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Abstract. Let S be a closed orientable surface of genus at least
two, and letX,Y be distinct marked Riemann surface structures on
S. In this paper, we construct infinite pairs of a CP1-structure on
X and a CP1-structure Y which share holonomy π1(S)→ PSL2C.
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1. Introduction

Let Σ be a closed orientable surface of genus g at least two. A quasi-
Fuchsian representation ρ : π1(Σ) → PSL2C is a typical discrete and
faithful representation, such that the limit set is a Jordan curve Λ on
CP1.

Let S be the surface Σ with a fixed orientation, and S∗ be Σ with
the opposite orientation. Let T be a Teichmüller space of S, and let
T∗ be the Teichmüller space of S∗, S with the opposite orientation.
Given a quasi-Fucsian representation ρ : π1(S)→ PSL2C, let Λ be the
limit set of Imρ. Then CP1 \ Λ is a union of disjoint topological open
disks Ω+ and Ω−. The Bers’ simultaneous uniformization theorem
([Ber60]) asserts that, for every pair of Riemann surface structures
X on S and Y on S∗, there is unique quasi-Fuchsian representation
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ρ : π1(S) → PSL2C such that X and Y are realized by Ω+/Imρ on S
and Ω−/Imρ on S∗.

We note that the quotient surfaces Ω+/Imρ and Ω−/Imρ have not
only Riemann surface structures but also have CP1-structures (or com-
plex projective structures) on S and S∗, which corresponds to holomor-
phic quadratic differentials on Riemann surfaces.

From a viewpoint of CP1-structures, the simultaneous uniformization
theorem can equivalently be stated as follows, without the notion of
quasi-Fuchsian representations: Given a pair of Riemann surface struc-
tures X on S and Y in S∗, there is a unique pairs of CP1-structure CX
on X and a CP1-structure CY on Y such that

• the holonomy representation π1(Σ) → PSL2C of CX coincides
with the holonomy representation π1(Σ)→ PSL2C of CY , and
• the developing maps S̃ → CP1 of CX and S̃∗ → CP1 CY are

injective, where S̃ and S̃∗ are the universal covers of S and S∗,
respectively.

In this paper, we consider a more general realization problem of a
pair of Riemann surface structures X and Y on either S or S∗ by a pair
of CP1-structures CX and CY sharing holonomy. In this more general
setting without the restriction of the injectivity and the orientation, we
show that there are infinitely many realizing pairs:

Theorem A. Let X, Y ∈ T∪T∗ with X 6= Y . Then, there exist exactly
countablly many distinct pairs (CX

i , C
Y
i )∞i=1 of CP1-structures CX

i on
X and CY

i and Y , such that the holonomy π1(S) → PSL2C of CX
i

coincides with the holonomy of CY
i for each i = 1, 2, . . . .

Note that the orientations of X and Y can be either the same or the
opposite, in contrast to Bers’ theorem.

Next we interpret Theorem A in the PSL2C-character variety of Σ, a
space of representations of

χ := {π1(S)→ PSL2C} � PSL2C.
There are various half-dimensional (real and complex) subvarieties of χ

with geometric significance. It has been important to understand the
intersection of such half-dimensional (real and complex) subvarieties in
the PSL2C-character variety (Faltins [Fal83, Theorem 12], Dumas-Wolf
[DW08]).

Here we shall consider the intersection of holonomy varieties. For a
Riemann surface structure X on Σ. The set PX of CP1-structures on
X is identified with the affine space QD(X) ∼= C3g−3 of holomoprhic
quadratic differentials on X. Then, the deformation space PX properly
embeds into the PSL2C-character variety of Σ by the holonomy map.
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Its image is a smooth complex analytic subvariety of χ— it is called
the holonomy variety of X, and we denote it by χX .

Theorem B. For all distinct X, Y ∈ T ∪ T∗, the intersection

χ
X ∩ χY

is an infinite discrete closed subset of χ.

The infinite points of the intersection χX ∩χY bijectively correspond
to the infinite points of the sequence (CX

i , C
Y
i )∞i=1 in Theorem A.

Last we relate our main theorem to the deformation space of isomon-
odromic pairs of CP1-structures. Namely, consider the space B of (or-
dered) pairs of distinct CP1-structures on Σ sharing holonomy. Then
the quasi-Fuchsian space is identified with a connected component of
B unique up to switching the ordering of paired CP1-structures.

Let
Ψ: B→ (T t T∗)2 \∆

be the uniformization map taking a pair (C,D) in B to the pair of the
underlying Rieman surface structures of C and D. Then the author
previously proved that the analytic mapping Ψ is a complete local
branched covering map ([Bab23, Theorem A]).

Theorem C. Each fiber of Ψ is an infinite discrete set.

The Ψ-fiber over (X, Y ) is exactly the infinite sequence (CX
i , C

Y
i )∞i=1

in Theorem A. The space B is quite mysterious. Theorem C suggests
a possibily of B having infinitly many connected components.

Theorem A, Theorem B, and Theorem C are all equivalent, and
the “infinite” property is the new discovery. The discreteness in those
theorems was proven by the author ([Bab23, Theorem C]), and thus
the cardinality has been known to be, at most, a countable set. In
this paper, we show that this upper bound is sharp by constructing
infinitely many pairs. As for the lower bound, it has only been known
that the cardinality of χX ∩ χY is at least two if the orientations of X
and Y are opposite and the cardinality of χX ∩χY is at least one if the
orientations of X and Y are the same ([Bab23, Corollary 12.7]).

In a large portion of this paper, we investigate the strong asymptotic
property of Teichmüller (geodesic) rays and grafting rays, initiated by
Gupta in his thesis ([Gup14, Gup15]). He namely showed that, given
every conformal grafting ray in the Teichmüller space, there is a Te-
ichmüller ray asymptotic to it, as unparametrized rays (see Definition
). In his construction, typically those rays have different base points.

On the other hand, In order to prove our main theorem, we need
to have such an asymptotic property for a certain family of pairs of a
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Teichüller ray and a corresponding grafting ray sharing a base point, in
contract, as parametrized rays. As a consequence, we have a uniform
asymptotic rate for this family (Theorem 4.1), and use it for the proof
of our main theorem.

1.1. Ideal of the proof. We outline the proof of Theorem A in the
case that X, Y are Rieman surface structures on S— if the orienta-
tions of X and Y are opposite, the proof is reduced to this case.
Supposing that there are already finitely many isomonodromic pairs
(CX

1 , C
Y
1 ), . . . , (CX

n , C
Y
n ) of CP1-structures on X and Y , we construct

a new isomonodromic pair as follows.
We take a “generic” Teichmüller geodesic Xt in T which passes very

close to X and Y . Let ρt : π1(S) → PSL2C be the representation
uniformizing Xt, so that the marked hyperbolic surface H2/Imρt is
conformally identified with the marked Riemann surface Xt.

Take sufficiently small t < 0 so that ρt is sufficiently far from the
n holonomy representations of (CX

1 , C
Y
1 ), . . . , (CX

n , C
Y
n ). In addition,

using 2π-grafting, we can construct CP1-structures CX′ , CY ′ with ho-
lonomy ρt whose underlying Riemann surface structure X ′ and Y ′ are
very close to X and Y . To have this closeness, we utilize the uni-
form asymptotic properties of certain pairs of a Teichmüller ray and a
corresponding grafting ray, related to the generic Teichmüller geodesic
Xt (Theorem 4.1). By the compleness of Ψ, we can deform this pair
(CX′ , CY ′) to CX , CY in B so that their underlying Riemann surface
structures are exactly X and Y . As ρt is sufficiently far from the holo-
nomy representations of the already given pairs, we can conclude that
the deformed new pair (CX , CY ) realizing (X, Y ) is different from the
n pairs (CX

1 , C
Y
1 ), . . . , (CX

n , C
Y
n ) we already have.
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3. Preliminaries

3.1. Teichmüller rays. (See [FM12] for instance.) The Teichmüller
space T of S is the space of Riemann surface structures on S up to
isotopy. Given two marked Riemann surfaces X, Y ∈ T, let K =
K(X, Y ) denote the infinium of the quasi-conformal dilatations Kf

among all quasi-conformal mappings X → Y preserving the marking
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of the surface. The Teichmüller distance between X and Y on T is given
by

d(X, Y ) =
1

2
logK,

which gives a Finsler metric on T, call the Teichmüller metric.
A geodesic in T in the Teichmüler metric is callled a Teichmüller

geodesic. Then, givenX ∈ T and a measured foliation V on S, there is a
Teichmüller geodesic Xt with X0 = X along which V shrinks. Namely,
by Hubbard and Masur [HM79], there is a flat surface E = E(X, V )
conformal to X such that V is the vertical measured foliation. Then,
we can obtain a ray of flat surfaces Et obtained by stretching in the
horizontal direction by et/2 and shrinking in the horizontal direction by
e−t/2. The conformal structure of Et gives the Teichmüller geodesic at
unit speed.

3.2. CP-structures. (General references are [Dum09], [Kap01, Chap-
ter 7], [Gol22, Chapter 14].) Recall that PSL2C is the automorphism
group of CP1. Then, a CP1-structure on a surface is a (CP1,PSL2C)-
structure. Namely, an atlas of embedding open subsets covering S into
CP1 such that transition maps are given by elements in PSL2C. Clearly,
each CP1-structure has a Riemann surface structure since transition
maps preserve the complex structure.

A CP1-structure has various perspectives including the following.

3.2.1. Developing pairs. A CP1-structure can also be defined using a
“global coordinate” on the universal cover S̃ of S. Namely, a CP1-
structure on X is a pair (f, ρ) of

• a local diffeomorphism f : S̃ → CP1 (developing map) and
• a homomorphism ρ : π1(S)→ PSL2C (holonomy representation),

such that f is ρ-equivariant.

3.2.2. Schwarzian parametrization. Next we explain an analytic view-
point of a CP1-structure. A CP1-structure C = (f, ρ) on S corresponds
to a holomorphic quadratic differential q = φ dz2 on a Riemann sur-
face. The developing map f gives a Riemann surface structure, and the
Schwarzian derivative of f gives a holomorphic quadratic differential
on X. Thus a space of CP1-structures on a Riemann surface X is an
affine vector space of holomorphic quadratic differentials on X.

There is a unique marked hyperbolic structure σ uniformizing X,
and a hyperbolic structure is, in particular, a CP1-structure. In this
paper, we pick this hyperbolic structure to be the zero of this vector
space— in other words, when we take the Schwarzian derivative of
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f , the domain X̃ is identified with the upper half plane of C by the
uniformization.

Let P be the space of all marked CP1-structures on S. Let ψ : P→ T

be the projection map which takes each CP1-structure to its complex
structure.

3.2.3. Thurston’s parametriztion. (See [KT92, KP94], also [Bab20].)
The Riemann sphere CP1 is the ideal boundary of the hyperbolic three-
space, and PSL2C is also the orientation-preserving isometry group of
H3.

Utilzing such relations, a CP1-structure C = (f, ρ) corresponds to a
pair (σ, L) of a hyperbolic structure σ on S and a measured lamiantnion
L on S. This pair is called Thurston’s parameters of C.

Let L̃ be the π1(S)-invariant measured lalmination on the universal
cover H2 of σ. Then, this pair (σ, L) give an ρ-equivariant “locally
convex” suface β : H2 → H3, called a bending map, obtained by bending
H2 along L by the angle given by the transversal measure of L̃. A bent
surface is a particular type of pleated surface. The developing map
f : S̃ → CP1 corresponds to β in a ρ-equivariant manner by certain
“locally” well-defined nearest point projections.

Let ML denote the space of all measured laminations on S. Then
we have Thurston’s parametriztion of the deformation space

P ∼= T ×ML,(1)

by a canonical tangential homeomorphism.
For each periodic leaf ` of L, there is a round cylinder A` in the

grafted surface GrLτ foliated by circular close curves and its height
is the weight of `. If there are more than one periodic leaves, then
their correspoding round cylinders are disjoint. The collapsing map
κ : GrLτ → τ collapses each cylinder A` to the closed geodesic ` on τ
and the restriction of κ to the complement of the cylinders is a C1-
diffeomorphism onto the complement of closed leaves Therefore, there
is a measured lamination L on the grafted surface GrLτ , such that

• the leaves of L are circular, and
• κ takes L to L on σ.

This lamination L is called Thurston’s lamination.
The bending deformation of a hyperbolic surface in the three-space

corresponds to a grafting deformation of a CP1-structure. Given a pair
(σ, L) ∈ T×ML, the corresonding CP1-structure is obtained by grafring
σ along a measured lamination L. We denote this CP1-structure by
GrLσ.
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3.2.4. Epstin surfaces. ([Eps], see also [And98].) Let (f, ρ) be a devel-
oping pair of a projective structure C on S, where f : S̃ → CP1 is a
fixed developing map.

