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Abstract. We consider the space of ordered pairs of distinct CP1-structures on Riemann surfaces

(of any orientations) which have identical holonomy, so that the quasi-Fuchsian space is identified

with a connected component of this space. This space holomorphically maps to the product of the

Teichmüller spaces minus its diagonal.

In this paper, we prove that this mapping is a complete local branched covering map. As

a corollary, we reprove Bers’ simultaneous uniformization theorem without any quasi-conformal

deformation theory. Our main theorem is that the intersection of arbitrary two Poincaré holonomy

varieties (SL2 C-opers) is a non-empty discrete set, which is closely related to the mapping.
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1. Introduction

In 1960, Bers established a bijection between pairs of Riemann surface structures of opposite

orientations and typical discrete and faithful representations of a surface group into PSL(2,C)

up to conjugacy ([Ber60]). It is called Bers’ simultaneous uniformization theorem, and it gave

a foundation for the later evolutional development of the hyperbolic three-manifold theory by

Thurston ([Thu81]) and many others. In this paper, we partially generalize Bers’ theorem, in a

certain sense, to generic surface representations into PSL(2,C), which are not necessarily discrete.

Throughout this paper, let S be a closed orientable surface of genus g > 1. Given a quasi-

Fuchsian representation ρ : π1(S)→ PSL(2,C), the domain of discontinuity is the union of disjoint

topological open disks Ω+,Ω− in CP1. Then, their quotients Ω+/Imρ,Ω−/Imρ have marked Rie-

mann surface structures with opposite orientations.

Let S+, S− be S with opposite orientations. Then Bers’ simultaneous uniformization theorem

asserts that this correspondence gives a biholomorphism

QF → T× T∗(= R6g−6 × R6g−6)(1)

where QF is space of the quasi-Fuchsian representations ρ : π1(S)→ PSL(2,C) up to conjugation,

T is the Teichmüller space of S+ and T∗ is the Teichmüller space of S−; see [Hub06] [EK06] for

the analyticity. (Note that T∗ is indeed anti-holomorphic to T; see [Wol10]. )

The PSL(2,C)-character variety of S is the space of homomorphisms π1(S) → PSL(2,C),

roughly, up to conjugation, and it has two connected components ([Gol88]). Let χ denote the

component consisting of representations π1(S) → PSL(2,C) which lift to π1(S) → SL(2,C); then
χ strictly contains the (Euclidean) closure of QF.

A CP1-structure on S is a locally homogeneous structure modeled on CP1, and its holonomy is in
χ. The quotients Ω+/Imρ and Ω−/Imρ discussed above have not only Riemann surfaces structures

but also CP1-structures on S+ and S−, respectively. In fact, almost every representation in χ is

the holonomy of some CP1-structure on S [GKM00]; see §2.1 for details.

In fact, each CP1-structure on S corresponds to a holomorphic quadratic differential on a

Riemann surface structure on S (§2.1.2). Let P be the space all (marked) CP1-structures on S+

with the fixed orientation, which is identified with the cotangent bundle of T. Similarly, let P∗ be

the space of all marked CP1 on S−, identified with the cotangent bundle of T∗.

By sending each quasi-Fuchsian representation ρ : π1(S) → PSL(2,C) to the CP1-structures

Ω+/Imρ and Ω−/Imρ, the quasi-Fuchsian space QF holomorphically embeds into P×P∗ as a closed

half-dimensional submanifold. The holonomy map

Hol : P t P∗ → χ

takes each CP1-structure to its holonomy representation. Now we introduce the space of all ordered

pairs of distinct CP1-structures sharing holonomy{
(C,D) ∈ (P t P∗)2

∣∣Hol(C) = Hol(D), C 6= D
}
.
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Let us denote this space by B for appreciation of the work of Bers. Since Hol is locally biholo-

morphic, B is also a half-dimensional closed holomorphic submanifold. The map switching the

order of C and D is a fixed-point-free biholomorphic involution of B. Then, the quasi-Fuchsian

space QF is biholomorphically identified with two connected components of B, which are identified

by this involution (Lemma 13.1). Every connected component of (P t P∗)2 contains at least one

component of B which does not correspond to QF (see Lemma 2.5).

Let ψ : P t P∗ → T t T∗ be the projection from the space of all CP1-structures on S+ and S−

to the space of all Riemann surface structures on S+ and S−. Define Ψ: B → (T t T∗)2 \ ∆ by

Ψ(C,D) = (ψ(C), ψ(D)), where ∆ is the diagonal {(X,X) | X ∈ TtT∗} (which can not intersect

Ψ(B)).

It is a natural question to ask to what extent connected components of B resemble the quasi-

Fuchsian space QF. In this paper, we prove a local and a global property of the holomorphic map

Ψ:

Theorem A. The map Ψ is a complete local branched covering map.

(For the definition of complete local branched covering maps, see §2.5.) In particular, Ψ is

open, and its fibers are discrete subsets of B. Thus its ramification locus is a nowhere-dense

analytic subset, which may possibly be the empty set. (The completeness of Theorem A is given

by Theorem 12.2, and the local property by Theorem B below.)

Note that, by the completeness in Theorem A, for every connected component Q of B, the

restriction Ψ|Q is surjective onto its corresponding component of (T t T∗)2 \ ∆. We also show

that, towards the diagonal ∆, the holonomy of CP1-structures leaves every compact set in χ (see

Proposition 12.6).

The deformation theory of hyperbolic cone manifolds is developed, especially, by Hodgson,

Kerckhoff and Bromberg [HK98, HK05, HK08, Bro04a, Bro04b]). If cone angles exceed 2π, their

deformation theory is established only under the assumption that the cone singularity is short and,

thus, the tube radius is large. More generally, a conjecture of McMullen ([McM98, Conjecture 8.1])

asserts that the deformation space of geometrically-finite hyperbolic cone-manifolds is parametrized

by using the cone angles and the conformal structures on the ideal boundary. Theorem A provides

some additional evidence for the conjecture, when the cone angles are 2π-multiples (c.f. [Bro07]).

Bers’ simultaneous uniformization theorem is a consequence of the measurable Riemann map-

ping theorem. It thus is important that the domain Ω+ t Ω− is a (full measure) subset of CP1.

However, in general, developing maps of CP1-structures are not embeddings, and Bers’ proof does

not apply to the other components of B. In fact, Theorem A implies the simultaneous uniformiza-

tion theorem (§13). Thus we reprove Bers’ theorem genuinely from a complex analytic viewpoint,

without any quasi-conformal deformation theory.

Next we describe the local property in Theorem A. Since Hol is locally biholomorphic, for every

(C,D) ∈ B, if an open neighborhood V of (C,D) in B is sufficiently small, then Hol embeds V

onto a neighborhood U of Hol(C) = Hol(D) in χ. Let TC and TD be T or T∗ so that ψ(C) ∈ TC
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and ψ(D) ∈ TD, and define a holomorphic map ΨC,D : U → TC × TD by the restriction of Ψ to V

and the identification V ∼= U . The following gives a finite-to-one “parametrization” of U by pairs

of Riemann surface structures associated with V .

Theorem B. Let (C,D) ∈ B. Then, there is a neighborhood V of (C,D) in B, such that Hol

embeds V into χ, and the restriction of Ψ to V is a branched covering map onto its image in

TC × TD (Theorem 10.3.)

By the simultaneous uniformization theorem, for every X ∈ T∗ and Y ∈ T, the slices T× {Y }
and {X} × T∗, called the Bers’ slices, intersect transversally in the point in QF corresponding to

(X, Y ) by (1). The Teichmüller spaces T and T∗ are, as complex manifolds, open bounded pseudo-

convex domains in C3g−3, where g is the genus of S. In order to prove Theorem A and Theorem

B, we consider the analytic extensions of T × {Y } and {X} × T∗ in the character variety χ and

analyze their intersection.

For each X ∈ T t T∗, let PX be the space of all CP1-structures on X. Then PX is an affine

space of holomorphic quadratic differentials on X, and thus PX ∼= C3g−3. Although the restrictions

of the holonomy map Hol to P and P∗ are non-proper and non-injective, the restriction of Hol to

PX is a proper embedding ([Poi84, GKM00], see also [Tan99, Kap95, Dum17]). Let χX = Hol(PX),

which we shall call the Poincaré holonomy variety of X as its injectivity is due to Poincaré. Note

that, if X ∈ T, then χ
X contains {X} × T∗ as a bounded pseudo-convex subset, and similarly, if

Y ∈ T∗, then χ
Y contains T× {Y } as a bounded open subset.

The intersection theory of subvarieties and submanifolds in the character variety χ has been

important ([Dum15, DW08] [Fal83, Theorem 12]). Since dimχ
X is half of dimχ, it is a basic

question to ask what the intersection of such smooth subvarieties looks like.

Theorem C. For all distinct X, Y in T t T∗, the intersection of χX and χ
Y is a non-empty

discrete set.

More precisely, we will show that χX ∩ χY contains at least one point if the orientations of X

and Y are the same, and at least two points if the orientations are opposite (Corollary 12.7). Such

a global understanding of χX ∩ χY in Theorem C is completely new. In fact, much of this paper

is devoted to proving the discreteness of χX ∩ χY .

The deformation spaces, P and P∗, of CP1-structures have two distinguished parametrizations:

namely, Schwarzian parametrization (§2.1.2) and Thurston parametrization (§2.1.6). In order to

understand points in χX ∩χY , we give a comparison theorem between those two parametrizations.

Let C be a CP1-structure on a Riemann surface X. Then the quadratic differential of its

Schwarzian parameters gives a vertical measured (singular) foliation V on X. The Thurston

parametrization of C gives the measured geodesic lamination L on the hyperbolic surface. Dumas

showed that V and L projectively coincide in the limit as C leaves every compact set in PX
([Dum06, Dum07]), see also [OSWW].)
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The measured geodesic lamination L of the Thurston parameter is also realized as a circular

measured lamination L on C, so that L and L are the same measured lamination on S (§2.1.7).

In this paper, we prove a more explicit asymptotic relation between the Thurston lamination L
and the vertical foliation V , without projectivization. For a quadratic differential q = φ dz2 on a

Riemann surface X, let ‖q‖ =
∫
X
|φ| dx dy, the L1-norm. Then we have the following.

Theorem D. Let X ∈ T t T∗. For every ε > 0, there is r > 0, such that, if the holomorphic

quadratic differential q on X satisfies ‖q‖ > r, then, letting C be the CP1-structure on X given by

q, the vertical foliation V of q is (1 + ε, ε)-quasi-isometric to
√

2 times the Thurston lamination L
on C, up to an isotopy of X supported on the ε-neighborhood of the zero set of q in the uniformizing

hyperbolic metric on X. (Theorem 4.1.)

(See 4 for the definition of being quasi-isometric, and see §2.1.7 for the Thurston lamination

on a CP1-surface.) Theorem D is reminiscent of the (refined) estimates of high energy harmonic

maps between hyperbolic Riemann surfaces by Wolf ([Wol91]).

Last we address that, in our setting, a variation of McMullen’s conjecture can be stated in a

global manner:

Question 1.1. For every (or even some) non-quasi-Fuchsian component Q of B, is the restriction

of Φ to Q a biholomorphic mapping onto its corresponding component of (T t T∗)2?

1.1. Outline of this paper. In §3, we analyze the geometry of Epstein-Schwarz surfaces corre-

sponding to CP1-structures, using [Dum17] and [Bab]. In §4, we analyze the horizontal foliations

of CP1-structures on X and Y corresponding to the intersection points of χX ∩ χY in Theorem

C. In fact, we show that such horizontal projectivized measured foliations projectively coincide

towards infinity of χX ∩ χY (Theorem 4.5).

A (fat) train-track is a surface obtained by identifying edges of rectangles in a certain manner.

In §5, we introduce more general train-tracks whose branches are not necessarily rectangles but

more general polygons, cylinders, and even surfaces with staircase boundary (surface train tracks).

In §6, given a certain pair of flat surfaces, we decompose them into the surface train tracks in a

compatible manner.

In §7, we prove Theorem D. In §8, for every holonomy ρ in χ
X ∩ χY outside a large compact

subset K of χ, we construct certain surface train-track decompositions of CP1-structures on X

and Y corresponding to ρ in a compatible manner, using the decomposition of flat surfaces. In §9,

from the compatible decompositions of the CP1-structures, we construct an integer-valued cocycle

which changes continuously in ρ ∈ χX∩χY \K. In §10, by this cocycle and some complex geometry,

we prove the discreteness in Theorem C. In §12, the completeness of Theorem C is proven. In §11,

we discuss the case when the orientations of X and Y are opposite. In §13, we give a new proof of

Bers’ theorem.
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2. Preliminaries

2.1. CP1-structures. (General references are [Dum09], [Kap01, §7].) Let F be a connected ori-

entable surface. A CP1-structure on F is a (CP1,PSL(2,C))-structure. That is, a maximal atlas

of charts embedding open sets of F into CP1 with transition maps in PSL(2,C). Let F̃ be the

universal cover of F . Then, equivalently, a CP1-structure is a pair of

• a local homeomorphism f : F̃ → CP1 and

• a homomorphism ρ : π1(S)→ PSL(2,C)

such that f is ρ-equivariant ([Thu97]). It is defined up to an isotopy of the surface and an element

α of PSL(2,C), i.e. (f, ρ) ∼ (αf, α−1ρα). The local homeomorphism f is called the developing

map and the homomorphism ρ is called the holonomy representation of a CP1-structure. We also

write the developing map of C by devC.

2.1.1. The holonomy map. The PSL(2,C)-character variety of S is the space of the equivalence

classes homomorphisms

{π1(S)→ PSL(2,C))} � PSL(2,C),

where the quotient is the GIT-quotient (see [New] for example). For the holonomy representations

of CP1-structures on S, the quotient is exactly given by the conjugation by PSL(2,C). Then,

the character variety has exactly two connected components, distinguished by the lifting property

to SL(2,C); see [Gol88]. Let χ be the component consisting of representations which lift to

π1(S)→ SL(2,C), and let P be the space of marked CP1-structures on S. Then the holonomy map

Hol : P→ χ

takes each CP1-structure to its holonomy representation. Then Hol is a locally biholomorphic map,

but not a covering map onto its image ([Hej75, Hub81, Ear81]). By Gallo, Kapovich, and Marden

([GKM00]), ρ ∈ Im Hol if and only if ρ is non-elementary and ρ has a lift to π1(S)→ SL(2,C). In

particular, Hol is almost onto χ.

2.1.2. The Schwarzian parametrization. (See [Dum09] [Leh87].) Let X be a Riemann surface

structure on S. Then, the hyperbolic structure τX uniformizing X is, in particular, a CP1-structure

on X. For an arbitrary CP1-structure C on X, the Schwarzian derivative gives a holomorphic

quadratic differential on X by comparing with τX , so that τX corresponds to the zero differential.

Then (X, q) is the Schwarzian parameters of C. Let QD(X) be the space of the holomorphic

quadratic differentials on X, which is a complex vector space of dimension 3g−3. Thus, the space

PX of all CP1 structures on X is identified with QD(X).
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Theorem 2.1 ([Poi84, Kap95], see also [Tan99, Dum17]). For every Riemann surface structure

X on S, the set PX of projective structures on X is property embedded in χ by Hol.

For X ∈ TtT∗, let χX denote the smooth analytic subvariety Hol(χX). Pick any metric d on T

and T∗ compatible with their topology (for example, the Teichmüller metric or the Weil-Peterson

metric).

Lemma 2.2. Let B be an arbitrary bounded subset of either T or T∗. For every compact subset

K in χ, there is ε > 0, such that, if distinct X, Y ∈ B satisfy d(X, Y ) < ε, then χ
X ∩χY ∩K = ∅.

Proof. For each X ∈ T t T∗, by Theorem 2.1, PX is properly embedded in χ. For a neighborhood

U of X, let Dr(U) denote the set of all holomorphic quadratic differentials q on Riemann surfaces

Y in U such that the L1-norm ‖q‖ is less than r. Since Hol is a local biholomorphism, for every

X ∈ TtT∗ and r ∈ R>0, there is a neighborhood U of X, Hol embeds Dr(U) into χ. Let PU be the

space of all CP1-structures whose complex structures are in U . Then, if r > 0 is sufficiently large,

we can, in addition, assume that K ∩Hol(PU) = K ∩Hol(Dr(U)). Therefore, for all Y,W ∈ U , we

have χY ∩ χW ∩K = ∅. �

2.1.3. Singular Euclidean structures. (See [Str84], [FM12].) Let q = φ dz2 be a quadratic dif-

ferential on a Riemann surface X. Then q induces a singular Euclidean structure E on S from

the Euclidean structure on C: Namely, for each non-singular point z ∈ X, we can identify a

neighborhood Uz of z with an open subset of C ∼= E2 by the integral

η(w) =

∫ w

z

√
φ dz

along a path connecting z and w, where w ∈ Uz is a fixed base point (for details, see [Str84]).

Then the zeros of q correspond to the singular points of E. Note that, for r > 0, if the differential

q is scaled by r, then the Euclidean metric E is scaled by
√
r. Let E1 denote the normalization

E
AreaE

of E by the area.

The complex plane C is foliated by horizontal lines and, by the identification C = E2, the

vertical length dy gives a canonical transversal measure to the foliation. Similarly, C is also

foliated by the vertical lines, and the horizontal length dx gives a canonical transversal measure

to the foliation. Then, those vertical and horizontal foliations on C induce vertical and horizontal

singular foliations on E which meet orthogonally.

In this paper, a flat surface is the singular Euclidean structure obtained by a quadratic differ-

ential on a Riemann surface, which has vertical and horizontal foliations.

2.1.4. Measured laminations. ( See [Thu81, EM87] for details) Let σ be a hyperbolic structure on

the closed surface S. A geodesic lamination on σ is a set of disjoint geodesics whose union is a

closed subset of S. A measured (geodesic) lamination L on σ is a pair of a geodesic lamination

and its transversal measure. In this paper, for an arc α on σ transversal to L, we denote, by L(α),

the transversal measure of α given by L. If we take a different hyperbolic structure σ′ on S, there
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is a unique geodesic representative on L on σ′. We thus can define measured laminations without

fixing a specific hyperbolic structure on S.

2.1.5. Bending a geodesic in the hyperbolic three-space. The following well-known lemma describes

a closeness of a geodesic and a piecewise geodesic in H3 with a small amount of bending.

Lemma 2.3. ( [CEG87, Theorem I.4.2.10] ) Let c : [0, `]→ H3 be a piecewise geodesic parametrized

by arc length. Let s(t) be the geodesic segment in H3 connecting c(0) to c(t). Let θ(t) be the angle

between the forward tangent vector of c at t and the forward tangent vector of s(t) at c(t).

For every ε > 0 and r > 0, there is δ > 0 such that, if each smooth geodesic segment of c has

length at least r and the exterior angle of c at every singular point of c is less than δ, then θ(t) < ε

for all t ∈ [0, `].

2.1.6. Thurston’s parameterization. By the uniformization theorem of Riemann surfaces, the space

of all marked hyperbolic structures on S is identified with the space T of all marked Riemann

surface structures. Let ML be the space of measured laminations on S. Note that CP1 is the ideal

boundary of H3, so that AutCP1 = Isom+H3. In fact, Thurston gave a parameterization of P

using the three-dimensional hyperbolic geometry.

Theorem 2.4 (Thurston, see [KP94, KT92]). There is a natural (tangential) homeomorphism

P→ T×ML.

Suppose that, by this homeomorphism, C = (f, ρ) ∈ P corresponds to a pair (σ, L) ∈ T×ML.

Let L̃ be the π1(S)-invariant measured lamination on H2 obtained by lifting L. Then (σ, L) yields

a ρ-equivariant pleated surface β : H2 → H3, obtained by bending H2 along L̃ by the angles

given by its transversal measure. The map β is called a bending map, and it is unique up to

post-composing with PSL(2,C).

2.1.7. Collapsing maps. ([KP94]; see also [Bab20].) Let C ∼= (τ, L) be a CP1-structure expressed

in Thurston parameters. Let C̃ be the universal cover of C. Then C̃ can be regarded as the domain

of f , so that C̃ is holomorphically immersed in CP1. A round disk is a topological open disk whose

development is a round disk in CP1, and a maximal disk is a round disk which is not contained in

a strictly bigger round disk. In fact, for all z ∈ C̃, there is a unique maximal disk Dz whose core

contains z. Then there is a measured lamination L on C obtained from the cores of maximal disks

in the universal cover C̃, such that L is equivalent to L in ML. This lamination is the Thurston

lamination on C. In addition, there is an associated continuous map κ : C → τ which takes L to

L, called the collapsing map.

Then, the bending map and the developing of C are related by the collapsing map κ and

appropriate nearest point projections in H3: Let κ̃ : C̃ → H2 be the lift of κ to a map between

the universal covers. Let Hz be the hyperbolic plane in H3 bounded by the boundary circle of

Dz. There is a unique nearest point projection from Dz to Hz. Then β ◦ κ̃(z) is the nearest point

projection of f(z) to Hz.
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2.2. Bers’ space. Recall, from §1, that B is the space of ordered pairs of CP1-structures on S

with identical holonomy, which may have different orientations.

Lemma 2.5. Every component of (PtP∗)2 contains, at least, one connected component of B which

is not identified with the quasi-Fuchsian space.

Proof. By [GKM00], every non-elementary representation ρ : π1(S) → SL(2,C) is the holonomy

representation of infinitely many CP1-structures on S+ whose developing maps are not embedding,

and also of infinitely many CP1-structures of S− whose developing maps are not embedding. There-

fore, since a quasi-Fuchsian component of B consists of pairs of CP1-structures whose developing

maps are embedding, every component of (P t P∗)2 contains at least one connected component of

B, which is not a quasi-Fuchsian component. �

Lemma 2.6. B is a closed analytic submanifold of P t P∗ of complex dimension 6g − 6.

Proof. It is a holomorphic submanifold, since Hol : P t P∗ → χ is a local biholomorphism. As

dimC χ = 6g − 6, the complex dimension of B is also 6g − 6. Let (Ci, Di) be a sequence in

B converging to (C,D) in (P t P∗)2. Then, since HolCi = HolDi, by the continuity of Hol,

Hol(C) = Hol(D). Therefore B is closed. �

2.3. Angles between laminations. Let F be a surface with a hyperbolic or singular Euclidean

metric. Let `1, `2 be (non-oriented) geodesics on F with non-empty intersection. Then, for p ∈
`1 ∩ `2, let ∠p(`1, `2) ∈ [0, π/2] denote the angle between `1 and `2 at p.

Let L1 L2 be geodesic laminations or foliations on F . Then ∠(L1, L2) be the infimum of

∠p(`1, `2) ∈ [0, π/2] over all p ∈ L1 ∩ L2 where `1 and `2 are leaves of L1 and L2, respectively,

containing p. By convention, if L1 ∩ L2 = ∅, then ∠(L1, L2) = 0. We say that L1 and L2 are

ε-parallel, if ∠(L1, L2) < ε.

2.4. The Morgan-Shalen compactification. (See [CS83, MS84], see also [Kap01, §10.3].) The

Morgan-Shalen compactification is a compactification of PSL(2,C)-character variety, introduced

in [CS83, MS84]. For our χ, each boundary point corresponds to a minimal action of π1(S) on a

R-tree, π1(S) y T .

Every holonomy ρ : π1(S)→ PSL(2,C) induces a translation length function ρ∗ : π1(S)→ R≥0,

and a minimal action π1(S) on a R-tree also induces a translation length function. Then ρi ∈ χ
converges to a boundary point π1(S) y T if the length function ρ∗i projectively converges to the

projective class of the translation function of π1(S) y T as i→∞.

