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Abstract. We characterize a certain neck-pinching degeneration of (marked) CP1-
structures on a closed oriented surface S of genus at least two. In a more general
setting, we take a path of CP1-structures Ct (t ≥ 0) on S which leaves every compact
subset in its deformation space, such that the holonomy of Ct converges in the PSL2C-
character variety as t → ∞. Then it is well known that the complex structure Xt

of Ct also leaves every compact subset in the Teichmüller space of S. In this paper,
under an additional assumption that Xt is pinched along a loop m on S, we describe
the limit of Ct from different perspectives: namely, in terms of the developing maps,
holomorphic quadratic differentials, and pleated surfaces.

The holonomy representations of CP1-structures on S are known to be non-elementary
(i.e. strongly irreducible and unbounded). We also give a rather exotic example of
such a path Ct whose limit holonomy is the trivial representation.
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1. Introduction

Let S be a (connected) closed oriented surface of genus at least two, throughout this
paper. For a (marked) CP1-structure C on S, the holonomy of C is a homomorphism
π1(S) → PSL2C uniquely determined up to conjugation by PSL2C; see §2.2. This
correspondence yields the holonomy map

Hol : P→ χ,

where P (∼= R12g−12) is the deformation space of all CP1-structures on S and χ is
the PSL2C-character variety of S. Note that there are many CP1-structures whose
holonomy is not discrete.

Hejhal [Hej75] proved that Hol is a local homeomorphism (moreover, it is a local
biholomorphic map [Hub81], [Ear81]). However, it is not a covering map onto its image
([Hej75]). Thus it is a natural question to ask how the path-lifting property fails:

Problem 1.1. (Kapovich [Kap95, Problem 1], see also [GKM00, Problem 12.5.1].) Let
Ct (t > 0) be a path of CP1-structures on S such that

(1) Ct leaves every compact subset in P at t→∞, and
(2) the holonomy ηt ∈ χ of Ct converges to η∞ ∈ χ as t→∞.

What is the asymptotic behavior of Ct?

In this paper, we give various limiting behaviors to answer Question 1.1 in the
“neck-pinching” case.

1.1. Pinching loops on Riemann surfaces. For each t ≥ 0, let Xt denote the
complex structure on S induced by Ct. Then, by the work of Kapovich ([Kap95], see
also [GKM00, Dum17] ), the conditions (1) and (2) imply that Xt must also leave every
compact subset in the Teichmüller space T (see Corollary 2.3).

We focus on the following basic type of degeneration of Xt. Given a path Xt ∈ T ,
Xt is pinched along a loop m if

• lengthXtm→ 0, and
• if an essential loop ` in S \m is not homotopic to m, then lengthXt ` is bounded
between two positive numbers for all t ≥ 0.

Here “ lengthXt ” is either the extremal length of Xt or the hyperbolic length of the
uniformization of Xt. (In the augmented Teichmüller space, this definition of pinching
is equivalent to saying that Xt accumulates to a compact subset of the boundary
stratum corresponding to m being pinched.)

A multiloop is a union of disjoint finitely many essential simple closed curves. Then,
similarly, we say that Xt is pinched along a multiloop M on S, if,

• for each loop m of M , lengthXtm→ 0 as t→∞, and
• for each loop ` in S \M not homotopic to a loop of M , lengthXt ` is bounded
between two positive numbers for all t ≥ 0.

The quasi-Fuchsian representation π1(S)→ PSL2C is a discrete faithful representa-
tion whose limit set is a Jordan curve in CP1, the quasi-Fuchsian Space QF is an open
subset of the character variety χ. There is no path Ct in Problem 1.1, whose limit ho-
lonomy η∞ is in QF. On the other hand, a dense subset of the boundary of QF consists



S.Baba 3

of holonomy representations of CP1-structures pinched along loops ([McM91]), and it
has been quite important to study such degeneration for the study of Klein groups.

1.2. Asymptotic behaviors. One of our main results is that tr η∞(m) must be ±2.
In other words, the holonomy along m at t = ∞ corresponds to either (i) a parabolic
element (which is not the identity) or (ii) the identity of PSL2C. We will describe, in
both Cases (i) and (ii), the asymptotic behavior of Ct from three different perspectives
of CP1-structures:

(A) A holomorphic quadratic differential on a marked Riemann surface homeomorphic
to S (Schwarzian parameters).

(B) A hyperbolic structure on S and a measured lamination, which induces an equi-
variant pleated surface H2 → H3 (Thurston parameters).

(C) A developing map f : S̃ → CP1 and a holonomy representation ρ : π1(S)→ PSL2C.
(Developing pair)

The residue of a meromorphic quadratic differential q at a pole is the integral of
±√q around the pole, which is well-defined up to sign (see [GW19]). Given a pole
of order two, letting r be its residue, q is expressed as r2/z−2dz2 for an appropriate
parametrization in a neighborhood of the pole (see [Str84, Theorem 6.3]).

Let X be a nodal Riemann surface, and let X̊ be the smooth part of X. Then the
normalization X of X is the smooth Riemann surface together with a continuous map
ξ : X → X such that ξ is a biholomorphic in ξ−1(X̊) and for each node p of X, ξ−1(p)
consists of exactly two points. A regular quadratic differential on X is a meromorphic
quadratic differential q̄ on X such that

• every pole of q̄ has an order at most two and it maps to a node of X, and
• if z1, z2 on Z map to the same node on X, then the residue around z1 is equal
to that of z2

(see [Ber74] [LZ]).

For Perspective (A), the path Ct corresponds to a path of pairs (Xt, qt), t ≥ 0 in
Schwarzian coordinates, where Xt is a marked Riemann surface homeomorphic to S
and qt is a holomorphic quadratic differential qt on Xt for all t ≥ 0.

Theorem A. • Suppose that Xt is pinched along a loop m. Then, exactly one of
the following holds:
(i) Xt converges to a nodal Riemann surface X∞ with a single node, and qt

converges to a regular quadratic differential on X∞ such that the node is
at worst a pole of order one (Theorem 10.12.)

(ii) For every diverging sequence 0 ≤ t1 < t2 < . . . , up to a subsequence,
Xti converges to a nodal Riemann surface X∞ with a single node and qti
converges to a regular quadratic differential q∞ on X∞ such that the residue
of each pole is a non-zero integral multiple of

√
2π. (Theorem 13.20.)

• Suppose that Xt is pinched along a multiloop M consisting of n loops. Then,
for every diverging t1 < t2 < . . . , there is a subsequence such that Xti converges
a nodal Riemann surface X∞ with n nodes and qt converges to a meromorphic
quadratic differential q∞ on X∞ such that each node of X∞ is, at most, a pole
of order two. (Corollary 7.6.)
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The convergence of the holomorphic quadratic differential in Theorem A is normal
convergence, and in particular, the CP1-structure Ct converges to the CP1-structure
corresponding to (X∞, q∞) minus the node, uniformly on every compact subset.

