed into the form P�SP = 0 ⊕ Sq with detSq �= 0.
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Let ψc := √
g(x), where g(x) is the density function of the (classical) Gaussian distribution

N(0,�c). Then any function f ∈ L2(Rrc ) can be approximated by a series of functions fn :=
Tξnψc, where

ξn := f (x)√
g(x)

1Bn(x),

with 1Bn being the indicator function of the ball Bn of radius n ∈ N centered at the origin of
Rrc . As a consequence, ψc is a cyclic vector of Hc.

We next specify a cyclic vector ψqa ∈ Hq ⊗Ha for CCR(Sq) ⊗ CCR(Sa). Recall that

N

(
0,

(
�q �q#��

q

�q#��
q ��

q

))

is a pure state on Hq ⊗ Ha (Corollary 3.2). Let ψqa ∈ Hq ⊗ Ha be a unit vector that corre-
sponds to the above state. Then it is well known in the theory of coherent states that ψqa is a
cyclic vector for CCR(Sq) ⊗ CCR(Sa).

Now we arrive at a cyclic vector ψ := ψc ⊗ψqa ∈Hc ⊗Hq ⊗Ha for CCR(Ŝ). This cyclic
vector has the following nice property. Let

�̂i := F
j
i X̂j

for 1 ≤ i ≤ d , where F is the r × d real matrix introduced in Definition 2.2, and let

R̂h := exp
[

1

2

(
hi�̂i − 1

2

(
h�F��Fh

)
Î

)]

for h ∈ Rd , where Î is the identity on CCR(Ŝ). Then, for any A ∈ CCR(Oc) ⊗ CCR(Sq), the
following identity holds:

(15)
〈
ψ, R̂h(A ⊗ Ia)R̂hψ

〉= φh(A),

where φh ∼ N((Re τ)h,�) with τ := �F . This relation will be used as a variant of the
quantum Le Cam third lemma that goes back and forth between CCR(Ŝ) and CCR(S).

To prove (15), let

(16) Xi :=
{
Xc,i ⊗ Iq if 1 ≤ i ≤ rc,

Ic ⊗ Xq,i−rc if rc + 1 ≤ i ≤ rc + rq

be canonical observables of CCR(Oc) ⊗ CCR(Sq). Then by a direct computation using the
quasi-characteristic function of the vector state7

∣∣ψ〉〈ψ ∣∣∼ N(0, �̂),

we can verify that〈
ψ, R̂h

(
e
√−1ξ iXi ⊗ Ia

)
R̂hψ

〉= 〈
ψ, R̂h e

√−1
∑r

i=1 ξ iX̂i R̂hψ
〉= e

√−1ξ�(Re τ)h− 1
2 ξ��ξ .

Since the last side is the characteristic function of φh ∼ N((Re τ)h,�), we have〈
ψ, R̂h

(
e
√−1ξ iXi ⊗ Ia

)
R̂hψ

〉= φh

(
e
√−1ξ iXi

)
.

Finally, since {e
√−1ξ iXi }ξ∈Rr is SOT-dense in CCR(Oc) ⊗ CCR(Sq), the identity (15) is

proved.

7If det Ŝ = 0, the Hilbert space Hc is reducible under the action of CCR(Oc), and thus the vector state |ψ〉〈ψ |
is a mixed state.
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Step 2. Given a pair of vectors (λ,μ) ∈ Rrc ×Rrq , let

W(λ,μ) := e
√−1(λiXc,i+μjXq,j )

be the corresponding Weyl operator on CCR(Oc) ⊗ CCR(Sq). By analogy to this operator,
we introduce a unitary operator

W(n)(λ,μ) := e
√−1(λiX

(n)
c,i +μjX

(n)
q,j )

on each H(n). We further define, for each ξ = (ξc, ξq, ξa) ∈Rrc ×Rrq ×Rrq , operators

A(n)(ξ) := W(n)(ξc, ξq)

√
ρ

(n)
θ0

W(n)(0, ξa)

and

B(n)(ξ) := W(n)(0, ξq)

√
ρ

(n)
θ0

W(n)(ξc, ξa).

Note that these operators are asymptotically identified in that

(17) lim
n→∞

∥∥A(n)(ξ) − B(n)(ξ)
∥∥

HS = 0.