2.5. Complex geometry. We recall some basic complex geometry used in this paper. Let U,W

be complex manifolds of the same dimension. A holomorphic map φ : U → W is a (finite) branched

covering map if

• there are closed analytic subsets U ′,W ′ of dimensions strictly smaller than dimU = dimW ,

such that the restriction of φ to U \ U ′ is a covering map onto W \W ′, and
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• its covering degree is finite. (See [FG02, p227].)

A holomorphic map φ : U → W is a local branched covering map if, for every z ∈ U , there is a

neighborhood V of z in U such that the restriction φ|V is a branched covering map onto its image.

A holomorphic map U → W is complete if it has the (not necessarily unique) path lifting property

([AS60]).

Let U be an open subset of Cn. Then a subset V of U is analytic if it is locally an intersection

of zeros of finitely many holomorphic functions.

Proposition 2.7 (Proposition 6.1 in [FG02]). Every connected bounded analytic set in Cn is a

discrete set.

Theorem 2.8 (p107 in [GR84], Theorem 7.9 in [HY99]). Let U ⊂ Cn be a region. Suppose that

f : U → Cn is a holomorphic map with discrete fibers. Then it is an open map.

3. Approximations of Epstein-Schwarz surfaces

3.1. Epstein surfaces. (See Epstein [Eps], and also Dumas [Dum17].) Let C be a CP1-structure

on S. Fix a developing pair (f, ρ) of C, where f : C̃ → CP1 is the developing map and ρ : π1(S)→
PSL(2,C) is the holonomy representation, which is unique up to PSL(2,C). For z ∈ H3, by

normalizing the ball model of H3 so that z is the center, we obtain a spherical metric νS2(z) on

∂∞H3 = CP1.

Given a conformal metric µ on C, there is a unique map Ep: C̃ → H3 such that, for each

x ∈ C̃, the pull back of νS2 Ep(z) coincides with µ̃ at z. This map is ρ-equivariant, and called the

Epstein surface.

3.2. Approximation. Let C = (X, q) be a CP1-structure on S expressed in Schwarzian coordi-

nates, where q is a holomorphic quadratic differential on a Riemann surface X. Then q yields a

flat surface structure E on S. Moreover q gives a vertical measured foliation V and a horizontal

measured foliation H on E.

Let Ep: S̃ → H3 be the Epstein surface of C with the conformal metric given by E. Then,

let Ep∗ : T S̃ → TH3 be the derivative of Ep, where T S̃ and TH3 denote the tangent bundles.

Let d : Ẽ → R≥0 be the distance function from the singular set Z̃q with respect to the singular

Euclidean metric of Ẽ.

Let v′(z) be the vertical unit tangent vector of Ẽ at a smooth point z. Similarly, let h′(z) be

the horizontal unit tangent vector at a smooth point z of Ẽ.

Lemma 3.1 ([Eps], Lemma 2.6 and Lemma 3.4 in [Dum17]).

(1) ‖Ep∗ h′(z)‖ < 6
d(z)2

;

(2)
√

2 < ‖Ep∗ v′(z)‖ <
√

2 + 6
d(z)2

;

(3) h′(z), v′(z) are principal directions of Ep at z;

(4) kv <
6

d(z)2
, where kv is the principal curvature of Ep in the vertical direction.
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Ep∗ v′(t)

st

Ep v(0)

Figure 1.
then the total curvature along

Consider the Euclidean metric on C ∼= E2. By the exponential map exp: C → C∗, we push

forward a complete Euclidean metric to C∗, which is invariant under the action of C∗. If a simply

connected region Q in the flat surface E contains no singular points, then Q is immersed into

C locally isometrically preserving horizontal and vertical directions. Using Lemma 3.1 and the

definition of Epstein surfaces, one obtains the following.

Lemma 3.2. ([Bab, Lemma 12.15].) For every ε > 0, there is r > 0, such that if Q is a region in

E satisfying

• Q has E-diameter less than r, and

• the distance from the singular set of E is more than r.

then exp: C → C∗ and the developing map are ε-close pointwise with respect to the complete

Euclidean metrics.

We shall further analyze vertical curves on Epstein surfaces. Let v : [0, `] → Ẽ be a path in a

vertical leaf, such that v contains no singular point and has a constant speed 1√
2

in the Euclidean

metric. Let Ep⊥(z) be the unit normal vector of the Epstein surface Ep at each smooth point

z ∈ Ẽ. Let st be the geodesic segment in H3 connecting Ep v(0) to Ep v(t) ; see Figure 1.

The following lemma is an analogue of Lemma 2.3 regarding piecewise geodesic curves for

smooth curves.

Lemma 3.3. For every ε > 0, there is (large) ω > 0 only depending on ε, such that, w.r.t. the

E-metric, if the distance of the vertical segment v from the zeros Zq of q is more than ω, then the

angle between Ep∗ v′(t) and the geodesic containing st is less than ε for all t. (Figure 1.)

Proof. In fact, the proof of this lemma is essentially reduced to the analogous lemma (Lemma 2.3)

for piecewise geodesic curves as follows.

Fix a Riemannian metric on the tangent bundle of H3 which is invariant under the isometries

of H3. Then, by Lemma 3.1 (2) and (4), for every ε1 > 0, there is sufficiently large ω > 0 such that,

if a vertical segment v : [0, `] → Ẽ of unit speed has length less than 1
ε

and distance from Zp at

least ω, then the smooth curve Ep ◦ v is ε1-close to the geodesic segment connecting the endpoints

of Ep ◦ v in the C1-topology with respect to the invariant metric. Therefore, the lemma holds true

under the additional assumption that the length of v is uniformly bounded from above.

Now, without any upper bound on the length, let v : [0, `] → Ẽ be a vertical segment of unit

speed which has distance at least ω from Zp. Let ε1 > 0 be a constant. Then we decompose v into
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u1

u2
u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3

Figure 2. A piecewise geodesic curve u1 ∪ u2 ∪ u3 which is C1-close to both the
smooth curve Ep ◦v and the geodesic segment connecting the endpoints of Ep ◦v (in
the case of n = 3).

n segments v1, v2, . . . , vn so that the first n−1 segments v1, v2, . . . , vn−1 have length exactly 1
ε1

and

the last segment vn has length at most 1
ε1

. For all i = 1, 2, . . . , n, let ui be the geodesic segment

connecting the endpoints of Ep ◦vi. Then, by the argument above, for every ε2 > 0, if ε1 > 0 is

sufficiently small, then the piecewise geodesic curve ∪ni=1ui is ε2-close to Ep ◦v in C1-topology. We

can, in addition, assume that the exterior angle at the common endpoint of ui and ui+1 is less

than ε2 for all i = 1, 2, . . . , n1. Therefore, by Lemma 2.3, for every ε2 > 0, if ε1 > 0 is sufficiently

small, then the piecewise geodesic curve ∪ni=1ui is ε2-close to the geodesic segment connecting the

endpoints of Ep ◦v in C1-topology. (See Figure 2.)

Therefore, for every ε > 0, if ε1 > 0 is sufficiently small, then Ep ◦v is ε-close to the geodesic

segment connecting its endpoints. Then the lemma immediately follows. �

Define θ : [0, `] → TEp v(0) by the parallel transport of Ep⊥(t) along st to the starting point

Ep(v(0)); see Figure 3. Let H be the (totally geodesic) hyperbolic plane in H3 orthogonal to the

tangent vector Ep∗ v′(0), so that H contains Ep⊥ v(0). Then, Lemma 3.3, implies

Corollary 3.4. For every ε > 0, there is (large) ω > 0 only depending on ε such that, if the

Hausdorff distance between v and the zeros Zq of q is more than ω w.r.t. the E-metric, then

∠v(0)(θ(t), H) < ε for all t ∈ [0, `].

Recall that the PSL2C-character variety χ of the surface S is an affine algebraic variety. Then

we say a compact subset K in the character variety χ or the holonomy variety χX for X ∈ T is

sufficiently large, if K contains a sufficiently large ball in the ambient affine space centered at the

origin.

Proposition 3.5 (Total curvature bound in the vertical direction). For all X ∈ T ∪ T∗ and all

ε > 0, there is a bounded subset K = K(X, ε) in χ
X , such that, for ρ ∈ χ

X \ K, if a vertical

segment v has normalized length less than 1
ε

and has normalized Euclidean distance from the zeros

of qX,ρ at least ε, then the total curvature along v is less than ε.

Proof. For every r > 0, if K is sufficiently large, then, if a CP1-structure C = (X, q) on X has

holonomy outside K, then the distance from Zq to v is at least r. Then the proposition immediately

follows from Dumas’ estimate in Lemma 3.1 (4). �
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Ep⊥(t)

ststststststststststststststststst
θ(t)

Figure 3. The torsion-type angle function θ.

Consider the projection θ̂(t) of θ(t) ∈ T 1
v(0)H3 to the unit tangent vector in H at v0. Let

η : [0, `]→ R be the continuous function of the total increase of θ̂(t) : [0, `]→ R, so that η(0) = 0

and η′(t) = θ̂′(t).

Proposition 3.6. Let X ∈ T t T∗. For every ε > 0, there is a bounded subset K = K(X, ε) > 0

in χ
X , such that, if

• C ∈ PX has holonomy in χ
X \K;

• a vertical segment v of the normalized flat surface E1
C has the length less than 1

ε
;

• the normalized distance of v from the singular set ZC of E1
C is more than ε,

then, |η′(t)| < ε for t ∈ [0, `] and
∫ `

0
|η′(t)| < ε. In particular, |η(t)| < ε for all t ∈ [0, `].

Proof. The absolute value of θ′(t) is bounded from above by the curvature of Ep ◦v : [0, `]→ H3 at

t. Therefore |η′(t)| is bounded from above the curvature. Thus, for every ε > 0, if K is sufficiently

large, then by Lemma 3.1 (4), then |η′(t)| < ε for all t ∈ [0, `], regardless of the choice of the

vertical segment v. Therefore, by Proposition 3.5, if K is sufficiently large,
∫ `

0
|η′(t)| < ε holds.

�

Let α be the bi-infinite geodesic in H3 through Ep(v(0)) and Ep(v(`)). Let p1, p2 denote the

endpoints of α in CP1. If a hyperbolic plane in H3 is orthogonal to α, then its ideal boundary is

a round circle in CP1 \ {p1, p2}. Moreover CP1 \ {p1, p2} is foliated by round circles which bound

hyperbolic planes orthogonal to α.

If a hyperbolic plane in H3 contains the geodesic α, then its ideal boundary is a round circle

containing p1 and p2. Then, by considering all such hyperbolic planes, we obtain another foliation

V of CP1 \ {p1, p2} by circular arcs connecting p1 and p2. Then V is orthogonal to the foliation

by round circles. Note that V has a natural transversal measure given by the angles between

the circular arcs at p1 (and p2). Then the transversal measure is invariant under the rotations of

H3 about α, and its total measure is 2π. Given a smooth curve c on CP1 \ {p1, p2} such that c

decomposes into finitely many segments c1, c2, . . . cn which are transversal to V , possibly, except

at their endpoints. Let V(c) denote the “total” transversal measure of c given by V , the sum of

the transversal measures of c1, c2, . . . , cn. Then, Proposition 3.6 implies the following.

Corollary 3.7. For every ε > 0, there is a bounded subset K ⊂ χ
X , such that, if
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• C ∈ PX has holonomy in χ
X \K,

• a vertical segment v of EC has the normalized length less than 1
ε
, and

• the normalized distance of v from the zeros ZC is more than ε,

then, the curve f |v : [0, `] → CP1 intersects V at angles less than ε, and the total V-transversal

measure of the curve is less than ε.

Definition 3.8. Let v be a unit tangent vector of H3 at p ∈ H3. Let H be a totally geodesic

hyperbolic plane in H3. For ε > 0, v is ε-almost orthogonal to H if distH3(H, p) < ε and the angle

between the geodesic g tangent to v at p and H is ε-close to π/2.

Fix a metric on the unit tangent space T 1H3 invariant under PSL(2,C). For ε > 0, let NεZ
1
X,ρ

denote the ε-neighborhood of the singular set Z1
X,ρ of the normalized flat surface E1

X,ρ.

Theorem 3.9. Fix arbitrary X ∈ T t T∗. For every ε > 0, if a bounded subset Kε ⊂ χ
X is

sufficiently large, then, for all ρ ∈ χX \Kε,

(1) if a vertical segment v in E1
X,ρ \NεZ

1
X,ρ has length less than 1

ε
, then the total curvature of

EpX,ρ |v is less than ε, and

(2) if a horizontal segment h in E1
X,ρ \ NεZ

1
X,ρ has length less than 1

ε
, then for the vertical

tangent vectors w along the horizontal segment h, their images Ep∗X,ρ(w) are ε-close in the

unit tangent bundle of H3.

Proof. (1) is already by Proposition 3.5. By [Bab, Proposition 4.7], we have (2). 3.9

4. Comparing measured foliations

4.1. Thurston laminations and vertical foliations. Let L1, L2 be measured laminations or

foliations on a surface F . Then L1 and L2 each define a pseudo-metric almost everywhere on F :

for all x, y ∈ F not contained in a leaf of Li with atomic measure, consider the minimal transversal

measure of all arcs connecting x to y. We say that, for ε > 0, L1 is (1 + ε, ε)-quasi-isometric to L2,

if for almost all x, y ∈ F ,

(1 + ε)−1dL1(x, y)− ε < dL2(x, y) < (1 + ε)dL1(x, y) + ε.

We shall compare a measured lamination of the Thurston parametrization and a measured

foliation from the Schwarzian parametrization of a CP1-surface.

Theorem 4.1. For every ε > 0, there is r > 0 with the following property: For every C ∈ Pt P∗,

then, letting (E, V ) be its associated flat surface, if disk D in E has radius less than 1
ε

and the

distance between D and the singular set Z of E is more than r, then the vertical foliation V of C

is (1 + ε, ε)-quasi isometric to
√

2 times the Thurston lamination L of C on D.
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Proof of Theorem 4.1. It suffices to show the assertion when D is a unit disk. Since D contains no

singular point, we can regard D as a disk in C by the natural coordinates given by the quadratic

differential. The scaled exponential map

exp(
√

2 ∗) : C→ C∗ : z 7→ exp(
√

2z).

is a good approximation of the developing map sufficiently away from zero (Lemma 3.2), which was

proved using Dumas’ work [Dum17]). Let C0 be the CP1-structure on C whose developing map is

exp(
√

2 ∗). The next lemma immediately follows from the construction of Thurston coordinates.

Lemma 4.2. The Thurston lamination on C0 is the vertical foliation of C with a transversal

measure given by the horizontal Euclidean distance.

Let Dx be the maximal disk in C̃ centered at x. Let D0,x be the maximal disk in C0 centered at

x by the inclusion D ⊂ C. When CP1 is identified with S2 so that the center O of the disk D map

to the north pole and the maximal disk in C̃ centered at O maps to the upper hemisphere. If r > 0

is sufficiently large, then the dev |D is close to exp(
√

2 ∗). Then, for every x ∈ D, its maximal disk

Dx in C̃ is ε-close to the maximal disk D0,x in C0, and the ideal point ∂∞Dx is ε-Hausdorff close

to the idea boundary ∂∞D0,x on S2.

Therefore, by [Bab17, Theorem 11.1, Proposition 3.6], the convergence of canonical neighbor-

hoods implies the assertion. 4.1

A staircase polygon is a polygon in a flat surface whose edges are horizontal or vertical (see

Definition 5.1).

Theorem 4.3. For every X ∈ TtT∗ and every ε > 0, there is a constant r > 0 with the following

property: Suppose that C is a CP1-structure on X and C contains a staircase polygon P w.r.t.

its flat surface structure (E, V ), such that the (E-)distance from ∂P to the singular set Z of E is

more than r. Then, letting L denote the Thurston lamination of C, the restriction of L of C to

P with its transversal measure scaled by
√

2 is (1 + ε, ε)-quasi-isometric to the vertical foliation V

on P up to a diffeomorphism supported on the r/2-neighborhood of the singular set in P .

Proof. Let Nr/2Z denote the r/2-neighborhood of Z. If r > 0 is sufficiently large, then, for each

disk D of radius r
4

centered at a point on E \Nr/2(Z), the assertion holds by Theorem 4.1.

Since ∂P ∩Nr/2Z = ∅, there is an upper bound for lengths of edges of such staircase polygons

P with respect to the normalized Euclidean metric E1.

Lemma 4.4. For every ε > 0, if r > 0 is sufficiently large, then for every vertical segment v of

V |P whose distance from the singular set Z is more than r/2, we have L(v) < ε.

Proof. This follows from Corollary 3.7. �

By Theorem 4.1 and Lemma 4.4, V and L are (1 + ε, ε)-quasi-isometric on P minus Nr/2Z.

Note that V and L in P ∩Nr/2 are determined by V and L in P \Nr/2 up to an isotopy, respectively.
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S̃

TX TY

T

φY

φX

ψX

ψY

Figure 4. The equivariantly homotopic diagram of compositions of quotient col-
lapsing maps and folding maps

Therefore, as desired, V and L are (1+ε, ε)-quasi-isometric on P , up to a diffeomorphism supported

on Nr/2Z. 4.3

4.2. Horizontal foliations asymptotically coincide. Let X, Y ∈ T t T∗ with X 6= Y . Let
χ
X = Hol PX and let χY = Hol PY , the holonomy varieties of X and Y , respectively. Suppose

that ρi is a sequence in χ
X ∩ χY which leaves every compact set in χ. Then, let CX,i and CY,i

be the CP1-structures on X and Y , respectively, with holonomy ρi. Similarly, let HX,i and HY,i

denote the horizontal measured foliations of CX,i and CY,i. Then, up to a subsequence, we may

assume that ρi converges to a π1(S)-tree T in the Morgan-Shalen boundary of χ, and that the

projective horizontal foliations [HX,i] and [HY,i] converge to [HX ] and [HY ] ∈ PML(S), respectively,

as i→∞. Let ζ : π1(S)→ IsomT denote the representation given by the isometric action in the

limit, where IsomT is the group of isometries of T .

Let H̃X be the total lift of the horizontal foliation HX to the universal cover of X, which is a

π1(S)-invariant measured foliation. Then, collapsing each leaf of H̃X to a point, we obtain a R-tree

TX , where the metric is induced by the transversal measure (dual tree of H̃). Let φX : S̃ → TX be

the quotient collapsing map, which commutes with the π1(S)-action. By Dumas ([Dum17, Theorem

A, §6]), there is a unique straight map ψX : TX → T such that ψX is also π1(S)-equivariant, and

that every non-singular vertical leaf of Ṽ |X maps to a geodesic in T .

Similarly, let φY : S̃ → TY be the map which collapses each leaf of H̃Y to a point. Let ψY : TY →
T be the straight map. (See Figure 4.) Let dT be the induced metric on T .

Next we show the horizontal foliations coincide in the limit as projective laminations.

Theorem 4.5. [HX ] = [HY ] in PML.

Proof. Pick a diffeomorphism X → Y preserving the marking. Let ξ : X → Y be a piecewise linear

homeomorphism which is a good approximation of ξ with respect to the limit singular Euclidean

structures EX , EY on X and Y ; let EX = ∪pj=1σj be the piecewise linear decomposition of EX
for ξ, where σ1, . . . , σp are convex polygons in EX with disjoint interiors. We diffeomorphically

identify X, Y with the base surface S, so that the identifications induce ξ. Let ξ̃ : X̃ → Ỹ be the

lift of ξ : X → Y to a π1(S)-equivariant map between the universal covers X̃, Ỹ .
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Recall that the dual tree T is a geodesic metric space. Therefore, the ζ-equivariant maps

ψX ◦ φX : X̃ → T and ψY ◦ φX : Ỹ → T are ζ-equivariantly homotopic when identifying their

domains by ξ̃. Namely, for each x ∈ S̃, for t ∈ [0, 1], let ηt(p) be the point dividing the geodesic

segment from ψX ◦ φX(p) to ψY ◦ φY (p) in the ratio t : 1− t. By subdividing the piecewise linear

decomposition EX = ∪pj=1σj if necessary, we may assume that for each j = 1, . . . , p, ψX ◦ φX(σ̃j)

and ψY ◦ φY (σ̃j) are the geodesic segments in T contained in a common geodesic in T for all lifts

σ̃j of linear pieces σj (j = 1, . . . , p), where σ̃j is a lift of σj to the universal cover ẼX . Note that

ηt(σ̃j) may be a single point in T for t ∈ (0, 1) ; however this degeneration may happen only at

most a single time point t ∈ [0, 1] for each j. Let 0 < t1 < t2 < . . . tm < 0 be the time points such

that ηti takes some piece σ̃j to a single point in T .

Suppose ηt(σ̃j) is a segment in T for t ∈ [0, 1]. Then the fibers of ηt yield a foliation on σj.

Moreover the pullback of the distance in T gives the transversal measure on the foliation. That is,

if an arc in σ is transversal to the foliation, its transversal measure is the distance in T between

the images of the endpoints of the arc. Therefore, if t 6= t1, t2, . . . , tm, ηt gives a singular measured

foliation Ht on S, where singular points are contained in the boundary of the linear pieces. Then,

recalling that we have fixed a metric on T in its projective class, we have H0 = HX and H1 = HY

as ψX and ψY are straight maps, up to scaling of HX and HY .

At time ti, the ηti-image of σ̃j is a single point in T for some j. Then, since all points on

σ̃j map to the same point on T , the pull-back of the distance on T by ηti can be regarded as

the empty lamination on σj. Thus, we obtain a measured lamination Hti on S, pulling back the

distance by ηti . Therefore, we obtain a measured lamination Ht on S for all t ∈ [0, 1]. Moreover,

as the ζ-equivariant homotopy ηt : S̃ → T changes continuously in t, Ht changes continuously on

t ∈ (0, 1).

For each j = 1, . . . , p, let Uj be a small piecewise linear neighborhood of σj homeomorphic to

a disk in EX . Then, for every ε > 0, we can approximate the homotopy ηt (0 ≤ t ≤ 1) by ξt such

that

• η0 = ξ0 and η1 = ξ1;

• ηt is piecewise linear;

• ηt is ε-close to ξt in C0-topology;

• there is a sequence 0 = u0 < u1 < u2 < · · · < um = 1, such that, for each i = 0, 1, . . . ,m−1,

the homotopy ξt is supported on the neighborhood Uj of some σj for ui ≤ t ≤ ui+1.

For each t ∈ [0, 1], similarly ξt induces a measured lamination Wt on S so that, in each linear

piece, the fibers of ξt yield strata of the lamination and the distance T the transversal measure.

Then, when ε > 0 is small, Wt is a good approximation of Wt. By the continuity of ξ, the measured

lamination Wt changes continuously in t ∈ [0, 1].

We shall modify the measured lamination Wt by certain homotopy, removing the “loose part”

of Wt in order to make ηt “tight”. By tightening, with respect to the pull-back of the metric of

T , the minimal measure of the homotopy class of every closed curve does not increase. Thus this
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Wt on S

Tt

Tt

tighten

T

T

Imψt
ψt

ψt

Figure 5. Local pictures of basic examples of tightening. The segments of Tt
correspond to shaded regions on S, by ψt map to an edge with a degree one end
which collapses to a single point by tightening; thus those shaded regions are strata
of W ′

t , and thus W ′
t do not give any measure to arcs in the regions. The dotted lines

in T indicated T \ Imψt.

tightening operation removes an obviously unnecessary part of the pull-back measure. See Figure 5

for some examples.