Each point x ∈ H3 determines a unique spherical metric sx on CP1

by normalizing the Poincaé disk model of H3 so that x is at the center of
the disk. Given a conformal metric µ on C, there is a unique mapping
Ep: S̃ → H3 such that, the spherical matric sEp(x) of CP1 centered at
Ep(x) coincides with the push-forward matric of µ at the tangent space
Tf(x)CP1. This surface is the envelope of the horospheres centered at

the points f(x) for x ∈ S̃, and Ep is also ρ-equivariant.
Let C ∼= (X, q) be the Scharzian parametrization of C. Then the

quadratic differential q gives a singular Euclidean metric on C, where
the singular points are the zeros of the differential. In this paper, we
use the Epstein surface given by this singular Euclidean metric.

3.3. Grafting rays. Let σ be a hyperbolic structure on S. Let L be
a measured geodesic lamination on σ.

Then, by Thurson’s parametrization, we obtain a ray of CP1-structures
GrtLσ corresponding to (σ, tL), t ≥ 0. This ray in P is called a (projec-
tive) grafting ray.

Let grLσ ∈ T denote ψ(GrLσ), the complex structure of GrLσ. Then,
grtLsigma, t ≥ 0 is called the sf conformal grafting ray from σ in the
direction of L.

3.4. Traintracks. ([PH92]) A traintarck graph on a surface is a (localy
finite) C1-smooth graph G such that, for each vertex p of G, the edges
of G with its endpoint at p are divides into two groups e1, . . . , em and
f1, . . . , fn such that

• the vectors v tangent to the deges e1, . . . , em at p coincide
• the vectores u tangent to the edges f1, . . . , fm at p coincide
• v = −u in the tangent space at p.

A marked rectangle is a rectangle such that a pair of opposite edges
is marked as vertical edges and the other pair is marked as horizontal
edges. A fat traintrack T is an orientable surface with boundary with
singular points which is obtained by takings a union of marked rec
tangles {Ri} along horizontal edges as follows: Divide some horizontal
edges into finitely many segments, pair up all horizontal edgesmens, and
glue each paired horizontal edge by a diffeomorphism. Each rectangle
Ri of T is called a branch.

More generally, a marked polygon is a polygon with even number 2n
of edges, such that a set of alternating n edges are marked as verti-
cal edges and the set of the other alternating n edges are marked as
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horizontal edges. A polygonal traintrack is an orientable surface with
boundary with singular points obtained by gluing some marked poly-
gons as follows: Divide each horizontal edge into finitely many segments
(if necessary), pair up all horizontal segments, and glue each pair of
horizontal segments by a diffeomorphism. Each polygon of the polyg-
onal traiontrack is also called a branch

Given a lamination λ on a hyperbolic surface σ, a traintrack neigh-
borhood τ of λ is a fat traintrack containing λ in its interior, such that,
for each branch R of τ , each component of λ ∩ R is an arc connecting
opposite horizontal edges of R.

Definition 3.1 (cf. [Min92]). A traintrack neighborhood σ on a hy-
perbolic surface σ is ε-nearly straight, if all boundary geodesics have
curvature less than ε at non-singular points and all horocyclic horizon-
tal edges of rectangular branches have curvature less than ε.

4. Grafting rays and Teichmüller rays

Recall that the Teichmüler geodesic flow is ergodic in the moduli
space M of Riemann surfaces structures on S ([Mas82, Vee82]). Let
PML denote the space of projective measured laminations on S. Let
X(t) be a generic Teichmüller geodesic parametrized by t ∈ R, such
that

• the projective vertical foliation [V ] ∈ PML and the projective
horizontal foliation [H] ∈ PML are both uniquely ergodic, and
they have no saddle connections;
• its corresponding quadratic differential has only simple zeros;
• there are no vertical saddle connections;
• the projection [X(t)] is dence in the unite-tangent space of the

moduli space M.

For each t ∈ R, (X(t), [V ]) conformally equvalent to a unique marked
flat surface Et of unite area with the vertical foliation [V ]. Let Vt be the
representative of [V ] such that Vt has length one on Et. By the density
assumption, let 0 > t1 > t2 > . . . be the degreasing sequence diverging
to −∞ such that the unmarked tangent vector [X ′(ti)] converges to
[X ′∞(0)] ∈ T 1M as i→∞, where X∞(t) ∈ T is an appropriate marked
Teichmüller geodesic ray prametrized by t ∈ R. Then, for each i,
there is a mapping class νi : S → S such that νiX(ti) converges to
X∞(0) =: X∞ as i→∞.

Then νiE(ti) conreges to a flact surface E∞ with unite area, and
νiVti converges to a vertical meausured foliation V∞ on E∞. Then V∞
has lengths one on the flat surface E∞, and it is the vertical foliation
of the Teichmüller geodesic X∞(t).
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By the density assumption, we can without loss of generality, we can
in addition assume

• the vertical V∞ is uniquely ergodic and has no saddle connec-
tions;
• every singular point is three-pronged.

For each i = 1, 2, . . . , let σi be the hyperbolic structure on S uni-
formizing X(ti). Let Li be the measured geodesic lamination on σi
representing the vertical measured foliation Vti . Let gruLi(σi), u ≥ 0
denote the conformal grafting ray starting from σi along the vertical
foliation Li.

In this section, we prove the following uniform asymptotic property
of grafting rays and Teichmüller rays from X(ti) =: Xi as parametrized
rays.

Theorem 4.1. For every ε > 0, there are constant Iε > 0, d > 0 and
sε > 0 such that, if i > Iε, then

dT(X(ti + s), gr
exp(s)
Li/d

(σi)) < ε

for all s > sε, where dT denotes the Teichmüller distance.

The constant d will be explicitly given in §4.1. It is already known

that, for each i, the grafting ray gr
exp(s)
kLi

(X(ti)) is asymptotic to the
Teichmüller ray X(ti + s) as unparametrized rays: Indeed, Gupta
[Gup14, Gup15] proved that, for every grafting ray along a geodesic
lamination L, there is a Teichmüller ray typically from a different base-
point which is asymptotic to it up to reparametrization.

In the case that L is maximal, the vertical foliation of the Teichmüller
ray is L. Masur proved that, for an arbitrarily fixed recurrent uniquely
ergodic vertical measured foliation, all Teichmüller rays with a fixed
are all asymptotic [Mas80, Theorem 2]. Thus, the main contribution
of Theorem 4.1 is the asymptotic property as parametrized rays and
the uniformness of the asymptotic property.

Overall the strategy is Theorem 4.1 is similar to the proof of Gupta.
However, as we compare the grafting ray with a Teichmüller ray from
the same base point, our techniques are sometimes different and seem-
ingly more geometric, in particular, §4.4. In particular, we do not use
any Grötzsch type argument, whereas Lemma 4.24 in Gupta’s paper is
crucial in his paper.

4.1. Fat traintrack structures and nearly striaght traintracks
in the limit. We first show the asymptotic property of the single
Teichmüller ray X∞(t) in the limit and its corresponding grafting ray—
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the uniform asymptotic property in Theorem 4.1 is morally modeled
on this asymptotic property in the limit.

Recall that V∞ is the vertical measured foliation of the limit flat
surface E∞ of unit length. Let H∞ be the horizontal measured foliation
of E∞ orthogonal to V∞.

Then, let L∞ be the measured geodesic lamination on σ∞ obtained
by straightening to a measured foliation V∞.

Suppose that a flat surface E has a vertical measured lamination
V so that the transversal measure is exactly given by the Euclidean
length. Then, the Euclidean length lengthEV of V is exactly the area
of this flat surface. In particular, as AreaE∞ = 1, lengthE∞V∞ = 1,
Then we let

d =
lengthE∞V∞
lengthσ∞L∞

=
1

lengthσ∞L∞
,

where lengthσ∞L∞ denotes the hyhperbolic length of L∞.
We first construct a sequence of fat traintracks by splitting E∞ along

vertical singular leaves. Let N = 2(2g − 2), the number of singu-
lar points on E∞. Let r1, . . . rN be vertical neighborhoods of singular
points of E∞; since V∞ has no saddle connections, they are tripods.
Then, the complement E∞\(r1∪· · ·∪rN) has a fat traintrack structure
T0, so that the branches are all Euclidean rectangles with horizontal
and vertical edges—namely, we decompose E∞ \ (r1 ∪ · · · ∪ rN) by the
horizontal line segments starting from the endpoints of γ1, . . . , γk and
ending when the segments hit the boundary of E∞ \ (r1 ∪ · · · ∪ rN).
Clearly T0 is foliated by V∞.

Let σ∞ be the (marked) hyperbolic structure on S uniformizing X∞.
Since gL∞ is the geodesic representative of V∞, there is a traintrack
neighborhood τ0 of L∞ on σ∞, such that there is a marking preserv-
ing diffeomorphism σ∞ → E∞ which induces an isomorphism from
(τ∞, L∞) to (T0, V∞) as fat-traintracks caryying .

By enlarging r1, . . . rN , we can construct a sequence T0, T1, . . . of
splitting of the traintrack T0 so that lengths of all branches of Tj diverge
to infinity as j → ∞. For j = 1, 2, . . . , we let r1(j), . . . rN(j) be
this increasing sequence of vertical neighborhoods r1, . . . rN of singular
points of E∞, such that

• rh(j) is a tripod and the lengths of all smooth edges go to
infinity as j →∞ for all h = 1, . . . , N , and
• the support |Tj| of the traintrack Tj is E∞ \(r1(j)∪· · ·∪rN(j)).

The vertical foliation V∞ and the horizontal foliation H0 induce hori-
zontal and vertical foliation of each Tj. By collapsing each horizontal
leaf of Tj to a point, we obtain a traintrack graph Gj. By modifying
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the sequence of splittings if necessary, we may, in addition, assume that
Gj is trivalent.

We next construct the corresponding splitting sequence of traintrack
neighborhoods of the measured lamination L∞ on the limit hyperbolic
surface σ∞. Since L∞ corresponds to a uniquely ergodic foliation V∞
without saddle connections, such that the underlying lamination |L∞|
of L∞ is maximal.

More generally, let L be a maximal geodesic lamination on a hyper-
bolic surface σ. Then, the complement σ \ L consists of hyperbolic
ideal triangles ∆, and each ideal triangle has a canonical horocyclic
lamination λ∆ (Figure 1, left): leaves are horocyclic arcs centered at
the vertices of the ideal triangle, and the complement of the lamination
is a triangle with the horocyclic edges. Then, the homocyclic arcs are
orthogonal to the edges of the ideal triangle. Therefore, those horo-
cyclic laminations on the complementary ideal triangles yield a horo-
cyclic lamination λ on the hyperbolic surface σ orthogonal to L. (See
[Thu].) The horocyclic lamination has a transversal measure given by
the hyperbolic length in the direction orthogonal to λ.

The support |λ∆| of the horocyclic lamination is the complement
of the triangle with horocyclic edges; thus the support is foliated by
geodesic rays orthogonal to λ∆ which limit to a common ideal vertex.
We can extend this geodesic foliation to a singular foliation µ∆ in ∆
such that

• µ has exactly one singular leaf t, and it is a tripod connecting
the center of ∆ to the vertices of ∆ by geodesic rays, and
• each component of ∆ \ t is foliated by one parameter family

of lines connecting a pair of adjacent vertices of ∆, and those
leaves smoothly converge to the geodesic edge of ∆ connecting
the vertices (Figure 1, middle).

We call this singular foliation µ∆ of ∆ a nearly-striagith foliation of ∆.
The complement σ\L consists of N ideal triangles. Thus, the mostly

straight foliations µ∆ on the ideal triangles ∆ yield a nearly-straight
(singular) foliation µ on σ w.r.t. L, where the singular points are the
center points of the ideal triangles.

Note that the horocyclic lamination λ∆ of an ideal triangle ∆ has
a singular point on each edge where two horocyclic arcs centered at
different vertices meet tangentially. There is a singular foliation λ′∆ on
∆ such that

• λ∆ coincides with λ′∆ in a small neighborhood U of the comple-
mentary triangle ∆ \ |λ∆| with horocyclic edges;
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Figure 1. Horocylic lamination and nearly horocyclic foliation

• λ′∆ has only one singular leaf t, and it is a tripod centered at
the center of the complementary triangle;
• each connected component of ∆\t is foliated by smooth parallel

arcs which connect the same pair of edges of ∆ and intersect
the edge orthogonally (Figure 1, right).