This is proved by observing∥∥A(n)(ξ) − B(n)(ξ)
∥∥2

HS = 2 − 2 Re TrA(n)(ξ)∗B(n)(ξ)

and

lim
n→∞ TrA(n)(ξ)∗B(n)(ξ)

= lim
n→∞ TrW(n)(0, ξa)

∗
√

ρ
(n)
θ0

W(n)(ξc, ξq)
∗W(n)(0, ξq)

√
ρ

(n)
θ0

W(n)(ξc, ξa)

= lim
n→∞ Tr

{
W(n)(ξc, ξa)W

(n)(0,−ξa)

√
ρ

(n)
θ0

}{
W(n)(−ξc,−ξq)W

(n)(0, ξq)

√
ρ

(n)
θ0

}

= lim
n→∞ Tr

{
exp

[√−1
(
ξc

ξa

)�
(Oc ⊕ Sq)

(
0

−ξa

)]
W(n)(ξc,0)

√
ρ

(n)
θ0

}

×
{

exp

[√−1
(−ξc

−ξq

)�
(Oc ⊕ Sq)

(
0
ξq

)]
W(n)(−ξc,0)

√
ρ

(n)
θ0

}

= lim
n→∞ TrW(n)(ξc,0)

√
ρ

(n)
θ0

W(n)(−ξc,0)

√
ρ

(n)
θ0

= exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1

2

⎛
⎜⎜⎝

ξc

0
−ξc

0

⎞
⎟⎟⎠

�⎛
⎜⎜⎜⎝

�c 0 �c 0
0 �q 0 �q#��

q

�c 0 �c 0
0 �q#��

q 0 ��
q

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

ξc

0
−ξc

0

⎞
⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 1.

Here the asymptotic Weyl CCR (Lemma 3.8) was used in the third equality, and condition
(5) for D-extendibility was used in the second last equality.

Now, given a POVM M(n) on H(n) whose outcomes take values in Rs , let

M
(n)
t := M(n)((−∞, t])
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be the associated resolution of identity, where t = (t1, t2, . . . , ts) ∈ Rs and (−∞, t] is the
shorthand of the set

(−∞, t1] × (−∞, t2] × · · · × (−∞, ts].
By using the resolution of identity M

(n)
t , we define the following function:

ϕ
(n)
t (ξ ;η) := TrA(n)(ξ)∗M(n)

t A(n)(η)

for ξ = (ξc, ξq, ξa), η = (ηc, ηq, ηa) ∈ Rrc ×Rrq ×Rrq . Since ϕ
(n)
t (ξ ;η) is uniformly bounded

in that |ϕ(n)
t (ξ ;η)| ≤ 1 for all t ∈ Rs , ξ, η ∈ Rrc+2rq , and n ∈ N, the diagonal sequence trick

[20] tells us that there is a subsequence {nm}m∈N ⊂ {n}n∈N such that ϕ
(nm)
α (ξ ;η) are con-

vergent for all countably many arguments α ∈ Qs and ξ, η ∈ Qrc+2rq , defining a limiting
function

(18) ϕα(ξ ;η) := lim
m→∞ϕ(nm)

α (ξ ;η).

We shall prove that this limiting function ϕα is the sandwiched coherent state representation
of some operator M̃α on Hc ⊗Hq .

First, we formally introduce the function ϕ∞ by

ϕ∞(ξ ;η) := 〈
e
√−1ξ iX̂iψ, e

√−1ηj X̂j ψ
〉

= e−√−1ξ�Ŝη〈ψ,e
√−1(η−ξ)iX̂iψ

〉
= e−√−1ξ�Ŝη e− 1

2 (η−ξ)��̂(η−ξ).

Then it is shown that

ϕ∞(ξ ;η) = lim
n→∞ϕ(n)∞ (ξ ;η),

where ϕ
(n)∞ (ξ ;η) := limt→∞ ϕ

(n)
t (ξ ;η) = TrA(n)(ξ)∗A(n)(η). In fact,

lim
n→∞ϕ(n)∞ (ξ ;η)

= lim
n→∞ TrA(n)(ξ)∗A(n)(η)

= lim
n→∞ TrW(n)(0, ξa)

∗
√

ρ
(n)
θ0

W(n)(ξc, ξq)
∗W(n)(ηc, ηq)

√
ρ

(n)
θ0

W(n)(0, ηa)

= lim
n→∞ Tr

{
W(n)(0, ηa)W

(n)(0,−ξa)

√
ρ

(n)
θ0

}{
W(n)(−ξc,−ξq)W

(n)(ηc, ηq)

√
ρ

(n)
θ0

}

= lim
n→∞ Tr

{
exp

[√−1
(

0
ηa

)�
(Oc ⊕ Sq)

(
0

−ξa

)]
W(n)(0, ηa − ξa)

√
ρ

(n)
θ0

}

×
{

exp

[√−1
(−ξc

−ξq

)�
(Oc ⊕ Sq)