Let W̃t be the π1(S)-invariant measured lamination on S̃ obtained by lifting Wt. Let Tt be

the dual tree of W̃t. Then let φt : S̃ → Tt denote the collapsing map. Let ψt : Tt → T denote the

folding map so that ηt = ψt ◦ φt. Suppose that there is a bounded connected subtree γ of Tt such

that

• γ is a closed subset of Tt;

• The boundary of γ maps to a single point zγ on T by ψt, and the interior of γ maps into a

single component of zγ \ zγ;
• for every α ∈ π1(S), int (αγ) is disjoint from int γ.

We call such a subtree loose. For a technical reason, we allow γ to be a single point on Tt. However,

we will later identify a single point subtree of T with the empty set when we consider deformations

of such subtrees.

For t ∈ (0, 1), fix a loose subtree γ of Tt. Then let ψ′t : Tt → T be the ζ-equivariant continuous

“collapsing” map, such that ψ′t(γ) is the point ψt(∂γ), ψ′t(αγ) is the point ψt(αγ) for each γ ∈ π1(S),

and ψ′t(x) = ψt(x) for all x ∈ T not contained in the union of π1(S)-orbits of γ. Notice that ψt(γ)

is a subtree of T , and ψt(∂γ) is an endpoint of the subtree. Therefore, there is a ζ-equivariant

homotopy from ψt to ψ′t. Thus we call ψ′t a tightening of ψt w.r.t. γ. Notice that φ−1
t (γ) is a closed

simply connected region in S̃ bounded by some strata of W̃t which all map to the same point zγ
on T by ψt ◦ φt.
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More generally, suppose that there are finitely many loose subtrees γ1, γ2, . . . , γn of Tt, such

that π1(S)-orbits of their interiors intγ1, intγ2, . . . , intγn are all disjoint. Then we can homotopy

the holding map ψt : Tt → T , simultaneously tightening all loose subtrees γ1, γ2, . . . , γn.

Pick a maximal collection of such loose subtrees γ1, γ2, . . . , γn of Tt, so that we can not enlarge

any of those loose subtrees or add another one. Then let ψ′t : Tt → T be the tightening of ψt
w.r.t. γ1, γ2, . . . , γn (maximal tightening). Let W ′

t be the (singular) measured lamination on S

given by the tightened holding map ψ′t : Tt → T , where strata are connected components of fibers

and the transversal measure is given by the pull-back metric. In addition, let Rt be the collection

{φ−1
t (γi)}nti=1 of the closed simply connected regions φ−1

t (γi) in S̃.

As the homotopy ξt : S̃ → T changes continuously in t ∈ [0, 1], we can show that the collection

of maximal loose subtrees γt,1, γt,2, . . . , γt,nt of Tt continuously in t ∈ [0, 1], so that the collection

Rt changes continuously in t. To be precise, by continuity, we mean that the subsets φ−1
t (γ1) ∪

· · · ∪ φ−1
t (γnt) and φ−1

t (∂γ1) ∪ · · · ∪ φ−1
t (∂γnt) of S̃ change continuously in the Gromov-Hausdorff

topology on the subsets of S̃, except that, if γt,i maps to a single point in T for some t ∈ [0, 1], we

identify the collection γt,1, γt,2, . . . , γt,nt with the collection minus γt,i.

Therefore, by the continuity of the maximal loose subtrees, φt changes continuously in t ∈ [0, 1],

and thus W ′
t changes continuously in t. Since, in each interval [ui, ui+1], the homotopy ξt is

supported on the topological disk Uj, the change of Wt is also supported in Uj. Therefore one can

show moreover, for all t ∈ [ui, ui+1]:

• for every arc c in Uj with endpoints on the boundary of Uj, the minimum W ′
t -measure of

the homotopy class of c remains the same when the endpoints of c are fixed;

• for every arc c in S \Uj with endpoints on the boundary of Uj, the W ′
t -measure of c remains

the same;

• for every loop ` in S \ Uj with endpoints on the boundary of Uj, the W ′
t -measure of `

remains the same.

Therefore, for every loop ` on S, the tightened measure W ′
t gives a constant measure to the

homology class of `, for all t ∈ [ui, ui+1]. Hence, W ′
t on homotopy classes of loops stays constant

for all t ∈ [0, 1].

Since ψX is a straight map, TX contains no loose subtree. Therefore HX = W0. Similarly,

HY = W1. Hence HX = HY with respect to the normalization above, and thus [HX ] = [HY ] in

PML. (As ε > 0 is arbitrary, we can also show that Ht is a constant foliation after collapsing.) 4.5

Recall that the translation lengths of loops given by ζ : π1(S) → IsomT is the scaled limit

on the translation lengths of ρi : π1(S) → PSL(2,C) as i → ∞. Since ψX ◦ φX : S̃ → T and

ψY ◦ φY : S̃ → T both ζ-equivariant and the translation lengths of ρi in the (asymptotically) same

scale when i is very large, Theorem 4.5 implies the following.

Corollary 4.6. There are sequences of positive real numbers ki and k′i, such that limi→∞
ki
k′i

= 1

and limi→∞ kiHX,ρi = limi→∞ k
′
iHY,ρi in ML.
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Figure 6. A spiral cylinder de-
composed into rectangles.

Figure 7. An example of a
vertically-geodesic staircase curve
on the Euclidean plane with the
vertical foliation.

5. Train tracks

5.1. Train-track graphs. A train track graph is a C1-smooth graph Γ embedded in a smooth

surface in the following sense:

• Each edge of Γ is C1-smoothly embedded in the surface.

• At every vertex v of Γ, the unit vectors at v tangent to the edges starting from v are unique

up to a sign, and the opposite unit tangent vectors are both realized by the edges.

A weight system w of a train-track graph is an assignment of a non-negative real number w(e)

to each edge e of Γ, such that at every vertex v of Γ, letting e1, . . . , en be the edges from one

direction and e′1, e
′
2, . . . , e

′
m the opposite direction, the equation w(e1) + w(e2) + · · · + w(en) =

w(e′1) + w(e′2) + · · ·+ w(e′n) holds.

5.2. Singular Euclidean surfaces. A singular Euclidean structure on a surface is given by a

Euclidean metric with a discrete set of cone points. In this paper, all cone angles of singular

Euclidean structures are π-multiples, as we consider singular Euclidean structures induced by

holomorphic quadratic differentials. In addition, by a singular Euclidean polygon, we mean a polygon

with geodesic edges and a discrete set of singular points whose cone angles are π-multiples. A

polygon is right-angled if the interior angles are π/2 or π/3 at all vertices. A Euclidean cylinder

is a non-singular Euclidean structure on a cylinder with geodesic boundary. By a flat surface, we

mean a singular Euclidean surface with (singular) vertical and horizontal foliations, which intersect

orthogonally.

Definition 5.1. Let E be a flat surface. A curve ` on E is a staircase, if ` contains no singular point

and ` is piecewise vertical or horizontal. Then, a staircase curve is monotone if the angles at the

vertices alternate between π/2 and 3π/2 along the curve, so that it is a geodesic in the L∞-metric

(the infinitesimal length is the maximum of the infinitesimal horizontal length and the infinitesimal

vertical length). A staircase curve is vertically geodesic, if for every horizontal segment, the angle

at one endpoint is π/2 and the angle at the other endpoint is 3π/2; see Figure 7.
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A staircase surface is a flat surface whose boundary components are staircase curves. In partic-

ular, a staircase polygon is a flat surface homeomorphic to a disk bounded by a staircase curve. A

(L∞-)convex staircase polygon P is a staircase polygon, such that, if p1, p2 are adjacent vertices of

P , then at least, one of the interior angles at p1 and p2 is π/2. A staircase cylinder A embedded in

a flat surface E is a spiral cylinder, if A contains no singular point and each boundary component

is a monotone staircase loop (see Figure 6).

Clearly, we have the following decomposition.

Lemma 5.2. Every spiral cylinder decomposes into finitely many rectangles when cut along some

horizontal segments each starting from a vertex of a boundary component. (Figure 6.)

5.3. Surface train tracks. Let F be a compact surface with boundary, such that each boundary

component of F is either a smooth loop or a loop with an even number of corner points. Then a

(boundary-)marking of F is an assignment of “horizontal” or “vertical” to every smooth boundary

segment, such that every smooth boundary component is horizontal and, along every non-smooth

boundary component, horizontal edges and vertical edges alternate. From the second condition,

every boundary component with at least one corner point has an even number of corner points.

For example, a marking of a rectangle is an assignment of horizontal edges to one pair of

opposite edges and vertical edges to the other pair, and a marking of a 2n-gon is an assignment

of horizontal and vertical edges, such that the horizontal and vertical edges alternate along the

boundary. Clearly, there are exactly two ways to give a 2n-gon a marking. A marking of a flat

cylinder is the unique assignment of horizontal components to both boundary components.

Recall that a (fat) train track T is a surface with boundary and corners obtained by gluing

marked rectangles Ri along their horizontal edges, in such a way that the identification is given by

subdividing every horizontal edge into finitely many segments, pairing up all edge segments, and

identifying the paired segments by a diffeomorphism; see for example [Kap01, §11].

In this paper, we may allow any marked surfaces as branches.

Definition 5.3. A surface train track T is a surface having boundary with corners, obtained by

gluing marked surfaces Fi in such a way that the identification is given by (possibly) subdividing each

horizontal edge and horizontal boundary circle of Fi into finite segments, pairing up all segments,

and identifying each pair of segments by a diffeomorphism.

Given a surface train track T = ∪Fi, if all branches Fi are cylinders with smooth boundary and

polygons, then we call T a polygonal train track.

Suppose that a surface F is decomposed into marked surfaces with disjoint interiors so that

the horizontal edges of marked surfaces overlap only with other horizontal edges, and vertical

edges overlap with other vertical edges (except at corner points); we call this a surface train-track

decomposition of F . Given a train-track decomposition of a surface F , the union of the boundaries

of its branches is a finite graph on F , and we call it the edge graph.
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Let F = ∪Fi be a train-track decomposition of a surface F . Clearly the interior of a branch is

embedded in F , but the boundary of a branch may intersect itself. The closure of a branch Fi in

F is called the support of the branch, and denoted by |Fi|, which may not be homotopy equivalent

to Fi on F .

Next, we consider geometric train-track decompositions of flat surfaces. Let E be a flat surface,

and let V and H be it vertical and horizontal foliations, respectively. Then, when we say that a

staircase surface F is on E, we always assume that horizontal edges of F are contained in leaves of

H and vertical edges in leaves of V . Note that a marked rectangle R on E may self-intersect in its

horizontal edges, so that it forms a spiral cylinder. Then a staircase train-track decomposition of a

flat surface E is a decomposition of E into finitely many staircase surfaces on E, such that we obtain

a surface train-track by gluing those staircase surfaces back only along horizontal edges. (Note

that, in the context of CP1-structures, the vertical direction is regarded as the stable or stretching

direction (see Lemma 3.1) and the vertical foliation is carried by this surface train-track.)

More generally, a trapezoidal train-track decomposition of E is a surface train-track decompo-

sition, such that each vertical edge is contained in a vertical leaf and each horizontal edge is a

non-vertical line segment disjoint from the singular set of E.

Given a flat surface, we shall construct a canonical staircase train-track decomposition. Let q

be a holomorphic quadratic differential on a Riemann surface X homeomorphic to S. Let E be

the flat surface given by q, which is homeomorphic to S. As above, let V,H be the vertical and

horizontal foliations of E. Let E1 be the unit-area normalization of E, so that E1 = E
AreaE

.

Let z1, z2 . . . zp be the zeros of q, which are the singular points of E. For each i = 1, . . . , p,

let `i be the singular leaf of V containing zi. For r > 0, let ni be the closed r-neighborhood of

zi in `i with respect to the path metric of `i induced by E1 (vertical r-neighborhood). Let Nr be

their union n1 ∪ · · · ∪ np in E, which may not be a disjoint union as a singular leaf may contain

multiple singular points. If r > 0 is sufficiently small, then each (connected) component of Nr is

contractible. Let QD1(X) denote the set of all unit area quadratic differentials on X. Since the

set of unit area differentials on X is a sphere, by its compactness, we have the following.

Lemma 5.4. For every X in T+ ∪ T−, if r > 0 is sufficiently small, then, for all q ∈ QD1(X),

each component of Nr is a simplicial tree (i.e. contractible).

Fix X in T+ ∪T−, and let r > 0 be the small value given by Lemma 5.4. Let p be an endpoint

of a component of Nr. Then p is contained in horizontal geodesic segments, in E, of finite length,

such that their interiors intersect N only in p. Let hp be a maximal horizontal geodesic segment or

a horizontal geodesic loop, such that the interior of hp intersects Nr only in p. If hp is a geodesic

segment, then the endpoints of hp are also on Nr. If hp is a geodesic loop, hp intersects Nr only in

p.

Consider the union ∪php over all endpoints p of Nr. Then Nr∪ (∪php) decomposes E into stair-

case rectangles and, possibly, flat cylinders. Thus we obtain a staircase train track decomposition

whose branches are all rectangles.
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Next, we construct a polygonal train-track structure of E so that the singular points are

contained in the interior of the branches. Let bi ∈ Z≥3 be the balance of the singular leaf `i at the

zero zi, i.e. the number of the segments in `i meeting at the singular point zi.

We constructed the vertical r-neighborhood ni of the zero zi. Let P r
i be the set of points on E

whose horizontal distance from ni is at most 4
√
r (horizontal neighborhood). Then, as E is fixed, if

r > 0 is sufficiently small, then P r
i is a convex staircase 2bi-gon whose interior contains zi. We say

that P r
i is the (r, 4

√
r)-neighborhood of zi. Such (r, 4

√
r)-neighborhoods will be used in the proof of

Lemma 6.7.

When we vary q ∈ QD1(X), fixing r, the convex polygons for different zeros may intersect.

Nonetheless, by compactness, we have the following.

Lemma 5.5. Let X ∈ T+ ∪ T−. If r > 0 is sufficiently small, then, for every q ∈ QD1(X), each

connected component of P r
1 ∪ P r

2 ∪ · · · ∪ P r
nq is a staircase polygon.

Then, let r > 0 and P r(= P r
q ) be P r

1 ∪P r
2 ∪· · ·∪P r

pq as in Lemma 5.5. Then, similarly, for each

horizontal edge h of P r, let ĥ be a maximal horizontal geodesic segment or a horizontal geodesic

loop on E, such that the interior point of ĥ intersects P r exactly in h. Then, either

• ĥ is a horizontal geodesic segment whose endpoints are on the boundary of P r, or

• ĥ is a horizontal geodesic loop intersecting P r exactly in h.

Consider the union ∪hĥ over all horizontal edges h of P r. Then the union decomposes E \ P r

into finitely many staircase rectangles and, possibly, flat cylinders. Thus we have a staircase train-

track structure, whose branches are polygons and flat cylinders. Note that the singular points are

all contained in the interiors of polygonal branches.

For later use, we modify the train track to eliminate thin rectangular branches, i.e. they have

short horizontal edges. Note that each vertical edge of a rectangle is contained in a vertical edge

of a polygonal branch. Thus, if a rectangular branch R has horizontal length less than 4
√
r, then

naturally glue R with both adjacent polygonal branches along the vertical edges of R. After

applying such gluing for all thin rectangles, we obtain a train-track structure tr of E.

Lemma 5.6. For every X ∈ T+ ∪ T−, if r > 0 is sufficiently small, then, for every q ∈ QD1(X),

the branches of the train-track structure tr on E are staircase polygons and staircase flat cylinder,

and every rectangular branch of tr has width at least 4
√
r.

Definition 5.7. Let E be a flat surface. A train-track structure T1 is a refinement of another train-

track structure T2 of E, if the T1 is a subdivision of T2 (which includes the case that T1 = T2).

Let Ei be a sequence of flat surfaces converging to a flat surface E. Let T be a train-track

structure on a flat surface E, and let Ti be a sequence of train-track structures on a flat surface Ei
for each i. Then Ti converges to T as i→∞ if the edge graph of Tki converging to the edge graph

of T∞ on E in the Hausdorff topology. Then Ti semi-converges to T as i→∞ if every subsequence

Tki of Ti subconverges to a train-track structure T ′ on E, such that T is a refinement of T ′.
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Lemma 5.8. trq is semi-continuous in the Riemann surface X and the quadratic differential q on

X, and the (small) train-track parameter r > 0 given by Lemma 5.6. That is, if ri → r and qi → q,

then triqi semi-converges to trq as i→∞.

Proof. Clearly, the flat surface E changes continuously in q. Accordingly P r changes continuously

in the Hausdorff topology in q and r. Then the semi-continuity easily follows from the construc-

tion of trq. (Note that trq isnot necessarily continuous since a branch of triqi may, in the limit, be

decomposed some branches including a rectangular branch of horizontal length 4
√
r.) �

5.4. Straightening foliations on flat surfaces. Let E be the flat surface homeomorphic to S,

and let V be its vertical foliation. Let V ′ be another measured foliation on S.

For each smooth leaf ` of V ′, consider its geodesic representative [`] in E. If ` is non-periodic,

the geodesic representative is unique. Suppose that ` is periodic. Then, if [`] is not unique, then

the set of its geodesic representatives foliates a flat cylinder in E.

Consider all geodesic representatives, in E, of smooth leaves ` of V ′, and let [V ′] be the set

of such geodesic representatives and the limits of those geodesics. We still call the geodesics of

[V ′] leaves. We can regard [V ′] as a map from a lamination [V ′] on S to E which is a leaf-wise

embedding.

6. Compatible surface train track decompositions

Let X, Y ∈ T t T∗ with X 6= Y . Clearly, for each ρ ∈ χ
X ∩ χY , there are unique CP1-

structures CX and CY on X and Y , respectively, with holonomy ρ. Set CX = (X, qX) and

CY = (Y, qY ), in Schwarzian coordinates, where qX ∈ QD(X) and qY ∈ QD(Y ). Then, define

η : χX∩χY → PML×PML to be the map taking ρ ∈ χX∩χY to the ordered pair of the projectivized

horizontal foliations of qX,ρ and qY,ρ. Let Λ∞ ⊂ PML×PML be the set of the accumulation points

of η towards the infinity of χ — namely, (HX , HY ) ∈ Λ∞ if and only if there is a sequence ρi in
χ
X ∩ χY which leaves every compact set in χ such that η(ρi) converges to (HX , HY ) as i→∞.

Let ∆ ⊂ PML×PML be the diagonal set. Then, by Theorem 4.5, Λ∞ is contained in ∆. Given a

Riemann surface X and a projective measured foliation H, by Hubbard and Masur [HM79], there

is a unique holomorphic quadratic differential on X such that its horizontal foliation coincides

with the measured foliation. Let EX,H = E1
X,H denote the unit-area flat surface induced by the

differential. Given HX ∈ PML, let VX be the vertical measured foliation realized by (X,HX), and

let VY be the vertical foliation of (Y,HY ).

Noting that a smooth leaf of a (singular) foliation may be contained in a singular leaf of another

foliation, we let ∆∗ be the set of all (HX , HY ) ∈ PML× PML which satisfies either

• there is a leaf of HX contained in a leaf of VY ;

• there is a leaf of VY contained in a leaf of HX ;

• there is a leaf of HY contained in a leaf of VX ; or

• there is a leaf of VX contained in a leaf of HX .
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Then ∆∗ is a closed measure-zero subset of PML × PML, and disjoint from the diagonal ∆. (For

the proof of our theorems, we will only consider a sufficiently small neighborhood of ∆, which is

disjoint from ∆∗.)

6.1. Straightening maps. Fix a transversal pair (HX , HY ) ∈ (PML × PML) \ ∆∗. Let p be a

smooth point in EY,HY , and let p̃ be a lift of p to the universal cover ẼY,HY .

Let v be the leaf of the vertical foliation ṼY on ẼY,HY which contains p̃, and let h be the leaf

of the horizontal foliation H̃Y on the universal cover which contains p̃. Then, let [v]X denote

the geodesic representative of v in ẼX,HX , and let [h]X denote the geodesic representative of h in

ẼX,HX . Since ẼX,HX is a non-positively curved space, [v]X ∩ [h]X is a point or a segment of a

finite length in ẼX,HX ; let st(p) be the subset of EX,HX obtained by projecting the point or a finite

segment.

6.2. Non-transversal graphs. Let E be a flat surface with horizontal foliation H. Let ` : R→ E

be a (non-constant) geodesic on E parametrized by arc length. A horizontal segment of ` is a

maximal segment of ` which is tangent to the horizontal foliation H. Note that a horizontal

segment is, in general, only immersed in E.

Let X, Y ∈ T t T∗ with X 6= Y , and let (HX , HY ) ∈ (PML× PML) \∆∗. For a smooth leaf `Y
of VY , let [`Y ]X denote the geodesic representative of `Y on the flat surface EX,HX . The geodesic

[`Y ]X is not necessarily embedding and should be regarded as an immersion R→ EX,HX .

Lemma 6.1. Every horizontal segment v of [`Y ]X is a segment (i.e. finite length) connecting

singular points of E.

Proof. If h has infinite length, then `Y must be contained in a leaf of HY . This contradicts

(HX , HY ) ∈ (PML× PML) \∆∗. �

Let [VY ]X denote the set of all geodesic representatives of smooth leaves of VY on EX,H . Let

GY ⊂ EX,HX be the union of (the images of) all horizontal segments of [VY ]X . Then it follows that

GY is a finite graph, such that

• every connected component of GY is contained in a horizontal leaf of HX , and

• every vertex of GY is a singular point of EX,H .

Proposition 6.2. For all distinct X, Y ∈ T t T∗ and all (HX , HY ) ∈ PML × PML \∆∗, there is

B > 0, such that, for all leaves `Y of VY , every horizontal segment of the geodesic representative

[`Y ]X is bounded by B from above.

Proof. By Lemma 6.1, each horizontal segment has a finite length and its endpoints are at singular

points of EX,H . (Although the number of embedded horizontal segments is clearly bounded, a

horizontal segment is in general immersed in EX,H .)

Consider all horizontal segments si (i ∈ I) of [VY ]X . Each si is a mapping of a segment of a

leaf of VY into a leaf of HX . Thus, by identifying si with the segment of VY , we regard ti∈Isi as
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a subset of EY,H . Since si is immersed into GY for each i ∈ I, we have a mapping from
⊔
i∈I si

to GY . Therefore, there are a small regular neighborhood N of GY and a small homotopy of the

mapping
⊔
si → GY , such that

⊔
si is, after the homotopy, embedded in N and the endpoints of

si are on the boundary of N (close to the vertices of GY where they map initially). Since GY is a

finite graph and endpoints of si map to vertices of GY , there are only finitely many combinatorial

types of horizontal segment si → GY . In particular, the lengths of si are bounded from above. �

By continuity and the compactness of PML, the uniformness follows:

Corollary 6.3. The upper bound B can be taken uniformly in H ∈ PML.

Let V ′Y denote [VY ]X \ GY , the set of geodesic representatives [`Y ]X minus their horizontal

segments, for all leaves `Y of VY . Then V ′Y is transversal to HX at every point, and the angle

between them (§2.3) is uniformly bounded away from zero:

Lemma 6.4. For every (HX , HY ) ∈ PML× PML \∆∗, ∠EX,H (V ′Y , HX) > 0.