The space of homomorphisms π1(S)→ PSL2C is called the representation variety,
and the character variety χ is the GIT-quotient of the representation variety (see §3).
In order to obtain an equivariant object as a limit of Ct, we pick a (continuous) lift
ρt : π1(S)→ PSL2C of ηt ∈ χ, such that ρt converges, as t→∞, to a homomorphism
ρ∞ : π1(S) → PSL2C which maps to η∞. In fact, we prove the existence of such a lift
in Proposition 3.2, since it is not obvious when η∞ is an elementary representation.

Note that for every discrete faithful representations π1(S) → PSL2C, there is a
unique equivariant continuous map ∂∞π1(S) ∼= S1 → CP1 called the Cannon-Thurston
map ([Mj14]). This map is closely related to the question which we consider, by
identifying the ideal boundary of S̃ with S1.

Let N be a regular neighborhood of the loop m in S. For t ≥ 0, let Ct ∼= (τt, Lt)
be Thurston parameters, where τt is a path of marked hyperbolic structures on S and
Lt is a path of measured laminations on S (§2.2.2). Fixing a marking ιt : S → τ in its
isotopy class, (τt, Lt) yields to a ρt-equivariant pleated surface βt : S̃ ∼= H2 → H3, which
changes continuously in t ≥ 0. Then, in fact, βt converges to a continuous equivariant
map:

Theorem B. Suppose that Xt is pinched along a loop m. Then, by taking an appro-
priate path of markings ιt : S → τt (t ≥ 0) , exactly one of the following holds:

(i) ρ∞(m) ∈ PSL2C is a parabolic element, and βt : S̃ → H3 converges to a ρ∞-
equivariant continuous map β∞ : S̃ → H3∪CP1 uniformly on compact subset, such
that β−1∞ (CP1) is a π1(S)-invariant multicurve on S̃ which is π1(S)-equivariantly
homotopic to φ−1(m), where φ : S̃ → S is the universal covering map. (Theorem
10.5).

(ii) ρ∞(m) is the identity in PSL2C, and, for every sequence 0 ≤ t1 < t2 < . . .
diverging to ∞, up to a subsequence, βti : S̃ → H3 converges to a ρ∞-equivariant
continuous map β∞ : S̃ → H3 ∪ CP1 such that β−1∞ (CP1) descends either to the
loop m or to a subsurface isotopic to one or two components of S \N (§13.0.1.)

Let ft : S̃ → CP1 be the developing map of Ct which is a ρt-equivariant local
homeomorphism. As Ct changes continuously in t, we may assume that ft also changes
continuously in t ≥ 0. Such a family (ft) is unique up to a path of isotopies S → S in
t ≥ 0 homotopic to the identity.

Pick a regular neighborhood Nof m. Pick a component Ñ of φ−1(N). By abuse
of notation, we regard the loop m also as the element of π1(S) which preserves Ñ .
We show that the developing map ft converges in the complement of φ−1(N), and the
asymptotic behavior on ∂φ−1(N) is well controlled by the holonomy ρt(m). Hyperbolic
structures are in particular CP1-structures. If a hyperbolic surface has a cusp, it has a
neighborhood obtained by quotienting a horodisk in H2 by the cyclic group generated
by a parabolic holonomy around the puncture.

Theorem C. Suppose that Xt is pinched along a loop m. Then, by an appropriate
isotopy of S in t ≥ 0 homotopic to the identity, exactly one of (i) and (ii) holds.

(i) • ρ∞(m) is parabolic;
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• the cusps of C∞ have horodisk quotient neighborhoods;
• ft : S̃ → CP1 converges to a ρ∞-equivariant continuous map f∞ : S̃ → CP1

uniformly on compact subset, and moreover, there is a multiloop M which is
a union of finitely many parallel copies of m such that f∞ is a local homeo-
morphism exactly on S̃\φ−1(M), and f∞ takes each component m̃ of φ−1(M)
to its corresponding parabolic fixed point (Theorem 10.9).

(ii) ρ∞(m) = I, and for every diverging sequence t1 < t2 < . . . , up to a subsequence,
• the restriction of fti to S̃ \φ−1(N) converges to a ρ∞-equivariant continuous
map f∞ : S̃ \ φ−1(N)→ CP1, and
• Axis(ρti(m)) converges to a geodesic in H3 or a point in CP1 so that f∞ takes
the boundary components of Ñ onto the ideal points (in CP1) of limi→∞Axis(ρti(m))
(Theorem 13.1), where Axis(ρti(m)) is the convex hull of the fixed point on
CP1 (Definition 3.6).

Remark 1.2. If a general CP1-structure has a cusp with parabolic peripheral holonomy,
there is its cusp neighborhood isomorphic to either a horodisk quotient or a grafting of
a horodisk quotient. (See Proposition 5.2.)

A (2π-)grafting is a cut-and-paste operation of a CP1-structure, and it yields a new
CP1-structure with the same holonomy, by inserting an appropriate cylinder along an
(admissible) loop ([Gol87], see also [Kap01, Bab20]). Let n be the number of parallel
copies of m constituting M in (i). Then there is another diverging path C ′t of CP1-
structure on S with holonomy ρt and a path of admissible loops m′t on C ′t for t � 0
such that Ct is obtained by 2π(n− 1)-grafting of C ′t.

In fact, Cases (i) and (ii) in Theorem A, Theorem B, and Theorem C correspond.
In particular, the Type (i) degeneration occurs on the boundary of the quasi-Fuchsian
space, by pinching a loop on a Bers slice.

On the other hand, Type (ii) degeneration is new indeed. In particular, ηt must be
a non-discrete representation for all sufficiently large t > 0, possibly except at t = ∞
(Theorem 13.21). Notice that if the peripheral loop of a cusp of a CP1-structure
has trivial holonomy, then the CP1-structure can be deformed without changing its
holonomy (of the entire surface), by moving the cusp (c.f. Theorem 5.6). Then, since
ρ∞(m) = I, therefore it is necessary to take a subsequence. In §14, we give examples
of Type (ii) degenerations.

Next, we explain a certain uniform bound of Ct, which yields the convergence of
Ct away from the pinched loop m. This uniform bound holds for a more general path
Ct with a multiloop being pinched. The integration of √qt along paths on Xt yields a
singular Euclidean structure Et on Xt such that a zero of order d of qt is the singular
point of cone angle (d/2 + 1)π of Et (see for example, [FM12, Str84]). Recall that the
upper injectivity radius of Et is the supremum of the injectivity radii over all points in
Et (as Et is compact it is indeed maximum).

Theorem D. (Theorem 6.1) Suppose that Xt is pinched along a multiloop. Then the
upper injectivity radius of Et for all t ≥ 0 is bounded from above.