(
ηc

ηq

)]
W(n)(ηc − ξc, ηq − ξq)

√
ρ

(n)
θ0

}

= e
√−1(−η�

a Sqξa−ξ�
q Sqηq) lim

n→∞ TrW(n)(0, ηa − ξa)

√
ρ

(n)
θ0

W(n)(ηc − ξc, ηq − ξq)

√
ρ

(n)
θ0

= e−√−1ξ�Ŝη exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1

2

⎛
⎜⎜⎝

0
ηa − ξa

ηc − ξc

ηq − ξq

⎞
⎟⎟⎠

�⎛
⎜⎜⎜⎝

�c 0 �c 0
0 �q 0 �q#��

q

�c 0 �c 0
0 �q#��

q 0 ��
q

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

0
ηa − ξa

ηc − ξc

ηq − ξq

⎞
⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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= e−√−1ξ�Ŝηe− 1
2 (η−ξ)��̂(η−ξ)

= ϕ∞(ξ ;η).

As a consequence, by taking the limit m → ∞ in 0 ≺ ϕ
(nm)
α ≺ ϕ

(nm)∞ , which follows from
0 ≤ M

(nm)
α ≤ I (nm), we have

(19) 0 ≺ ϕα ≺ ϕ∞,
(∀α ∈ Qd).

We can also prove the following identity:

(20) ϕα(ξc, ξq, ξa;ηc, ηq, ηa) = e−√−1ξ�
a Saηaϕα(ξc − ηc, ξq, ξa − ηa;0, ηq,0).

In fact, by using the asymptotic identifiability of A(n)(ξ) and B(n)(ξ), established in (17),

ϕα(ξ ;η)

= lim
m→∞ TrA(nm)(ξ)∗M(nm)

α A(nm)(η)

= lim
m→∞ TrB(nm)(ξ)∗M(nm)

α B(nm)(η)

= lim
m→∞ TrW(nm)(ξc, ξa)

∗
√

ρ
(nm)
θ0

W(nm)(0, ξq)
∗M(nm)

α W(nm)(0, ηq)

√
ρ

(nm)
θ0

W(nm)(ηc, ηa)

= lim
m→∞ Tr

{
W(nm)(ηc, ηa)W

(nm)(−ξc,−ξa)

√
ρ

(nm)
θ0

}

× {
W(nm)(0,−ξq)M

(nm)
α W(nm)(0, ηq)

√
ρ

(nm)
θ0

}

= lim
m→∞ Tr

{
exp

[√−1
(
ηc

ηa

)�
(Oc ⊕ Sq)

(−ξc

−ξa

)]
W(nm)(ηc − ξc, ηa − ξa)

√
ρ

(nm)
θ0

}

× {
W(nm)(0,−ξq)M

(nm)
α W(nm)(0, ηq)

√
ρ

(nm)
θ0

}
= e−√−1η�

a Sqξa lim
m→∞ TrW(nm)(ξc − ηc, ξa − ηa)

∗

×
√

ρ
(nm)
θ0

W(nm)(0, ξq)∗M(nm)
α W(nm)(0, ηq)

√
ρ

(nm)
θ0

= e−√−1η�
a Sqξa lim

m→∞ TrB(nm)(ξc − ηc, ξq, ξa − ηa)
∗M(nm)

α B(nm)(0, ηq,0)

= e−√−1η�
a Sqξa lim

m→∞ TrA(nm)(ξc − ηc, ξq, ξa − ηa)
∗M(nm)

α A(nm)(0, ηq,0)

= e−√−1ξ�
a Saηaϕα(ξc − ηc, ξq, ξa − ηa;0, ηq,0).

Now that (19) and (20) are verified, Lemmas 3.3 and 3.4 prove that there is a unique
operator M̃α ∈ CCR(Oc) ⊗ CCR(Sq) satisfying 0 ≤ M̃α ≤ Ic ⊗ Iq and

(21) ϕα(ξ ;η) = 〈
e
√−1ξ iX̂iψ, (M̃α ⊗ Ia)e

√−1ηj X̂j ψ
〉

for all α ∈ Qs and ξ, η ∈ Rrc+2rq .
We are now ready to construct a POVM M = {M(B) : B ∈ B(Rs)} from {M̃α}α∈Qs . Since

M̃α is monotone in α ∈ Qs , we can define, for each t ∈Rs ,

M̄t := inf
α>t,α∈Qs

M̃α,
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where the infimum is taken in the weak operator topology (WOT). Since t �→ M̄t is right-
continuous, it uniquely determines a POVM M̄ = {M̄(B) : B ∈ B(R̄s)} over the extended
reals R̄s . Finally, we transfer the “measure at infinity” M̄(R̄s \ Rs) to the origin so as to
obtain

M(B) := M̄(B) + δ0(B)M̄
(
R̄s \Rs), (

B ∈ B
(
Rs)),

where δ0 is the Dirac measure concentrated at the origin.