Proof. Suppose, to the contrary, that there is a sequence of distinct points xi in V ′Y such that

(0 <)∠xi(V
′
Y , HX) → 0 as i → ∞. We may, in addition, assume that xi are smooth points of

EX,HX . For each i = 1, 2, . . . , let `i be a leaf of [VY ]X containing xi, so that ∠xi(`i, HX) → 0 as

i→∞. Let si be a segment of `i containing xi but disjoint from the singular set of EX . Clearly,

the angle ∠xi(`i, HX) remains the same when xi moves in si. By the discreteness of the singular

set of EX , we may assume that the length of si diverges to infinity as i→∞. Then, for sufficiently

large i, the segments si are all disjoint, and thus si must be all parallel as xi converges to a smooth

point. This can not happen as ∠xi(`i, HX)→ 0. Therefore ∠EX,H (V ′Y , HX) > 0. �

6.3. Train-track decompositions for diagonal horizontal foliations.

Definition 6.5. Let (E, V ) be a flat surface. Let T be a train track decomposition of E. A curve

R → E is carried by T , if B is a branch of T , then, for every component s of ` ∩ intB, both

endpoints of s are on different horizontal edges of B,

A (topological) lamination on E is carried by T if every leaf is carried by T .

In this paper, a train-track may have “bigon regions” which correspond to vertical edges of T .

Thus a measured lamination may be carried by a train track in essentially different ways. As a

lamination is usually defined up to an isotopy on the entire surface, when a measured lamination

is carried by a train-track, we call it a realization of the measured lamination.

Definition 6.6. Let (E, V ) be a flat surface. Let T be a train track decomposition of E. A geodesic

` on E is essentially carried by T , if, for every rectangular branch B of T and every component s

of ` ∩ intB,

• both endpoints of s are (different) horizontal edges of B, or

• the endpoints of s are on adjacent (horizontal and vertical edges) of B.
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The measured foliation V on E is essentially carried by T if every smooth leaf of V is essentially

carried by T .

Because of the horizontal segment, [VY ]X is not necessarily carried by trX,H even if the train-

track parameter r > 0 is very small. Let trX,H be the train-track decomposition of EX,H obtained

by, for each component of the horizontal graph GY , taking the union of the branches intersecting

the component. A branch of trX,H is transversal if it is disjoint from GY , and non-transversal if it

contains a component of GY .

Lemma 6.7. For every (HX , HY ) ∈ (PML× PML) \∆∗, if r > 0 sufficiently small, then

(1) [VY ]X is essentially carried by trX,HX =: tX,HX , and

(2) [VY ]X can be homotoped along leaves of HX to a measured lamination WY carried by tX,HX
so that, by the homotopy, every point of [VY ]X either stays in the same branch or moves to

the adjacent branch across a vertical edge.

Moreover, these properties hold in a small neighborhood of (HX , HY ) ∈ (PML× PML) \∆∗.

We call WY a realization of [VY ]X on tX,HX .

Proof. By the construction of the train track, each vertical edge of a rectangular branch has length

less than 2r, and each horizontal edge has length at least 4
√
r. Then, (1) follows from Lemma 6.4.

We shall show (2). Recall from §5.3, that the construction of TX,HX started with taking

an r-neighborhood of the zeros in the vertical direction and then taking points 4
√
r-close to the

neighborhood in the horizontal direction. Therefore, each vertical edge of tX,HX has length at least
4
√
r and each horizontal edge has length less than r.

Similarly to a Teichmüller mapping, we rescale the Euclidean structure of EX,HX with area one

by scaling the horizontal distance by 4
√
r and the vertical distance by 1

4√r , its reciprocal. Then, by

this mapping, the flat surface EX,H is transformed to another flat surface E ′X,HX and the train-track

structure tX,HX is transformed to t′X,HX . Then, the horizontal edges of rectangular branches of

t′X,HX have horizontal length at least
√
r, and the vertical edges have length less than 2r

3
4 . Thus, as

the train track parameter r > 0 is sufficiently small, the vertical edge is still much shorter than the

horizontal edge. Note that, the foliations VX and HX persist by the map, except the transversal

measures are scaled.

As r > 0 is sufficiently small, the geodesic representative [VY ]′X of VY on E ′X,HX is almost

parallel to VX . Since N is a compact subset of (PML×PML)\∆∗, by Lemma 6.4, ∠EX (HX , [VY )]X
is bounded from below by a positive number uniformly in H = (HX , HY ) ∈ N . Then, indeed, for

every υ > 0, if r > 0 is sufficiently small, then ∠E′X (VX , [VY ]′X) < υ.

Then, let ` be a leaf of VY . Let `X be the geodesic representative of ` in E ′X . Consider the set

N v√
r

of points on E ′X whose horizontal distance to the set of the vertical edges of t′X,HX is less than√
r. Let s be a maximal segment of `X , such that s is contained in Nh√

r
and that each endpoint

of s is connected to a vertex of t′X,HX by a horizontal segment (which may not be contained in
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Figure 8. Examples of staircase
curves given by Claim 6.8.

Figure 9. A homotopy to push
[VY ]X out of the region Ri.

a horizontal edge of t′X,HX ). Clearly, if r > 0 is sufficiently small, s does not intersect the same

vertical edge twice nor the same branch twice.

Claim 6.8. There is a staircase curve c on E ′X,HX , such that

• c is r
1
2 -close to s in the horizontal direction,

• each vertical segment of c is a vertical edge of t′X,HX , and

• each horizontal segment of c contains no vertex of t′X,HX in its interior.

(See Figure 8.)

Pick finitely many segments s1, . . . , sn in leaves of [VY ]′X as above, such that if a vertical edge

v of t′X,HX intersects [VY ]′X , then there is exactly one si which is r
3
4 -Hausdorff close to v. Let

c1, . . . , cn be their corresponding staircase curves on E ′X .

Then, we can homotope [VY ]X in a small neighborhood of the region Ri bounded by si and ci,

such that, while homotoping, the leaves do not intersect si, and that the homotopy moves each

point horizontally (Figure 9).

Each point on [VY ]′X is homotoped at most to an adjacent branch (Figure 10). Then, after this

homotopy, [VY ]′X is carried by t′X,HX . This homotopy induces a desired homotopy of [VY ]X .
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Figure 10. Homotopies to push
[VY ]X out of the region Ri to its
adjacent branches.

Figure 11. A shifting across a
vertical slit.

6.7

Let H = (HX , HY ) ∈ PML×PML \∆∗ and WY denote the realization of [VY ]X on tX,HX given

by Lemma 6.7.

A measured lamination in PML is defined up to an isotopy of the surface. The union of the

vertical edges of tX,HX consists of disjoint vertical segments. Each vertical segment of the union

is called a (vertical) slit. Then, a measured lamination can be carried by a train track in many

different ways by homotopy across slits:

Definition 6.9 (Shifting). Suppose that T is a train-track structure of a flat surface E, and let

L1 be a realization of L ∈ ML on T . For a vertical slit v of T , consider the branches on T whose

boundary intersects v in a segment. A shifting of L1 across v is a homotopy of L1 on E to another

realization L2 of L which reduces the weights of the branches on one side of v by some amount and

increases the weights of the branches on the other side of v by the same amount (Figure 11). Two

realizations of L on T are related by shifting if they are related by simultaneous shifts across some

vertical slits of T .

The homotopy of [VY ]X in Lemma 6.7 moves points at most to adjacent branches in the

horizontal direction. Thus we have the following.
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Lemma 6.10. In Lemma 6.7, the realizations given by different choices of si are related by shifting.

Proposition 6.11. Let Hi = (HX,i, HY,i) be a sequence in PML × PML \ ∆∗ converging to H =

(HX , HY ) in PML × PML \ ∆∗. Let Wi be a realization of [VYi ]Xi on tX,HX,i, and let W be a

realization of [VY ]X on tX,HX given by Lemma 6.7. Then, a limit of the realization Wi and the

realization W are related by shifting across vertical slits.

Proof. By the semi-continuity of tX,HX in HX (Proposition 6.12), the limit of the train tracks

tX,HX,i is a subdivision of tX,HX . Let si,1, . . . , si,ki be the segments from the proof of Lemma 6.7

which determine the realization Wi. The segment sj,i converges up to a subsequence. Then, the

assertion follows from Lemma 6.10. �

In summary, we have obtained the following.

Proposition 6.12 (Staircase train tracks). For all distinct X, Y ∈ T t T∗ and a compact neigh-

borhood N∞ of Λ∞ in (PML× PML) \∆∗, if the train-track parameter r > 0 is sufficiently small,

then, for every H = (HX , HY ) of N∞, the staircase train track trX,VX satisfies the following:

(1) trX,HX changes semi-continuously in H ∈ N∞.

(2) VY is essentially carried by trX,HX , and its realization on trX,HX changes continuously H ∈
N∞, up to shifting across vertical slits.

6.4. An induced train-track structure for diagonal horizontal foliations. We first consider

the diagonal case when HX = HY =: H ∈ PML. We have constructed a staircase train track

decomposition tX,H of EX,H . Moreover, the geodesic representative [VY ]X is essentially carried by

tX,H . Thus, we homotope [VY ]X along leaves of HX , so that it is carried by the train track tX,H
(Lemma 6.7). Let WY denote this topological lamination being carried on tX,H which is homotopic

to [VY ]X .

From the realization WY on tX,H , we shall construct a polygonal train-track structure on EY,HY .

The flat surfaces EX,H and EY,H have the same horizontal foliation, and the homotopy of [VY ]X
to WY is along the horizontal foliation. Therefore, for each rectangular branch RX of tX,H , if the

weight of WY is positive, by taking the inverse-image of the straightening map st : EY,H → EX,H in

§6.1, we obtain a corresponding rectangle RY on EY,H whose vertical length is the same as RX and

horizontal length is the weight. Note that an edge of RY may contain a singular point of EY,HY .

Next let PX be a polygonal branch of tX,H . Similarly, let PY be the inverse-image of PX by

the straighten map. Note that PY is not necessarily homeomorphic to PX . In particular, PY
can be the empty set, a staircase polygon which may have a smaller number of vertices than PX .

Moreover, PY may be disconnected (Figure 12). Then, we have a (staircase) polygonal train-track

decomposition tY,H of EY,H . By convention, non-empty PY , as above, is called a branch of tY,H
corresponding to PX (which may be disconnected). In comparison to tX,H , the one-skeleton of

tY,H may contain some singular points of EY,HY . Since tY,H changes continuously in the realization

WY of [VY ]X on tX,H , the semi-continuity of tX,H (Proposition 6.12 (1)) gives a semi-continuity of

tY,H .
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Lemma 6.13. tY,H changes semi-continuously in the horizontal foliation H in PML and the real-

ization WY of [VY ]X on tX,H .

6.5. Filling properties.

Lemma 6.14. Let X 6= Y ∈ T t T∗. For every diagonal HX = HY , every component of HX,H \
[VY ]X is contractible, i.e. a tree.

Proof. Recall that HY and VY are the horizontal and vertical foliations of the flat surface EY,HY .

Then, since HX = HY , the lemma follows. �

A horizontal graph is a connected graph embedded in a horizontal leaf (whose endpoints may

not be at singular points). Then, Lemma 6.14 implies the following.

Corollary 6.15. Let X 6= Y ∈ T t T∗. For every diagonal pair HX = HY , let r > 0 be the train-

track parameter given by Lemma 6.7. Then, for sufficiently small ε > 0, if a horizontal graph h of

HX has total transversal measure less than ε induced by the realization WY , then h is contractible.

By continuity,

Proposition 6.16. There is a neighborhood N of the diagonal ∆ in PML× PML and ε > 0 such

that, if the train-track parameter r > 0 is sufficiently small, then for every (HX , HY ) ∈ N , if

a horizontal graph h of HX has total transversal measure less than δ induced by WY , then h is

contractible.

6.6. Semi-diffeomorphic surface train-track decompositions.

6.6.1. Semi-diffeomorphic train tracks for diagonal foliation pairs.

Definition 6.17. Let F1 and F2 be surfaces with staircase boundary. Then F1 is semi-diffeomorphic

to F2, if there is a homotopy equivalence φ : F1 → F2 which collapses some horizontal edges of F1

to points: To be more precise,

• the restriction of φ to the interior intF1 is a diffeomorphism onto the interior intF2;

• φ takes ∂F1 to ∂F2, and intF1 to intF2;

• for every vertical edge v of F1, the map φ takes v diffeomorphically onto a vertical edge or

a segment of a vertical edge in F2;

• for every horizontal edge h of F1, the map φ takes h diffeomorphically onto a horizontal

edge of F2 or collapses h to a single point on a vertical edge of F2.

Let T and T ′ be train-track structures of flat surfaces E and E ′, respectively, on S. Then T is

semi-diffeomorphic to T ′, if there is a marking preserving continuous map φ : E → E ′, such that,

• T and T ′ are homotopy equivalent by φ (i.e. their 1-skeletons are homotopy equivalent),

and

• for each branch B of T , there is a corresponding branch B′ of T ′ such that φ|B is a semi-

diffeomorphism onto B′.
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PX PY PX PY

Figure 12. Some non-diffeomorphic correspondences of branches.

v

α′α′α′α′α′α′α′α′α′α′α′α′α′α′α
′α′α′

Figure 13. The curve α′ is vertically parallel to v.

In §6.4, for every H ∈ PML, we constructed a staircase train-track structure tY,H of the flat

surface EY,H with staircase boundary from a realization WY of [VY ]X on the train-track structure

tX,H of EX,H . However, when a branch BX of tX,H corresponds to a branch BY of tY,H , in fact,

BY might not be connected, and in particular not semi-diffeomorphic to BX (Figure 12, Left). In

this section, we modify tX,H and tY,H by gluing some branches in a corresponding manner, so that

corresponding branches are semi-diffeomorphic after a small perturbation.

Let v be a (minimal) vertical edge of tX,H , i.e. a vertical edge not containing a vertex in its

interior. Let BX be a branch of tX,H whose boundary contains v. Suppose that α is an arc in BX

connecting different horizontal edges of BX . Then, we say that v and α are vertically parallel in

BX if

• α is homotopic in BX to an arc α′ transversal to the horizontal foliation H|BX , keeping its

endpoints on the horizontal edges, and

• v diffeomorphically projects into α′ along the horizontal leaves HX |BX (see Figure 13).

The WY -weight of v in BX is the total weight of the leaves of WY |BX which are vertically parallel

to v.

Let w be the WY -weight of v in BX . Then, there is a staircase rectangle in BY such that a

vertical edge corresponds to v and the horizontal length is w.

Consider a horizontal arc αh in B connecting a point on v to a point on another vertical edge

of B; clearly, the transversal measure of WY of αh is a non-negative number. Then, the WY -weight
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Figure 14. A rectangle exchange across a vertical edge v.

of v in B is the minimum of the WY -transversal measures of all such horizontal arcs αh starting

from v.

Fix 0 < δ < r to be a sufficiently small positive number. We now consider both branches

B1, B2 of tX,H whose boundary contains v. Suppose that, the WY -weight of v is less than δ in

Bi for both i = 1, 2; then, glue B1 and B2 along v, so that B1 and B2 form a single branch. Let

T r,δX,H , or simply TX,H , denote the train-track structure of EX,H obtained by applying such gluing,

simultaneously, branches of tX,H along all minimal vertical edges satisfying the condition. Then,

since tX,H is a refinement of TX,H , the realization WY of [VY ]X on tX,H is also a realization on

TX,H . Similarly, let T r,δY,H , or simply TY,H , be the train-track structure of EY,H obtained by the

realization WY on TX,H ; then tY,H is a refinement of TY,H . Lemma 6.14 implies the following.

Lemma 6.18. Every transversal branch of TX,H has a non-negative Euler characteristic.

Let B be a branch of TY,H , and let v be a minimal vertical edge of TY,H contained in the

boundary of B. Let B′ be the branch of TY,H adjacent to B across v. Suppose that the WY -weight

of v is less than δ in B. Then, it follows from the construction of TX,H , that there is a staircase

rectangle Rv in B′, such that the horizontal length of Rv is δ/3 and that v is a vertical edge of

Rv. Let v be a vertical edge of B. Then we enlarge B by gluing the rectangle Rv along v, and

we remove Rv from B′ (Figure 14)— this cut-and-paste operation transforms TY,H by pushing the

vertical edge v by δ/3 into B′ in the horizontal direction. For all minimal vertical edges v of TY,H
whose W -weights are less than δ as above, we apply such modifications simultaneously and obtain

a train-track structure T ′Y,H of EY,H homotopic to TY,H . (We push weight only δ/3 across a vertical

edge, since, if another δ/3 is pushed out across the opposite vertical edge, at least δ/3-weight

remains left.)

Lemma 6.19.

• The edge graph of T ′Y,H is, at least, δ
3

away from the singular set of E1
Y,H ;

• T ′Y,H is δ-Hausdorff close to TY,H in E1
Y,H ;

• TX,H is semi-diffeomorphic to T ′Y,H (Figure 15);
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B′

Figure 15. After the enlargement, the disconnected branch PY in Fig. 12 Left
becomes diffeomorphic to its corresponding branch of TX,H .

• TX,H changes semi-continuously in H;

• TY,H changes semi-continuously in H, and the realization of W on TX,H .

Proof. The first three assertions follow from the construction of TX,H and TY,H . The semi-continuity

of TX,H is given by its construction and the semi-continuity of tX,H (Proposition 6.12). Similarly,

the semi-continuity of TY,H follows from its construction and the semi-continuity of tY,H . �

6.6.2. Semi-diffeomorphic train-tracks for almost diagonal horizontal foliations. In this section, we

extend the construction form §6.6.1 to the neighborhood of the diagonal (PML × PML) \∆∗. By

Lemma 6.4, for every compact neighborhood N of the diagonal ∆ in (PML× PML) \∆∗, there is

δ > 0, such that

∠EX,HX ([VY ]X , HX) > δ

for all (HX , HY ) ∈ N , where VY is the vertical measured foliation of the flat surface structure on Y

with the horizontal foliation HY . Let trX,HX (= tX,HX ) be the train-track decomposition of EX,HX
obtained in §6.3. Lemma 6.7 clearly implies the following.

Proposition 6.20. For a compact subset N in (PML × PML) \ ∆∗, if the train-track parameter

r > 0 is sufficiently small, then for all (HX , HY ) ∈ N , trX,HX essentially carries [VY ]X .

Let WY be a realization of [VY ]X on tX,HX by a homotopy along horizontal leaf HX (§6.3). For

every branch BX of tX,HX , consider the subset of EY,HY which maps to WY |BX by the straightening

map st : EY,HY → EX,HX (§6.1) and the horizontal homotopy. Then, the boundary of the subset

consists of straight segments in the vertical foliation VY and curves topologically transversal to VY
(Figure 16 for the case when BX is a rectangle). We straighten each non-vertical boundary curve of

the subset keeping its endpoints (Figure 16). let BY be the region in EY,HY after straightening all

non-vertical curves, so that the boundary of BY consists of segments parallel to VY and segments

transversal to VY . Then, for different branches BX of tX,HX , corresponding regions BY have disjoint

interiors; thus the regions BY yield a trapezoidal surface train-track decomposition of EY,HY .

Let E be a flat surface, and let H be its horizontal foliation. Then, for ε > 0, a piecewise-

smooth curve c on E is ε-almost horizontal, if ∠E(H, c) < ε, i.e. the angles between the tangent
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Figure 16. The construction of the branch BY corresponding to the branch BX by
straightening of horizontal edges of the inverse image.

vectors along c and the foliation H are less than ε. More generally, c is ε-quasi horizontal if c is

ε-Hausdorff close to a geodesic segment which is ε-almost horizontal to the horizontal foliation H.

(In particular, the length of c is very short, then it is ε-quasi horizontal.)

Definition 6.21. Let E be a flat surface. For ε > 0, an ε-quasi-staircase train-track structure of E

is a trapezoidal train-track structure of E such that its horizontal edges are all ε-quasi horizontal

straight segments.

If HX = HY , then tY,H is a staircase train-track, by continuity, we have the following.

Lemma 6.22. Let r > 0 be a train-track parameter given by Proposition 6.20. Then, for every

ε > 0, if the neighborhood N of the diagonal in PML × PML is sufficiently small, then, for all

(HX , HY ) ∈ N , the trapezoidal train-track decomposition trY,HY of EY,HY is ε-quasi staircase.

Next, similarly to §6.6.1, we modify tX,HX and tY,HY by gluing some branches, so that corre-

sponding branches have small diffeomorphic neighborhoods. Let WY be a realization of [VY ]X in

tX,HX . Fix small δ > 0. Let v be a vertical edge v of tX,HX , and let B1, B2 be the branches of

tX,HX whose boundary contains v. We glue B1 and B2 along v, if the WY -measure of v in Bi is less

than δ for both i = 1, 2. By applying such gluing for all vertical edges satisfying the condition, we

obtain a staircase train-track T r,δX,HX = TX,HX , so that tX,HX is a refinement of TX,HX .

Then, WY is still carried by TX,HX . Therefore, let TY,HX be the trapezoidal train-track decom-

position of EY,HY obtained by this realization, so that tY,HY is its refinement.

Let v be a vertical edge of TX,HX . Let BX be a branch of TX,HX whose boundary contains v.

Let B′X be the branch of TX,HX adjacent to BX across v. Let BY and B′Y be the branches of TY,HY
corresponding to BX and B′X , respectively. Then, there is a vertical edge w of TY,HY corresponding

to v, contained in the boundary of both BY and B′Y .

If the WY -weight of v in BX is less than δ, then the WY -weight of V in B′X is at least δ, by the

construction of TX,HX . Therefore, B′Y contains an ε-quasi-staircase trapezoid RY , such that w is a

vertical edge of RY and the horizontal length between the vertical edges is δ/3. (c.f. Figure 14.)

Then, we can modify the train track TY,HY by removing RY from B′Y and gluing RY with BY

along w — this modified TY,HY by a homotopy. By simultaneously applying this modification for all

vertical edges v of TX,HX satisfying the condition, we obtain a trapezoidal train-track decomposition

T ′Y,HY .
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Figure 17. Relations between
constructed train tracks.

Figure 18. A slide corresponding
a shift in Figure 11.

Proposition 6.23. For an arbitrary compact neighborhood N of the diagonal ∆ in (PML×PML)\
∆∗, fix a sufficiently small train-track parameter r > 0 obtained by Proposition 6.20. Then, if the

parameter δ > 0 is sufficiently small, then for every (HX , HY ) ∈ N ,

• TX,HX is semi-diffeomorphic to T ′Y,HY ;

• T ′Y,HY is δ-Hausdorff close to TY,HY in the normalized metric E1
Y,HY

;

• the open δ/4-neighborhood of the singular set is disjoint from the one-skeleton of T ′Y,HY .

(Figure 17.)

A sliding is an operation of a train-track moving some vertical edges in the horizontal direction

without changing the homotopy type of the train-track structure. If we change the realization

WY on tX,H by shifting across a vertical slit, the induced train-track tY,H changes by sliding its

corresponding vertical segment (Figure 18).

As before, a branch of TX,HX disjoint from the non-transversal graph GY is called a transversal

branch. A branch of TX,HX containing a component of GY is called the non-transversal branch.

By the semi-continuity of TY,HY in Lemma 6.19 and the construction of T ′Y,HY , we obtain a semi-

continuity of TY,HY up to sliding.

Lemma 6.24. Let Hi = (HX,i, HY,i) be a sequence converging to H = (HX , HY ). Then, up to

a subsequence, TY,HY,i semi-converges to a train track structure T ′′Y,HY of EY,HY , such that either

T ′′Y,HY = T ′Y,HY or T ′′Y,HY can be transformed to a refinement of T ′Y,HY by sliding some vertical edges

by δ/3.