It is a classical theorem that the holonomy map Hol is a local homeomorphism for
the closed surface S. In the limit of Ct, we have a CP1-structure with cusps, such
that cusp points are at most poles of order two in the Schwarzian coordinates. The
holonomy theorem is proved for such CP1-surfaces cusps by Luo ([Luo93]) if punctures
have non-trivial peripheral holonomy. In this paper, we prove a more general holonomy
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theorem (Theorem 5.6) for the developing pairs of CP1-structures allowing trivial holo-
nomy around punctures. We apply this holonomy theorem for the convergence on Ct in
every thick part as t→∞. This holonomy theorem is given by appropriately enlarging
the character variety, and this enlargement is a certain ramification of the framed repre-
sentation space introduced by Fock and Goncharov ([FG06]). (For recent developments
on CP1-structure corresponding to higher order poles, see [GM21, AB20].)

Gallo, Kapovich, and Marden algebraically characterized the image of Hol; in
particular, it is almost onto one of the two components of the character variety χ
([GKM00]). To be more precise, ρ : π1(S) → PSL2C ∈ Im Hol if and only if Im ρ is
non-elementary and ρ lifts to a homomorphism from π1(S) into SL(2,C). As an ex-
ample of Type (ii) degeneration, we construct a path Ct whose holonomy limits to an
elementary representation, or even to the trivial representation in the representation
variety (§14).

If the holonomy of a CP1-structure around a puncture is trivial, as stated above, the
CP1-structure can be deformed around the puncture without changing the holonomy of
the entire surface. A non-elementary subgroup of PSL2C has a non-trivial stabilizer, a
similar difficulty occurs when the limit holonomy of a component of S\m is elementary.
As a result of such flexibility, we have rather exotic degenerations described in Case
(ii) of Theorem B and Theorem C.

One may certainly hope that some of the results extend to a more general setting
of Problem 1.1. In particular, Theorem D may hold in general:

Conjecture E. In the setting of Problem 1.1 (without the neck-pinching assumption),
let Et be the singular Euclidean structure on Xt given by the Schwarzian parameters of
Ct. Then the upper injectivity radius of Et is bounded from above uniformly in t ≥ 0.

Recall that ρt (t ≥ 0) is a topological path in the character variety χ which converges
to ρ∞ as t → ∞ without any regularity assumption. It is plausible that Cases (ii) in
Theorem A, Theorem B and Theorem C do not occur if ρt has a one-side derivative at
t =∞ (in the ambient affine space of χ).

Conjecture F. Suppose that Xt is pinched along a loop m. If the path ρt is tangential
at t =∞, Then η∞(m) ∈ PSL2C is a parabolic element (not equal to the identity I).

1.3. Outline of this paper. In §2, we recall CP1-structures, the Schwarzian param-
eters, Thurston parameters, and the Epstein surfaces for CP1-structures. In §3, we
prove a lifting property of paths in the character variety to paths in the representation
variety. In §4, we give some estimates of the Epstein surfaces, based on Dumas’ work
[Dum17]. In §5, we prove a holonomy theorem for the space of developing pairs of
CP1-structures on surfaces with punctures, where punctures are at most poles of order
two. In §6, we show that there is an upper bound for the upper injectivity radius of
Et for all t ≥ 0.

In §7, we show that Ct converges on every thick part as t→∞, so that Ct converges
to a CP1-structure on a surface with two punctures homeomorphic to S \ m. In §8,
we state our main theorems and prove some properties of developing maps of a surface
with punctures. The limit holonomy around m can only be parabolic or the identity.
This will be shown, in §11 and §12. In §10, we determine the asymptotic behavior
of Ct when ρ∞(m) is parabolic. In §13, we give the asymptotic behavior of Ct when
ρ∞(m) = I.

In §14, we give new examples realizing (ii) in Theorem A, Theorem B, Theorem C.
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2. Preliminaries

2.1. Hyperbolic geometry. Let τ be a hyperbolic structure on S. Let L be a geo-
desic measured lamination on τ . Given a geodesic loop m on τ , for a point x in the
intersection of m and L, let ∠x(L,m) ∈ [0, π) denote the intersection angle of of the
leaf L and m intersecting at x. Then, the angle ∠τ (m,L) ∈ [0, 1) between L and m
be the maximum of ∠x(L,m) over all intersection points x ∈ L ∩m if L ∩m 6= ∅, and
∠τ (m,L) = 0 if L ∩m = ∅.

Let φ : H2 → τ denote the universal covering map. Then the φ-inverse image L̃ of
L is a π1(S)-invariant measured lamination on H2. The pair (τ, L) induces a bending
map β : H2 → H3 which is equivariant via an associated homomorphism ρ : π1(S) →
PSL2C. This mapping β is defined by bending the universal cover H2 of τ along L,
where the bending angle is given by the transversal measure of L̃ ([EM87]). Then
the pair (τ, L) determines β : H2 → H3 uniquely up to PSL2C; thus the pair (β, ρ) is
identified with (α ◦ β, αρα−1) for α ∈ PSL2C.

It follows from Corollary 4.3 in [Bab15] (see also Theorem 5.1 in [Bab17]) that, if a
geodesic loop on τ intersects the lamination in a small angle, then the holonomy along
the loop must be hyperbolic.
Theorem 2.1. There is a universal constant δ > 0 such that if ∠τ (L,m) < δ, then
ρ(m) is hyperbolic.

Proof. Let m̃ be a lift of m to the bi-infinite geodesic in the universal cover τ̃ = H2.
Then, the restriction of β to m̃ is a (1 + ε)-bilipschitz embedding (Corollary 4.3 in
[Bab15]). Since β is ρ-equivariant, ρ(m) is a hyperbolic element whose axis connects
the ideal point of the bilipschitz embedding β(m̃). �

2.2. CP1-structures. (General references of CP1-structures are found in [Dum09,
Kap01].)

A CP1-structure C, or a complex projective structure, on S is a (CP1,PSL2C)-
structure, i.e. an atlas of charts embedding into CP1 with transition maps given by
PSL2C.

Let S̃ be the universal cover of S. Then, equivalently, a CP1-structure is a pair
(f, ρ) of a local homeomorphism f : S̃ → CP1 and a homomorphism π1(S) → PSL2C
such that f is ρ-equivariant. The map f is called the developing map and ρ is called
the holonomy representation of C.

The pair is defined up to PSL2C, i.e. (f, ρ) ∼ (αf, αρα−1) for all α ∈ PSL2C.
Thus the holonomy is in the character variety χ = Hom(π1(S),PSL2C) � PSL2C.

2.2.1. Schwarzian parametrization. Each CP1-structure corresponds to a holomorphic
quadratic differential q on a marked Riemann surface X. Thus the deformation space
P of CP1-structures is an (affine) vector bundle over the Teichmüller space T, such that
a fiber over a Riemann surface X is the vector space Q(X) of holomorphic quadratic
differentials on X (in fact, it is the cotangent bundle). In this paper, considering the
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projection map Π: P→ T given by the uniformization, we regard the space of marked
hyperbolic structures on S as our real analytic zero section.

Although Hol : P → χ is a highly non-proper map ([Hej75]), for each X ∈ T, the
restriction of Hol to the space Q(X) is a proper embedding onto a complex analytic
subvariety of χ (see [GKM00, Theorem 11.4.1] and its proof). Moreover

Theorem 2.2 ([Kap95, Tan99]). For every compact subset K of T, the restriction of
Hol to Π−1(K) is a proper map.
Corollary 2.3. Suppose that Ct ∈ P leaves every compact subset in P and its holonomy
ρt converges in χ. Then the complex structure Xt of Ct also leaves every compact subset
in T as t→∞.