Step 3. We prove that the POVM M , constructed in Step 2, is the desired one we have
sought. Setting ξa = ηa = 0 in (18) and (21), we have

ϕα(ξc, ξq,0;ηc, ηq,0) = lim
m→∞ Tr

√
ρ

(nm)
θ0

e−√−1ξ iX
(nm)
i M(nm)

α e
√−1ηiX

(nm)
i

√
ρ

(nm)
θ0

= 〈
ψ,e−√−1ξ i (Xi⊗Ia)(M̃α ⊗ Ia)e

√−1ηi(Xi⊗Ia)ψ
〉
,

or equivalently,

lim
m→∞ Trρ(nm)

θ0
e−√−1ξ iX

(nm)
i M(nm)

α e
√−1ηiX

(nm)
i = 〈

ψ,
(
e−√−1ξ iXi M̃αe

√−1ηiXi ⊗ Ia

)
ψ
〉
.

Due to (15), this is further equal to

φ0
(
e−√−1ξ iXi M̃αe

√−1ηiXi
)
.

Therefore, the sandwiched Le Cam third lemma (Corollary 3.7) yields

(22) lim
m→∞L(nm)

h (−∞, α] = lim
m→∞ Trρ(nm)

θ0+h/
√

nm
M(nm)

α = φh(M̃α)

for all h ∈Rd and α ∈ Qs .
Fix h ∈ Rd arbitrarily. Due to assumption, L(n)

h weakly converges to Lh. Therefore, for
any continuity point t ∈ Rs of t �→ Lh(−∞, t],

Lh(−∞, t] = lim
m→∞L(nm)

h (−∞, t]
≤ inf

α>t,α∈Qs
lim

m→∞L(nm)
h (−∞, α]

≤ inf
α>t,α∈Qs

Lh(−∞, α]

= Lh(−∞, t].
In the second inequality, we used the portmanteau lemma. It then follows from (22) that

Lh(−∞, t] = inf
α>t,α∈Qs

lim
m→∞L(nm)

h (−∞, α] = inf
α>t,α∈Qs

φh(M̃α) = φh(M̄t ),

and thus Lh(B) = φh(M̄(B)) for all B ∈ B(Rs): in particular,

φh

(
M̄
(
Rs))= Lh

(
Rs)= 1.

Since Lh(R̄
s \Rs) = 0, we have φh(M̄(B)) = φh(M(B)) for all B ∈ B(Rs).

In summary,

Lh(B) = φh

(
M(B)

) (∀B ∈ B
(
Rs)).

This completes the proof of Theorem 2.4. �

5. Applications. In this section we apply the asymptotic representation Theorem 2.4 to
the analysis of asymptotic efficiency for sequences of quantum estimators.
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5.1. Quantum Hodges estimator. In order to motivate ourselves to study asymptotic ef-
ficiency in the quantum domain, let us touch upon the issue of quantum superefficiency first.
In classical statistics there was a well-known superefficient estimator called the Hodges es-
timator that asymptotically breaks the Cramér–Rao bound [21]. An analogous estimator can
be constructed in the quantum domain that asymptotically breaks the Holevo bound.

Let us consider the pure state model

S =
{
ρθ = 1

2

(
I + θ1σ1 + θ2σ2 +

√
1 − (

θ1
)2 − (

θ2
)2

σ3
) : θ ∈ R2,

(
θ1)2 + (

θ2)2 < 1
}
,

on H = C2 having two-dimensional parameter θ = (θ1, θ2), where σ1, σ2, σ3 are the Pauli
matrices. It is well known [11] that the weighted trace of the covariant matrix Vθ [M, θ̂] for a
locally unbiased estimator (M, θ̂) with a weight matrix G > 0 is bounded from below by the
Holevo bound c

(H)
G as

TrGVθ [M, θ̂] ≥ c
(H)
G .

If we set G to be the SLD Fisher information matrix J
(S)
θ , the Holevo bound c

(H)

J
(S)
θ

is reduced to

4, which is independent of θ , and is achieved when and only when Vθ [M, θ̂] = (J
(S)
θ /2)−1;

specifically, it is achievable by a randomized measurement scheme without invoking any
collective measurement [22].