6.7. Bounded polygonal train tracks for the Riemann surface X. The train tracks we

constructed may so far have rectangular branches with very long horizontal edges. In this section,

we further modify the train-track structures TX,HX and TY,HY from §6.6 by reshaping those long

rectangles into spiral cylinders.

Given a rectangular branch of a train track, although its interior is embedded in a flat surface,

its boundary may intersect itself. Let T be a train-track structure of a flat surface E. The diameter
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of a branch B of T is the diameter of the interior of B with the path metric in B. The diameter

of a train track T is the maximum of the diameters of the branches of T .

Recall that we have fixed a compact neighborhood N ⊂ (PML × PML) \ ∆∗ of the diagonal.

Recall that, for (HX , HY ) ∈ N , E1
X,HX

and E1
Y,HY

are the unit-area flat structures realizing (X,HX)

and (Y,HY ), respectively. Pick a small r > 0 given by Proposition 6.12, so that, for every

(HX , HY ) ∈ N , there are train-track structures TX,HX of E1
X,HX

and TY,HY of E1
Y,HY

from §6.6.2.

Lemma 6.25. (1) Let Hi = (HX,i, HY,i) ∈ N be a sequence converging to H = (HX , HY ) ∈ N .

Suppose that TX,HX,i =: TX,i contains a rectangular branch Ri for every i, such that the

horizontal length of Ri diverges to infinity as i → ∞. Then, up to a subsequence, the

support |Ri| ⊂ E1
X,HX,i

=: EX,i converges to either

• a flat cylinder which is a branch of TX,HX or

• a closed leaf of HX which is contained in the union of the horizontal edges of TX,HX .

(2) Let A be the limit flat cylinder or a loop in (1). For sufficiently large i > 0, let Ri,1, . . . , Ri,ni

be the set of all rectangular branches of TX,i which converge to A as i→∞ in the Hausdorff

metric. Then, the union Ri,1 ∪ · · · ∪ Ri,ni ⊂ E1
X,Hi

is a spiral cylinder for all sufficiently

large i. (See Figure 6.)

Proof. (1) Let Ri be a rectangular branch of TX,i such that the horizontal length of Ri diverges to

infinity as i → ∞. Then, as AreaEi = 1, the vertical length of Ri must limit to zero. Then, in

the universal cover Ẽi of Ei, we can pick a lift R̃i of Ri which converges, uniformly on compact,

to a smooth horizontal leaf of H̃X or a copy of R contained in a singular leaf of H̃X . Let ˜̀ denote

the limit, and let ` be its projection into a leaf of HX .

Claim 6.26. ` is a closed leaf of HX .

Proof. Suppose, to the contrary, that ` is not periodic. Then ` is either a leaf of an irrational

sublamination or a line embedded in a singular leaf of HX,HX . Then, the distance from ` to the

singular set of EX,HX is zero.

Recall that the (r, 4
√
r)-neighborhood of the singular set of EX,HX,i is contained in the (non-

rectangular) branches of TX,HX,i . Thus, the distance from Ri to the singular set of EX,HX,i is at

least r > 0 for all i. This yields a contradiction. �

By Claim 6.26, as a subset of Ei, the rectangular branch Ri converges to the union of closed

leaves {`j}j∈J of HX,LX . Thus the Hausdorff limit A of Ri in EX,H must be a connected subset

foliated by closed horizontal leaves. Therefore, A is either a flat cylinder or a single closed leaf.

First, suppose that the limit A is a flat cylinder. Then, the vertical edges of Ri are contained in

the vertical edges of non-rectangular branches. The limit of the vertical edges of Ri are points on

the different boundary components of A. Therefore, each boundary component of A must intersect

a non-rectangular branch in its horizontal edge. Therefore, the cylinder is a branch of TX,H by the

construction of tX,H .
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P`
A∪nij=1Ri,j

Figure 19. The spiral cylinder ∪nij=1Ri,j limiting to the flat cylinder A as i→∞.

If the limit A is a single leaf, similarly, one can show that the vertical one-skeleton of TX,HX ,

since a loop can be regarded as a degeneration of a flat cylinder.

(2) First assume that the limit A is a flat cylinder. Since the (r, 4
√
r)-neighborhood of the

singular set is disjoint from the interior of A, we can enlarge A to a maximal flat cylinder Â in

EX,H whose interior contains (the closure of) A. Then, each boundary component of Â contains at

least one singular point. Since A is a cylindrical branch, each boundary component ` of A contains

a horizontal edge of a non-rectangular branch P` of TX,HX which contains a singular point in the

boundary of Â.

Let P`,1, . . . , P`,n be the non-rectangular branches of TX,HX whose boundary intersects `. Recall

that P`,i is the union of some branches of tX,H . Although P`1,i itself may not be convex, a small

neighborhood of the intersection P`,i ∩ ` in P`,i is convex. Let Pi,1, . . . , Pi,ki be all non-rectangular

branches of TX,i, such that their union Pi,1∪· · ·∪Pi,ki converges to the union of all non-rectangular

branches of TX,HX which have horizontal edges contained in the boundary of A. Then, for suf-

ficiently, large i, the vertical edges of Ri,1. . . . , Ri,ni are contained in vertical edges of polygonal

branches Pi,1, . . . , Pi,ki . Then, by the convexity above, if the union of Ri,1, . . . , Ri,ni intersects Pi,j,

then its intersection is a monotone staircase curve. Therefore the union of Ri,1. . . . , Ri,ni is a spiral

cylinder. See Figure 19. A similar argument holds in the case when the limit is a closed loop in a

singular leaf. 6.25

By Lemma 6.25 (1), (2), there is a constant c > 0, such that, for HX ∈ N , if a rectangular branch

R of TX,HX has a horizontal edge of length more than c, then R is contained in a unique spiral

cylinder, which may contain other rectangular branches. The diameter of such spiral cylinders is

uniformly bounded from above by a constant depending only on X. Thus, replace all rectangular

branches R of TX,HX with corresponding spiral cylinders, and we obtain a staircase train track

TX,HX :

Corollary 6.27. There is c > 0, such that, for all H = (HX , HY ) ∈ N , the diameters of the

branches of the staircase train track TX,HX are bounded by c.

6.8. Semi-diffeomorphic bounded almost polygonal train-track structures for Y . For

ε > 0, we have constructed, for all H = (HX , HY ) in some compact neighborhood N of the diagonal

Λ∞ in (PML×PML)\∆∗, a staircase train-track structure TX,HX of EX,HX and an ε-quasi-staircase

train-track structure TY,HY of EY,H , such that TX,HX is semi-diffeomorphic to TY,HY . In §6.7, we
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modify TX,HX and obtain a uniformly bounded train-track TX,HX creating spiral cylinders. In this

section, we accordingly modify TY,HY to a bounded ε-quasi-staircase train-track structure.

Lemma 6.28. (1) For every spiral cylinder A of TX,HX , letting RX,1, RX,2, . . . , RX,n denote

the rectangular branches of TX,H whose union is A, there are corresponding branches

RY,1, RY,2, . . . , RY,n of TY,H, such that

• their union RY,1 ∪RY,2 ∪ · · · ∪RY,n is a spiral cylinder in EY,HY , and

• A is semi-diffeomorphic to RY,1 ∪RY,2 ∪ · · · ∪RY,n.

(2) Moreover, there is a constant c′ > 0, such that, if a rectangular branch of TY,HY has

horizontal length more than c′, then it is contained in a spiral cylinder as above.

Proof. As (HX , HY ) ∩ ∆∗ = ∅, the geodesic representative [VY ]X essentially intersects A. Thus,

the realization WY has positive weights on RX,1, RX,2, . . . , RX,n. Thus RX,j corresponds to a

rectangular branch RY,j of TY,HY , and their union ∪jRY,j is a spiral cylinder in TY,HY ((1)).

Let RX and RY be corresponding rectangular branches of TX,HX and TY,HY , respectively. As

(HX , HY ) varies only in a fixed compact neighborhood of the diagonal, the horizontal length of RX

is bilipschitz close to the length of the horizontal length of RY with a uniform bilipschitz constant

for such all RX and RY . Therefore, there is c′ > 0 such that if RY is more than c′, then the

corresponding branch RX has length more than the constant c (right before Corollary 6.27), then

RX is contained in a unique spiral cylinder (2). �

For every spiral cylinder A of TX,HX , by applying Lemma 6.28, we replace the branches

RY,1, RY,2, . . . , RY,n of TY,HY with the spiral cylinder RX,1 ∪ RX,2 ∪ · · · ∪ RX,n of TY,HY . Then,

we obtain an ε-quasi-staircase train-track decomposition TY,HY without long rectangles:

Proposition 6.29. For every ε > 0, there are c > 0 and a neighborhood N of the diagonal in

(PML × PML) \∆∗, such that, for every H = (HX , HY ) ∈ N ⊂ PML × PML, there is an ε-quasi-

staircase train-track decomposition TY,HY of EY,HY , such that

(1) T′Y,HY is δ-Hausdorff close to TY,HY in E1
Y,H ;

(2) the diameters of TY,HY and T′Y,HY are less than c;

(3) TX,HX is semi-diffeomorphic with T′Y,HY ;

(4) TY,HY changes semi-continuously in (HX , HY ) and the realization of [VY ]X on TX,HX .

Proof. Assertion (2) follows from Lemma 6.28 (2). Assertion (1) follows from Proposition 6.23. As-

sertion (3) follows from Proposition 6.23 and Lemma 6.28 (1). Assertion (4) holds, by Lemma 6.19,

since TY,HY changes semi-continuously in (HX , HY ) and the realization WY of [VY ]X on TX,HX . �

7. Thurston laminations and vertical foliations

7.0.1. Model Euclidean Polygons and projective circular polygons. A polygon with circular boundary

is a projective structure on a polygon such that the development of each edge is contained in a

round circle in CP1. Let σ be an ideal hyperbolic n-gon (n ≥ 3) . Let L be a measured lamination

on σ except that each boundary geodesic of σ is a leaf of weight ∞. From a view point of the
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Thurston parameterization, it is natural to add such weight-infinity leaves. In fact, there is a

unique CP1-structure C = C(σ, L) on the complex plane C whose Thurston’s parametrization is

the pair (σ, L); see [GM21]. Let L be the Thurston lamination on C. Denote, by κ : C → σ, the

collapsing map (§2.1.7).

For each boundary edge l of σ, pick a leaf ` of L which is sent diffeomorphically onto l by

κ. Then, those circular leaves bound a circular projective n-gon P in C, called an ideal projective

polygon.

For each i = 1, 2, . . . , n, let vi be an ideal vertex of σ, and let li and li+1 be the edges of σ

starting from vi. Consider the geodesic g starting from vi in the middle of li and li+1, so that the

reflection about g exchanges li and li+1. Embed σ isometrically into a totally geodesic plane in H3.

Accordingly P is embedding in CP1 so that the restriction of κ to P is the nearest point projection

to σ in H3.

Then, pick a round circle ci on CP1 such that the hyperbolic plane, Conv ci, bounded by ci is

orthogonal to g, so that li and li+1 are transversal to Conv ci.

Let `i and `i be the edges of P corresponding to li and li+1, respectively. If ci is close to vi
enough, then there is a unique arc ai in P connecting `i to `i+1 which is immersed into ci by the

developing map. Then, the region in P bounded by a1 . . . an is called the truncated ideal projective

polygon.

Definition 7.1. Let C be a CP1-structure on S. Let E1 be the normalized flat surface of the

Schwarzian parametrization of C. Let P be a staircase polygon in E1. Then P is ε-close to a

truncated ideal projective polygon P, if P isomorphically embeds onto a polygon in C which is

ε-Hausdorff close to P in the normalized Euclidean metric.

For X ∈ T t T∗, recall that χX be the holonomy variety of the CP1-structures on X. For

ρ ∈ χ
X , let CX,ρ be the CP1-structure on X with holonomy ρ, and let EX,ρ be the flat surface

given by the holomorphic quadratic differential of CX,ρ. Similarly, for ε > 0, let N1
ε ZX,ρ be the

ε-neighborhood of the singular set in the normalized flat surface E1
X,ρ. Let LX,ρ be the Thurston

lamination of CX,ρ.

Then, by combining what we have proved, we obtain the following.

Theorem 7.2. Let X ∈ T t T∗. Then, for every ε > 0, there is a bounded subset K = K(X, ε) of
χ
X satisfying the following: Suppose that ρ is in χ

X \K, and that the flat surface EX,ρ contains a

staircase polygon P such that

• ∂P disjoint from N1
ε ZX,ρ and

• the diameter of P is less than 1
ε
.

Then

(1) LX,ρ|P is (1 + ε, ε)-quasi-isometric to VX,ρ|P up to an isotopy supported on N1
ε ZX,ρ ∩ P ,

such that, in the normalized Euclidean metric E1
X,ρ,

(a) on P , each leaf of V is ε-Hausdorff-close to a leaf of L, and
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Figure 20. The image of a staircase polygon P by the collapsing map is almost an
ideal hyperbolic polygon.

(b) the transversal measure of V is ε-close to the transversal measure of L for all transver-

sal arcs whose lengths are less than one.

(2) In the (unnormalized) Euclidean metric, P is ε-close to a truncated ideal polygon of the

hyperbolic surface in the Thurston parameters.

Proof. The assertion (1a) follows from Lemma 4.4. The assertion (1b) is given by Proposition

Theorem 4.3.

We shall prove (2). Set CX,ρ = (τ, L) ∈ T × ML be the CP1 structure on X with holonomy

ρ ∈ χ \K in Thurston coordinates, and let κ : CX,ρ → τ be the collapsing map. Since sufficiently

away from the zero, the developing map is well-approximated by the exponential map (Lemma 3.2).

If K is sufficiently large, then for every vertical edge v of P , the restriction EpX,ρ |v is a (1+ ε)-

bilipschitz embedding on the Epstein surface. Therefore, by the closeness of EpX,ρ and β̂X,ρ, κ(v)

is ε-close to a geodesic segment sv of length
√

2 length v. By (1b), if K is large enough, L(sv) < ε.

Every horizontal edge h of P is very short on the Epstein surface (Lemma 3.1). As the

developing map is approximated by the Exponential map and Area τ = 2π|χ(S)|, it follows that,

if κ(h) has length less than ε on τ . Therefore, the image of P on the hyperbolic surface is ε-close

to a truncated ideal polygon (see Figure 20). 7.2

7.1. Equivariant circle systems. For ρ ∈ χX , we shall pick a system of a ρ-equivalent round

circles on CP1, which will be used to construct a circular train-track structure of CX,ρ. Let T̃X,ρ

be the π1(S)-invariant train-track structure on ẼX,ρ obtained by lifting the train-track structure

TX,ρ on EX,ρ. Let Ep∗X,ρ : TẼX,ρ → TH3 be the differential of EpX,ρ : ẼX,ρ → H3.

Lemma 7.3. For every ε > 0, there is a bounded subset Kε of χ such that, if ρ : π1(S)→ PSL(2,C)

belongs to χ
X \ Kε, then, we can assign a round circle ch to every minimal horizontal edge h of

T̃X,ρ with the following properties:

(1) The assignment h 7→ ch is ρ-equivariant.

(2) The hyperbolic plane bounded by ch is ε-almost orthogonal to the Ep∗X,ρ-images of the vertical

tangent vectors along h.



S.Baba Bers’ simultaneous uniformization and Poincaré holonomy varieties 42

(3) If h1, h2 are horizontal edges of T̃X,ρ connected by a vertical edge v of length at least ε, then

the round circles ch1 and ch2 are disjoint.

(4) If h1, h2, h3 are “vertically consecutive” horizontal edges, such that

• h1 and h2 are connected by a vertical edge v1 of EX,ρ-length at least ε;

• h2 and h3 are connected by a vertical edge v3 of length at least ε;

• h1 and h3 are on the different sides of h2, i.e. the normal vectors of h2 in the direction

of v1 and v3 are opposite,

then ch1 and ch3 are disjoint, and they bound a round cylinder whose interior contains ch2.

Proof. Without loss of generality, we can assume that ε > 0 is sufficiently small. With respect to

the normalized Euclidean metric E1
X,ρ, the lengths of minimal horizontal edges of TX,ρ are uniformly

bounded from above by Corollary 6.27, and the distances of the horizontal edges from the singular

set of E1
X,ρ are uniformly bounded from below. Then, by Lemma 3.1, for every ε > 0, if a bounded

subset Kε in χ is sufficiently large, then for every minimal horizontal edge h of TX,ρ, the vertical

tangent vectors along h on EX,ρ of unit length map to ε-close tangent vectors of H3.

Therefore, if Kε is large enough, for each minimal horizontal edge h of T̃Y,ρ, we pick a round

circle ch, such that the assignment of ch is holonomy equivariant and that the images of vertical

tangent vectors along h are ε2-orthogonal to the hyperbolic plane bounded by ch.

Then, if v is a vertical edge sharing an endpoint with h, then EpX,ρ(v) is ε2-almost orthogonal

to the hyperbolic plane bounded by ch. For every sufficiently small ε > 0, if K > 0 is sufficiently

large, then the geodesic segment of length, at least, ε connects the hyperbolic planes bounded by

ch1 and ch2 , and the geodesic segment is ε2-almost orthogonal to both hyperbolic planes. Therefore,

if ε > 0 is sufficiently small, then, by elementary hyperbolic geometry, the hyperbolic planes are

disjoint, and (3) holds. By a similar argument, (4) also holds. �

The circle system in Lemma 7.3 is not unique, but unique up to an appropriate isotopy:

Proposition 7.4. For every ε1 > 0, there is ε2 > 0, such that, for every ρ ∈ χX\Kε2 given two sys-

tems of round circles {ch} and {c′h} realizing Lemma 7.3 for ε2 > 0, there is a one-parameter family

of equivalent circles systems {ct,h} (t ∈ [0, 1]) realizing Lemma 7.3 for ε1 > 0 which continuously

connects {ch} to {c′h}.

Proof. The proof is left for the reader. �

7.2. Pleated surfaces are close. The following gives a measure-theoretic notion of almost par-

allel measured laminations.

Definition 7.5 (Quasi-parallel). Let L1, L2 be two measured geodesic laminations on a hyperbolic

surface τ . Then, L1 and L2 are ε-quasi parallel, if a leaf `1 of L1 and a leaf `2 of L2 intersect at a

point p and ∠p(`1, `2) > ε, then letting s1 and s2 be the unit length segments in `1 and `2 centered

at p,

min(L1(s2), L2(s1)) < ε.
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Proposition 7.6. For every ε > 0, if a bounded subset K ⊂ χ
X ∩ χY is sufficiently large, then

LY,ρ is ε-quasi-parallel to LX,ρ on τX,ρ away from the non-transversal graph GY .

Proof. If K is sufficiently large, ∠EX,ρ(HX,ρ, V
′
Y,ρ) is uniformly bounded from below by a positive

number by Lemma 6.4. Then, the assertion follows from Lemma 3.1 and Theorem 7.2. �

In this section, we show that the pleated surfaces for CX,ρ and CY,ρ are close away from the

non-transversal graph. Recall that β̂X,ρ : C̃X,ρ → H3 denotes the composition of the collapsing

map and the bending map for CX,ρ, and similarly β̂Y,ρ : C̃Y,ρ → H3 denotes the composition of the

collapsing map and the bending map for CY,ρ.

Theorem 7.7. Let X, Y ∈ T t T∗ with X 6= Y . For every ε > 0, there is a bounded subset Kε in
χ
Y ∩χX such that, for every ρ ∈ χX∩χY \Kε, there are a homotopy equivalence map φ : EY,ρ → EY,ρ

and a semi-diffeomorphism ψ : TX,ρ → T′Y,ρ given by Proposition 6.29 (3) satisfying the following:

(1) dE1
Y,ρ

(φ(z), z) < ε;

(2) the restriction of φ to EY,ρ \N1
ε ZY,ρ can be transformed to the identity by a homotopy along

vertical leaves of EX,ρ;

(3) β̂X,ρ(z) is ε-close to β̂Y,ρ ◦ φ̃ ◦ ψ̃(z) in H3 for every point z ∈ ẼX,ρ which are not in the

interior of the non-transversal branches of TX,ρ.

Using Lemma 3.1, one can prove the following.

Lemma 7.8. Let ε > 0 and let X ∈ T t T∗. Then, there is a compact subset K of χX such that,

for every ρ ∈ χX \K, if α is a monotone staircase closed curve in EX,ρ, such that

• the total vertical length of α is more than ε times the total horizontal length of α, and

• α is disjoint from the ε-neighborhood of the singular set in the normalized metric E1
X,ρ,

then EpX,ρ α̃ is a (1 + ε, ε)-quasi-geodesic with respect to the vertical length.

Lemma 7.9. Let αX be a staircase curve carried by tX,ρ satisfying the conditions in Lemma 7.8.

Then, there is a staircase geodesic closed curve αY carried by T′Y,ρ satisfying the conditions in

Lemma 7.8, such that the image of α by the semi-diffeomorphism TX,ρ → T′Y,ρ is homotopic to αY
in the train-track T′Y,ρ.

Proof. The proof is left for the reader. �

Let WY be a realization of [VY ]X on TX,ρ (§6.3). Let x be a point of the intersection of

the realization WY and a horizontal edge of hX of TX,ρ. Let y be a corresponding point of VY,ρ
(on EY,ρ). Recall that r is the train-track parameter, so that, in particular, horizontal edges are

distance, at least, r away from the singular set in the normalized Euclidean metric. Let vx be a

vertical segment of length r/2 on E1
X,ρ such that x is the middle point of vx. Similarly, let vy be

the vertical segment of length r/2 on E1
Y,ρ such that y is the middle point of vy. We normalize

the Epstein surfaces for CX,ρ and CY,ρ so that they are ρ-equivariant for a fixed representation

ρ : π1(S)→ PSL(2,C) (not a conjugacy class).
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Proposition 7.10 (Corresponding vertical edges are close in H3). For every ε > 0, there is a

compact subset K in χ, such that, for every ρ ∈ χX ∩ χY \K, if vX and vY are vertical segments

of EX,ρ and of EY,ρ, respectively, as above, then there is a (bi-infinite) geodesic ` in H3 satisfying

the following:

• EpX,ρ vX is ε-close to a geodesic segment αX of ` in C1-metric;

• EpY,ρ vY is ε-close to a geodesic segment αY of ` in C1-metric;

• if pX and pY are corresponding endpoints of αX and αY , then the distance between EpX,ρ pX
and EpY,ρ pY is at most ε times the diameters of EX,ρ and EY,ρ.

Proof. Then, pick a L∞-geodesic staircase closed curves `X,1, `X,2 on EX,ρ containing vx such that,

for i = 1, 2, by taking appropriate lift ˜̀
X,1 and ˜̀

X,2 to ẼX,ρ,

(1) `X,i is carried by TX,ρ;

(2) ˜̀
X,1 ∩ ˜̀

X,2 is a single staircase curve connecting singular points of ẼX,ρ, and the projection

of ˜̀
X,1 ∩ ˜̀

X,2 to EX,ρ does not meet a branch of TX,ρ more than twice;

(3) if a branch B of T̃X,HX intersects both ˜̀
X,1 and ˜̀

X,2, then B intersects ˜̀
X,1 ∩ ˜̀

X,2;

(4) ˜̀
X,1 and ˜̀

X,2 intersect, in the normalized metric of Ẽ1
X,ρ, the ε-neighborhood of the singular

set only in the near the endpoints of ˜̀
X,1 ∩ ˜̀

X,2.