We call this singular foliation λ′∆, a nearly-horocyclic foliation of the
deal triangle ∆. Given a maximal geodesic lamination L on a hyper-
bolic surface σ, by taking a union of the nearly-horocyclic foliations on
complementary ideal triangles, we obtain a nearly-horocyclic (singular)
foliation λ on σ w.r.t. L. (c.f [Thu, §4].)

We pick a marking preserving collapsing map from κ : (σ∞, L∞) →
(E∞, V∞) such that κ collapses, in each complementary triangle ∆ of
(σ∞, L∞) to a “Y-shaped” graph with half-infinite edges (tripod) by
collapsing each nearly-horocyclic leaves of λ′∆. Then κ : σ∞ → E∞
takes L∞ to V∞ and injective on each leaf of the maximal lamination
L∞.

Therefore, by each singular tripod leaf of V∞ corresponds to a com-
plementary ideal triangle of L∞, we can construct a sequence of train
track neighborhoods τi of L∞ corresponding to the fat traintrack Ti,
such that

• τj is εj-nearly straight and εj ↘ 0 as j →∞;
• (Tj, V∞) is isomorphic to (τj, λ∞) by κ;
• horizontal (short) edges of branches of τj are horocyclic (Fig-

ure 2).

Lemma 4.2. Let ε > 0. Then, if j ∈ Z>0 is sufficiently large,

(d− ε)lengthαj < lengthaj < (d+ ε)lengthαj,

for all the vertical edges aj and αj of the branches of Tj and σj corre-
sponding by the collapsing map κ.

Proof. Recall that V∞ is uniquely ergodic and, the measured foliation
V∞ gives positive measures to arcs transversal to V∞. Therefore, we
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Figure 2. A nearly straight traintrack τj corresponding
to a Euclidean fat traintrack Tj.

can pick sequences of weights wj > 0, ωj > 0, such that the sequence
of weighted arcs (aj, wj) converges to V∞ and similarly the sequence
(αj, ωj) converges to L∞ as j →∞ in weak* topology.

Note that the collapsing map κ : (σ∞, L∞) → (E∞, V∞) isomorphi-
cally takes V∞ to L∞ and the vertical edge aj to the vertical edge αj
for all j = 1, 2, . . . . Therefore we can assume that wj = ωj for each
j = 1, 2, . . . .

Therefore

wjlength(aj)→ lengthE∞(V∞) = 1

as j →∞.

wjlength(αj)→ lengthσ∞(L∞),

as j →∞.
Since

lengthE∞(V∞)

lengthσ∞(L∞)
= d,

the convergences of the weighted lengths above implies

length(aj)

length(αj)
→ d

as j →∞. �

4.2. Stretching a traintrack along a Teichmüller ray and a
grafting ray. Recall that the Teichmüller ray X∞ : [0,∞) → T from
X∞ has the vertical foliation V∞ and the horizontal foliation H∞, and
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the flat surface E∞ conformally realizes X∞ and geometrically realizes
V∞ and H∞.

Let E∞(s) be the marked flat structure on S corresponding to X∞(s)
obtained by stretching E∞ only in the horizontal direction by exp(s);
then E∞(s) realizes the vertical measured foliation exp(s)V∞, keeping
the horizontal foliation H∞. Let f∞,s : E∞ = E∞(0) → E∞(s) denote
this piecewise linear stretching map in the horizontal direction. By
f∞,s the traintrack traucture Tj of E∞ \ (γ1(j) ∪ · · · ∪ γN(j)) descends
to a traintrack structure Tj(s) of E∞(s) \ f∞,s(γ1(j) ∪ · · · ∪ γN(j)).

Next we consider a corresponding grafting ray starting from the hy-
perbolic surface σ∞ representing X∞ along the geodesic representative
L∞ of V∞. For s > 0, let GrsL∞σ∞ denote the projective structure on
S obtained by grafting the hyperbolic surface σ∞ along the (scaled)
measured lamination sL∞. Since L∞ has no periodic leaves, we let
gs : σ∞ → GrsL∞σ∞ be the canonical grafting C1-diffeomorphism. Then
sL∞ is geometrically realized as a circular lamination on the proejc-
tive surface GrsL∞σ∞. Namely, the grafting map gs takes the geodesic
lamination sL∞ to the geometric realization. (See [KT92, Bab20] for
Thurston’s parametrization of CP1-structures.) Then, by gt : σ∞ →
GrsL∞ , the nearly straight traintrack structure τj on σ∞ descends to a
traintrack neighborhood τj(s) of the circular lamination sL∞.

For a fat traintrack, we call, by the one-skeleton, the union of the
horizontal and vertical edges of the rectangular branches.

Corollary 4.3. For every ε > 0, there are Jε > 0 and sε > 0 such that,
if j > Jε and s > sε, then there is a (d − ε, d + ε)-bilipschitz “linear”
isomorphism between the one-skeletons

φsj : τ 1
j (exp(s)/d)→ T 1

j (s)

for sufficiently large s > 0, such that

• φsj is linear on each edge with respect to arc length, and
• φsj extends to a marking preserving homeomorphism

Gr
exp(s)/d
L∞

σ∞ → E∞(s),

with respect to the Thurston metric on Gr
exp(s)/d
L∞

and the Euclidean
metric on E∞(s).

Proof. We first consider the bilipschitz property in the vertical direc-
tion. By Lemma 4.2, if j is sufficiently large, corresponding vertical
edges of Tj and σj are (d − ε, d + ε)-bilipschiz. Then the grafting

map σ∞ → Gr
exp(s)/d
L∞

σ∞ by exp(s)L prerseves the vertical length of
branches of τj, and the horizontal stretch map f∞,s : E∞ → E∞(s)
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preserves the vertical length of branches of Tj. Therefore, we can take
φsj : τ 1

j (exp(s)/d)→ T 1
j (s) that is (d+ε, d−ε)-bilipschitz in the vertical

direction.
We next consdier the bilipschitz property in the horizontal direc-

tion. Let ej and e′j be corresponding horizontal edges of Tj(s) and
τj(d exp(s)), respectively. Since τj is εj-nearly straight traintrack with
εj ↘ 0 as j →∞, for every ε > 0, there is Jε > 0 such that, if j > Jε,
every horocyclic edges of branches of τj has length less than ε.

Let ej(s), e
′
j(s) be the corresponding horiozntal edges of Tj(s) and

σj(exp s/d), respectively. Then

lengthE∞(s)ej(s) = exp(s)V∞(ej)

and
lengthσs∞e

′
j(s) = exp(s)Li(e

′
j)/d+ lengthσ∞e

′
j,

where lengthσs∞ denote the length with respect to Thurston’s metric on

the projective surface Gr
exp s/d
L∞

σ∞.
Therefore, for every ε > 0, there is Jε > 0, such that, if j > Jε, then

since V∞(ej) = L∞(e′j) and lengthσ∞e
′
j < c, we have∣∣∣ lengthEs∞ej(s)

lengthσs∞e
′
j(s)
− d
∣∣∣ < ε,

for sufficiently large s > 0. Therefore, we can make φsj a (d− ε, d+ ε)-
bilipschitz mapping also on the horizontal edges. �

4.3. Construction of almost conformal mappings. Recall that
X∞(s) is the Tecihmüller geodesic ray from X∞ with the vertical mea-
sured foliation V∞ parametrized by s ≥ 0. Let grsL(σ∞) be the confor-
mal grafting ray from the hyperbolic surface σ∞ along the measured
geodesic lamination L∞, where σ∞ uniformizes X∞ and L∞ coreponds
to V∞.

We prove the asymptotic property of those rays as parametrized rays
without modifying their base points.

Theorem 4.4. For every ε > 0, there is sε > 0 such that

d(X∞(s), gr
exp(s)/d
V σ∞) < ε.

We first construct a decomposition of E∞ into rectangles and hexagons
from the traintrack structure Tj of E∞ \ (γ1(j) ∪ · · · ∪ γN(j)).

Given ε > 0 and a subset A of a flat surface E with a horizontal
foliation H, the ε-horizontal neighborhood of A is the subset of E con-
sisting of points p can be connected to A by a segment of a leaf of H
with length at most ε.
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Figure 3. Traintrack structure Tj induces a polygonal
traintrack decomposition E∞,j = (∪Nh=1Qj,h)∪(∪N ′k=1Rj,k)
(right).

Let mj be the shortest horizontal length of the rectangular branches
of Tj. For each h = 1, . . . , n, letQj,h be the horizontalmj/3-neighborhood
of the Y -shaped graph γh. Then Qj,h is a hexagon with horizontal and
vertical edges and one singular point, and its horizontal edges have
length 2mj/3; see Figure 3. Therefore, the definition of mj implies
that the hexagons Qj,1, Qj,2, . . . , Qj,N are pairwise disjoint. For each
branch R of Tj, the Euclidean rectangle R minus the mj/3-horizontal
neighborhood of the vertical edges is still a rectangle. Therefore, the
traintrack structure Tj of E∞ \ (γ1(j) ∪ · · · ∪ γN(j)) gives a rectangle
decomposition of E∞ \ (Qj,1 ∪ · · · ∪Qj,N) = ∪N ′k=1Rj,k, and so that each
rectangle piece Rj,k is a branched of Tj minus the mj/3-horizontal-
neighborhood of its vertical edges. Thus we have a decomposition of
the flat surface E∞ into hexagons and rectangles,

E∞,j = (∪Nh=1Qj,h) ∪ (∪N ′k=1Rj,k).

By the horizontal stretch map f∞,s : E∞ → E∞(s), this polygonal
decomposition E∞,j induces a corresponding polygonal decomposition
of E∞(s)

E∞,j(s) = (∪Nk=1Q
s
j,h) ∪ (∪N ′h=1R

s
j,k),

where f∞,s(Qj,h) = Qs
j,h and f∞,s(Rj,k) = Rs

j,k.
Recall that we constructed an εj-nearly straight traintrack neighbor-

hood τj of L∞ on σ∞, where εj ↘ 0 as j →∞. This decomposition τj
is induced by the traintrack decomposition Tj of E∞ so that τj descends
to Tj by the collapsing map κ : (σ∞, L∞)→ (E∞, V∞).

Similarly, for each j = 1, 2, . . . , the polygonal decomposition E∞,j =
(∪Nh=1Qj,h) ∪ (∪N ′k=1Rj,k) induces a polygonal decomposition σ∞,j =
(∪Nh=1Qj,h) ∪ (∪N ′k=1Rj,k) such that
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• σ∞,j = (∪Nk=1Qj,h)∪(∪N ′h=1Rj,k) is isomorphic toE∞,j = (∪Nh=1Qj,h)∪
(∪N ′k=1Rj,k) as polygonal traintrack carrying L∞ ∼= V∞;
• this isomorphism is realized by the collapsing map κ;
• the vertical edges of the Qj,h and Rj,k are segments of leaves of
L∞, and their horizontal edges are segments of the horocyclic
foliation λ∞.

Recall that the traintrack neighborhood τj of L∞ on σ∞ is trans-
formed into a traintrack neighborhood τj(s) of the Thurston lamination
sL∞ on GrsL∞σ∞. Similarly, the polygonal decomposition σ∞,j induces
a decomposition σ∞,j(s) after grafting:

Gr
exp(s)/d
L∞

σ∞ = (∪hQsj,h) ∪ (∪kRs
j,k),

where Qsj,h is obtained by grafting Qj,h along the restriction of exp s
d
L∞

to Qj,h and Rs
j,k is obtained by grafting Rj,k along the restriction of

exp s
d
L∞ to Rj,k.

Proposition 4.5. For every ε > 0, there are Jε > 0 and sε > 0 such
that, if j > Jε and s > sε, there is a (d − ε, d + ε)-bilipschitz map
between the one-skeletons of the polygonal decompositions

φsj : (∪h∂Qsj,h) ∪ (∪k∂Rs
j,k)→ (∪h∂Qs

j,h) ∪ (∪k∂Rs
j,k)

for sufficiently large s > 0.

Proof. The proof is similar to that of Corollary 4.3. �

Our main of this section is to prove the following.

Proposition 4.6. For every ε > 0, there are Js > 0 and sε > 0 such
that, if j > Js and s > sε, then we can extend the above bilipschitz
mapping between the one-skeletons

φsj : (∪Nh=1∂Q
s
j,h) ∪ (∪N ′k=1∂R

s
j,k)→ (∪Nh=1∂Q

s
j,h) ∪ (∪N ′k=1∂R

s
j,k)

to a (1 + ε)-quasi-conformal mapping

Φs
j : Gr

exp(s)/d
L∞

σ∞ → E∞(s)

taking the polygonal decomposition τj(s) to the polygonal decomposition
E∞,j(s).