Now we construct a sequence of estimators that asymptotically breaks the Holevo bound.
It is known that for the i.i.d. model S(n) = {ρ⊗n

θ }θ , there is an adaptive estimation scheme
(M̂(n), θ̂ (n)) in which

√
n(θ̂ (n) − θ) weakly converges to the (classical) normal distribution

N(0, (J
(S)
θ /2)−1) for every θ [2]. Introduce a second estimator Tn by

(23) Tn :=
{
θ̂ (n) if ‖θ̂ (n)‖ ≥ 1/ 4

√
n,

0 if ‖θ̂ (n)‖ < 1/ 4
√

n.

Then
√

n(Tn − θ) converges to N(0, (J
(S)
θ /2)−1) in distribution if θ �= 0, whereas it con-

verges to 0 in probability if θ = 0. At first sight, Tn is an improvement on θ̂ (n). However, as
demonstrated below, this reasoning is a bad use of asymptotics [21].

In order to evaluate the asymptotic behavior of
√

n(Tn − θ) in more detail, we assume the
following situation: through the first stage of estimation, the adaptive measurement M̂(k) has
converged to a measurement Mθ that is optimal at the true value of θ [2]. Now we proceed to
the second stage: fix the measurement to be the one that has been obtained through the first
stage, that is, Mθ , and take θ̂ (n) to be the sample average of outcomes over n-i.i.d. experi-
ments, each being distributed as N(θ,Vθ ), where Vθ = (J

(S)
θ /2)−1 so that θ̂ (n) ∼ N(θ,Vθ/n).

Under this situation the weighted trace TrJ (S)
θ Vθ [Mθ,Tn] of covariance matrix of the quan-

tum Hodges estimator Tn can be evaluated as follows. Because of the rotational symmetry
of the model S around the origin of the parameter space, we can assume, without loss of
generality, that the true parameter θ lies on the plane θ2 = 0. In this case

TrJ (S)
θ Vθ [Mθ,Tn] =

∫ 2π

0
dφ

∫ ∞
1/ 4√n

wθ(r,φ)qθ (r, φ)r dr

+
∫ 2π

0
dφ

∫ 1/ 4√n

0
wθ(0, φ)qθ (r, φ)r dr,

where

wθ(r,φ) := (r cosφ − θ1)2

1 − (θ1)2 + r2 sin2 φ
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FIG. 1. Weighted trace of covariance matrix of the quantum Hodges estimator Tn with the weight J
(S)
θ for the

spin coherent state model S , based on the means of samples of size 100 (dashed), 1000 (dotted), and 10,000

(solid) observations. For reference, the corresponding Holevo bound is c
(H)

J
(S)
θ

= 4.

is the weighted sum of squared errors and

qθ (r, φ)r dr dφ := n

4π
√

1 − (θ1)2
exp

[
−n

4
wθ(r,φ)

]
r dr dφ

is the probability density of θ̂ (n) − θ ∼ N(0,Vθ/n) in the polar coordinate system.
Figure 1 shows the graph of n × TrJ (S)

θ Vθ [Mθ,Tn] for three different values of n. These

functions are close to the Holevo bound c
(H)

J
(S)
θ

= 4 on most of the domain but possess peaks

close to zero. As n → ∞, the location and widths of the peaks converge to zero but their
heights to infinity. Because the values of θ at which Tn behaves badly differ from n to n, the
pathological behavior of

√
n(Tn − θ) is not visible in the pointwise limit distributions under

fixed θ , as in the classical case [21].

5.2. Quantum regular estimator. In classical statistics it is customary to restrict ourselves
to a certain class of estimators in order to avoid pathological behavior like the Hodges esti-
mator. In this section we shall extend such a strategy to the quantum domain.

We begin with a standard estimation problem for a quantum Gaussian shift model. Our
problem is to estimate the parameter h ∈ Rd of the quantum Gaussian shift model φh ∼
N((Re τ)h,�), where � is an r × r complex nonnegative matrix (r ≥ d) with Re� > 0, and
τ is an r × d complex matrix with rank(Re τ) = d .

An estimator for the model φh is represented by a POVM M over Rd . For each h ∈ Rd , let
M −h denote the shifted POVM in which the outcome x of M is transformed into y = x −h.
It is formally defined by∫

B
f (y)φh

(
(M − h)(dy)

) :=
∫
B+h

f (x − h)φh

(
M(dx)

) (∀B ∈ B
(
Rd)).