Then, there are homotopies of `X,1, `X,2 to staircase vertically-geodesic closed curves `′X,1, `
′
X,2

carried by TX,ρ, such that the homotopies are supported on the 2ε-neighborhood of the singular

set of E1
X,ρ and that `′X,1, `

′
X,2 are disjoint from the ε-neighborhood of the zero set. Then EpX,ρ ˜̀′

X,1

and EpX,ρ ˜̀′
X,2 are (1 + ε, ε)-quasi-geodesics which are close only near the segment corresponding

to ˜̀
X,1 ∩ ˜̀

X,2.

Pick closed geodesic staircase-curves `Y,1, `Y,2 on EY,ρ, such that

• `Y,i contains vy;

• the semi-diffeomorphism TX,ρ → TY,ρ takes `′X,i to a curve homotopic to `Y,i on TY,ρ;

• `Y,i is carried by TY,ρ;

• `Y,i is disjoint from N1
ε ZX,ρ.

Let α be the geodesic such that a bounded neighborhood of α contains the quasi-geodesic EpX,ρ ˜̀′
X,i.

Let ˜̀
Y,i be a lift of `Y,i to ẼY,ρ corresponding to ˜̀′

X,i (connecting the same pair of points in the

ideal boundary of S̃).

Lemma 7.11. For every ε > 0, if a compact subset K of χ is sufficiently large and υ > 0 is

sufficiently small, then, for all ρ ∈ χX ∩χY \K, EpY,ρ ˜̀
Y,i is (1 + ε, ε)-quasi-isometric with respect

to the vertical length for both i = 1, 2.

Then EpX,ρ ˜̀′
X,1 ∪ ˜̀′

X,2 and EpY,ρ ˜̀
Y,1 ∪ ˜̀

Y,2 are both ε-close in the Hausdorff metric of H3.

Therefore, corresponding endpoints of EpY,ρ ˜̀′
X,1 ∩ ˜̀′

X,2 and EpY,ρ ˜̀′
Y,1 ∩ ˜̀′

Y,2 have distance, at most,

ε times the diameters of EX,ρ and EY,ρ. By (2), the length of ˜̀′
X,1 ∩ ˜̀′

X,2 can not be too long
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relative to the diameter of EX,ρ. Letting ` be the geodesic in H3 fellow-traveling with EpX,ρ ˜̀′
X,1

(or EpX,ρ ˜̀′
X,2), the vertical segment vx and vy have the desired property. �

Finally Theorem 7.7 follows from the next proposition.

Proposition 7.12. Suppose that a branch B′Y of the train track T′Y,ρ corresponds transversally to

a branch BX of TX,ρ.

Then, there is an ε-small isotopy of B′Y in the normalized surface E1
Y,ρ such that

• in the complement of the r
2
-neighborhood of the zero set, every point of B′Y moves along the

vertical foliation VY,ρ, and

• after the isotopy β̂X,ρ|BX and β̂Y,ρ|B′Y are ε-close pointwise by a diffeomorphism ψ : B′Y →
BX .

Proof. By Proposition 7.10, there is an ε-small isotopy of the boundary of B′Y satisfying the condi-

tions on the boundaries of the branches. Since the branches are transversal, by Theorem 4.3, if K

is sufficiently large, then the restriction of LX,ρ to BX and LY,ρ on BY are ε-quasi parallel on the

hyperbolic surface τX,ρ (Proposition 7.6). Therefore we can extend to the interior of the branch

by taking an appropriate diffeomorphism ψ : B′Y → BX . �

8. Compatible circular train-tracks

In §6, for every ρ in χ
X ∩ χY outside a large compact K, we constructed semi-diffeomorphic

train-track structures TX,ρ and T′Y,ρ of the flat surfaces EX,ρ and EY,ρ, respectively. In this section,

as EX,ρ and EY,ρ are the flat structures on CX,ρ and CY,ρ, using Theorem 7.7, we homotope TX,ρ

and T′Y,ρ to make them circular in a compatible manner.

8.1. Circular rectangles. A round cylinder is a cylinder on CP1 bounded by two disjoint round

circles. Given a round cylinder A, the boundary components of A bound unique (totally geodesic)

hyperbolic planes in H3, and there is a unique geodesic ` orthogonal to both hyperbolic planes.

Moreover A is foliated by round circles which, in H3, bound hyperbolic planes orthogonal to ` —

we call this foliation the horizontal foliation. In addition, A is also foliated by circular arcs which are

contained in round circles bounding hyperbolic planes, in H3, containing ` — we call this foliation

the vertical foliation. Clearly, the horizontal foliation is orthogonal to the vertical foliations of A.

Definition 8.1. Let R be a CP1-structure on a marked rectangle R, and let f : R → CP1 be its

developing map. Then R is circular if there is a round cylinder A on CP1 such that

• the image of f is contained in A;

• the horizontal edges of R are immersed into different boundary circles of A;

• for each vertical edge v of R, its development f(v) is a simple arc on A transverse to the

horizontal foliation.
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Given a circular rectangle R, the support of R consists of the round cylinder A and the simple

arcs on A which are the developments of the vertical edges of R in Definition 8.1. We denote the

support by SuppR. We can pull-back the horizontal foliation on A to a foliation on R by the

developing map, and call it the horizontal foliation of R.

Given projective structures R and Q on a marked rectangle R, we say that P and Q are

compatible if SuppR = SuppQ. Let R be a circular rectangle, such that the both vertical edges

are supported on the same arc α on a circular cylinder. Then, we say that R is semi-compatible

with α.

8.1.1. Grafting a circular rectangle. (See [Bab10].) Let R be a circular CP1-structure on a marked

rectangle R. Let A be the round cylinder in CP1 which supports R. Pick an arc α on R, such

that α connects the horizontal edges and it is transversal to the horizontal foliation of R. Then

α is embedded into A by devR — we call such an arc α an admissible arc. By cutting and gluing

A and R along α in an alternating manner, we obtain a new circular CP1-structure on R whose

support still is SuppR. This operation is the grafting of R along α, and the resulting structure on

R is denoted by GrαR.

One can easily show that GrαR is independent of the choice of the admissible arc α, since an

isotopy of α preserving its initial conditions does not change GrαR.

8.2. Circular staircase loops. Let C = (f, ρ) be a CP1-structure on S. A topological staircase

curve is a piecewise smooth curve, such that

• its smooth segments are labeled by “horizontal” or “vertical” alternatively along the curve,

and

• at every singular point, the horizontal and vertical tangent directions are linearly indepen-

dent in the tangent space.

Then, a topological staircase curve s on C is circular, if the following conditions are satisfied:

Letting s̃ be a lift of s to S̃,

• every horizontal segment h of s̃ is immersed into a round circle in CP1 by f , and

• for every vertical segment v of s̃, letting h1, h2 be the horizontal edges starting from the

endpoints of v,

– the round circles c1, c2 containing f(h1) and f(h2) are disjoint, and

– f |v is contained in the round cylinder bounded by c1, c2 and, it is transverse to the

horizontal foliation of the round cylinder.

8.3. Circular polygons. Let P be a marked polygon with even number of edges. Then, let

e1, e2, . . . , e2n denote its edges in the cyclic order so that the edges with odd indices are vertical

edges and with even indices horizontal edges. Suppose that c2, c4 . . . c2n are round circles in CP1

such that, for every i ∈ Z/nZ,

• c2i and c2(i+1) are disjoint, and

• c2(i−1) and c2(i+1) are contained in the same component of CP1 \ c2i.
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devP

CP1

P

Figure 21. A development of a projective polygon supported on round circles
(when the developing map is injective).

Let Ai denote the round cylinder bounded by c2i and c2(i+1). A circular CP1-structure P on P

is supported on {c2i}ni=1 if

• e2i is immersed into the round circles of c2i by devP for every i = 1, . . . n, and

• e2i+1 is immersed into Ai and its image is transversal to the horizontal foliation of Ai
(Figure 21) for every i = 0, 1, . . . , n− 1.

Let P be a circular CP1-structure on a polygon P supported on a circle system {c2i}ni . For

ε > 0, P is ε-circular, if

• for every vertical edge vi is ε-parallel to the vertical foliation V of the support cylinder Ai,
and

• the total transversal measure of v given by the vertical foliation V is less than ε.

(Here, by the “total” transversal measure, we mean that if v intersects a leaf of V more than once,

and the measure is counted with multiplicity.)

Let P1,P2 be circular CP1-structures on a 2n-gon P . Then P1 and P2 are compatible if, for

each i = 1, . . . , n, devP1 and devP2 take e2i to the same round circle and the arcs f1(v2i−1) and

f2(v2i−1) are the same.

Let A be a flat cylinder with geodesic boundary; then its universal cover Ã is an infinite

Euclidean strip. A projective structure (f, ρ) on A is circular, if the developing map f : Ã→ CP1

is a covering map onto a round cylinder in CP1.

Next, let A be a spiral cylinder. Then each boundary component b of A is a monotone staircase

loop. Let b̃ be the lift of b to the universal cover Ã. Let {ei}i∈Z be the segments of b̃ linearly indexed

so that ei with an odd index is a vertical edge and with an even index is a horizontal edge; clearly

b̃ = ∪i∈Zei. Then, a CP1-structure (f, ρ) on A is circular, if, for each boundary staircase loop b of

A and each i ∈ Z,

• the horizontal edge e2i is immersed into a round circle ci on CP1;

• ci−1, ci and ci+1 are disjoint, and the round annulus bounded by ci−1 and ci+1 contains ci
in its interior;
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• f embeds vi in the round cylinder Ai bounded by ci and ci+1, and f(vi) is transverse to

the circular foliation of Ai.

Two circular CP1-structures A1 = (f1, ρ1),A2 = (f2, ρ2) on a spiral cylinder A are compatible

• ρ1 is equal to ρ2 up to conjugation by an element of PSL(2,C) (thus we can assume ρ1 = ρ2);

• for each boundary component h of Ã, f1 and f2 take h to the same round circle;

• for each vertical edge v of Ã, f1|v = f2|v.

More generally, let F = (f1, ρ1) and F ′ = (f2, ρ2) be two circular CP1-structures on stair-case

surfaces F and F ′. First suppose that there is a diffeomorphism φ : F → F ′, which takes the

vertices of F bijectively to those of F ′. Then F is compatible with F ′ if

• ρ1 is conjugate to ρ2 (thus we can assume that ρ1 = ρ2);

• for every vertex p1 of F1, the development of p1 coincides with the development of φ(p2);

• for every a horizontal edge h of F1, letting h′ be its corresponding horizontal edge of F ′,
then the developments of h and h′ are contained in the same round circle;

• for every vertical edge v of F , letting v′ be its corresponding edge v′ of F ′, then the

developments of v′ and v coincide.

Next, instead of a diffeomorphism, we suppose that there is a semi-diffeomorphism φ : F → F ′.

Then F is semi-compatible with F ′ if

• ρ1 is conjugate to ρ2 (thus we can assume that ρ1 = ρ2);

• for every vertex p1 of F1, the development of p1 coincides with the development of φ(p2);

• if a horizontal edge h of F corresponds to a horizontal edge h′ of F ′, then h and h′ are

supported on the same round circle on CP1;

• for every vertical edge v of F , letting v′ be its corresponding vertical edge (segment) of F ′,
then the developments of v′ and v coincide.

8.4. Construction of circular train tracks TY,ρ.

In this section, if ρ is in χ
X ∩ χY minus a large compact subset, we construct a circular train-

track structure of CY,ρ related to the polygonal train-track decomposition T′Y,ρ.

Two train-track structures T1, T2 on a flat surface E is (p, q)-quasi-isometric for p > 1 and

q > 0 if there is a continuous (p, q)-quasi-isometry φ : E → E homotopic to the identity such that

φ(T1) = T2 and the restriction of φ to T1 is a homotopy equivalence between T1 and T2.

Theorem 8.2. For every ε > 0, there is a bounded subset K = Kε in χ
X ∩ χY , such that, for

every ρ ∈ χX ∩ χY \K, there is an ε-circular surface train track decomposition TY,ρ of CY,ρ with

the following properties:

(1) TY,ρ is diffeomorphic to T′Y,ρ, and it is (1 + ε, ε)-quasi-isometric to both TY,ρ and T′Y,ρ in

the normalized metric E1
Y,ρ.
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(2) For every vertical edge v of T′Y,ρ, its corresponding edge of TY,ρ is contained in the leaf of

the vertical foliation VY,ρ.

(3) For a branch BX of TX,ρ, letting BY be its corresponding branch of T′Y,ρ and letting BY
be the branch of TY,ρ corresponding to BY , the restriction of β̂X,ρ to ∂B̃X is ε-close to the

restriction of β̂Y,ρ to ∂B̃Y pointwise; moreover, if BX is a transversal branch, then β̂X,ρ|B̃X

is ε-close to β̂Y,ρ|B̃Y pointwise.

We fix a metric on the unit tangent bundle of H3 which is left-invariant under PSL(2,C).

Proposition 8.3. For every ε > 0, if a bounded subset Kε of χX is sufficiently large, then, for

every ρ ∈ χX \Kε and every horizontal edge h of TX,ρ, the Ep∗X,ρ-images of the vertical unit tangent

vectors of along h are ε-close.

Proof. The assertion immediately follows from Theorem 3.9 (2). �

Recall that we have constructed a system of equivariant circles for horizontal edges of T̃X,ρ

in Lemma 7.3. Let h = [u,w] denote the horizontal edge of TX,ρ where u,w are the endpoints.

We shall perturb the endpoints of each horizontal edge of TY,ρ so that the endpoints map to the

corresponding round circle.

Proposition 8.4. For every ε > 0, there are sufficiently small δ > 0 and a (large) bounded subset

Kε of χX ∩ χY satisfying the following: For every ρ ∈ χX ∩ χY \Kε, if c = {ch} is a circle system

for horizontal edges h of TX,ρ given by Lemma 7.3 for δ, then, for every horizontal edge h = [u,w]

of T̃Y,ρ, there are, with respect to the normalized metric E1
Y,ρ, ε-small perturbations u′ and w′ of u

and w along VY,ρ, respectively, such that fY,ρ(u
′) and fY,ρ(w

′) are contained in the round circle ch.

Proof. This follows from Theorem 7.7 and Lemma 7.3 (2). �

Proof of Theorem 8.2. By Proposition 8.4, for each horizontal edge h = [u,w] of T′Y,ρ, there is an

ε-homotopy of h to the circular segment h′ the perturbations u′, w′ such that, letting h̃ be a lift

of h to ẼY,ρ, the corresponding lift h̃′ of h′ is immersed into the round circle ch̃. For each vertical

edge v of T′Y,ρ, at each endpoint of v, there is a horizontal edge of T′Y,ρ starting from the point;

then the round circles corresponding to the horizontal edges bound a round cylinder.

Note that a vertex u of T′Y,ρ is often an endpoint of different horizontal edges h1 and h2. Thus,

if the perturbations u′1 and u′2 of u are different for h1 and h2, then TY,ρ has a new short vertical

edge connecting u′1 and u′2, and TY,ρ is non-diffeomorphic to T′Y,ρ.

Recall that the δ/4-neighborhood of the singular points of E1
Y,ρ is disjoint from the one-skeleton

of TY,ρ by Proposition 6.23. Thus, every vertical edge v of T′Y,ρ is ε-circular with respect to the

round cylinder by Corollary 3.7. Thus we have (2). Thus we obtained an ε-circular train-track

decomposition TY,ρ of EY,ρ.
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As the applies homotopies are ε-small, TY,ρ are ε-close to T′Y,ρ (1). Thus we may, in addition,

assume that TY,ρ is ε-close to T′Y,ρ by Proposition 6.23. Moreover, Theorem 7.7 give (3). 8.2

8.5. Construction of TX,ρ. Given a train-track structure on a surface, the union of the edges of its

branches is a locally finite graph embedded on the surface. An edge of a train-track decomposition

is an edge of the graph, which contains no vertex in its interior (whereas an edge interior of a

branch may contain a vertex of the train track).

Definition 8.5. Let C, C ′ be CP1-structures on S with the same holonomy ρ : π1(S)→ PSL(2,C),

so that devC and devC ′ are ρ-equivariant. A circular train-track decomposition T = ∪iBi of C

is semi-compatible with a circular train-track decomposition T ′ = ∪B′j of C ′ if there is a marking-

preserving continuous map Θ: C → C ′ such that, for each branch B of T , Θ takes B to a branch

of B′ of T ′, and that B and B′ are compatible by Θ.

Theorem 8.6. For every ε > 0, if a bounded subset Kε in χ
X ∩ χY is sufficiently large, then, for

every ρ ∈ χX ∩ χY \Kε, there is an ε-circular train track decomposition TX,ρ of CX,ρ, such that

(1) TX,ρ is semi-compatible with TY,ρ, and

(2) TX,ρ additively 2π-Hausdorff-close to TX,ρ with respect to the (unnormalized) Euclidean

metric EX,ρ: More precisely, in the vertical direction, TX,ρ is ε-close to TX,ρ, and in the

horizontal direction, 2π-close in the Euclidean metric of EX,ρ for all ρ ∈ χX \Kε.

Proof. First, we transform TX,ρ by perturbing horizontal edges so that horizontal edges are circular.

Recall that, the branches of TY,ρ are circular with respect to a fixed system c of equivariant circles

given by Lemma 7.3. Thus, the βX,ρ-images of vertical tangent vectors along h are ε-close to a single

vector orthogonal to the hyperbolic plane bounded by ch. Therefore, similarly to Theorem 8.2,

we can modify the train-track structure TX,ρ so that horizontal edges are circular and ε-Hausdorff

close to the original train-track structure in the Euclidean metric of EX,ρ (this process may create

new short vertical edges). Thus we obtained an ε-circular train track T′X,ρ whose horizontal edges

map to their corresponding round circles of c.

Next, we make the vertical edges compatible with TY,ρ. Recall that TX,HX has no rectangles

with short vertical edges (Lemma 5.6). Therefore, we have the following.

Lemma 8.7. For every R > 0, if the bounded subset K of χ is sufficiently large, then, for each

vertical edge of T′X,ρ, the horizontal distance to adjacent vertical edges is at least R.

Thus, by Lemma 8.7, there is enough room to move vertical edges, less than 2π, so that the

train-track is compatible with TY,ρ along vertical edges as well.

Since TX,ρ is semi-diffeomorphic to TY,ρ (Proposition 6.29 (3)), TX,ρ is semi-compatible with

TY,ρ. 8.6
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9. Grafting cocycles and intersection of holonomy varieties

In this section, given a pair of CP1-structures on S with the same holonomy, we shall construct

a Z-valued cocycle under the assumption that the holonomy is outside of an appropriately large

compact subset of the character variety χ. Namely, we will construct a train-track graph with

compatible Z-valued weights on the branches and its immersion into S (see [PH92] for train-

track graphs). This embedding captures, in a way, the “difference” of the CP1-structures sharing

holonomy. If a smooth arc on S is transversal to the immersed train-track graph, then the sum

of the Z-weights at the transversal intersection points is an integer— this functional defined on

transversal arcs is called a transversal cocycle. Note that this cocycle value does not change under

the regular homotopy of the arc if it retains the transversality. In particular, given a simple closed

curve on a surface, we first homotopy the loop so that it has a minimal geometric intersection with

the immersed train-track graph, and then consider its transversal cycle with the train-track graph.

In this manner, we obtain a functional on the set of homotopy classes on the simple closed curves,

which we call a grafting cocycle.

Goldman showed that every CP1-structure with Fuchsian holonomy π1(S)→ PSL2C is obtained

by grafting the hyperbolic structure with the Fuchsian holonomy along a Z-weighted multi-loop

on S ([Gol87]). The grafting cocycles that we construct in this paper can be regarded as a

generalization of such weighted multiloops.

9.1. Relative degree of rectangular CP1-structures. Let a < b be real numbers. Let f, g : [a, b]→
S1 be orientation preserving immersions or constant maps, such that f(a) = g(a) and f(b) = g(b).

Definition-Lemma 9.1. The integer ]f−1(x)− ]g−1(x) is independent on x ∈ S1 \ {f(a), f(b)},
where ] denotes the cardinality. We call this integer the degree of f relative to g, or simply, the

relative degree, and denote it by deg(f, g).

Clearly, it is not important that f and g are defined on the same interval as long as corre-

sponding endpoints map to the same point on S1. Moreover, the degree is additive in the following

sense.

Lemma 9.2 (Subdivision of relative degree). Suppose in addition that f(c) = g(c) for some

c ∈ (a, b). Then

deg(f, g) = deg(f |[a,c], g|[a,c]) + deg(f |[a,c], g|[a,c]).

The proofs of the lemmas above are elementary. Let R,Q be circular projective structures

on a marked rectangle, and suppose that R and Q are compatible: By their developing maps,

corresponding horizontal edges of R and Q are immersed into the same round circle on CP1, and

the corresponding vertices map to the same point.

Then, the degree of R relative to Q is the degree of a horizontal edge of R relative to its

corresponding horizontal edge of Q — we similarly denote the degree by deg(R,Q) ∈ Z. Although

R has two horizontal edges, this degree is well-defined:
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Lemma 9.3 (c.f. Lemma 6.2 in [Bab15]). The degree deg(R,Q) is independent of the choice of

the horizontal edge.

Proof. Let A be the round cylinder on CP1 supporting both R and Q. Then, the horizontal

foliation FA of A by round circles c induces foliations FR and FQ on R and Q, respectively. Then,

for each leaf c of FA, the corresponding leaves `R and `Q of FR and FQ, respectively, are immersed

into c, and the endpoints of `R and `Q on the corresponding vertical edges of R and Q map to the

same point on c. The degree of `R relative to `Q is an integer, and it changes continuously in the

leaves c of FA. Thus, the assertion follows immediately. �

Lemma 9.4 (cf. Lemma 6.2 in [Bab15]). Let R,Q be CP1-structures on a marked rectangle with

SuppR = SuppQ. Then

• if deg(R,Q) > 0, then R is obtained by grafting Q along an admissible arc deg(R,Q) times;

• if deg(R,Q) < 0, then Q is obtained by grafting R along an admissible arc − deg(R,Q)

times;

• if deg(R,Q) = 0, then R is isomorphic to Q (as CP1-structures).

By Lemma 9.4, the “difference” of CP1-rectangles R and Q can be represented by an arc α

with weight deg(R,Q) such that α sits on the base rectangle connecting the horizontal edges.

Lemma 9.5. Let R and Q be circular projective structures on a marked rectangle such that

SuppR = SuppQ. Let A be the round cylinder on CP1 supporting R and Q. Suppose that

there are admissible arcs αR on R and αQ on Q which develop onto the same arc on A (transversal

to the horizontal foliation), so that the arcs decompose R and Q into two circular rectangles R1, R2

and Q1, Q2, respectively and SuppR1 = SuppQ1 and SuppR2 = SuppQ2. Then

deg(R,Q) = deg(R1, Q1) + deg(R2, Q2).

Proof. This follows from Lemma 9.2. �

9.2. Train-track graphs for planar polygons. Let P be a L∞-convex staircase polygon in E2,

which contains no singular points. We can decompose P into finitely many rectangles P1, P2, . . . , Pn
by cutting P along n− 1 horizontal arcs each connecting a vertex and a point on a vertical edge.

Let P ,Q be compatible circular projective structures on P such that the round circles supporting

horizontal edges are all disjoint. The decomposition P into P1, P2, . . . Pn gives decompositions of P
into P1,P2, . . . ,Pn and Q into Q1,Q2, . . . ,Qn such that SuppPi = SuppQi for i = 1, 2, . . . , n. As

in §9.1, for each i, we obtain an arc αi connecting horizontal edges of Pi with weight deg(Pi,Qi).
Then, by splitting and combining α1, α2, . . . , αn appropriately, we obtain a Z-valued train-track

graph Γ(P ,Q) on P transversal to the decomposition (Figure 22).