In order to prove Proposition 4.6, we construct a desired extension
on each polygonal piece in the following subsections.
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Figure 4. Horocylic arcs in the region P .

4.3.1. Rectangles. In this subsection, we extend φsj to a quasiconformal
mapping Rs

j,k → Rs
j,k with small distortion for each rectangular branch

Rs
j,k.

Lemma 4.7. Consider the region P in H2 bounded by two disjoint
geodesics sharing an endpoint in the ideal boundary ∂H2. Then P is
foliated by a one-parameter family of horocyclic arcs {au} centered at
the common endpoint. We can parametrize the horocyclic arc au(u ∈ R)
by between their distances, so that it corresponds to the length between
the arcs. Then

d

du
lengthH2(au) = −lengthH2au

Proof. We first normalize the region P in the upper half plane model
of H so that the common endpoint is at ∞. It suffices to show the
derivative formula at u = 0, and we can further normalize the region
P so that a0 is the horizontal arc at height one; see Figure 4. Since au
is parametrized by the vertical (hyperbolic) distance, we have

d

du

( ε
eu

)
= −εe−u.

Thus
d

du

( ε
eu

)∣∣∣
u=0

= −ε.
�

Pick a rectangular piece Rs
j,k of the polygonal decomosition Gr

exp s/d
L∞

σ∞ =

(∪Nh=1∂Q
s
j,h) ∪ (∪N ′k=1∂R

s
j,k). Then Rs

j,k is folizated by the leaf segments
of horocyclic foliation λ∞ of (σ∞, λ∞). Therefore, the vertical edges of
Rs
j,k are geodesic segments of the same length; let `(= `sj,k) demote this

vertical length of Rs
j,k.

Consider the branch Rj,k of the polygonal decomposition of σ∞ which,
after grafting, corresponds to Rs

j,k. Then Rj,k is foliated by the horo-
cyclic segments of the (horizontal) horocyclic lamination λ∞, since the
non-foliated parts are contained in hexagonal branches. Let λsj,k denote
this horocyclic foliation of Rj,k
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The measured geodesic lamination L∞ is orthogonal to the horo-
cyclic lamination λ∞. Then, the restriction of L∞ to Rj,k extends to
a (vertical) geodesic foliation µ = µj,k in Rj,k orthogonal to the horo-
cyclic foliation. Note that the lengths of the leaves of the foliation µj,k
are the same, since there are isometries between the leaves given by
the translation along the homocyclic foliation µj,k.

As Rs
j,k is obtained by grafrting Rj,k along sL∞, the horocyclic folia-

tion λj,k induces a horocyclic foliation λsj,k on Rs
j,k, so that the collapsing

map κs : GrsL∞σ∞ → σ∞ takes leaves of λsj,k to leaves of λj,k. Similarly,
the vertical geodesic foliation µj,k induces the vertical geodesic folali-
tion µsj,k on Rs

j,k, so taht κs takes µsj,k to µj,k.

Lemma 4.8. For every ε > 0, there is Jε > 0, such that, if j > Jε,
then, for every sufficiently large s > 0, every rectangular branch Rs

j,k of

the polygonal decomosition Gr
exp s/d
L∞

σ∞ = (∪Nh=1∂Q
s
j,h) ∪ (∪N ′k=1∂R

s
j,k) is

(1− ε, 1 + ε)-quasiconforally equivalent to a Euclidean rectangle of the
same length ` = `sj,k and the width exp(s)L(Rs

j,k), where L(Rs
j,k) denote

the transversal measure of the horizontal edge of Rs
j,k given by L.

Proof. Let F = F s
j,k be the Euclidean rectangle of length `sj,k and width

exp(s)L(Rs
j,k). We construct an almost conformal mapping ζsj,k : Rs

j,k →
F s
j,k preserving horizontal leaves.
Pick an horizontal (horocyclic) edge eh of Rs

j,k, and a vertical (geo-
desic) edge ev of Rs

j,k. Let z be a point on Rs
j,k. Then z is contained

in a leaf uz of the horizontal horocyclic foliation λsj,k, and a leaf wz of
the vertical geodesic foliation µsj,k. Let y be the length of the geodesic
segment of wz from z to eh (along w). Let x be the length of the seg-
ment of uz connecting z to a point in ev. Then we define a mapping
ζsj,k : Rs

j,k → F s
j,k by

z = (x, y) 7→ (L(Rs
j,k)

y

length uz
, y),

so that it is linear along uz with respect to arc length (Figure 5).
Next we show that ζsj,k is almost conformal mapping for sufficiently

large j, s > 0.
Each horocyclic leaf u in Rj,k = R0

j,k intersects the measured lami-
nation L∞ in a measure zero set. As L∞ is a maximal lamination, we
set

u \ L∞ = ∪∞r=1ur,

where ur are the connected segments of u\L∞. Since L∩u has measure
zero in u,

lengthσ∞u = Σ∞r=1lengthσ∞ur.
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Figure 5. Mapping hyperbolic rectangle into a Eu-
clidean rectangle

We parametrize the horocyclic leaves hx of λ0
j,k with x ∈ [0, `sj,k] by

the length from the horizontal ledge eh along vertical leaves of µsj,k. For
every ε > 0, there is Jε > 0, such that if j > Jε, then length h < ε for
all horocyclic leaves u of λsj,k. Then, by Lemma 4.7,∣∣∣∣d(lengthux)

dx

∣∣∣∣ ≤ d

dx
(
∞∑
r=1

lengthH2ur) =
∞∑
r=1

d

dx
(lengthH2ur) < ε.

The grafting of σ∞ along the measured lamination L∞ inserts Eu-
clidean structure along L∞, and the length of all horocyclic leaves of
Rj,k equally increases by the constant exp(s)L(Rs

j,k) w.r.t. Thurston’s
metric. Clearly exp(s)L(Rj,k) → ∞ as s → ∞. Therefore, for every
ε > 0, there are Jε > 0 and sε > 0, such that if j > Jε and s > sε, then

the horizontal derivative
dζsj,k
dx

(z) is the vector (0, t) with t ∈ (1−ε, 1+ε)
for all z ∈ Rs

j,k.
Since ζsj,k preserves the height by its definition, a similar argument

shows that there are Jε > 0 and sε, such that if j > Jε and s > sε, then
dζ
dx

(z) is (1, t) with t ∈ (1− ε, 1 + ε) for all z ∈ Rs
j,k.

We have shown that dζsj,k almost preserves the orthogonal frames.
Therefore, for every ε > 0, there are Jε > 0 and sε > 0 such that if
j > Jε and s > sε such that ζsj,k is (1 + ε)-equasiconformal. �

Corollary 4.9. For every ε > 0, there are Jε > 0 and sε > 0, such
that if j > Jε and s > sε, then the edge-wise linear map φsj on the
one-skeleton extends continuously to a (1 + ε)-quasi-coformal mapping
from Rs

j,s to Rs
j,k.

Proof. Let ξsj,k : F s
j,k → Rs

j,k be the linear mapping between Euclidean
rectangles which preserves horizontal and vertical edges. Then, by
Corollary 4.3 and the definition of F s

j,k, for every ε > 0 there is Jε > 0
such that, if j > Jε, implies that the linear mapping ξsj,k : F s

j,k → Rs
j,k

is a (d− ε, d + ε)-bilipschitz for sufficiently large s > 0. Therefore, we
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Figure 6.

can in addition assume that the composition ξsj,k ◦ ζsj,k : Rs
j,k → Rs

j,k is
a (1 + ε)-quasiconformal mapping.

The restriction of φsj to ∂Rs
j,k is a piecewise-linear mapping which is

linear on the vertical edges but not necessarily linear on the horizontal
edges of Rs

j,k. Since the fat traintracks correspond to trivalent graphs,
a horizontal edge of Rs

j,k may be decomposed into three linear pieces
for φsj . For every r > 0, there are Jr > 0 and sr > 0, such that,
then if j > Jr and s > sr, then the vertical edge of Rs

j,k has length at
least r, and each linear segment of each horizontal edge also has length
at least r. Therefore, we can easily adjust ξj,k near the boundary of
F s
j,k by a quasi-conformal mapping with small dilatation, so that the

composition ξsj,k ◦ ζsj,k is still a (1 + ε)-quasi-conformal mapping and its
restriction to ∂Rs

j,k matches with φsj . �

4.4. Extension to hexagonal branches. In this subsection, we con-
struct a quasi-conformal extension of φsj with small distorsion to each
hexagonal branch Qsj,h . First we construct a model projective structure
on a hexagon interpolating between a hyperbolic hexagonal branch Qsj,h
and its corresponding flat hexagonal branch Qs

j,h.

Let q be the quadratic differential zdz2 on C. Consider the singular
Euclidean metric Eq on C given by q. Let Vq denote the vertical mea-
sured foliation on C given by q. Then C is a union of three Euclidean
half-planes with a common boundary point at 0. The vertical singular
foliation Vq has a Y -shaped graph as a singular leaf.
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Figure 7. Constructing a model hexagon.

Let Cq be the CP1-structure on C given by the quadratic differential
q. Then Thurston’s parameters of Cq are the ideal triangle ∆ in H3 and
the measured lamination Lq consisting of the boundary geodesics of ∆
with weight∞. Let Lq be the corresponding Thurston’s lamination on
C; Then, with respect to Thurston’s metric, the complementary region
of Lq is an ideal triangle ∆′, and the foliated region |Lq| consists of
three Euclidean half-planes.

Let λ∆′ be the horocyclic measured lamination of the ideal triangle
∆′. Then there is a collapsing map of ∆′ to a Y-shaped metric graph
with infinite ends, which collapses each leaf of λ∆′ to a point and the
complementary triangle to a point. Then, the collapsing map collapses
each horocyclic leaf to a point and the complementary triangle to the
vertex of the Y-shaped graph.

Let Cq → (C, z
(
√

2d)2dz
2) be the mapping which, by the collapsing

map, takes the ideal triangle ∆′ to the Y-shaped singular vertical leaf,
such that Cq is isometric on each half plane of Cq \ ∆′. Let κ : C →
Eq = (C, zdz2) be the composition of this collapsing map with the

scaling map z 7→ (
√

2d)z by
√

2d.
Recall that Qs

j,h is a hexagonal branch of the polygonal traintrack de-
composition E∞,j(s) of E∞(s) associated with the fat traintrack struc-
ture T∞,j(s). Then Qs

j,h is isometrically embedded in the singular Eu-
clidean surface of (C, q), so that the horizontal foliation of Qs

j,h maps
to the vertical foliation of (C, q) and the vertical foliation of Qs

j,h maps
to the horizontal foliation of (C, q). By this embeding, let Qs

j,h be

κ−1(Qs
j,h) as in Figure 7.

We will construct a desired almost conformal mapping from the Eu-
clidean hexagon Qs

j,h to the hyperbolic hexagon Qsj,h through this model
Euclidean hexagon Qs

j,h.
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Figure 8. The model mapping exp[
√

2z
3
2 ].

4.4.1. Almost conformal ideantification of the Euclidean hexagon Qs
j,h

and the model projective hexagon Qs
j,h. Let fq : C → CP1 denote the

developing map of the CP1-structure given by (C, z
(
√

2d)2dz
2).

Theorem 4.10 (Corollary 4.1 in [GM21]). In every anti-stokes sector,
for every m ≥ 0,

(fq(z)− exp[
√

2z
3
2 ])zm → 0(2)

as |z| → ∞. (Figure 8.)

Let Zs
j,k be the set of the boundary points of Qs

j,h which are vertices
of the polygonal decomposition E∞(s) = (∪∂Qs

j,h) ∪ (∪∂Rs
j,k). By the

construction of the polygonal decomposition, Zs
j,k is contained in the

vertical edges of Qs
j,h. Note that κ|∂Qs

j,h is not a homeomorphism onto
∂Qs

j,k as κ collapses many horizontal segments ∂Qs
j,h, but homotopic

to a homeomorphism. The restriction is a linear diffeomorphism on
each vertical edge, and κ takes the measured lamination L∞|Qs

j,h to
the restriction of Lq to Qs

j,k.
Let ηsj,h : ∂Qs

j,h → ∂Qs
j,h be the edge-wise linear homeomorphism,

such that ηsj,h coincides with κ at the six verticies of Qs
j,h. Then ηj,h

coincides with κ on the vertical edges.

Proposition 4.11. For every ε > 0, there are Jε > 0 and sε > 0, such
that, if j > Jε and s > sε, then there is a (1 + ε)-quasi-conformal map-
ping Qs

j,h → Qs
j,h which conincides with the piecewise linear mapping

ηsj,h on the boundary.