2.2.2. Thurston’s parametrization of CP1-structures. ([KP94a, KT92], see also [Bab20].)
Thurston gave a homeomorphism

P ∼= T×ML,

where T is the space of marked hyperbolic structures on S and ML is the space of
measured laminations on S.

A pair (τ, L) ∈ T×ML yields a pleated surfaceH2 → H3 equivariant under the holo-
nomy π1(S)→ PSL2C of its corresponding CP1-structure on S. Given a CP1-structure
C on S, its associated collapsing map κ : C → τ is a marking preserving continuous
map which relates the developing map and the bending map of C. First, there is a
measured lamination L on C consisting of circular leaves, such that topologically L
is obtained by replacing each periodic leaf ` of L by cylinder foliated circumferences
so that the weight of ` is equal to the total transversal measure of the foliated cylin-
der. The collapsing map κ, conversely, collapses such foliated cylinders of L to their
corresponding periodic leaves of L, and κ takes the strata of L to the strata of L.

Moreover, κ relates the developing map f : S̃ → CP1 and the pleated surface
β : H2 → H3 in an equivariant manner: For each z ∈ S̃, let Bz be the maximal ball
in C̃ whose core contains z. Let Ψz : Bz → Conv∂∞Bz ⊂ H3 denote the orthogonal
projection, where Conv∂∞Bz is the hyperbolic plane (support plane) bounded by the
boundary circle. Then, in fact, the commutativity

β ◦ κ̃(z) = Ψzf(z),

holds equivariantly, where κ̃ : C̃ ∼= H2 → τ̃ be the lift of κ to a map between universal
covers. Note that there is a canonical normal direction of the support plane Conv∂Bz
at Ψzf(z) toward f(z).

2.3. Epstein maps. Let C = (X, q) be a CP1-structure on S in the Schwarzian
coordinates, where X is the complex structure of X, and q is a holomorphic quadratic
differential on X. Then, the integration of √q along paths yields a singular Euclidean
metric E on X in the same conformal class (see for example [FM12]). In the complex
plane, the lines parallel to the real axis give a foliation of C, and it has a transversal
measure induced by the vertical length (horizontal measured foliation). Similarly, the
lines parallel to the imaginary axis give a foliation ofC, and it has a transversal measure
induced by the horizontal length (vertical measured foliation). Then, by pulling back
the vertical and the horizontal foliations of C, we obtain a vertical singular measured
foliation V and a horizontal singular measured foliation H on E, where the singular
points are the zeros of the differential q. Moreover H and V are orthogonal, and the
vertical and the horizontal foliation of C are orthogonal.

Given a point x ∈ H3, we can normalize the unit disk model of H3 so that x is
the center of the disk; then the ideal boundary of H3 has the spherical metric uniquely
determined by x ∈ H3.
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Theorem 2.4 (Epstein [Eps]). Given a CP1-structure C = (f, ρ) on S, there is a
unique continuous ρ-equivariant map Ep: X̃ → H3, such that, for every point z ∈ X̃,
the Euclidean metric of Ẽ at z agrees with the spherical metric at f(z) ∈ CP1 when
CP1 is identified with S2 so that Ep(z) ∈ H3 is at the center of the disk model of H3.

Moreover Ep: X̃ → H3 is smooth away from the singular points of Ẽ (see Equation
(3.1) in [Dum17]).

Let UH3 denote the unit tangent bundle of H3. Then Ep lifts to a (Lagrangian)
immersion Ep∗ : TẼ → U(H3) ([Dum17, Lemma 3.2]) which is a unit normal vector of
the surface Ep: X̃ → H3 in the complement of the singular points of E. For z ∈ X̃, let
d(z) denote the Euclidean distance from z to the set Z of the zeros of the differential
q.

Lemma 2.5 (Lemma 2.6, Lemma 3.4 in [Dum17]). Let h′(z) and v′(z) be the horizontal
and vertical unit tangent vectors at z ∈ X̃ \ Z̃. If 6

d(z)2
< 3

4 , then

(1) ‖Ep∗ h
′(z)‖ < 6

d(z)2
,

(2)
√

2 < ‖Ep∗ v
′‖ <

√
2 + 6

d(z)2
,

(3) h′(z), v′(z) are the principal directions of Ep at z, and
(4) |kv| < 6

d(z)2
, where kv is the curvature of Ep in the v-direction.

3. A lifting property of paths in the character variety

Definition 3.1. A representation ρ : π1(S) → PSL2C is elementary if Im ρ fixes a
point in H3 ∪ CP1 or preserves two points on CP1. Equivalently, ρ is elementary if
Im ρ is strongly irreducible and Im ρ is unbounded in PSL2C. Otherwise ρ is called
non-elementary.

Let R denote the PSL2C-representation variety of S, the space of representations
π1(S) → PSL2C. By fixing a generating set γ1, . . . , γn, the topology of R is the
restriction of the product topology on PSL2Cn, which is independent on the choice of
γ1, . . . , γn. The Lie group PSL2C acts on R by conjugation, and its GIT-quotient

Ψ: R → χ = {π1(S)→ PSL2C} � PSL2C
is called the PSL2C-character variety of S.

Each fiber of this GIT-quotient is an extended orbit equivalence class: Namely, for
ρ1, ρ2 : π1(S) → PSL2C, ρ1 ∼ ρ2 if and only if the closure of the PSL2C-orbit of ρ1
intersects that of ρ2 in R. In fact, equivalently ρ1 ∼ ρ2 if and only if tr2 ρ1(γ) =
tr2 ρ2(γ) for all γ ∈ π1(S) [HP04]. In particular, for a non-elementary representation
π1(S) → PSL2C, its PSL2C-orbit is a closed subset of PSL2C and form a single
equivalence class ([New]). For ρ ∈ R, let [ρ] denote it equivalent class Ψ(ρ) in χ.

Proposition 3.2. Suppose that Ct (t ≥ 0) is a one-parameter family of CP1-structures
on S, such that its holonomy ηt ∈ χ converges to η∞ ∈ χ. Then ηt lifts a path ρt ∈ R
which converges to ρ∞ ∈ R as t→∞, so that [ρ∞] = η∞.

Remark 3.3. The limit η∞ can be an elementary representation (§14), and thus this
proposition is nontrivial. In addition, there is η ∈ R with [η] = ρ∞ such that there is
no lift ηt of ρt ending at η.

Proof of Proposition 3.2. Fix a generating set γ1, . . . , γn of π1(S). We divide the proof
into three cases:
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(1) η∞ is non-elementary.
(2) η∞ is elementary and there is γ ∈ PSL2C such that η∞(γ) is hyperbolic, i.e.

tr2(γ) ∈ C \ [0, 4].
(3) η∞ is elementary and there is no hyperbolic element in its image, i.e. tr2 η∞(γ) ∈

[0, 4] for all γ ∈ π1(S).