9.3. Train-track graphs for cylinders. Let AX be a cylindrical branch of TX,ρ, and let AY be

the corresponding cylindrical branch of TY,ρ.

Pick a monotone staircase curve α on AX , such that
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Figure 22. An example of a weighted train track on an L∞-convex polygon in E2.

α

[VY ]X

Figure 23. A monotone staircase curve α on a spiral cylinder.

(1) α connects different boundary components of AX , and its endpoints are on horizontal edges

(Figure 23),

(2) the restriction of [VY,ρ]X to AX has a leaf disjoint from α.

Then [VY,ρ]X is essentially carried by AX . Then, one can easily show that the choice of α is unique

through an isotopy preserving the properties.

Lemma 9.6. Suppose there are two staircase curves α1, α2 on AX satisfying Conditions (1) and

(2). Then, α1 and α2 are isotopic through staircase curves αt satisfying Conditions (1) and (2).

In Proposition 6.7, pick a realization of [VY ]X on the decomposition (AX , αX) by a homotopy

of [VY ]X sweeping out triangles. This induces an ε-almost staircase curve αY . Similarly to Lemma

7.3, pick a system of round circles c = {ch} corresponding to horizontal edges h of αX so that the

EpX,ρ-images of vertical tangent vectors along h are ε-close to a single vector orthogonal to the

hyperbolic plane bounded by ch.

Then, as in §8.4 we can accordingly isotope the curve αY so that the horizontal edges are

supported on their corresponding circle of c and vertical edges remain vertical— let αc
Y denote the

curve after this isotopy. Then AY \ αc
Y is a circular projective structure on a staircase polygon in

E2.

Then, (similarly to Theorem 8.6), we can isotope αX to an ε-almost circular staircase curve αc
X

so that

• αX is 2π-Hausdorff close to αc
X ;
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• the horizontal edge h of αc
X is supported on ch;

• AX \ ααX is an ε-almost circular staircase polygon compatible with AY \ αc
Y .

As in §9.2, AX \ αc
X and AY \ αc

Y yield a Z-valued weighted train track ΓA\αX on the polygon

A \ αX such that ΓAX\αX is transversal to the horizontal foliation. Up to a homotopy preserving

endpoints on the horizontal edges, the endpoints of ΓAX\αX match up along αX as Z-weighted arcs.

Thus, we obtain a weighted train-track graph ΓAX on AX .

Consider the subset of the boundary of the circular cylinder AX which is the union of the

vertical boundary edges and the vertices of TX,ρ contained in ∂AX . Let A be the homotopy class

of arcs in AX connecting different points in this subset. Then [ΓAX ] : A → Z be the map which

takes an arc to its total signed intersection number with ΓAX .

Then Lemma 9.6 gives a uniqueness of [ΓAX ]:

Proposition 9.7. [ΓAX ] : A → Z is independent on the choice of the staircase curve α and the

realization of [VY ]X on (AX , αX).

9.4. Weighted train tracks and CP1-structures with the same holonomy. In this section,

we suppose that Riemann surfaces X, Y have the same orientation. Let C be the set of the

homotopy classes of closed curves on S (which are not necessarily simple). Given a weighted train-

track graph immersed on S, it gives a cocycle taking γ ∈ C to its weighted intersection number

with the graph.

Theorem 9.8. For all distinct X, Y ∈ T, there is a bounded subset K in χ
X ∩ χY , such that

(1) for each ρ ∈ χ
X ∩ χY \ K, the semi-compatible train-track decompositions TX,ρ of CX,ρ

and TY,ρ of CY,ρ in Theorem 8.6 yield a Z-weighted train track graph Γρ carried by TX,ρ
(immersed in S);

(2) the grafting cocycle [Γρ] : C→ Z is independent on the choices for the construction of TX,ρ
and TY,ρ;

(3) [Γρ] : C→ Z is continuous in ρ ∈ χX ∩ χY \K.

Since [Γρ] takes values in Z, the continuity immediately implies the following.

Corollary 9.9. For sufficiently large boundary subset K of χX ∩ χY , [Γρ] is well-defined and

constant on each connected component of χX ∩ χY \K.

We first construct a weighted train-track in (1). Let hX,1 . . . hX,n be the horizontal edges of

branches of TX,ρ.
Since TX,ρ and TY,ρ are semi-compatible (Proposition 8.6), for each i = 1, 2, . . . , n, letting hY,i

be its corresponding edge of a branch of TY,ρ or a vertex of TY,ρ. Then, hX,i and hY,i develop into

the same round circle on CP1, and their corresponding endpoints map to the same point by the

semi-compatibility. Thus we have the degree of hX,i relative to hY,i taking a value in Z (Definition

9.1) for each horizontal edge:

γρ : {hX,1, . . . , hX,n} → Z.
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n4

n5
n3

n2
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Figure 24. A Z-weight train-track graph for a rectangle. Here n = n1 + n2 + n3 =
n4 + n5. The black dots are vertices of TX,ρ.

We will construct a Z-weighted train track Γρ carried by TX,ρ so that the intersection number

with hX,i is γρ(hX,i). The train-track graph Γρ will be constructed on each branch of TX,ρ:

• For each rectangular branch R of TX,ρ, we will construct a Z-train track graph embedded

in R (Proposition 9.10).

• For each cylinder A of TX,ρ, we have obtained a Z-weighted train track graph embedded in

A (§9.3).

• For each transversal branch, we will construct a Z-weighted train track graph embedded in

the branch (Proposition 9.12).

• For each non-transversal branch of TX,ρ, we will construct a Z-weighted train track im-

mersed in the branch (Lemma 9.15).

9.4.1. Train tracks for rectangular branches. Given an ordered pair of compatible CP1-structures

on a rectangle, Lemma 9.4 gives a Z-weighted arc connecting the horizontal edges of the rectangle.

Since the horizontal edges of a rectangular branch of TX,ρ may contain a vertex, we transform the

weighted arc to a weighted train-track graph so that it matches with γρ.

Proposition 9.10. For every ε > 0, there is a bounded subset K of χX ∩ χY , such that, for every

ρ ∈ χX ∩ χY \K, for each rectangular branch RX of TX,ρ, there is a Z-weighted train track graph

Γρ,RX embedded in RX satisfying the following:

• ΓRX induces γρ;

• ΓRX is transversal to the horizontal foliation on RX ;

• each horizontal edge of TX,ρ in ∂RX contains, at most, one endpoint of Γρ,RX ;

• As cocycles, ΓR is (1+ ε, ε)-quasi-isometric to (VX,ρ|RX)− (VY,ρ|RY ), where RX is a branch

of TX,ρ corresponding to RX and RY is the branch of T′Y,ρ corresponding to RX .

Proof. Since RX and RY share their support, let n = deg(RX ,RY ) as seem in Lemma 9.4. Let

hX and hY be corresponding horizontal edges of RX and RY . Then hX = hX,1 ∪ · · · ∪ hX,m be the

decomposition of hX into horizontal edges of TX , and let hY = hY,1∪· · ·∪hY,m be the corresponding

decomposition into horizontal edges and vertices of TX compatible with the semi-diffeomorphism

TX,ρ → TY,ρ. Let ni ∈ Z be deg(hX,i, hY,i). Then, by Lemma 9.2, n = n1 + · · · + nm. Then it is

easy to construct a desired Z-weighted train track realizing such decomposition for both pairs of

corresponding horizontal edges (see Figure 24).
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The last assertion follows from Lemma 4.1 and Theorem 7.7. �

9.4.2. Train tracks for cylinders. For each cylindrical branch AX of TX,ρ, in §9.3, we have con-

structed a train-track graph Γρ,AX on AX , representing the difference between AX and its corre-

sponding cylindrical branch AY of TY,ρ.

Proposition 9.11. For every ε > 0, if a bounded subset K of χX ∩ χY is sufficiently large, then,

for each cylindrical branch AX of TX,ρ, the induced cocycle [ΓAX ] : A → Z times 2π is (1 + ε, ε)-

quasi-isometric to VY,ρ|AX−VX,ρ|AY , where AX and AY are the corresponding cylindrical branches

of TX,ρ and T′Y,ρ.

Proof. Recall that ΓAX is obtained from Z-weighted train-track graphs on the rectangles. There is

a uniform upper bound, which depends only on S, for the number of the rectangles used to define

[ΓAX ], since the decomposition was along horizontal arcs starting from singular points. Then, on

each rectangle, the weighted graph is (1 + ε, ε)-quasi-isometric to the difference of VX,ρ and VY,ρ by

Proposition 9.10. Thus [ΓAX ] is also (1 + ε, ε)-quasi-isometric to the difference of VX,ρ and VY,ρ if

K is sufficiently large. �

9.4.3. Train-track graphs for transversal polygonal branches. Recall that all transversal branches

are polygonal or cylindrical (Lemma 6.18), i.e. their Euler characteristics are non-negative.

Proposition 9.12. For every ε > 0, there is a bounded subset K in χ
X ∩ χY such that, for each

transversal polygonal branch PX of TX,ρ, there is a Z-weighted train track Γρ,PX embedded in PX ,

letting PX and PY be the branches of TX,ρ and TY,ρ, respectively, corresponding to PX , respectively,

such that

(1) each horizontal edge h of PX contains, at most, one endpoint of Γρ,P ;

(2) [ΓPX ] agrees with γρ on the horizontal edges of TX,ρ contained in ∂PX ;

(3) ΓP is transversal to the horizontal foliation HX,ρ on PX ;

(4) 2π[ΓP ] is (1 + ε, ε)-quasiisometric to (VX,ρ|PX − VY,ρ|PY ).

For every ε > 0, if K is sufficiently large, then, by Theorem 7.2 (2), let Q̂X be an ideal circular

polygon whose truncation QX is ε-close to PX in CX,ρ. Similarly, Q̂Y be an ideal circular polygon

whose truncation QY is ε-close to PY . Since SuppPX = SuppPY as circular polygons, we may in

addition assume that SuppQX = SuppQY as truncated idea polygons.

Let QX be the canonical polynomial CP1-structure on C which contains Q̂X (§7.0.1). Let L̂X
be the restriction of the Thurston lamination of QX to Q̂X . Similarly, let QY be the canonical

polynomial CP1-structure on C which contains QY . Let L̂Y be the restriction of the Thurston

lamination of QY to Q̂Y . As SuppQX = SuppQY , thus QX and QY share their ideal vertices.

Then QX and QY are ε-close to PX and PY , respectively. Thus, since γρ takes values in Z, L̂X−L̂Y
satisfies (2).

Theorem 7.2 (1) implies that L̂X is (1 + ε, ε)-quasi-isometric to VX |PX and L̂Y is (1 + ε, ε)-

quasi-isometric to VY |PY , and therefore L̂X − L̂Y satisfies (4).
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(1) is easy to be realized by homotopy combining the edges of the train-track graph ending on

the same horizontal edge. We show that there is a Z-weighted train track Γ which is ε-close to

L̂X − L̂Y , satisfying (3).

Let ΓPX be a weighted train track graph on P which represents L̂Xa Let ΓPY be the weighted

train-track graph which represents L̂Y . By Theorem 7.7, the pleated surface of PX is ε-close to the

pleated surface of PY , because of the quasi-parallelism in Proposition 7.6. Let Γ̌PX be the subgraph

of |ΓPX | obtained by eliminating the edges of weights less than a sufficiently small ε. Similarly, let

Γ̌PY be the subgraph of ΓPY obtained by eliminating the edges of weight less than ε.

Then, there is a minimal train-track graph ΓP containing both Γ̌PY and Γ̌PX and satisfying (1).

Since the pleated surfaces are sufficiently close, by approximating the weights of ΓPX − ΓPY by

integers, we obtain a desired Z-weighted train-track graph supported on ΓP .

Since PX is a transversal branch, ΓPX and ΓPY are both transversal to HX,ρ|P , thus ΓP is

transversal to HX,ρ|P (3). 9.12

9.4.4. Train-track graphs for non-transversal branches. Let PX and PY be the corresponding

branches of TX,ρ and TY,ρ, respectively, which are non-transversal. Let PX and PY be the branches

of TX,ρ and TY,ρ corresponding to PX and PY , respectively. Then, by Theorem 8.2, β̂X,ρ|∂PX is

ε-close to β̂Y,ρ|∂PY in the C0-metric and C1-close along the vertical edges. Let σX be a pleated

surface with crown-shaped boundary whose truncation approximates β̂X |PX , and let σY be the

pleated surfaced boundary with crown-shaped boundary whose truncation approximates β̂Y |PY ,

such that σX and σY share their boundary (in H3). In particular, the base hyperbolic surfaces for

σX and σY are diffeomorphic preserving markings and spikes.

Let νX and νY be the bending measured laminations for σX and σY , respectively; then νX and

νY contain only finitely many leaves whose connect ideal points.

In Thurston coordinates, the developing map and the pleated surface of a CP1-structure are

related by the nearest point projection to the supporting planes of the pleated surface ([KP94,

Bab20]). For small υ > 0, let FX , FY be the surfaces in H3 which are at distance υ from σX and

σY in the direction of the nearest point projections of PX and PY ([EM87, Chapter II.2] ).

Thus, if necessary, refining νX to νY to ideal triangulations of the hyperbolic surfaces appro-

priately, pick an (irreducible) sequence of flips wi which connects νX to νY . Clearly the sequence

wi corresponds to a sequence of triangulations.

Lemma 9.13. If a bounded subset K ⊂ χ is sufficiently large, for every ρ ∈ χ
X ∩ χY \ K and

all non-transversal branches PX and PY , there is a uniform upper bound on the length of the flip

sequence which depends only on X, Y ∈ T, or appropriate refinements into triangulations.

Proof. This follows from the length bound in Proposition 6.2. �

A triangulation in the sequence given by wi is realizable, if there is an equivariant pleated surface

homotopic to σX (and σY ) relative to the boundary such that the pleating locus agrees with the
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Figure 25. The gray solid lines are the pleating lamination interpolating the
pleated surfaces which differ by a flip.

triangulation. In general, a triangulation in the sequence is not realizable when the endpoints of

edges develop to the same point on CP1. However a generic perturbation makes the triangulation

realizable:

Lemma 9.14. For almost every perturbation of the holonomy of PX and holonomy equivariant

perturbation of the (ideal) vertices of σ̃X (and σ̃Y ) in CP1, all triangulations in the flip sequence

wi are realizable. Moreover, the set of realizable perturbations is connected.

Proof. If σX is an ideal polygon, the holonomy is trivial. Then, since there are only finitely many

vertices and CP1 has real dimension two, almost every perturbation is realizable.

If σX is not a polygon, an edge of a triangulation forms a loop if the endpoints are at the

same spike of τX . For each loop ` of τX , the condition that the holonomy of ` is the identity

is a complex codimension, at least, one in the character variety (and also in the representation

variety). Since the flip sequence is finite, for almost all perturbations of the holonomy, if an edge

of a triangulation in the sequence forms a loop, then its holonomy is non-trivial. Clearly, such a

perturbation is connected. Then, for every such perturbation of the holonomy, it is easy to see

that, for almost all equivariant perturbations of the ideal points, the triangulations in the sequence

are realizable. �

For every perturbation of the holonomy and the ideal vertices given by Lemma 9.14, the flip

sequence wi gives the sequence of pleated surfaces σX = σ1
w1−→ σ2

w2−→ . . .
wn−1−−−→ σn = σY in H3

connecting σY to σX , such that σi’s share their boundary geodesics and ideal vertices.

For each flip wi, the pairs of triangles of the adjacent pleated surfaces σi and σi+1 bound a

tetrahedron in H3. To be precise, if the four vertices are contained in a plane, the tetrahedron is

collapsed into a quadrangle, but it does not affect the following argument. The edges exchanged

by the flip correspond to the opposite edges of the tetrahedron. Then pick a geodesic segment

connecting those opposite edges. Then there is a path σt (i ≤ t ≤ i + 1) of pleated surfaces with

a single cone point of angle more than 2π such that

• σt connects σi to σi+1;

• the pleated surfaces σ share their quadrangular boundary, which corresponds to the ideal

quadrangle supporting the flip wi;

• by the homotopy, σt sweeps out the tetrahedron;

• the cone point on the geodesic segment (see Figure 25).
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σi

σi+1

Figure 26. The link of a vertex of the ideal rectangle —– the sum of the indicated
singed angles is zero.

In this manner, this sequence of pleated surfaces σi continuously extends to a homotopy of the

pleated surfaces with, at most, one singular point of cone angle greater than 2π. This interpolation

also connects a bending cocycle on σi to a bending cocycle on σi+1 continuous, although the induced

cocycle on σi+1 may correspond to a measured lamination only immersed on the surface, since the

edges of the triangulations transversally intersect. Thus, νX induces a sequence of the bending

(immersed) measured laminations νi of σi supported a union of the pleating loci of σ1, . . . , σi.

For each i, the difference νi+1 − νi of the transverse cocycles is supported on the geodesics

corresponding to the edges of the tetrahedron, so that, on the surface, the edges form an ideal

rectangle with both diagonals. Let µi be the difference cocycle νi+1 − νi. From each vertex of

the ideal rectangle, there are three leaves of νi+1 − νi starting, and the sum of their weights is

zero by Euclidean geometry (Figure 26). Note that PX can be identified with σX by collapsing

each horizontal edge of PX to a point. Hence, for every i, if α is a closed curve on PX or an

arc connecting vertical edges of PX , then µi(α) = 0. By regarding νj is a geodesic lamination on

σX , their union ∪ij=1νj is a graph on σX whose vertices are the transversal intersection points of

the triangulations. A small regular neighborhood N of ∪ij=1νj is decomposed into a small regular

neighborhood N0 of the vertices and a small regular neighborhood of the edges minus N0 in N \N0.

Since, after the Whitehead moves, the pleated surface σX is transformed into a pleated surface

σY . Thus νn − νY gives a Z-valued transversal cocycle.

By the construction of the regular homotopy, we have the following.

Proposition 9.15 (Train tracks for non-transversal branches). For every non-transversally com-

patible branches PX of TX,ρ and PY of TY,ρ, there is a Z-weighted immersed train-track graph

ΓPX representing the transversal cocycle supported on ∪ij=1νj. Moreover, the train-track cocycle is

independent of the choice of the flip sequence wi.

Proof. Given two flip sequences (wi), (w
′
j) connecting the triangulations of σX to σY , there are

connected by a sequence of sequences (vki ) of triangulations connecting σX to σY , such that (vki )

and (vk+1
i ) differ by either an involutivity, a commutativity or a pentagon relation ([Pen12, Chapter

5, Corollary 1.2]). Clearly, the difference by an involutivity and a commutativity do not affect the

resulting cocycle. Also by the pentagon relation, the pleated surface does not change including

the bending measure since each flip preserves the total bending along the vertices. Therefore (vki )

and (vk+1
i ) give the same train-track cocycle. �
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Therefore we obtain A → Z. By continuity and the connectedness in Lemma 9.14. we have

the following.

Corollary 9.16. [ΓP ] is independent on the choice of the perturbation in Lemma 9.14.

There are only finitely many combinatorial types of the train-tracks TX,ρ. We say that a branch

BX of TX,ρ and a branch B′X of TX,ρ′ are isotopic if they are diffeomorphic and isotopic on S. Then

there are only finitely many isotopy classes of branches of TX,ρ for all ρ ∈ χX \K. Let α be an arc

α on a branch BX , such that each endpoint of α is at either on a vertical edge or a vertex of TX,ρ.

Proposition 9.17. Let X, Y ∈ T. For every ε > 0, there a compact subset K in χ with the

following property: For every pair (BX , α) of an isotopy class of a branch BX and an arc α as

above, there is a constant kα > 0 such that, if BX is a (non-transversal) branch of TX,ρ for some

ρ ∈ χX ∩ χY \K, then, 2π[ΓPX ](α) is (1 + ε, kα)-quasi-isometric to
√

2(VX |PX − VY |PY )(α).

Proof. Since the length of the flip sequence is bounded from above, the difference between νX and

νn is uniformly bounded in the space of transverse cocycles on S. Then the assertion follows. �

9.4.5. Independency of the transverse cocycle. From the train-track decompositions TX,ρ and TY,ρ,
we have constructed a weighted train-track graph Γρ (Theorem 9.8 (1)). Next we show its cocycle

is independent on the train-track decompositions TX,ρ and TY,ρ ( Theorem 9.8(2)).

Recall that the train-track decompositions TX,ρ and TY,ρ are determined by

(1) the holonomy equivariant circle system c = {ch} indexed by horizontal edges h of T̃X,ρ

(given by Lemma 7.3),

(2) the realization WY of [VY,ρ]X,ρ on TX,ρ (Lemma 6.7), and

(3) the choice of vertical edges of TX,ρ (Theorem 8.6 (2)).

Proposition 9.18. The cocycle [Γρ] : C→ Z constructed above is independent of the construction

for TX,ρ and TY,ρ, i.e. (1), (2), (3).

Proof. (1) By Proposition 7.4, given two appropriate circle systems {ch} and {c′h}, there is an

equivariant isotopy of circles systems {ct,h} connecting {ch} to {c′h}. Then accordingly, we obtain

a continuous family of cocycles [Γt,ρ] : C → Z. As it takes discrete values, [Γt,ρ] must remain the

same.

By the different choices for (2) and (3), the Z-weights on Γ shift across bigon regions corre-

sponding vertical edges of TY,ρ by integer values. These weight shifts clearly preserve the cocycle

[Γρ] : C→ Z. �

9.4.6. Continuity of the transverse cocycle. Next we prove the continuity of [Γρ] in ρ claimed in

(3).

Definition 9.19 (Convergence and semi-convergence of train tracks). Suppose that Ci ∈ P con-

verges to C ∈ P. In addition, suppose, for each i, there are a train-track structure Ti of Ci and a

train-track structure T for C. Then,
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• Ti converges to T if

– for every branch P of T , there is a sequence of branches Pi of Ti converging to P, and

– for every sequence of branches Pi of Ti, up to a subsequence, converges to either a

branch of T or an edge of a branch of T .

• Ti semi-converges to T if there is a subdivision of T into another circular train-track struc-

ture T ′ so that Ti converges to T ′.

Lemma 9.20. Let ρi be a sequence in χ
X ∩ χY converging to ρ ∈ χ

X ∩ χY \ K, where K is a

sufficiently large compact (as in Theorem 8.6). Pick an equivariant circle system ci for TX,ρi by

Lemma 7.3 which converges to a circle system c for TX,ρ. Then, up to a subsequence,

• the circular train track TX,ρi of CX,ρi semi-converges to a circular train track TX,ρ of CX,ρ;

• the circular train track TY,ρi of CY,ρi semi-converges to a circular train track TY,ρ of CY,ρ;

• TX,ρ is semi-compatible with TY,ρ.

Proof. By Lemma 6.19, TX,ρi semi-converges to TX,ρ. Therefore TX,ρi converges to a subdivision

T′X,ρ of TX,ρ as i → ∞. Then, if TX,ρ 6= T′X,ρ, then TX,ρ is obtained from T′X,ρ by gluing non-

rectangular branches with rectangular branches of small width or replacing long rectangles into

spiral cylinders (as in §5.3 and §6.7).