An estimator M for φh is called equivalent in law if the probability distribution of the out-
comes of the shifted POVM M − h applied to φh is independent of h ∈ Rd in that

φh

(
(M − h)(B)

)= φ0
(
M(B)

)
holds for all B ∈ B(Rd). The following result is standard.
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LEMMA 5.1. Assume that an estimator M for the shift parameter h of a quantum Gaus-
sian shift model φh ∼ N((Re τ)h,�) is equivalent in law. Then, for any d × d weight matrix
G > 0, ∫

Rd
Gij (x − h)i(x − h)jφh

(
M(dx)

)≥ c
(H)
G ,

where c
(H)
G is the Holevo bound.

PROOF. See Section E of the Supplementary Material [4]. �

Now we introduce the notion of regular estimators8 for q-LAN models. Suppose that we
are given a sequence S(n) = {ρ(n)

θ : θ ∈ � ⊂ Rd} of quantum statistical models that is q-LAN
at θ0 ∈ �. A sequence M(n) of POVMs is called regular at θ0 ∈ � if the classical distribution
L(n)h of outcomes of the shifted POVM

M(n)h := √
n
{
M(n) − (θ0 + h/

√
n)
}

under ρ
(n)

θ0+h/
√

n
converges to a classical distribution L that is independent of h,

(24) L(n)h � L
(∀h ∈Rd)

Note that M(n)h is a measurement in which the outcome θ̂ ∈ Rd of M(n) is transformed
into

√
n{θ̂ − (θ0 + h/

√
n)}. Since

√
n
{
θ̂ − (θ0 + h/

√
n)
}≤ t ⇐⇒ θ̂ ≤ θ0 + (h + t)/

√
n,

we see that

M(n)h(−∞, t] = M(n)

(
−∞, θ0 + h + t√

n

]
.

When a sequence S(n) of quantum statistical models is q-LAN and D-extendible at θ0 ∈ �,
the next theorem is an immediate consequence of the asymptotic representation Theorem 2.4
and Lemma 5.1.

THEOREM 5.2 (Bound for quantum regular estimator). Let S(n) = {ρ(n)
θ : θ ∈ � ⊂ Rd}

be a sequence of quantum statistical models that is q-LAN and D-extendible at θ0 ∈ �. For
any estimator M(n) that is regular at θ0 and a d × d weight matrix G > 0, we have

(25)
∫
Rd

Gijx
ixjL(dx) ≥ c

(rep)
G ,

and hence

(26) lim inf
n→∞

∫
Rd

Gij (x − h)i(x − h)j Trρ(n)

θ0+h/
√

n
M(n)(dx) ≥ c

(rep)
G ,

where L is the limit distribution of M(n)h under ρ
(n)

θ0+h/
√

n
, and c

(rep)
G is the asymptotic repre-

sentation bound defined by (7).

PROOF. See Section E of the Supplementary Material [4]. �

It is natural to inquire whether there exists a regular estimator M(n) that achieves the lower
bound c

(rep)
G in Theorem 5.2. The answer is given by the following.

8In classical statistics regularity is also called asymptotically equivalent in law.
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THEOREM 5.3 (Achievability of asymptotic representation bound). Assume that a quan-
tum statistical model S(n) = {ρ(n)

θ : θ ∈ � ⊂ Rd} is q-LAN and D-extendible at θ0 ∈ �. Given

a d × d weight matrix G > 0, there exist a regular estimator M
(n)
� and a d × d real strictly

positive matrix V� such that

(
M(n)

� , ρ
(n)

θ0+h/
√

n

) h� N(h,V�)

and

TrGV� = c
(rep)
G

for all h ∈ Rd .

PROOF. See Section E of the Supplementary Material [4]. �

Theorem 5.3 implies that the asymptotic representation bound c
(rep)
G is achievable in that

sup
L>0

lim
n→∞

∫
Rd

L ∧ {
Gij (x − h)i(x − h)j

}
Trρ(n)

θ0+h/
√

n
M(n)

� (dx) = c
(rep)
G .

Moreover, in combination with Theorem 5.2, Theorem 5.3 tells us that the bound c
(rep)
G gives

the ultimate limit of estimation precision. This fact has the following important consequence:
since an achievable “scalar” lower bound for an estimation problem is necessarily unique, the
bound c

(rep)
G is uniquely determined. More precisely, we have the following.

COROLLARY 5.4 (Well-definedness of asymptotic representation bound). For each d×d

weight matrix G > 0, the asymptotic representation bound c
(rep)
G is independent of the choice

of a D-extension.

It should be emphasized here that Theorem 5.3 is valid for all h ∈ Rd . This is a remarkable
refinement of the former result [23], Theorem 3.1, in which the Holevo bound c

(H)
G for an

i.i.d. model was achieved only on a countable dense subset of Rd .

5.3. Quantum minimax theorem. We can also study efficiency in terms of minimax cri-
teria. Let us begin with a minimax theorem for a quantum Gaussian shift model.