Case 1.
Lemma 3.4. Suppose that η∞ is non-elementary. For every lift ρ∞ ∈ R of η∞ ∈ χ,
there is a lift ρt ∈ R of the path ηt ∈ χ such that ρt → ρ∞ as t→∞.

Proof. Over non-elementary representations, Ψ is a fiber bundle with fibers PSL2C.
This implies the lemma. �

Case 2. Suppose that η∞ is elementary and there is γ ∈ π1(S) such that η∞(γ) is
hyperbolic. Then, if ρ ∈ Ψ−1(η∞), letting ` be the axis of the hyperbolic element ρ(γ),
we have either:

(i) Im ρ preserves ` and contains an elliptic element which reverses the orientation of
`, or

(ii) Im ρ pointwise fixes the endpoints of ` on CP1.

Case (i). Suppose that ρ ∈ Ψ−1(η∞) contains an elliptic element which exchanges
the endpoints of `.

Claim 3.5. There are generators γ1, γ2, . . . , γn of π1(S), such that, for each i =
1, . . . , n,

(1) ρ(γi) is a hyperbolic element for i = 1, . . . , n− 1, and
(2) ρ(γn) is an elliptic element of order two about a geodesic orthogonal to `.

Proof. By the hypothesis, one can pick generators γ1, γ2, . . . , γn of π1(S), such that
ρ(γ1) is a (nontrivial) hyperbolic element. Then we can, in addition, assume that
ρ(γ2), . . . , ρ(γn) are not I, by composing γi (i ≥ 2) with γ1 if necessary. If ρ(γi) is
an elliptic element preserving the orientation of `, then ρ(γ1γi) is hyperbolic— thus
without loss of generality, we can assume that if ρ(γi) is an elliptic element, it must
reverse the orientation of `. Suppose that ρ(γi) and ρ(γj) are both elliptic elements
reversing the orientation of `; then ρ(γiγj) preserves the orientation of `. Thus, by
replacing γj with γiγj , we can reduce the number of the generators which map to
elliptic elements reversing the orientation of `. We can repeat such replacements of
generators, we obtain a desired generating set. �

Let γ1, γ2, . . . , γn be the generating set of π1(S) obtained by Claim 3.5. We show
that there is indeed a lift ρt in R of ηt converging to ρ as t→∞.

One can easily find a lift ρt (t ≥ 0) so that ρt(γ1) converges to ρ(γ1). Then
Axis(ρt(γ1)) must converge to `. For all 1 ≤ i ≤ n − 1, Axis(ρt(γi)) and Axis(ρt(γn))
are asymptotically orthogonal, as η∞ is an equivalence class of some elementary rep-
resentation. In particular, we can in addition assume that ρt(γn) converges to ρ(γn),
so that Axis(ρt(γn)) converges to a geodesic m orthogonal to `. Then, for 1 < i < n,
Axis(ρt(γi)) converges `, since it is asymptotically orthogonal to m and η∞ is elemen-
tary. Thus ρt converges to ρ as t→∞.

Case (ii). Next suppose that ρ ∈ Ψ−1(η∞) preserves the endpoints of `. Then, sim-
ilarly to Claim 3.5, we can find a generating set γ1, . . . , γn such that η∞(γ1), . . . , η∞(γn)
are all hyperbolic elements (i.e. tr2 η∞(γi) ∈ C \ [0, 4]).

Pick any lift ρt of ηt for t ≥ 0 (which may not converge as t→∞).
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Fix a PSL2C-invariant metric on the projectivized unit tangent bundle PT1H3

of H3. Then, given two geodesics `1, `2 in H3, we can measure their distance by
embedding `1 and `2 into the bundle. Thus, similarly, for all 1 ≤ i, j ≤ n, the distance
between Axis(ρt(γi)) and Axis(ρt(γj)) goes to zero as t→∞, since otherwise η∞ is an
equivalent class of some non-elementary representations due to the limit of ρt(γi) and
ρt(γj). Thus we can continuously conjugate ρt by elements of PSL2C so that all axes
of ρt(γ1), . . . , ρt(γn) converge to geodesics sharing an endpoint. Therefore ρt converges
as t→∞ by this normalization.

Case 3. Suppose that Im η∞ contains no hyperbolic elements. Given an elliptic
element and a parabolic element in PSL2C sharing a fixed point on CP1 then their
product is an elliptic element. Therefore we can pick generators γ1, . . . , γn of π1(S),
such that η∞(γi) are either all elliptic or all parabolic: In fact, given a generating
set γ1, . . . , γn, if the η∞-image of at least one γi is elliptic, then by replacing γj with
parabolic η∞(γj) with γiγj , we obtain a generating set with elements whose η∞-images
are all elliptic. Pick any lift ρt ∈ R of the path ηt ∈ χ for t ≥ 0, which may not
converge as t→∞.
Definition 3.6. For γ ∈ PSL2C, the axis of γ is the convex hull of the fixed point set
in H3 ∪CP1 of γ, and we denote it by Axis(γ) ⊂ H3 ∪CP1.

In particular, if γ is hyperbolic or elliptic, Axis(γ) is a geodesic in H3 plus its
endpoints in CP1, and if γ is parabolic, Axis(γ) is a single point on CP1. Clearly an
ideal point of Axis(γ) is a fixed point of γ on CP1.

Suppose that γ, ω ∈ PSL2C be hyperbolic or elliptic elements with axes `γ , `ω. As
above, we measure the distance between `γ , `ω by embedding them into the projective
unit tangent bundle of H3.
Lemma 3.7. (1) Suppose that η∞(γi) and η∞(γj) are both elliptic for distinct 1 ≤

i, j ≤ n. Then the distance between Axis(ρt(γi)) and Axis(ρt(γj)) in PT1(H3)
limits to zero as t→∞.

(2) Suppose that η∞(γi), η∞(γj), η∞(γk) are all elliptic for distinct 1 ≤ i, j, k ≤ n.
Then there is a lift ρt ∈ R of ηt for t ≥ 0, such that Axis(ρt(γi)), Axis(ρt(γj)),
and Axis(ρt(γk)) converge to geodesics sharing a common endpoint on CP1.

Proof. (1) If there is a diverging sequence 0 < t1 < t2 < . . . such that the distance
between Axis(ρt(γi)) and Axis(ρt(γj)) in PT1(H3) is bounded from below by a positive
number, then η∞ is non-elementary. This is a contradiction.

(2) By (1), if the assertion of (2) fails, there is a lift ρt such that Axis(ρt(γi)),
Axis(ρt(γj)), and Axis(ρt(γk)) converge to the distinct edges of an ideal triangle in H3.
Then, η∞ is non-elementary against the hypothesis. �

Corollary 3.8. Suppose that there is a generating set {γ1, . . . , γn} of π1(S), such
that η∞(γ1), . . . , η∞(γn) are all elliptic. Then, there is a lift ρt ∈ R of ηt such that
ρt(γ1), . . . , ρt(γn) converge to elliptic elements whose axes share an endpoint on CP1.