The remaining of this subsection is the proof of Proposition 4.11.
Let ιsj,h : Qs

j,h → (C, q = z
(d
√

2)2dz
2) ∼= Cq be the isometric embedding

exchainging horizontal and vertical directions, with respect to the flat
structure on C given by the differential. On the other hand, Qs

j,h is
already a subset of Cq. We show that ιsj,h(Q

s
j,h) is in a bounded distance

away from Qs
j,h almost preserving the tangent directions.
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Let φsj,k : ∂Qsj,h → ∂Qs
j,h be the canonical homeomorphism taking

vertices to corresponding vertices such that φsj,k is edgewise linear with
respect to arc length.

Theorem 4.10 immediately implies the Hausdorff distance between
Qs
j,h and ιsj,hQ

s
j,h are uniformly bounded.

Lemma 4.12. There are constants b > 0, sε > 0, Jε > 0, such that, if
j > Jε and s > sε, then, for each x ∈ ∂Qs

j,h,

dTh(ι
s
j,h(x), ηsj,k(x)) < b,

in the Thurston metric dTh on Cq.

We now show the closeness of the tangent directions on the hexagon
boundary.

Proposition 4.13. For every ε > 0 and r > 0, there are Jε > 0 and
sε > 0, such that, if j > Jε and s > sε, then,

(1) for each vertical edge e of Qs
j,h, ιsj,h|e is ε-almost parallel to

Thurston’s lamination Lq;
(2) for each horizontal edge e of Qs

j,h, ιsj,h|e is ε-almost parallel to the
horocyclic lamination Hq orthogonal to Thurston’s lamination
Lq;

(3) the restriction of ιsj,h to the r-neighborhood of the boundary ∂Qs
j,h

is (1
d
− ε, 1

d
+ ε)-bilipschitz embedding onto its image in Cq w.r.t

the Thurston metric.

Proof. During the poof, we identify Qs
j,h and its image in Eq under ιsj,h.

(1) Recall that the Thurston parameters of Cq are the ideal hyperbolic
triangle ∆ and the geodesic lamination L∞ consisting of the boundary
geodesics of ∆ with weight infinity, and Lq be Thurston’s circular lami-
nation on Cq. Then, the complement of Lq in Cq is an ideal triangle ∆′

corresponding to ∆, and Cq \∆′ consists of three Euclidean half-planes
foliated by leaves of Lq. Let κq : Cq → ∆ be the collapsing map, which
collapses each complementary half-plane to its corresponding boundary
geodesic of ∆, taking leaves of Lq diffeomorphically to the boundary
geodesic.

Let ` be a leaf of the vertical measured foliation Vq of (C, q) such
that ` contains a vertical edge e of Qs

j,h. Let m be the boundary
geodesic of the ideal triangle ∆ corresponding to `. By Thurston’s
parametrization (∆, Lq) of Cq, the induced bending map is simply an
isometric embedding of the ideal triangle into a totally geodesic plane
in H3. By this embedding, m is isometrically identified with a geodesic
in H3. Then, the ideal boundary CP1 of H3 minus the endpoints of m is
foliated by round circles bounding disjoint hyperbolic planes orthogonal
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to m; let C denote this foliation of CP1 minus two points by those round
circles.

The leaves of Thurston lamination Lq corresponding to m map to
circular arcs connecting the endpoints of m (Figure 10); those circular
arcs are orthogonal to C. Therefore it suffices to show that each tangent
vector v along a vertical edge e (in `) maps to a tangent vector ε-almoost
orthogonal to the circle foliation C.

Let Epq : Cq → H3 be the Epstein surface of Cq. For every ε > 0,
there is R > 0 such that, if the disctance of ` from the singular point,
the zero, is least R, then Epq` is a (1− ε, 1 + ε)-bilipschitz embedding
and ε-close to the geodesic m ([Dum17, Lemma 3.4].) Recall that
fq : C→ CP1 denote the developing map of Cq. By the property of the
Epstein surface, dfqv corresponds to dEpqv by the orthogonal projection
to the Epstein surface Epq. Therefore, if j > 0 and s > 0 are sufficiently
large, then Epq` is tangentially very close to the geodesic m, and thus
dfqv is ε-almost orthogonal to a leaf of C (Figure 10).

(2) Let e be a horizontal edge of Qs
j,h. If j > 0 and s > 0 are

sufficiently large, we can pick a rectangle Re in Eq with horizontal and
vertical edges, such that Re is sufficiently far from the zero of Eq and
the vertical edges of Eq are long. Let hs be the horizontal foliation of
Re parametrized by s ∈ [0, 1]. Let vu be the vertical foliation of Re

parametrized. by u ∈ [0, 1]; then v0 and v1 are its vertical edges. Let
`0 and `1 be the vertical leaf of Vq containing the vertical edges v0 and
v1. Similarly to (1), let m0,m1 be the boundary geodesics of the ideal
triangle ∆ corresponding to `0 and `1.

For every ε > 0, if j > 0 and s > 0 are sufficienlty large, then Since
Re is far from the zero of q, Epqvu are (

√
2 − ε,

√
2 + ε)-bilipschitz

embedding into H3 and Epsu has length less than ε ([Eps], Lemma 2.6,
Lemma 3.4 in [Dum17]). Therefore, we may, in addition, assume that
the long almost-geodesic curves Epqvu(u ∈ [0, 1]) are ε-close to each
other. Similarly to (1), let C be the foliation of CP1 minus endpoints
of m0 by round circles which bound hyperbolic planes orthogonal to
the geodesic m0. Then, for every ε > 0, if j, s > 0 are sufficiently large,
then fqvu are ε-alomost orghotonal to C for all u ∈ [0, 1], since Epqvu
are very close to a segment α of the geodesic m0. Therefore fqhv are
almost parallel to C.

The horocyclic foliation Hq is orthogonal to the Thurston lamination
Lq on Cq. Since Re is sufficiently far away from the zero of q, the
boundary m0,m1 of the ideal triangle ∆ are close to each other near
α. Therefore, hv are almost orthogonal to Lq.
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Figure 10.

(3) For every R > 0, if j > 0 and s > 0 are suffficeintly large, then
the r-neighborhood of ∂Qs

j,h has a ιsj,h-image in (C, q = z
(d
√

2)2dz
2) whose

distance from 0 is at least R. Therefore, by [Bab25, Proposition 4.9],
the developing map fq on the r-neighborhood is well approximated by
the exponential map. Hence, (1) and (2) imply the desired bilipschitz
property.

�

Let ιφ : Cq → Eq be the identification map given by the Schwarzian
parametrization Cq ∼= (C, q). We have seen that ιφ embeds Qs

j,h into C
so taht its image is bounded hausdorff distance from Qs

j,h (Lemma 4.12)

in a C1-manner (Proposition 4.13).
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Qs
j,h Qsj,h

(C, zdz2) Cq ⊃ Qs
j,h

ιsj,h
1

d
√

2
−ε, 1

d
√

2
+ε

a

(d−ε,d+ε)

(1−ε,1+ε)φsj,k
√

2

Lemma 4.14. For every ε > 0, there are Jε > 0 and sε > 0 such that,
if j > Jε and s > sε, then we can modify ιφ|Qs

j,h, with respect to the
(singular) Euclidean matric Eq of (C, q), by a (1− ε, 1 + ε)-bilipschitz
mapping so that

(1) Qs
j,h is identified with Qs

j,h by a (1+ε)-quasiconformal mapping,
and

(2) the boundary of Qs
j,h is identified with the boundary of Qs

j,h by
the piecewise linear mapping ηsj,h, with respect to arc length.

Proof. We identify Qs
j,h with the image of Qs

j,h in Eq by ιsj,h Let H
denote the (hexagonal) boundary of the hexagonal branch Qs

j,h in Eq.
For R > 0, let NR be the R-neighborhood of the hexagonal boundary H
in Qs

j,h in the Euclidean metric Eq. Then NR is topologically a cylinder.
The outer boundary H is identified with the inner boundary of NR by
an edge-wise linear homeomorphism, which identifies a pair of parallel
edges. Thus NR has a natural product structure H × [0, 1] by linearly
extending this identification of the hexagonal boundary components;
for each h ∈ H, the segment h×[0, 1] is a line segment in NR connecting
a pair of identified points on the corresponding inner and outer edges.
Let b > 0 be the Hausdorff distance bound in Lemma 4.12. Then, if
R > 2b, then ιφ(Qs

j,h) contains the inner boundary of NR.
Let NR be the region in Eq bounded by the boundary hexagon of

ιφ(Qs
j,h) and the inner boundary H × {0} of NR (Figure 11). We shall

define a natural product structure H× [0, 1] on NR, such that, via this
product structure NR = H× [0, 1], the identification NR = H× [0, 1] =
NR agrees with the identity on the inner hexagonal boundary and ηsj,h
on the outer hexagonal boundary.

If j > 0 and s > 0 are sufficiently large, The Hausdorff distance
between the outer boundary hexagon of Qs

j,h and the boundary hexagon
of ιφQ

s
j,h is less than a fixed constant b by Lemma 4.12, and then the

corresponding edges are ε-almost parallel by Proposition 4.13 w.r.t the
singular Euclidean metric Eq.

Therefore we let f : NR → NR be a mapping such that

• the restriction of f to the outer boundary of NR is equal to ηsj,h;
• the restriction of f to the inner boundary of NR is the identify

map;
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Figure 11. The product structures on hexagonal cylinders

• f is linear of each {h} × [0, 1] for all h ∈ H.

The edges of the hexagons are long if j > 0 and s > 0 are large.
Therefore Proposition 4.13 implies that following.

Claim 4.15. For every ε > 0, there are Jε > 0 and sε > 0, such that
if j > Jε and s > sε, then f is a (1 + ε)-quasi-conformal mapping.

�

We complete the proof of Proposition 4.11.

4.4.2. Hyperbolic Hexagons are almost conformal to model projective
Hexagons. For every ε > 0, there are Jε > 0 and sε > 0, such that, for
every hexagonal branch, we constructed a piecewise linear (d − ε, d +
ε)-bilipschitz mapping φsj,h : ∂Qsj,h → ∂Qs

j,h and a ( 1
d
√

2
− ε, 1

d
√

2
+ ε)-

bilipschitz mapping ηsj,h : ∂Qs
j,h → ∂Qs

j,h.
We shall construct an almost conformal mapping identifying Qsj,h and

Qs
j,h extending the picesie linear homeomorphism ηsj,h ◦ φsj,h : ∂Qsj,h →

Qs
j,h. Note that the singuar point of ηsj,h◦φsj,h are the vertex point set Z

of the polygonal decomposition of Gr
exp s/d
L∞

σ∞. Those singular points
are only on the vertical edges of ∂Qsj,h and the number is uniformly
bounded from above by 2(2g − 2), the number of the singular points
on E∞(s), where g is the genus of the surface.

Lemma 4.16. For every ε > 0, there are Jε > 0 and sε > 0, such
that j > Jε and s > sε, then there is a (1 + ε)-quasiconformal mapping
ξsj,h : Qs

j,h → Qs
j,h preserving vertical and horizontal edges as ηsj,h does.

Proof. In the hexagon Qs
j,h, the complement of the Thurston lamina-

tion Lq, the hyperbolic hexagon Hs
j,h obtained by cutting by the ideal

triangle along horocyclic arcs centered at the vertices. Then the com-
plement of Hs

j,h in Qs
j,h are three Euclidean rectangles in Thurston’s

metric.
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Figure 12. Mapping blue hexagon to blue hexagons
and rectangles to rectangles.

Similarly, the hexagon Qs
j,h contains the hyperbolic hexagon Hs

j,h

obtained by cutting the ideal triangle along three horocyclic arcs. For
every ε > 0, there are Jε > 0 and sε > 0, such that if j > Jε and
s > sε, then then three components of Qs

j,h \Hs
j,h are, with respect to

Thurston’s metric, (1− ε, 1 + ε)-bilipschitz to the corresponding three
complementary Euclidean rectangles of Qs

j,h \Hs
j,h using the product

structure given by the horocyclic foliation and the orthogotonal geo-
desic foliation as in §4.3.1. Recall that this mapping linearly preserves
horizontal foliation and, in this sense, it is linear with respect to the
vertical distance.