THEOREM 5.5 (Minimax theorem for quantum Gaussian shift model). Suppose that we
are given a quantum Gaussian shift model φh ∼ N((Re τ)h,�). Then, for any estimator M

and a weight matrix G > 0,

sup
h∈Rd

∫
Rd

Gij (x − h)i(x − h)jφh

(
M(dx)

)≥ c
(H)
G .

PROOF. See Section E of the Supplementary Material [4]. �

By using the asymptotic representation Theorem 2.4 as well as Theorem 5.5, we can prove
the following.

THEOREM 5.6 (Local asymptotic minimax theorem). Let S(n) = {ρ(n)
θ : θ ∈ � ⊂ Rd} be

a sequence of quantum statistical models that is q-LAN and D-extendible at θ0 ∈ �. Then,
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for any sequence M(n) of estimators and d × d weight matrix G > 0,

lim
δ→0

lim inf
n→∞ sup

‖h‖≤δ
√

n

∫
Rd

Gij (x − h)i(x − h)j Trρ(n)

θ0+h/
√

n
M(n)(dx)

≥ sup
H

lim inf
n→∞ sup

h∈H

∫
Rd

Gij (x − h)i(x − h)j Trρ(n)

θ0+h/
√

n
M(n)(dx)

≥ sup
L>0

sup
H

lim inf
n→∞ sup

h∈H

∫
Rd

L ∧ {
Gij (x − h)i(x − h)j

}
Trρ(n)

θ0+h/
√

n
M(n)(dx)

≥ c
(rep)
G .

(27)

Here a ∧ b := min{a, b}, and H runs over all finite subsets of Rd . Moreover, the last inequal-
ity is tight.

PROOF. See Section E of the Supplementary Material [4]. �

Note that the quantities appeared in the first and second lines of (27) correspond to the
minimax theorems due to Háyak [9] and in van der Vaart’s book [21], respectively.

5.4. Quantum James–Stein estimator. As the final topic of this section, we touch upon a
superefficient estimator that uniformly breaks the asymptotic representation bound c

(rep)
G .

Let us consider the i.i.d. quantum statistical model S(n) := {ρ⊗n
θ } with the base model

ρθ = 1

2

(
I + θ1σ1 + θ2σ2 + θ3σ3

)
,

(
θ = (

θ1, θ2, θ3),‖θ‖2 < 1
)

on H = C2. We see from Section C of the Supplementary Material [4] that S(n) is q-LAN
and D-extendible at every point θ . In fact, since the linear span of SLDs at each θ is Dρθ -
invariant, the set of SLDs itself gives a D-extension.

Here we focus our attention on the local asymptotic estimation at around the origin θ = 0.
The SLDs at θ = 0 are σi (i = 1,2,3), and the corresponding SLD Fisher information matrix
J S is the identity matrix. Let

�
(n)
i := 1√

n

n∑
k=1

I⊗(k−1) ⊗ σi ⊗ I⊗(n−k).

Then the asymptotic representation Theorem 2.4 allows us to convert the problem of estimat-
ing the local parameter h of ρ⊗n

h/
√

n
into that of estimating the shift parameter h of the limiting

(classical) Gaussian shift model

(28)
{
N(h, I ) : h ∈ R3}.

Specifically, for any regular POVM M(n) that satisfies(
M(n), ρ⊗n

h/
√

n

)
� ∃Lh,

we see from Theorem 5.2 and (7) that∫
Rd

‖x − h‖2Lh(dx) ≥ c
(rep)
I = Tr I = 3,

where we have taken the weight G to be the SLD Fisher information matrix J S = I .
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Now we demonstrate that, if one discards the requirement of regularity, one can construct
an estimator that breaks the above inequality for all h. An estimator on the classical Gaussian
shift model (28) that changes observed data x ∈ R3 into

(29) y =
(

1 − 1

‖x‖
)
x

is called the James–Stein estimator [15]. Letting L(JS)
h be the corresponding probability dis-

tribution of y, it is well known that∫
Rd

‖y − h‖2L(JS)
h (dy) < 3

for all h ∈ R3. Now we see from Theorem 5.3 that there is a regular POVM N(n) that exhibits(
N(n), ρ⊗n

h/
√

n

)
� N(h, I ).

For each n, let N(JS,n) be a POVM that changes the outcome x ∈ R3 of N(n) into y ∈ R3 as
(29). Then (

N(JS,n), ρ⊗n

h/
√

n

)
� L(JS)

h ,

and thus N(JS,n) asymptotically breaks the asymptotic representation bound c
(rep)
I for all

h ∈ R3.