Last we suppose that η∞(γ1), . . . , η∞(γn) are all parabolic, and we show that there
is a lift of ρt of ηt to R such that ρt converges to the trivial representation.

Pick a base point O ∈ H3. For each t ≥ 0, let δt,i = dH3(O, ρt(γi)O). Let it ∈
{1, . . . , n} be such that

δt,it = max
1≤i≤n

δt,i.

Lemma 3.9. Let t1 < t2 < . . . be a sequence diverging to ∞, such that, at ttk , the
indices itk ∈ {1, . . . , n} (k = 1, 2, . . . ) defined above are a fixed constant h. Suppose that
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there is a sequence ωtk ∈ PSL2C such that the conjugation ωtkρtk(γh)ω−1tk =: ωtk·ρtk(γh)

converges in PSL2C, as k →∞, to a parabolic element
(

1 u
0 1

)
in PSL2C with u 6= 0.

Then, for every j = 1, . . . , n, the conjugation ωtk· ρtk(γj) accumulates to a bounded

subset of
(

1 C
0 1

)
which has a diameter less than |u| in C.

Proof. First we show that, unless ωtk·ρtk(γj) → I, the limit of the fixed point set of
ωtk·ρtk(γj) ⊂ CP1 must converge to {∞}. Suppose, to the contrary, that this assertion
fails. Then, up to a subsequence, the limit set of the fixed point set of ωtk·ρtk(γj) ⊂ CP1

converges to a point on CP1 not equal to ∞. For sufficiently large positive integers
p, ωtk·ρtk(γhγ

p
i ) are hyperbolic elements and their translation lengths diverge to ∞ as

p → ∞([GKM00, Lemma 2.1.1 (iii)]). This contradicts that Im η∞ consists of only
parabolic elements.

For each k = 1, 2, . . . , set

(1) ωtk· ρtk(γj) =
(
aj,k bj,k
cj,k dj,k

)
Thus cj,k → 0 and aj,k, dj,k → 1 as k → ∞. Then the definition of h implies that

btk,h −max1≤i≤n btk,i → 0. Hence we have the upper bound on the image in C. �

By a straight computation, we obtain the following.
Corollary 3.10. For every j = 1, . . . , n, let sj,k > 0 be a sequence in k, such that

sj,k → 0 and
√
|cj,k|
sj,k

→ 0. Then, using the notation from (1), we have

(2)
(
sj,k 0
0 s−1j,k

)(
aj,k bj,k
cj,k dj,k

)(sj,k 0
0 s−1j,k

)
→
(

1 0
0 1

)
as k →∞.

Moreover, Corollary 3.10 implies that the sequence maxj=1,...,n sj,k in k yields the
convergence (2) for all j = 1, . . . , n. Therefore we have the following.

Proposition 3.11. There is a continuous path ωt ∈ PSL2C such that ωt · ρt(γi) accu-

mulates to a bounded subset of parabolic elements in
(

1 C
0 1

)
for each i. Therefore there

is a continuous path ωt ∈ PSL2C such that ωt ·ρt converges to the trivial representation
in R.

We have completed the proof for all cases. 3.2

3.1. Approximation of moduli. Let E be a singular Euclidean surface induced by
a holomorphic quadratic differential on a Riemann surface X. A regular annulus AE
is a cylinder embedded in E such that there is a closed geodesic loop ` on E and the
annulus AE is foliated by loops equidistant from `. Minsky gave a useful approximation
of the modulus of cylinders.

Theorem 3.12 ([Min92], Theorem 4.6; see also [Ser12], Theorem 6.2). Let E be a sin-
gular Euclidean surface induced by a holomorphic quadratic differential on a Riemann
surface X. There are constant 0 < c < 1 depending on the topology of the surface, such
that, for every essential annulus A embedded in X, there is a regular annulus AE in E
homotopy equivalent to A satisfying Mod(EA) > cMod(A).
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4. Holonomy estimates away from zeros

In this section, based on Dumas’ work on Epstein surfaces [Dum17], we give some
further analysis of the Epstein surfaces in the horizontal direction. We use Dumas’
notations as below. Let g1 = eα1|dz|, g2 = eα2|dz| be two conformal metrics on a
Riemann surface; then the Schwarzian derivative of g2 relative to g1 is the quadratic
differential

B(g1, g2) = [(α1)zz − α22z − (α1)zz + (α1)
2
z]dz

2.

Let C = (X, q) be a CP1-structure on S. Then, we set the following notations associ-
ated with C:

• Let τ be the hyperbolic metric on S uniformizing X;
• let |√q| denote the singular Euclidean metric on X obtain by integrating √q
along paths;
• let gCP1 be the spherical metric on CP1 given by some conformal identification
CP1 ∼= S2;
• let f : X̃ → CP1 be the developing map of C, and f∗(gCP1) be the pull back of
the conformal metric gCP1 by f to the universal cover X̃.

Then set

ω = 2B(τ, f∗(gCP1)),

ω̂ = 2B(|√q|, f∗(gCP1)),

ν = 2B(σ,
√
q),

which are holomorphic quadratic differentials on X̃.

4.1. Curvature of Epstein surfaces in the horizontal direction. Let kh and kv
be the principle curvatures of Ep: X̃ → H3 in the horizontal and the vertical directions,
respectively. First by Equation 3.7 in [Dum17]

kv =
|ω̂| − |ω|
|ω̂|+ |ω|

.

As the Gaussian curvature κhκv = 1 ( [Dum17, p448]), we have

kh =
|ω̂|+ |ω|
|ω̂| − |ω|

.

In addition, recalling that h′ denotes a unit tangent vector in the horizontal direction
at a non-singular point, we have

‖Ep∗ h
′‖2 =

(|ω̂| − |ω|)2

2|ωω̂|

(Equation 3.6 in [Dum17, p448]). Therefore

(kh‖Ep∗(h
′)‖)2 = (

|ω̂|+ |ω|
|ω̂| − |ω|

)2 · (|ω̂| − |ω|)2

2|ωω̂|

= 1 +
(|ω̂|2 + |ω|2)

2|ωω̂|

= 1 +
1

2
(
|ω̂|
|ω|

+
|ω|
|ω̂|

).
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Since ω̂ = ω − ν ([Dum17, p447]), we have∣∣∣∣ ω̂ω
∣∣∣∣ =
∣∣∣1− ν

ω

∣∣∣ ([Dum17, p449]).

By [Dum17, Lemma 2.6], we have∣∣∣∣ ν(z)

ω(z)

∣∣∣∣ ≤ 6

d(z)2
.

Thus, recalling that d(z) is the distance from the singular points, we have
|ω̂(z)|
|ω(z)|

= 1 +O(d(z)−2), and

(kh(z)‖Ep∗(h
′(z))‖)2 = 2 +O(d(z)−2).

Therefore, we have the following.