If Jε > 0 is sufficiently large, then the corresponding vertical edges
Hs
j,h and Hs

j,h are (1 − ε, 1 + ε)-bilipschitz. For every ε > 0, there are
Jε > 0 and sε > 0, such that, if j > Jε and s > sε, then there is a
(1 + ε)-quasiconformal mapping Hs

j,h → Hs
j,h, preserving vertical and

horizontal edges such that it is linear on each edge of Hs
j,h with respect

to the hyperbolic length.
We have constructed (1 + ε)-quasiconformal mappings from rectan-

gle and hexagon pieces of Qs
j,h to corresponding rectangle and hexagon

pieces of Qs
j,h so that they coincide along common vertical edges. Thus,

by gluing those quasi-conformal mappings along vertical edges, we ob-
tain a desired (1 + ε)-quasiconformal mapping. �

Corollary 4.17. We can in addition assume that the (1+ε)-qausiconformal
mapping ξsj,h : Qs

j,h → Qs
j,h coinsides with ηsj,h ◦ φsj,h on the boundary

∂Qs
j,h.

Proof. We first modify ξsj,h so that it coincides with ηsj,h ◦ φsj,h on ver-
tical edges of Qs

j,h. Let v be a vertical edge of Qs
j,h. Let R be the

corrsponding rectangular component of Qs
j,h \Hs

j,h such that v is also
a vertical edge of R (Figure 13).

There is a unique linear mapping from ζ : R→ R such that
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Figure 13. Reasions in Qs
j,h on which ξsj,h is modified.

• the restriction of ξsj,h on v coincides with the composition of
ηsj,h ◦ φsj,h with ζ on v;
• ζ is linear on each horizontal leaf of R;
• ζ is the identitfy map on the vertical edge of R opposite to v.

Then, for every ε > 0, there are Jε > 0 and sε > 0, such that, if
j > Jε and s > sε, then ζ is a (1 − ε, 1 + ε)-bilipschitz mapping, as R
has sufficiently long vertical and horizontal edges. Then by redefining
ξsj,h : Qs

j,h → Qs
j,h by post-composing ξsj,h with ζ : R→ R, ξsj,h coincides

with ηsj,h ◦ φsj,h on the vertical edge v.
By applying this to all vertical edges of Qs

j,h, we can modify ξsj,h : Qs
j,h →

Qs
j,h so that ξsj,h coincides with ηsj,h ◦ φsj,h on all three vertical edges of

Qs
j,h. Then, there are Jε > 0 and sε > 0, such that, if j > Jε and s > sε,

then this modified mapping ξsj,h is still (1+ ε)-quasiconformal after this
modification.

Similarly, we can modify ξsj,h along appropriately large rectangular
regular neighborhoods of horizontal edges, so that ξsj,h also coincides
with ηsj,h ◦ φsj,h along horizontal edges.

�

We completed the proof of Theorem 4.4.

5. Uniform asympotocity

We have proved in Theorem 4.4 that the limit of the Teichmuller
ray X∞ : R→ T is asymptotic to the corresponding conformal grafting
ray from the same base point X∞(0), by directly constructing a quasi-
conformal mapping between corresponding points on the rays.

Utilizing this asymptotic property, in this section, we show a uniform
asymptotic property for the family of the Teichmuller rays Xi : R→ T

limiting to X∞ : R→ T and their corresponding grafting rays with the
same base points Xi(0).
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Recall that the vertical measured foliation Vi on X(ti) is normalized
so that Vi has length one on the corresponding flat surface Ei. For each
i = 1, 2 . . . , let

di =
lengthEiVi

lengthσiLi
=

1

lengthσiLi
∈ R>0

Then di → d as i → ∞, since [Ei] converges to [E∞] and accordingly
[Vi] converges to [V∞] as i→∞.

Theorem 5.1. For every ε > 0, there are Iε > 0 sε > 0 such that, if
i > Iε and s > sε, then

dT(Ri(s), gr
di exp(s)
Li

σi) < ε

for all s > sε.

5.1. Congerecne of Euclidean polygonal structure. We first an-
alyze the convergence of the Euclidean surfaces. By the convergence of
νi(Ei, Vi)→ (E∞, V∞) implies the following proposition.

Lemma 5.2. For every ε > 0, there are Iε > 0, Jε > 0 and Ji > 0 with
Ji →∞ as i→∞, such that, if i > Iε and Jε < j < Ji, then, there is
a (1− ε, 1 + ε)-bilipschitz map

νi,j : Ei → E∞

homotopic to νi such that

• νi,j preserves singular points;
• the inverse map ν−1

i,j takes the tripods γ1(j), . . . , γN(j) into tripods
in singular leaves of the vertical foliation Vi;
• νi,j is (1+ε)-bilipschitz both in the vertical and horizontal length.

By the second property of νi,j, we can cut Ei minus the ν−1
i,j -image

of γ1(j), . . . , γN(j) into Euclidean rectangles along horizontal segments
from the endpoints of the tripods, we obtain a traintrack structure Ti,j
on the complement which is isomorphic to T∞,j as fat-traintracks— the
same construction as the traintrack structure T∞,j on E∞ \γ1(j)∪· · ·∪
γN(j) .

In Section 4.3, we constructed, from the traintrack structure T∞,j, a
decomposition E∞,j = (∪N ′k=1Rj,k)∪ (∪Nh=1Qj,h) into rectangles Rj,k and
hexagons Qj,h.

Similarly, let mi,j > 0 be the shortest width of the (rectangular)
branches of Ti,j. For each h = 1, . . . , N , the inverse-image ν−1

i,j (γh(j))
is also a tripod embedded in a singular leaf of Vi. Let Qi,j,h be the
hexagon which is the (mi,j/3)-neighborhood of the tripod ν−1

i,j (γh(j)) in
the horizontal direction. Then, removing, the hexagonal part Qi,j,1 ∪
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· · · ∪ Qi,j,N from the rectangular branches of Ti,j, we obtain thiner
rectangles Ri,j,1, . . . , Ri,j,N ′ . We thus obtain a decomposition Ei,j of Ej

(∪N ′k=1Ri,j,k) ∪ (∪Nh=1Qi,j,h)

into the hexagonal Qi,j,1, . . . , Qi,j,N and the rectangles Ri,j,1, . . . , Ri,j,N ′ ,
which have disjoint interiors.

We can isotopy νi,j : Ei → E∞ takes the decomposition Ei,j to the
decomposition E∞,j, keeping the properties in Lemma 5.2.

Proposition 5.3. For every ε > 0, there are Iε > 0, Jε > 0 and Ji > 0
with Ji → ∞ as i → ∞, such that if i > Iε and Jε < j < Ji, then for
all s > 0. There is a (1− ε, 1 + ε)-bilipschitz map

ν ′i,j : Ei → E∞

homotopic to νi such that

• ν ′i,j preserves the singular points;
• ν ′i,j induces an isomorphism between polygonal decomposition

Ei,j = (∪N ′k=1Ri,j,k) ∪ (∪Nh=1Qi,j,h)→ E∞,j = (∪N ′k=1Rj,k) ∪ (∪Nh=1Qj,h);

and
• ν ′i,j is (1 + ε)-bilipschitz both in the vertical and horizontal di-

rections.

Similarly to E∞(s) in §4.1, for each s ≥ 0, we let Ei(s) be the marked
flat structure on S obtained by stretching Ei by exp(s) in the horizontal
direction, so that Ei(s) is conformally equivalent to Xi(s). Similarly
to f∞,s : E∞ = E∞(0)→ E∞(s), we let fi,s : Ei(0)→ Ei(s) denote this
stretch map by exp(s) so that fi,s reallizes the best quasi-conformal
distorsion between Ei(0) and Ei(s).

Then, by fi,s, the polygonal decomposition Ei,j = (∪kRi,j,k)∪(∪hQi,j,h)
descends to a polygonal decomposition of Ei(s); we set

Ei,j(s) = (∪N ′k=1R
s
i,j,k) ∪ (∪Nh Qs

i,j,h).

Then, the (1− ε, 1 + ε)-bilipschitz map

ν ′i,j : Ei → E∞

induces

νsi,j : Ei(s)→ E∞(s)

so that f∞,s ◦ νi,j = νsi,j ◦ fi,s. Since the mapping fi,s and f∞,s both
stretch Ei and E∞ by exp(s) in the horizontal direction, νsi,j rerains the
properties of ν ′i,j, and we obtain the following corollary.
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Corollary 5.4. Under the same assumption, for all s > 0, the mapping

νsi,j : Ei,j(s)→ E∞,j(s)

is a (1− ε, 1 + ε)-bilipschitz map such that

• νsi,j gives a polygonal isomorphism

Ei,j(s) = (∪kRs
i,j,k) ∪ (∪Qs

i,j,h)→ E∞,j(s) = (∪kRs
j,k) ∪ (∪Qs

j,h)

• this induces isomorphism is (1+ε)-bilipschitz both in the vertical
and horizontal directions.

5.2. Convergence of decompositions of hyperbolic surfaces. In
§5.1, we constructed a Euclidean polygonal decomposition Ei,j of Ei
which converges to the Euclidean polygonal decomposition E∞,j of E∞
as i→∞. In this subsection, we construct a corresponding polygonal
decomposition of τi,j converging to the polygonal decomposition τ∞,j.

By the convergence (σi, Li)→ (σ∞, L∞) implies the following Lemma.

Lemma 5.5. For every ε > 0, there are constants Iε > 0, Jε > 0 and
a sequence Ji > 0 with Ji → ∞ as i → ∞, such that, if i > Iε and
Jε < j < Ji, then, there are

• a (1− ε, 1 + ε)-bilipschitz map

υi,j : σi,j → σ∞,j

homotopic to the diffeomorphism υi, and
• an ε-nearly straight traintrack τi,j on σi combinatorially isomor-

phic to τ∞,j,

such that

• υi,j induces a (1− ε, 1 + ε)-bilipschitz isomorphism of traintrack
neighborhoods

τi,j → τ∞,j,

and
• the Li-weights of τi,j are (1 − ε, 1 + ε)-bilipschitz close to the
L∞-weights of τ∞,j (on the corresponding branches).

Recall, from §4.3, that the polygonal decomposition σ∞,j = (∪kRj,k)∪
(∪Qj,h) carrying L∞ is constructed from the ε-nearly straight traintrack
τ∞,j so that it realizes E∞,j = (∪N ′k=1Rj,k) ∪ (∪Nh=1Qj,h) carrying V∞.

Recall that the Euclidean polygonal decompositionEi,j = (∪kRi,j,k)∪
(∪hQi,j,h) of Ei carries the vertical foliaiton Vi. Then we can similarly
construct a corresponding polygonal decomposition

σi,j = (∪N ′k=1Ri,j,k) ∪ (∪Nh=1Qi,j,h)

carrying Li, where Ri,j,k and Qi,j,h are rectangles and hexagons with
horocyclic horizontal edges and with vertical edges in Li, such that
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• σi,j = (∪N ′k=1Ri,j,k) ∪ (∪Nh=1Qi,j,h) is combinatorially isomorphic
to Ei,j = (∪N ′k=1Ri,j,k) ∪ (∪Nh=1Qi,j,h) by a marking-preserving
homeomorphism σi to Ei;
• moreover σi,j = (∪kRi,j,k) ∪ (∪Qi,j,h) carries L∞ in the same

as Ei,j = (∪N ′k=1Ri,j,k) ∪ (∪Nh=1Qi,j,h) carries V∞, respecting the
identification of the geodesic measured lamination Li and the
measured foliation Vi;
• the union of the horizontal edges of Ri,j,k and Qi,j,h is the union

of (horocyclic) horizontal edges of τi,j;

As the polygonal decomposition σi,j is geometrically determined by
the nearly-straight traintack neighborhood τi,j, Lemma 5.5 implies the
following.

Proposition 5.6. For every ε > 0, there are Iε > 0, Jε > 0 and Ji > 0
with Ji → ∞ as i → ∞, such that, if i > Iε and Jε < j < Ji, then,
there is a (1− ε, 1 + ε)-bilipschitz map

υ′i,j : σi,j → σ∞,j

homotopic to υi, such that

• υ′i,j induces a (1−ε, 1+ε)-bilipschitz isomorphism between polyg-
onal decompositions

σi = (∪kRi,j,k) ∪ (∪Qi,j,h)→ σ∞ = (∪kRj,k) ∪ (∪Qj,h),
and
• the Li-weights of (∪kRi,j,k)∪(∪Qi,j,h) are (1−ε, 1+ε)-bilipschitz

close to the L∞-weights of (∪kRj,k)∪ (∪Qj,h) on the correspond-
ing horizontal edges of the polygonal decompositions.