Recall that7 the realization of [VY,ρi ]X,ρi in the train track TX,ρi is unique up to shifting across

vertical edges of non-rectangular branches (Proposition 6.12 (2)). Therefore, up to a subsequence,

the realization of [VY,ρi ]X,ρi on TX,ρi converges to a realization of [VY,ρ]X on T′X,ρ, Since T′X,ρ is a

subdivision of TX,ρ, the limit can be regarded as also a realization on TX,ρ. Since the realization

determines the train-track structure of EY,ρ, up to a subsequence, TY,ρi converges to a bounded

train-track T′Y,ρ. Then TY,ρ is transformed to T′Y,ρ by possibly sliding vertical edges and subdividing

spiral cylinders to wide rectangles. Moreover, by Theorem 8.2 (1), TY,ρ is (1 + ε, ε)-quasiisometric

to TY,ρ. Therefore, up to a subsequence, TY,ρi converges to a circular train-track structure T ′Y of

CY,ρ. If TY,ρ is different from T ′Y,ρ, then TY,ρ can be transformed to T ′Y,ρ by sliding vertical edges

and subdividing spiral cylinders into rectangles.

By Theorem 8.6, TX,ρi is additively 2π-close to TX,ρi in the Hausdorff metric of E1
X,ρ. Therefore,

up to a subsequence TX,ρi converges to a circular train track decomposition T ′X,ρ semi-diffeomorphic

to TY,ρ. Moreover TX,ρ can be transformed to T ′X,ρ possibly by subdividing and sliding by 2π or

4π.

We have already shown that TX,ρ is semi-diffeomorphic to TY,ρ (Theorem 8.6). 9.20

Finally we have the continuity (3).

Corollary 9.21. [Γρi ] : C→ Z converges to [Γρ] : C→ Z as i→∞.

Proof. Since TX,ρi semi-converges to TX,ρ, up to taking a subsequence, TX,i converges to a subdivi-

sion T ′X,ρ of TX,ρ. Accordingly, there is a subdivision T ′Y,ρ of TY,ρ , such that, to up a subsequence,

TY,i converges to T ′Y,ρ and that T ′X,ρ is semi-diffeomorphic to T ′Y,ρ.
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Let Γρi be the Z-weighted train-track given by TX,ρi and TY,ρi . Let Γ′ρ be the Z-weighted train

track given T ′X,ρ and T ′Y,ρ. Then, by the convergence of the train tracks, Γρi converges to Γ′ρ as

i → ∞. Since T ′X,ρ and T ′Y,ρ are obtained by sliding and subdividing TX,ρ and TY,ρ respectively,

thus Γ′ρ and Γρ yield the same cocycle C→ Z. �

9.5. Approximation of the grafting cocycle [Γρ] by vertical foliations. Suppose that X, Y

be distinct marked Riemann surfaces homeomorphic to S such that X and Y have the same

orientation. For a branch BX of TX,ρ, let A(BX) be the homotopy class of arcs α on RX such that

every endpoint of α is either on a vertical edge or a vertex of TX,ρ.

Theorem 9.22. Let c1, . . . , cn be essential closed curves on S. Then, for every ε > 0, there is a

bounded subset Kε of χX ∩χY such that, for every ρ ∈ χX ∩χY \K, the grafting cocycle [Γρ] times

2π is (1 + ε, q)-quasi-isometric to
√

2(VX,ρ − VY,ρ) along c1, . . . , cn. That is,

(2) (1− ε)2πΓρ(ci)− q <
√

2(VX,ρ(ci)− VY,ρ(ci)) < (1 + ε)2πΓρ(ci) + q

for all i = 1, 2, . . . , n.

Proof. Let H ∈ PML. Recall that E1
X,H is the flat surface conformal to X, such that the horizontal

foliation is H and AreaE1(X,H) = 1. Let TX,H be the bounded train-track structure of EX,H .

Then, every closed curve c can be isotoped to a closed curve c′ so that, for each branch of

B of TX,ρ, c
′|B is an arc connecting different vertices. Let c′1, . . . , c

′
m be the decomposition into

sub-arcs. By the finiteness of possible train-tracks, the number m of the subarcs is bounded

from above for all ρ. Then 2πΓρ|c′j is, if B is a transversal branch, (1 + ε, ε)-quasi-isometric to√
2(VX,ρ|B − VY,ρ|B)c′k by Proposition 9.12(4), Proposition 9.11, Proposition 9.10, and, if non-

transversal, (1 + ε, q)-quasi-isometric by Proposition 9.17. As the number of subarcs is bounded,

the assertion follows. �

10. The discreteness

10.1. The discreteness of the intersection of holonomy varieties.

Theorem 10.1. Suppose that X, Y are marked Riemann surface structures on S with the same

orientation. Then every (connected) component of χX ∩ χY is bounded.

Proof. Let K be a component of χX ∩ χY . Suppose, to the contrary, that V is unbounded in χ.

Then, there is a path ρt in χ
X ∩ χY which leaves every compact subset. Then, by Corollary 4.6,

by taking a diverging sequence t1 < t2 < . . . , there are ki, k
′
i ∈ R>0 such that ki

k′i
→ 1 as i → ∞

and

lim
i→∞

kiHX,ρti
= lim

i→∞
k′iHY,ρti

∈ ML.

By taking a subsequence, we may, in addition, assume that their vertical foliations [VX,ρti ] and

[VY,ρti ] converge in PML. Thus let [VX,∞] and [VY,∞] be their respective limits in PML. Since
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X 6= Y , VX,∞ and VY,∞ can not be asymptotically the same, in comparison to their horizontal

foliations. Then VX,ρti − VY,ρti “diverges to ∞”. That is, there is a closed curve α on S, such that

|VX,ρti (α)− VY,ρti (α)| → ∞

as i→∞.

Let [Γρt ] : C → Z be the function given by Theorem 9.8. As [Γρt ] is continuous (Theorem 9.8

(3)), [Γρt ] : C→ Z is a constant function (for t� 0). On the other hand, by Theorem 9.22, there

is q > 0 such that
√

2(VX,ρti − VY,ρti )(α) is (1 + εi, q)-quasi-isometrically close to 2π[Γρti ](α), and

εi → 0 as i→∞. We thus obtain a contradiction. 10.1

Since χX and χ
X are complex analytic, thus their intersection is also a complex analytic set

(Theorem 5.4 in [FG02]). Therefore, since every bounded connected analytic set is a singleton

(Proposition 2.7), Theorem 10.1 implies the following.

Corollary 10.2. χX ∩ χY is a discrete set.

We will, moreover, show that this intersection is non-empty in §12.

10.2. A weak simultaneous uniformization theorem. In this section, using Corollary 10.2,

we prove a weak version of a simultaneous uniformization theorem for general representations. Let

ρ : π1(S)→ PSL(2,C) be any non-elementary representation which lifts to SL(2,C). Let C,D be

CP1-structures on S+ with the holonomy ρ. Then, if a neighborhood Uρ of ρ in χ is sufficiently

small, then there are (unique) neighborhoods VC and WD of C and D in P, respectively, which are

biholomorphic to Uρ by Hol : P→ χ. Then, for every η ∈ Uρ, there are unique CP1-structures Cη
in VC and Dη in WD with holonomy η. Let Φρ,U = Φ: Uρ → T×T be the map which takes η ∈ Uρ
to the pair of the marked Riemann surface structures of Cη and Dη.

Theorem 10.3. Φρ,U is a finite-to-one open mapping.

Proof. By Corollary 10.2, the fiber of Φ is discrete. In addition, Φ is holomorphic and dimUρ =

2 dim T. Therefore, by Theorem 2.8, Φ is an open map. �

11. Opposite orientations

In this section, when the orientations of the Riemann surfaces are opposite, we show the

discreteness of χX∩χY analogous to Theorem 11.1 and the local uniformization theorem analogous

to Theorem 10.3.

Theorem 11.1. Fix X ∈ T and Y ∈ T∗ . Then, χX ∩ χY is a non-empty discrete set.

Since the proof is similar to the case when the orientations coincide, we simply outline the

proof, yet explain how some parts are modified. We leave the details to the reader.

Recall that we have constructed compatible train track decomposition regardless of the orienta-

tion of XY (§8.4, §8.5). In summary, we have the following (in the case of opposite orientataions):
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Proposition 11.2. Fix X ∈ T and Y ∈ T∗. For every ε > 0, there is a bounded subset Kε in
χ
X∩χY , such that, if ρ ∈ χX∩χY \Kε, then there are circular polygonal train-track decompositions

TX,ρ of CX,ρ and TY,ρ of CY,ρ, such that

• TX,ρ and TY,ρ are semi-diffeomorphic, and

• TX,ρ and TY,ρ are (1+ ε, ε)-quasi-isometric to the train track decompositions TX,ρ of the flat

surface E1
X,ρ and TY,ρ of the flat surface E1

Y,ρ, respectively, with respect to the normalized

metrics.

In the case when the orientation of X and Y are the same, in Theorem 9.8, we constructed

a Z-weighted train-track graph representing the “difference” of projective structures on X and

Y with the same holonomy. As the orientations of X and Y are different, we shall construct a

Z-weighted train track graph representing, in this case, the “sum” of the CP1-structures on X and

Y with the same holonomy.

Let TX,ρ and TY,ρ be circular train track decompositions of CX,ρ and CY,ρ given by Proposition.

11.2 Let {hX,1, hX2 , . . . , hXn} be the horizontal edges of TX,ρ. Similarly to §9.4, we first define the

Z-valued function on the set of horizontal edges. For each i = 1, . . . , n, let ci be the round circle

on CP1 supporting the development of hX,i. First, suppose that hX,i corresponds to an edge hY,i
of TY,ρ by the collapsing map TX,ρ → TY,ρ. Since TX,ρ and TY,ρ are compatible, the corresponding

endpoints of hX,i and hY,i map to the same point on ci by their developing maps. Thus, by

identifying the endpoints, we obtain a covering map from a circle hX,i ∪ hY,i onto ci. Then, define

γX,i(hX,i) ∈ Z>0 to be the covering degree.

Next, suppose that hX,i corresponds to a vertex of TY,i. Then the endpoints of hX,i develop

to the same point on ci. The circle obtained by identifying endpoints of hX,i covers ci. Thus, let

γX,i(hX,i) ∈ Z>0 be the covering degree.

Similarly to §9.4, we shall construct a Z-weighted train-track graph Γρ immersed in TX,ρ. On

each branch PX of TX,ρ, we construct a Z-weighted train-track graph ΓPX on PX such that, for

every ε > 0, there is a compact subset K of χ satisfying the following:

• The endpoints of ΓPX are on horizontal edges of PX .

• They agree with γX,ρ along the horizontal edges.

• If PX is a transversal branch, then, for ρ ∈ χX ∩χY \K, then 2πΓPX (α) is (1 + ε, ε)-quasi-

isometric to
√

2(VX,ρ|PX)(α) +
√

2(VY,ρ|PY )(α) for all α ∈ A(PX).

• For every smooth isotopy class of a staircase surface B on a flat surface homeomorphic

to S and every arc α on B connecting points on horizontal edges or vertices, there is a

positive constant q(B,α) such that, if TX,ρ contains a non-transversal branch BX smoothly

isotopic to B on S, then 2πΓBX (α) is (1 + ε, q(B,α))-quasi-isometric to
√

2VX,ρ|BX(α) +√
2VY,ρ|BY (α).

Theorem 11.3. Let X ∈ T and Y ∈ T∗. For every ε > 0, there is a bounded subset Kε ⊂ χ
X ∩χY

such that, for every ρ ∈ χX ∩ χY \Kε, there is a Z-weighted graph Γρ carried in TX,ρ such that

(1) the induced cocycle [Γρ] : C→ Z changes continuously in ρ ∈ χX ∩ χY \K,
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(2) for every loop α on S, there is qα > 0, such that 2πΓρ(α) is (1 + ε, qα)-quasi-isometric to√
2(VX,ρ(α) + VY,ρ(α)) for all ρ ∈ χX ∩ χY \K.

Proof. The proof is similar to Theorem 9.8 (3) and Theorem 9.22. �

Then, Theorem 11.3 implies, similarly to Theorem 10.1, the following:

Theorem 11.4. Each connected component of χX ∩ χY is bounded.

12. The completeness

In this section, we prove the completeness in Theorem A. Let Q be a connected component of

the Bers’ space B; then Q is a complex submanifold of (P t P∗)× (P t P∗), and dimCQ = 6g − 6.

We call that ψ : P t P∗ → T t T∗ is the uniformization map and Ψ: Q → (T t T∗)2 is defined by

Ψ(C,D) = (ψ(C), ψ(D)). Then, by Theorem 10.3, Ψ is an open holomorphic map. In this section,

we prove the completeness of Ψ.

Lemma 12.1. The open map Ψ: Q→ (TtT∗)2 has a local path lifting property. That is, for every

z ∈ Q, there is a neighborhood W of Ψ(z) such that if path αt, 0 ≤ t ≤ 1 in W satisfies ζ(z) = α0,

then there is a lift α̃t of αt to Q with α̃0 = z.

Proof. Since Ψ is an open map and dimQ = dim(T t T∗)2, Ψ is a locally branched covering

map. Then, for every z ∈ Q, there is an open neighborhood V of z in Q and a finite group Gz

biholomorphically acting V , such that Ψ is Gz-invariant, and Ψ induces the biholomorphic map

V/Gz → Ψ(V ).

For g ∈ Gz \ {id}, let Fg ⊂ W be the (pointwise) fixed point set of g. Clearly Fg is a proper

analytic subset, and thus F := ∪g∈Gz\{id}Fg is an analytic subset strictly contained in W .

For every path α : [0, 1] → V with α(0) = Ψ(z), we can take a one-parameter family of paths

αt (t ∈ [0, 1]) in W with αt(0) = Ψ(z) such that α1 = α and, for t < 1, αt is disjoint from Ψ(F )

(since Ψ(F ) has complex codimension, at least, one.)

Then, for t < 1, αt continuously lifts a path α̃t : [0, 1] → Q, and αt converges to a desired lift

of α1 as t→ 1. �

Now we are ready to prove the completeness.

Theorem 12.2. Ψ: Q→ (T t T∗)2 \∆ is a complete map, where ∆ is the diagonal set.

The completeness of Theorem 12.2 immediately implies the following:

Corollary 12.3. Ψ: Q→ (TtT∗)2 \∆ is surjective onto a connected component of (TtT∗)2 \∆.

Proof of Theorem 12.2. By Lemma 12.1, Ψ has a local path lifting property. Thus, suppose that

(Xt, Yt) : [0, 1]→ (TtT∗)2\∆ (0 ≤ t ≤ 1) be a path and there is a (partial) lift (Ct, Dt) : [0, 1)→ Q

of the path (Xt, Yt). For each t ∈ [0, 1], let ρt ∈ χ denote the common holonomy of Ct and Dt. By
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the continuity, the orientations of Riemann surfaces in the pairs obviously remain the same along

ρt for all t > 0.

First we, in addition, suppose that there is an increasing sequence 0 ≤ t1 < t2 < . . . converging

to 1, such that ρti converges to a representation in χ. By Corollary 10.2 or, in the case of opposite

orientations, Theorem 11.1, χX1 ∩ χY1 is a discrete subset of χ. Then, since (Xt, Yt) converges to

a point (X1, Y1) in T × T, and χ
Xt and χ

Yt change continuously in t ∈ [0, 1], every neighborhood
χ
X1 ∩ χY1 contains ρti for all sufficiently large i. Thus the sequence ρti converges to a point in
χ
X1 ∩χY1 . Since χXt ∩χYt is a discrete set in χ which continuously changes in t ∈ [0, 1], we indeed

have a genuine convergence.

Lemma 12.4. ρt converges to ρ1 as t→ 1.

By this lemma, (Ct, Dt) converges in (PtP∗)×(PtP∗) as t→ 1, so that the partial lift (Ct, Dt)

extends to t = 1.

Thus it is suffices to show the addition assumption always holds:

Proposition 12.5. There is a compact subset K in χ, such that, for every t > 0, there is t′ > 0

such that ρt′ ∈ K.

Proof. The proof is essentially the same as the proof of Theorem 10.1 or Theorem 11.1, which

states that each component of χX ∩ χY is a bounded subset of χ.

For 0 ≤ t < 1, let VCt and VDt be the vertical measured foliations of Ct and Dt, respectively.

Suppose, to the contrary, that ρt leaves every compact subset of χ. As (Xt, Yt) converges to

(X, Y ) ∈ (T t T∗)2 \ ∆ and Hol(Ct) = Hol(Dt), similarly to Theorem 9.8 or Theorem 11.3, for t

close to 1, we can construct a Z-weighed train track Γt on S, such that

• the intersection function [Γt] : C→ Z is continuous in t, and

• for every closed curve α on S, there is a constant qα > 0 and a function εt > 0 converging

to 0, such that, for all sufficiently large t > 0, [Γt](α) is (1 + εt, qα)-quasi-isometric to

VCt(α)− VDt(α) if the orientation of X and Y are the same and to VCt(α) + VDt(α) if the

orientation of X and Y are different.

The first condition implies that the intersection number is constant in t, whereas the second

condition implies that the intersection number with some closed curve α diverges to infinity as

t→ 1. This is a contradiction. �

12.2

Last we remark the behavior of Hol near the diagonal ∆.

Proposition 12.6. Let (Ct, Dt), 0 ≤ t < 1 be a path in B, such that Ψ(Ct, Dt) converges to a

diagonal point (X,X) of (TtT∗)2. Then HolCt = HolDt leaves every compact set in χ as t→ 1.
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Proof. Fix arbitrary X ∈ TtT∗ and a bounded open subset U in χ. Recall that Hol : Pt P∗ → χ

is a locally biholomorphic map, and that, for all Y ∈ TtT∗, the set PY of CP1-structures on Y is

properly embedded in χ by Hol. Therefore, if an open neighborhood V of X in TtT∗ is sufficiently

small, then, letting PV denotes all CP1-structure on Riemann surfaces in V , PV ∩Hol−1(U) embeds

into U by the holonomy map Hol. In particular, for every Y, Z ∈ V , χY ∩ χZ is disjoint from U .

Then the assertion is immediate. �

12.1. Cardinalities of the intersections. By the surjectivity of Corollary 12.3 and the existence

of non-quasi-Fuchsian components of B in PtP∗ in Lemma 2.6, we immediately have the following:

Corollary 12.7. Let X, Y be distinct marked Riemann surface structures on S with any orienta-

tions. If the orientations of X and Y are opposite, the intersection χ
X ∩χY contains, at least, two

points, if the orientations of X and Y are the same, χX ∩ χY contains, at least, one point.

13. A proof of the simultaneous uniformization theorem

In this section, using Theorem A, we give a new proof of the simultaneous uniformization

theorem without using the measurable Riemann mapping theorem. Recall QF is the quasi-Fuchsian

space, and it is embedded in B/Z2.

Given (C,D) in QF, the universal covers C̃, D̃ are the connected components of CP1 minus its

equivariant Jordan curve equivariant via HolC = HolD.

Lemma 13.1. QF is a union of connected components of B/Z2.

Proof. As being a quasi-isometric embedding is an open condition, QF is an open subset of B.

Thus, it suffices to show that QF is closed.

Let (Ci, Di) ∈ P × P∗ be a sequence in QF which converges to (C,D) ∈ P × P∗. Let

ρi : π1(S) → PSL(2,C) be the quasi-Fuchsian representation of Ci and Di. We show that the

holonomy ρ : π1(S) → PSL(2,C) of the limits C and D is also quasi-Fuchsian. Let C̃i and D̃i

be the universal covers of Ci and Di, respectively. Then C̃i and D̃i are the components of CP1

minus the ρi-equivariant Jordan curve. Let fi : C̃i ∪ S1 → CP1 and gi : D̃i ∪ S1 → CP1 be the

extensions of the embeddings to their boundary circles by a theorem of Carathéodory. Let hi be

the homeomorphism C̃i ∪ S1 ∪ D̃i → CP1.

Since embeddings devCi converge to devC uniformly on compact as i → ∞, the limit devC

is also an embedding. (Suppose, to the contrary, that devC : C̃ → CP1 is not embedding. Then

there are distinct open subsets in C̃ which homeomorphically map onto the same open subset

in CP1. Then devCi is also not embedding for all sufficiently large i against the assumption.)

Thus, by the convergence of corresponding convex pleated surfaces in H3, the equivariant property

implies that devC extends to the boundary circle continuously and equivariantly. Similarly, since

the embedding devDi converges to devD, then devD is also an embedding, and devD extends to

the boundary circle continuously and equivariantly. Therefore hi converges to a continuous map

h : S2 ∼= C̃ ∪ S1 ∪ D̃ → CP1
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such that the restriction of h to C̃ t D̃ is an embedding.

The domain and the target of h are both homeomorphic to S2. Therefore, if h|S1 is not a

Jordan curve on CP1, then there is a point z ∈ CP1, such that h−1(z) is a single segment of S1.

By the equivariant property, h−1(z) = S1, and Imh is a wedge of two copies of S2, which is a

contradiction. �

The following asserts that the diagonal of T×T∗ corresponds to the Fuchsian representations.

Lemma 13.2. Let X ∈ T. Let η : π1(S)→ PSL(2,C) be a quasi-Fuchsian representation, such that

the ideal boundary of H3/Imρ realizes the marked Riemann surface X and its complex conjugate

X∗ ∈ T∗. Then η is the Fuchsian representation π1(S)→ PSL(2,R) such that X = H2/Imη.

Proof. By the Riemann uniformization theorem, the universal covers X̃ and X̃∗ are the upper and

the lower half planes. Then, by identifying their ideal boundaries equivariantly, we obtain CP1

so that the universal covers X̃ and X̃∗ are round open disks. Let (C,D) ∈ P × P∗ be the pair

corresponding to η, such that the complex structure of C is X and the complex structure of D is

on X∗.

On the other hand, the universal covers C̃ and D̃ are connected components of CP1\Λ(η), where

Λ(η) is the η-equivariant Jordan curve in CP1. Thus, there is a η-equivariant homeomorphism

φ : CP1 → CP1, such that φ restricts to a biholomorphism from CP1 \ R ∪ {∞} → CP1 \ Λ(η).

Then, by Morera’s theorem for the line integral along triangles (see [SS03] for example), φ is a

genuine biholomorphic map CP1 → CP1. Therefore φ is a Möbius transformation, and therefore

η is conformally conjugate to the Fuchsian representation uniformizing X. �

Proposition 13.3. QF is a single connected component of B/Z2.

Proof. By Lemma 13.1, QF is the union of some connected components of B. By Theorem A, for

every component Q of QF, the image Ψ(Q) contains the diagonal {(X,X∗)} of T× T∗. Then, by

Lemma 13.2, every diagonal pair (X,X∗) ∈ T×T∗ corresponds to a unique point in QF. Therefore

QF is connected. �

Last we reprove the simultaneous uniformization theorem.

Theorem 13.4. QF is biholomorphic to T× T∗ by Ψ.

Proof. By Theorem A, Ψ is a complete local branched covering map. Since Ψ is surjective, by

Lemma 13.2, Ψ is a degree-one over the diagonal {(X,X) | X ∈ T}, and the diagonal corresponds

to the Fuchsian space.

The set of ramification points of Ψ is an analytic set. The Fuchsian space is a totally real

subspace of dimension 6g − 6. Therefore, if the ramification locus contains the Fuchsian space,

then the locus must have the complex dimension 6g−6, the full dimension. This is a contradiction

as Ψ is a locally branched covering map. Therefore, QF → T × T∗ has degree one, and thus it is

biholomorphic. �



S.Baba Bers’ simultaneous uniformization and Poincaré holonomy varieties 69
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