Lemma 4.1. For all nonzero z ∈ X̃ of the differential q̃,

kh(z)‖Ep∗(h
′(z))‖ =

√
2 +O(d(z)−1).

4.2. Holonomy estimates of long flat cylinders. Let E be a singular Euclidean
surface. A flat cylinder in E is a cylinder foliated by closed geodesics. A cylinder A in
E is expanding if there is a geodesic loop ` or a puncture p on E, such that A is foliated
by a one-parameter family of circles equidistant from ` or p, respectively, whose length
strictly increases as the distance to ` or p increases.

Let Ep: X̃ → H3 be the Epstein surface of a projective structure C = (X, q) on
S. Let α : [0, 1] → C̃ ∼= X̃ be an arc such that α(0) and α(1) are in X̃ \ Z̃ and α
differentiable at both endpoints. Then the curve Ep ◦α : [0, 1] → H3 is differentiable
at both endpoints. Let ζ(α) ∈ PSL2C be such that ζ(α) takes the unit tangent vector
α′(0) to α′(1) on Ep and the unit normal Ep∗ α(0) to the unit normal Ep∗ α(1). We
call ζ(α) ∈ PSL2C the holonomy (of Ep) along α.
Definition 4.2. For α ∈ PSL2C, the rotation angle in [0, π] is the (unsigned) rotation
angle of the tangent plane of CP1 at a fixed point of α.

In the case that α has two fixed points on CP1, then the “signed” rotation angle
of α which takes a value in [−π, π]/(π ∼ −π) at a fixed point is −1 times the “signed”
rotation angle at the other fixed point, where the sign is determined by the orientation
from CP1; thus the unsigned rotation angle is well-defined in Definition 4.2.

Let (E, V ) be the singular Euclidean surface given by C = (X, q).

Definition 4.3. Let α : [0, 1] → H3 be a C1-smooth arc on the Epstein surface Ẽ →
H3. Let v(t) and h(t) denote the (unit) vector fields along α tangent to the vertical and
horizontal foliations of E, respectively.

Let ` be a geodesic in H3. Let H be the foliation of H3 by the totally geodesic
hyperbolic planes H orthogonal to `. Note that these hyperbolic planes are isometrically
identified by parallel transport along `, and thus their ideal boundary circles are also
identified diffeomorphically.

Suppose that v(t) is transversal to the foliation H. Let Ht be the leaf of H containing
α(t). The translation length of α along ` is the distance between H0 and H1 (i.e. the
length of the segment of ` between H0 and H1).

As v(t) is transversal to H, then, by the orthogonal projection H3 → Ht, the hor-
izontal tangent vector h(t) projects to a non-zero vector at the tangent space Tα(t)Ht.
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Figure 1. Isotope mi to a union of a vertical and horizontal segment.

This non-zero tangent vector determines a geodesic ray in H3 by being its initial tan-
gent direction. Let θ(t) ∈ ∂∞Ht be the endpoint of the geodesic ray in Ht given by the
tangent vector. As all ideal boundaries ∂∞Ht are identified, θ(t) ∈ S1 lifts to θ̃(t) ∈ R.
The rotation angle of α about ` is the total increase of θ̃(t), which takes a value in R.

Proposition 4.4. Let Ci = (fi, ρi) be a sequence of CP1-structures on S, and let
(Ei, Vi) be the pair of a singular Euclidean structure Ei and a vertical foliation Vi on
Ei induced by the Schwarzian parameters of Ci. Suppose that there are a loop m on
S, a geodesic representative mi of m on Ei for each i, and a flat cylinder Ai in Ei
contains mi, such that

• mi is in the middle of Ai, so that Ai \ mi is a union of two isometric flat
cylinders,
• Mod(Ai)→∞ as i→∞, and
• the height ai of Ai diverges to ∞ as i→∞.

Let m̄i be a segment on the universal cover Ẽi obtained by lifting the simple closed
curve mi. Then, by parametrizing m̄i by arc length s ∈ [0, length(mi)], for every ε > 0,
if i > 0 is sufficiently large, then

(1) the translation length of Epi m̄i(s) along `i is (1+ε)-bi-Lipschitz to
√

2 (Re
∫
mi

√
qt),

(2) the total rotation angle of Ep m̄i about `i is (1+ε, ε)-bi-Lipschitz to to
√

2 (Im
∫
mi

√
qt),

and

Proof. Isotopemi in Ai, fixing a point onmi, so thatmi is a union of a vertical segment
ui and a horizontal segment wi (Figure 1). Then mi remains close to the middle of Ai.

We first analyze the vertical segment Epi |ui. In the principal direction, the normal
vector is preserved by parallel transports. Thus, the parallel transport along the curve
Σi|ui yields the holonomy ζi(ui(s)) ∈ PSL2C. By the hypotheses, the distance from
the loop ui ∪wi and the set Zi of zeros of the differential qi diverges to ∞. Therefore,
by Lemma 2.5 (4), the curvature along Epi |ui limits to zero, and it asymptotically has
a constant speed

√
2 by Lemma 2.5 (2), so that its length is

√
2 times the Euclidean

length of ui, which yields (1).
To analyze the total rotation angle in the vertical direction, we next consider the

total curvature. In a more general setting, the following holds.

Lemma 4.5. For every ε > 0, if R > 0 is sufficiently large, then, if a vertical segment
u on a CP1-surface C has Euclidean length less than R/ε, then total curvature of the
curve Ep |u is less than ε, where Ep: C̃ → H3 is the Epstein surface of C.
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Figure 2. Infinitesimal change of the rotation angle n′(t).

Proof. The curvature of the curve Ep |u at every point on u is bounded from 6
R2 by

Lemma 2.5 (4). Since, by the hypothesis, the length of u is bounded from above by R
ε ,

the total curvature along u is bounded from above by

R

ε
· 6

R2
=

6

εR
.

Therefore, if R > 6
ε2 , then the total curvature along u is bounded from above by ε. �

In our current setting, as ai → ∞ and Mod(Ai) → ∞, one can easily show that,
for every ε, the vertical segment ui satisfies the conditions of Lemma 4.5 when i is
sufficiently large. Thus the following corollary holds.

Corollary 4.6. The total (principal) curvature of the vertical segment Epi |ui limits
to zero as i→∞.

We next show that the rotational holonomy along ui asymptotically vanishes as
i→∞.

Lemma 4.7. For every ε > 0, if R > 0 is sufficiently large, then, if a vertical segment v
on a CP1-surface C has length less than R/ε and a distance at least R from the singular
set w.r.t. the singular Euclidean structure of C, then, letting Ep be its Epstein surface,
the derivative of rotation of its Ep-image is bounded from above by ε. Moreover, the
total rotation of its Ep-image bounded from above by ε with respect to the geodesic `
connecting the endpoints of Ep.