In §4.3, we see that the grafting of σ∞ along sL∞ transforms the
polygonal decomposition σ∞,j = (∪kRj,k) ∪ (∪Qj,h) to a polygonal de-
composition of GrsL∞σ∞

GrsLσ∞ = (∪kRs
j,k) ∪ (∪Qsj,h)

for s ≥ 0. Similarly, by the grafting of σi along sLi (s ≥ 0) , the
polygonal decomposition

σi,j = (∪kRi,j,k) ∪ (∪Qi,j,h)
induces a polygonal decomposition

GrsLiσi,j = (∪kRs
i,j,k) ∪ (∪Qsi,j,h),

where Rs
i,j,k is a rectangle obtained by grafting Ri,j,k along the restric-

tion of Li to Ri,j,k and Qsi,j,h is a hexagon obtained by grafting Qi,j,h
along the restriction of Li to Qi,j,h.
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Then, since the way σi,j carries Li geometrically converges to the
way σ∞,j carries L∞, we Proposition 5.6 implies that the convergence
of grafted decompositions.

Corollary 5.7. Under the same assumption, for all s > 0, there is a
(1− ε, 1 + ε)-bilipschitz map

υsi,j : GrsLiσi,j → GrsL∞σ∞,j

homotopic to υi, such that υsi,j induces a C1-smooth (1 − ε, 1 + ε)-
bilipschitz isomorphism

σi = (∪kRs
i,j,k) ∪ (∪Qsi,j,h)→ σ∞ = (∪kRs

j,k) ∪ (∪Qsj,h).

5.3. Uniform quasi-conformal mappings. By compositing the C1-
smooth bilipschitz mappings, we obtain a desired quasi-conformal map-
ping with small distortion.

Proof of Theorem 5.1. For every ε > 0, there are Iε > 0, Jε > 0, Ji > 0
with Ji → ∞ as i → ∞ and sε > 0, such that, if i > Iε and Jε < j <
Ji, and s > sε, combining the quasi-conformal mappings with small
distorsion

νsi,j : Ei,j(s)→ E∞,j(s)

in Corollary 5.4,

υsi,j : GrsLiσi,j → GrsL∞σ∞,j

in Corollary 5.7,

Φs
j : Gr

d exp(s)
L∞

→ E∞(s)

in Proposition 4.6, we obtain a desired (1+ε)-quasiconformal mapping,

Ei(s))
νsi,j−−→ E∞(s)

(Φsj)
−1

−−−−→ Gr
exp s/d
L∞

σ∞(s)
(υsi,j)

−1

−−−−→ Gr
exp s/d
Li

σi(s)

(see Figure 14). 5.1

6. Uniform approximation of grafting rays by integral
grafting

Recall that σi is a sequence of marked hyperbolic structures on S
and νi : S → S is a diffeomorphism such that νiσi converges to σ∞ ∈ T

as i→∞. Moreover, Li is a maximal measured lamination on σi such
that νiLi converges to the maximal measured lamination L∞ on σ∞ as
i→∞.

Gupta showed that every grafting ray is conformally well-approximated
by a sequence of integral grafting toward infinity; see [Gup14, Lemma
6.19]. In this section, following Gupta’s idea, we show that the family
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−1(υsi,j)
−1(υsi,j)
−1(υsi,j)
−1(υsi,j)
−1(υsi,j)
−1(υsi,j)
−1(υsi,j)
−1(υsi,j)
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Figure 14. The composition (υsi,j)
−1◦ζsj,k◦νsi,j from Rs

j,k

to Rs
i,j,k.

of graftring rays grsLiσi (s ≥ 0) is well-approximated by the integral
graftings of σi in a uniform manner.

Theorem 6.1. For every ε > 0, there are Iε > 0 and sε > 0 such that,
if i > Iε and s > sε, then there is a multiloop M = Mi,s with weights
multiples of 2π, such that

dT(grsLi(σi), grMi,s
(σi)) < ε,

where dT denotes the Teichmüller distance.

The rest of this section is the proof of Theorem 6.1,

6.1. Uniform approximation of grafting lamination rays. By
the convergence νi(τi, Li) → (τ∞, L∞), we can take a nearly-straight
traintrack neighborthood of Li convering to a nearly-straight traintrack
neighborhood of L∞.

Lemma 6.2. For all ε > 0, there are Iε > 0, Jε > 0, and Ji > 0 with
Ji → ∞ as i → ∞, such that, if i > Iε and Jε < j < Ji, then we can
take an ε-nearly-straight traintrack neighborhood τi,j = ∪N ′k=1Ri,j,k of Li
on σi and an ε-nearly straight traintrack neighborhood τ∞,j = ∪N ′k=1Rj,k,
such that

• there is a (1− ε, 1 + ε)-bilipschitz map νi,j : σi → σ∞ homotopic
to νi which takes τi,j to τ∞,j, and
• the bilispchitz constsnts of νi,j : σi → σ∞ both converge to one

as i→∞.

Let ∪Nh=1∆i,j,h denote the complement σi \ τi,j where ∆i,j,h are (tri-
angular) connected components. Let ε > 0. Then, for i > Iε and
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Jε < j < Ji, we have the decomposition

σi,j = (∪N ′k=1Ri,j,k) ∪ (∪Nh=1∆i,j,h)

of σi into reclantular branches Ri,j,k of τi,j and the triangular comple-
ments ∆i,j,h, so that Ri,j,k and ∆i,j,h have disjoint interiors.

Lemma 6.3 (see Lemma 6.14 in [Gup14]). For every i = 1, 2, . . . and
j = 1, 2, . . . , there is Ki,j > 0 such that for every measured lamination
L carried by τi,j, there is a multiloop M carried by τi,j such that, for
each branch R of τ , the difference of the weights of L and M on R is
less than Ki,j.

Recall that the traintrack structure of τi,j is identified with τ∞,j by
the diffeomorphism νi : σi → σ∞, and combinatorially independent on
i = 1, 2, . . . . Moreover there are only finitely many combinatorial types
of Γi, we can take Ki,j independent of the indices.

Corollary 6.4. There is K > 0 such that, for every i = 1, 2, . . . ,∞
and j = 1, 2, . . . and every measured lamination L carried by τi,j, there
is a multiloop M carried by τi,j such that, for each branch R of τ , the
difference of the weights of L and M on R is less than K.

Proposition 6.5. Pick arbitrary ε > 0 and arbitrary J > Jε, so that,
there is Iε,J > 0 such that, if i is sufficiently large, then Jε < J < Ji
and the ε-nearly-straight traintrack neighborhood τi,J of Li exists by
Lemma 6.2.

Then, there are sε,J > 0 and Iε,J > 0 such that, if i > Iε,J and
Jε < j < Ji, and s > sε,J , then the geodesic representative of the
multiloop M s

i,J in Lemma 6.3 on σi is carried by τi,J (without isotopy).

Proof. Fix ε > 0, and let τ ε∞,J is an ε-nearly straight traintrack on
σ∞ carring L∞ from Lemma 6.2. if a neighborhood Ui of L∞ in PML
is suffiicently small, then τ ε∞,J carries all geodesic laminations on σ∞
whose proejctive class contained in Uε. For sufficiently large i, let τ εi,J
be an ε-nearly striaght traintrack on σi carrying Li, so that νi(σi, τi,J)
converges to (σ∞, τ∞).

Then, as the bilispchiz constants of νi,j converge to one, if the neigh-
borhood Uε of [L∞] in PML is sufficientely small, then there is Iε,J > 0
such that the ε-nearly straight traintrack τ εi,J contains all geodesic lam-
inations whose projective classes are in Uε. Let M s

i,J be the geodesic
multiloop on σi so that the difference of the weights of sLi and M s

i,J is
less than KJ on each branch of τi,J .

We can pick sufficiently large sε,J > 0 so that if s > sε,J and i > Iε,
then the projective class of M s

i,J is contained in Uε. Thus the geodesic
multiloop M s

i,J is carried by τ εi,J (without isotopy). �
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6.2. 2π-grafting of nearly straight traintracks. Recall that, for
Jε < J , τi,J is the ε-nearly-straight traintrack neighborhood of Li on
σi, and

σi,J = (∪N ′k=1Ri,J,k) ∪ (∪Nh=1∆i,J,h)

is the traintrack decomposition of τi,J such that horizontal edges of
Ri,J,k are contained in leaves of the horocyclice lamination λi of (σi, Li).

Consider the projective grafting of σi along sLi. Since Li is carried
by τi,J , the above traintrack decomposition of σi induces a traintrack
decomposition of GrsLiσi for s ≥ 0, and we set

GrsLiσi = (∪N ′k=1R
s
i,J,k) ∪ (∪Nh=1∆i,J,h),

where Rs
i,J,k are grafting of Ri,J,k along the restriction of sLi to the

branch Rs
i,J,k.

By Proposition 6.5, there are Iε,J > 0 and sε,J , such that the train-
track τi,J carries the geodesic representative of M s

i,J on τi for i > Iε,J
and s > sε,J . Then, similarly, the traintrack decomposition σi,J induces
a traintrack decomposition of the grafting of σi along M s

i,J as follows.
Along each loop m of M s

i,J , the grafting GrMs
i,J

inserts an Euclidean

cylinder of width 2π times the weight along M s
i,J (in Z≥0) in Thurston

metric. Then, for each branch Ri,J,k, the restriction of M s
i,J to Ri,J,k

is a geodesic multi-arc connecting horizontal horocyclic edges. Then,
let RMs

i,J,k denote the grafting of Ri,J,k along the multi-arc. In Thurston
metric, along each arc of the multiarc, it inserts an Euclidean rectangle
of length equal to the length of the arc and width equal to 2π times
the weight of the arc. Then the induced traintrack decomposition is

GrMs
i,J
σi = (∪N ′k=1R

Ms
i,J,k) ∪ (∪Nh=1∆i,J,h).

6.3. Model Euclidean Traintracks. Let Fi(sLi) be the Euclidean
traintrack which represents the sum of the structure inserted to the
hyperbolic traintrack τi,j by GrsLi . Namely,

• Fi(sLi) is diffeomorphic to τi,j = ∪N ′k=1Ri,j,k as fat traintracks.
• the branch of Fi(sLi) corresponding to Ri,j,k is a Euclidean rec-

tangle of length equal to the length of Ri,j,k and width equal to
the weight of sLi on Ri,j,k.

Similarly, let Fi(M
s
i,j) be the Euclidean traintrack representing the

sum of the structure inserted to τi,j along M s
i,j. Namely,

• Fi(M s
i,j) is diffeomorphic to τi,j = ∪N ′k=1Ri,j,k as fat traintracks,

and
• if the branch of Fi(M

s
i,j) corresponding to Ri,j,k, the it is a

Euclidean rectangle of length equal to the length of Ri,j,k and
width equal to the weight of M s

i,j on Ri,j,k.



February 17, 2025 39

Each branch of the grafted train track GrsLiτi,j is foliated by nearly-
horocyclic foliation and nearly-straight foliation orthogonal to it. Let

ξsLi : GrsLiτi,j → Fi,j(sLi)

be the straightening mapping defined similarly to the proof of Lemma 4.8
using the nearly-horocyclic foliation and nearly-straight foliation or-
thogonal to it. Namely,

• ξsLi takes horizontal foliation of GrsLiτij to the horizontal foli-
ation of Fi,j(M

s
i,j), and

• ξsLi is linear on each vertical edge of GrsLiτi,j with respect to
vertical distance.

Then, by the construction of Fi,j(sLi) we have the following.

Proposition 6.6. For every ε > 0, there are Iε > 0, Jε > 0, sε > 0
such that, if i > Iε, s > sε, then

ξsLi : GrsLiτi → Fi,Jε(sLi)

is a (1 + ε)-bilipschitz homeomorphism.

Proof. Similarly to the proof of Lemma 4.8, for every ε > 0, given
sufficiently large Jε > 0, one can prove the derivatives of ξMs

i,j
in both

horizontal and vertical directions are ε-close to one. This implies the
assertion. �

As GrMs
i,j

inserts to each branch Ri,j,k of τi,j Euclidean rectangles

rectangles along the geodesic arcs of M s
i,j|Ri,j,k, The grafted branches

RMs

i,j,k have horizontal and vertical foliations obtained by the obvious
horizontal and vertical foliations of the rectangle and the nearly-horocyclic
and nearly-straight foliations of Ri,j,k. The similarly Let

ξMs
i,j

: GrMs
i,j
τi → Fi,j(M

s
i,j)

be the straightening mapping defined similarly to ζsj,k in the proof of
Lemma 4.8.

Proposition 6.7. For every ε > 0, there are Iε > 0, Jε > 0, sε > 0
such that, if i > Iε, s > sε, then

ξMs
i,Jε

: GrMs
i,j
τi → Fi,Jε(M

s
i,Jε)

is a (1− ε, 1 + ε)-bilipschitz mapping.