6. Conclusions. In this paper we derived a noncommutative analogue of asymptotic rep-
resentation theorem for a D-extendible q-LAN model (Theorem 2.4). This theorem converts
an estimation problem for a local model {ρ(n)

θ0+h/
√

n
: h ∈ Rd} into another for the limiting

quantum Gaussian shift model {N((Re τ)h,�) : h ∈Rd}. As a corollary, we arrived at a new
bound c

(rep)
G defined by the Holevo bound for the limiting model. This bound turned out to

have universal importance in asymptotic quantum statistics. For example, it gave the ultimate
limit of estimation precision for regular estimators (Theorems 5.2 and 5.3) and minimax es-
timators (Theorem 5.6). Note that, since the bound c

(rep)
G for an i.i.d. model is reduced to the

standard Holevo bound for the base model, the achievability theorem (Theorem 5.3) gives
a substantial refinement of the former result [23], Theorem 3.1, in which the Holevo bound
was achieved only on a countable dense subset of the parameter space.

The key ingredient of Theorem 2.4 was the notion of D-extendibility. Its importance is
first realized in the present paper; however, its trace can be found elsewhere. Guţă and Kahn
[8, 17] and Lahiry and Nussbaum [19] treated i.i.d. extensions of a quantum statistical model
that has Dρθ -invariant SLD-tangent space at every θ from the outset, and thus they did not
need to care about the D-extendibility (Remark 2.3). In their framework the difficulty demon-
strated in Example 2.1 is automatically avoided by regarding the model as a submodel of its
ambient full pure state model. Yamagata et al. [23] introduced the notion of joint q-LAN for
(X(n),�(n)). In view of the present paper, this was a forerunner of the D-extension X(n) of
SLDs �(n), whereby the achievability of the Holevo bound was proved. The notion of D-
extendibility made it possible to generalize the Holevo bound to non-i.i.d. models, providing
a proper perspective on the achievability of the asymptotic representation bound c

(rep)
G .

We believe that the paper has established a solid foundation of the theory of (weak) quan-
tum local asymptotic normality. Nevertheless, its application has just begun, and many open
problems are left for future study. For example, it is not clear whether the D-extendibility
condition can be replaced with a weaker one. One would convince oneself that there are
quantum statistical models that are not i.i.d. but are, nevertheless, q-LAN and D-extendible.
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Imagine a convergent sequence σ
(n)
θ → σ

(∞)
θ of quantum statistical models on a fixed finite

dimensional Hilbert space H. Then the tensor product models ρ
(n)
θ := ⊗n

k=1 σ
(k)
θ would be

q-LAN and D-extendible because they are “almost” i.i.d. in the asymptotic limit. In fact, it is
not difficult to realize this idea with some additional conditions (cf. Section C of the Supple-
mentary Material [4]). In this way the D-extendibility condition enables us to study quantum
asymptotics beyond the i.i.d. assumption. In view of applications, however, it would be nice
if there were a more tractable weaker condition that establishes an asymptotic representation
theorem.

It also remains to be investigated whether an asymptotically optimal statistical procedure
for the local model, indexed by the parameter θ0 +h/

√
n, can be translated into useful statis-

tical procedures for the real world case in which θ0 is unknown. Some authors [6] advocated
two-step estimation procedures in which one first measures a small portion of the quantum
system, in number n1 say, using some standard measurement scheme and constructs an ini-
tial estimate, say θ̃1, of the parameter. One next applies the theory of q-LAN to compute the
asymptotically optimal measurement scheme, which corresponds to the situation θ0 = θ̃1, and
then proceeds to implement this measurement on the remaining n2 (:= n − n1) quantum sys-
tems collectively, estimating h in the model θ = θ̃1 + h/

√
n2. However, such procedures are

inherently limited to within the scope of weak consistency. Studying the strong consistency
and asymptotic efficiency [2] in the framework of collective quantum estimation scheme is
an important open problem.
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mal quantum statistical models” (DOI: 10.1214/23-AOS2285SUPP; .pdf). Section A gives
an alternative view for the asymptotic representation theorem for classical LAN models as
well as its comprehensible proof. Section B gives a brief account of degenerate canonical
commutation relation (CCR) and hybrid classical/quantum Gaussian states. Section C gives
a detailed account of the notion of D-extendibility, including a proof of D-extendibility of
i.i.d. models and an example of non-i.i.d. model that is q-LAN and D-extendible. Section
D is devoted to detailed proofs of lemmas presented in Section 3. Section E is devoted to
detailed proofs of theorems presented in Section 5.
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