Recall that the boundary of the traintrack τi,j on σi is identified both
with the boundary of Fi,j(sLi) by ξsLiand the boundary of Fi,j(M

s
i,j) by

ξMs
i,j

. Thus we have a canonical “identity” mapping ∂ζsi,j from ∂Fi,j(sV )

to ∂Fi,j(M
s
i,j) by composing those idnetifications. With respect to this
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identification, endpoints of horizontal leaves of Fi,j(sLi) coincide with
endpoints of horizontal leaves of Fi,j(M

s
i,j), since the constructions of

GrMs
i,j
τi and GrsLiτi preserve horizontal leaves.

Therefore, We can finally define a C1-diffeomorphism ζsi,j : Fi,j(sV )→
Fi,j(M

s
i,j) so that

• ζsi,j coincides with ∂ζsi,j on the boundary of Fi,j(sV ), and
• ζsi,j linear on each horizontal leaf of Fi,j(sLi) with respect to arc

length.

Proposition 6.8. For every ε > 0, if J > 0 is sufficient large, then
there are Iε > 0, sε > 0 such that, if i > ε and s > sε, then the above
piecewise C1-diffeomorphism ζsi,j : Fi,j(sLi)→ Fi,j(M

s
i,j) is a (1− ε, 1 +

ε)-bilipschitz map.

Proof. For an arbitaray branch Ri,j,k of τi,j, let RL and RM be its
corresponding branches of Fi,j(sLi) and Fi,j(M

s
i,j), respectively. Then

the width of RL is the weight of sLi on Ri,j,k, and the width of RM is
the weight of M s

i,j on Ri,j,k. As sε > 0 is sufficiently large, the ratio of
the width of RL and RM is ε-close to one by Corollary 6.4. Therefore,
under the assumption of the assertion, ζsi,j is (1− ε, 1 + ε)-bilipschitz in
the horizontal direction.

By the definition of Fi,j(sLi) and Fi,j(M
s
i,j), the lengths of the corre-

sponding branches are the same. Since τi,j are sufficiently straight, ζsi,j
is (1− ε, 1 + ε)-bilipschitz in the vertical direction as well.

Since ζsi,j : Fi,j(sLi)→ Fi,j(M
s
i,j) is a (1− ε, 1 + ε)-bilipschitz in both

vertical and horizontal direction, the proposition follows. �

6.8

Corollary 6.9. For every ε > 0, if J > 0 is sufficient large, then there
are Iε > 0, sε > 0 such that, if i > ε and s > sε, then the mapping
ξ−1
sMs
◦ ζi,j,s ◦ ξsLi is a (1 + ε)-quasiconformal mapping from

GrMsτi → GrsV τi

which is the identity on the boundary.

Proof. By Proposition 6.8, Proposition 6.6, Proposition 6.7, under the
assumotion of the corollary, the mappings ξ−1

sMs
, ζi,j,s and ξsLi are all ε-

quasicnoformal mapping with small distorision. Therefore the assertion
follows immediately.

�

We completed the proof of Theorem 6.1.
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Figure 15.

7. Proof of the main theorem

In this section, we prove our main theorem.

Theorem 7.1. Let X, Y be distinct Riemann surface structures in T∪
T∗. There is an infinite sequence (CX,i, CY,i)

∞
i=1 ∈ B of distinct pairs

such that ψ(CX,i) = X and ψ(CY,i) = Y for all i = 1, 2, . . .

We prove Theorem 7.1 by induction. Suppose that we have n pairs

(CX,1, CY,1), . . . , (CX,n, CY,n)

in Ψ−1(X, Y ). Then we shall find a new pair (CX,n+1, CY,n+1) in Ψ−1(X, Y ).
Then, for each i = 1, . . . , n, there are bounded open neighborhoods Ui
of (CX,i, CY,i) in B and Wi of (X, Y ) in a connected component of
(T ∪ T∗)2 \∆, such that the restriction of Ψ to Ui is a finite branched
covering map onto Wi ([Bab23, Theorem A]).

Let W be the (open) connected component of the intersection W1 ∩
W2∩· · ·∩Wn containing (X, Y ). Then it suffices to show the following.

Proposition 7.2. There is (C,D) ∈ B such that (ψ(C), ψ(D)) is in
W and Hol(C) = Hol(D) 6∈ ∪nh=1Hol(Uh).

Indeed, if we find such a pair (C,D), then we take a path (Xt, Yt), t ∈
[0, 1] in W connecting (ψ(C), ψ(D)) to (X, Y ). Let (Ct, Dt), t ∈ [0, 1]
be the lift of (Xt, Yt) to B such that

• (C0, D0) = (C,D), and
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Figure 16. Lifting the parth (Xt, Yt)

• (ψ(C1), ψ(D1)) = (X, Y ).

Claim 7.3. (C1, D1) is different from all given n pairs (CX,1, CY,1), . . . , (CX,n, CY,n).

Proof. Suppose, to the contaray, that (C1, D1) = (CX,i, CY,i) for some
i ∈ {1, . . . , n}. Then, the lifted path (Ct, Dt), t ∈ [0, 1] is entirely con-
tained in Ui, since Ψi : Ui → Wi is a finite branched covering map
and W (⊂ Wi) contains the path (Xt, Yt). Accordingly Hol(Ct) =
Hol(Dt), t ∈ [0, 1] is entirely contained in Hol(Ui). In particular, the
initial holonomy Hol(C0) = Hol(D0) = Hol(C) = Hol(D) is in Hol(Ui).
This contradicts Proposition 7.2. Therefore, we conclude that (C1, D1)
is a new pair in Ψ−1(X, Y ). �

We prove Proposition 7.2 in the remaining of §7.

7.1. When the orientations of X and Y are the same. In this
subsection, supposing that the orientation of X coincides with that of
Y , we prove Proposition 7.2. We, in addition, assume that X, Y ∈ T,
and the proof in the case X, Y ∈ T∗ is essentially the same.

Then pick a sufficiently small ε > 0 so that W contains the product
of the ε-negihborhood of X and the ε-neighborhood of Y in T w.r.t.
the Teichmüller metric.

There is a unique Teichmüller geodesic passing X and Y . By per-
turbing it, we obtain a “generic” Teichmüller geodesic R : R→ T pass-
ing the ε/3-neighborhood of X and the ε/3-neighborhood of Y such
that

• its corresponding quadratic differential q has only simple zeros,
and
• The projection of the ray R(−∞, 0] towrad −∞ is dense in the

moduli space M of Riemann surfaces.
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Figure 17.

Let V denote the vertical (singular) measured foliation of R. Since q
has only simple zeros, each singular point of V has three prongs.

Let [R(t)] ∈ M denote the unmarked Riemann surface structure of
R(t). Let 0 > t1 > t2 > . . . be a sequence diverging to −∞, such that

• its unmarked sequence [R(ti)] converges to Z ∈M and
• the tangent vector [R′(ti)] also converges in the unite tangent

space T 1M at Z as i→∞.

For each i = 1, 2, . . . , let σi be the marked hyperbolic structure
on S corresponding to the marked Riemann surface R(ti) by the uni-
formization theorem. Let Li ∈ ML denote the measured geodesic
lamination on σi representing the vertical measured foliation V . Let
grtLiσi ∈ T (t ≥ 0) be the conformal grafting ray from σi along Li.

For each i = 1, 2, . . . , define Ri : R → T by Ri(s) = R(ti + s), the
reprametrization of the Teichmüller geodesci R with the base point
shifted backward to R(ti).

By Theorem 5.1, for every ε > 0, there are Iε > 0 and sε > 0 such
that, if i > Iε, then

dT(Ri(s), gr
di exp(s)
Li

σi) < ε/3

for all s > sε. Since Ri passes through the ε
3
-neighborhoods of X and

Y , if i > Iε, then grtViσi passes through the 2
3
ε-neighborhood of X and

the 2
3
ε-neighborhood of Y . Thus, i > Iε, there are siX , s

i
Y > sε, such

that

dT(X, gr
di exp(siX)

Li
σi) < 2ε/3,

and

dT(Y, gr
di exp(siY )

Li
σi) < 2ε/3.

By Theorem 6.1, there is sε > 0 such that, for sufficiently large i, if
s > sε, there is a multi-loop Ms such that

dT(gr
di exp(s)
Li

(σi), grMs
(σi)) <

ε

3
.
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Figure 18. Approximating the Riemann surfaces X
and Y by integral grafting

If i is sufficiently large, then ti < −sε. By this inequality, there are
multiloops MX = MX,i and MY = MY,i on S with weight in 2πZ>0

such that

dT(gr
di exp(siX)

Li
(σi), grMX

(σi)) <
ε

3

and

dT(gr
di exp(siY )

Li
(σi), grMY

(σi)) <
ε

3

By combining the inequalities above and the triangle inequality, we
obtain

dT(X, grMX,i
(σi)) < ε

and

dT(Y, grMY,i
(σi)) < ε.

(See Figure 18.)
The holonomy representation of the marked hyperbolic surface σi is

a discrete and faithful representation ρi : π1(S)→ PSL2R unique up to
conjugation by PSL2R. Since R(ti) = Ri(0) leaves every compact in T

as i → ∞, thus σi diverges to infinity and accordingly ρi diverges to
infinity in the character variety χ. Thus ρi leaves every compact subset
in the character variety as i→∞.

Then GrMX
(σi) is a CP1-structure with holonomy ρi and its un-

derlying Riemann surface structure is ε-close to X, and GrMY
(σi) is

a CP1-structure with holonomy ρi and its underlying Riemann sur-
face structure is ε-close to Y in the Teichmüller metric. Therefore,
by the condition of ε when being picked, (grMX

(σi), grMY
(σi)) ∈ W .

As Ui is a bounded subset of B, ∪nh=1Hol(Uh) is a bounded subset of
χ. Thus, if i is sufficiently large, then ρi 6∈ ∪hHol(Uh). Therefore
(GrMX

σi,GrMY
σi) ∈ B has holonomy outside of ∪hHol(Uh) and the

pair of their Riemann surface structures is in W , as desired.
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7.2. When the orientations of X and Y are the opposite. We
last prove Proposition 7.2, supposing that the orientations of X and
Y are opposite. The proof is basically the same as in the other case
(§7.1) if we appropriately reverse the orientation of the surface.

We can assume, without loss of generality, that X ∈ T and Y ∈ T∗.
Let Y ∗ be the complex conjugate of Y , so that Y ∗ ∈ T.

Similarly to §7.1, pick ε > 0 so that the product of the ε-negihborhood
of X in T and the ε-neighborhood of Y is contained in

W = W1 ∩W2 ∩ · · · ∩Wn.

Let R : R → T be a “generic” Teichmuller ray in T passing the ε/3-
neighborhood of X and the ε/3-neighborhood of the complex conjugate
Y ∗ such that

• its corresponding quadratic differential has only simple zeros,
and
• R(t) is dense in the moduli space M of Riemann surfaces as
t→ −∞.

Let t1 > t2 > . . . be a sequnce such that

• ti → −∞ as i→∞;
• the unmarked Riemann surface [R(ti)] converges to Z in the

moduli space M as i→∞;
• the tangent vectore [R′(ti)] converges in the unite tangent vector

of M at Z as i→∞.

For each i = 1, 2, . . . , let σi be the marked hyperbolic structure on S
uniformizaing R(ti). Let ρi : π1(S) → PSL2R be the discrete faithful
representation corresponding to the hyperbolic surface σi.

As X, Y ∗ ∈ T, by Section 7.1, for sufficiently large i,

• ρi 6∈ ∪ni=1Hol(Ui),
• there are a multiloop MX and MY on σi such that

d(X, grMX
σi) < ε, d(Y ∗, grMY ∗

σi) < ε,

• (GrMX
(σi),GrMY ∗ (σi)) ∈ B.

Clearly, the conjugate σ∗ of the hyperbolic structure σ is a hyper-
bolic structure on S∗ with holonomy ρi. Let MY denote the mul-
tiloop on Y corresponding to MY ∗ on Y ∗ by the complex conjuga-
tion, so that MY and MY ∗ represent the same loop on the unoriented
surface Σ. Therefore d(Y ∗, grMY ∗

σi) < ε implies d(Y, grMY
σ∗i ) < ε.

Hence (grMX
σi, grMY

σ∗i ) ∈ W . Therefore, if i is sufficiently large, the
projective grafting pair (GrMX

σi,GrMY
σ∗i ) in B has holonomy outside

∪ni=1Hol(Ui), and the pair of their Riemann surface structures is in W ,
as desired.
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