Proof. Fix ε > 0. Let v be a vertical segment on C of length less than R/ε. Let
α : [0, `]→ H3 be the curve Ep ◦v, where ` is the Euclidean length of v. Let s(t) be the
geodesic segment in H3 connecting α(0) and α(t) for each t ∈ [0, `]. For u ∈ [0, `], let
Ep(u) be the surface which s(t) sweeps out over t ∈ [0, u], so that Ep(u) is bounded by
α([0, u]) and the geodesic segment s(u) connecting its endpoints. Then, the intrinsic
metric of Ep(u) is a hyperbolic surface. Then, if R > 0 is sufficiently large, then
Ep(u) isometrically embeds into a hyperbolic plan H2 so that its image is bounded by
a geodesic segment isometric to s(u) and a curve isometric to α(u). The curvature of
the second segment is bounded from above the curvature of α|[0, u] at every point.

Therefore, if R > 0 is sufficiently large, then the area of Ep is less than ε by the
Gauss-Bonnet theorem to Ep, since the total curvature α is small. Let n(t) denote the
unit normal vector Ep∗ at u(t). Let n′(t) be the parallel transport of n(t) along the
geodesic segment s(t), so that n′(t) be a tangent vector at α(0). By the Gauss-Bonnet
theorem, the norm of the derivative dn′(t)/dt is bounded from above by the curvature
of α and the derivative area of Ep(t) (Figure 2). Thus, the total rotation of n′(t) from
t = 0 to t = ` is bounded from above by the sum of the total curvature of α and the
total area of Ep. Therefore, by the combination of the small upper bounds above if
R > 0 is sufficiently large, the total rotation is bounded by ε. �
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Figure 3.

Next we analyze the holonomy along the horizontal segment wi. By Lemma 2.5
(1),

lengthH3 Epiwi <
6 lengthEimi

(ai/3)2
→ 0,

as i→∞.
Proposition 4.8. Let vi(t) denote the tangent vector of Epi at Epiwi(t) in the direc-
tion of Vi. For every ε > 0, if i is large enough, then along wi, Ep∗wi(t) is contained
in an ε-ball in the unit tangent bundle T1H3.

Proof. Let Ẽi be the universal cover of Ei. Pick a lift ũi of the vertical segment ui in
Ei to Ẽi. Let Ri be a Euclidean rectangle, in Ẽi, bounded by vertical and horizontal
edges, such that wi divides Ri into two isometric rectangles of half height (Figure 3,
left). We may in addition assume that the height of Ri divided by the width of Ri goes
to zero as i→∞.

The vertical foliation Vi and the horizontal foliation Hi of Ei induce a vertical and
a horizontal foliation of Ri. By Lemma 2.5 (2), for every ε > 0, if i is large enough,
the restrictions of Epi to vertical leaves in Ri are (

√
2 − ε,

√
2 + ε)-bi-Lipschitz. By

Lemma 2.5 (1), the Epi-images of the horizontal leaves in Ri have diameters less than
ε. Therefore, for sufficiently large i, the images of vertical leaves of Ri are pairwise
ε-close in the Hausdorff metric (Figure 3 below). As vi is tangent to the image of such
a vertical leaf, we have the lemma.

�

We have already shown a good approximation of the holonomy along the vertical
segment ui. For every ε > 0, if i is sufficiently large, then the translation length along
ui is (1 + ε)-bilipschitz to

√
2 times the Euclidean length of ui and the rotation is less

than ε (Lemma 4.7). On the other hand, by Proposition 4.8 and Lemma 4.1, if i is
sufficiently large, then the total rotation along the horizontal segment wi is (1 + ε, ε)-
bi-Lipschitz to

√
2 times the Euclidean length of wi and the translation is less than ε.

Thus we obtained, (1) and (2). 4.4

4.3. The exponential map and Epstein surfaces. Recall that, given aCP1-structure
C = (X, q) on S, for x ∈ C, d(x) is the Euclidean distance from the singular set of
the singular Euclidean structure E induced by the holomorphic quadratic differential
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q. Note that, if x ∈ C is not a singular point of E, then there is a neighborhood U
of x in E so that U is isometrically embedded in the Euclidean plane C ∼= E2 so that
vertical leaves of E in U map into horizontal lines of C, and horizontal leaves map into
vertical lines.

Consider the exp: C → C \ {0}. Its domain C is isometrically identified with
the Euclidean plane E2, and the codomain C \ {0} admits a push-forward Euclidean
metric. Note that this induced Euclidean metric on C \ {0} is invariant under the
dilations C→ C : z 7→ kz for all k ∈ C\{0}. Therefore, given, any two distinct points
p, q in CP1, by a conformal mapping from CP1 \ {p, q} to C \ {0}, the complement
CP1 \ {p, q} has the push-forward Euclidean metric. By abuse of notation, we denote
this composition by exp: C→ \{p, q} and call it the normalized exponential map.

Let (p, q) be the geodesic in H3 connecting p to q. Recalling that CP1 is the ideal
boundary of H3, let Ψ: CP1 \ {p, q} → (p, q) be the orthogonal projection along a
geodesic rays in H3. Let Ψ∗ : CP1 \{p, q} → T 1H3 be the map taking z ∈ CP1 \ {p, q}
to the unit tangent vector at Ψ(z) ∈ H3 which is tangent to the geodesic ray from Ψ(z)
to z ∈ ∂H3.

For r > 0, let Qr(z) be a r-neighborhood of a point z of the singular Euclidean
surface E in the L∞-metric (w.r.t. the vertical and the horizontal directions). If Qr(z)
contains no singular point, then it is a square with horizontal and vertical edges of
length 2r.

Proposition 4.9. For every ε > 0, there is R > 0 such that, if z ∈ C̃ satisfies
d(z) > R, then we have a normalized exponential map exp: C→ CP1 \ {p, q} and can
isometrically embed the 1

ε -neighborhood Q1/ε(z) of z in C exchanging the horizontal
and the vertical directions, such that, in the C0-metric,

(1) the restriction of the Epstein surface Σ to Q1/ε(z) is ε-close to w 7→ Ψ∗ exp( w√
2
),

(2) the restriction of Σ∗ to Q1/ε(z) of z is ε-close to w 7→ Ψ∗ exp( w√
2
), and

(3) the restriction of the developing map f to Q1/ε(z) is ε-close to the normalized
exponential map.

Proof. we prove the desired approximations by showing them along all leaves of the
restriction of the vertical foliation V and the horizontal foliation H to the square
Q1/ε(z).

For every ε′ > 0, by Lemma 2.5 and Lemma 4.7, if R > 0 is sufficiently large, then

(i) the restriction of Σ to each leaf of the vertical foliation V in Q 1
ε′

(z) is a smoothly
(
√

2− ε′,
√

2 + ε′)-bilipschitz embedding,
(ii) the restriction of Σ to each leaf of the horizontal foliation H in Q 1

ε′
(z) has deriv-

ative less than ε′, and
(iii) the derivative of the rotation of Σ∗ along a vertical leaf in Q 1

ε′
(z) is bounded from

above by ε′, and the total rotation along the leaf is also bounded from above by
ε′.

Pick a vertical leaf v0 in Q 1
ε
(z), and let ` be the geodesic in H3 passing through the

endpoints of the (
√

2−ε′,
√

2+ε′)-bilipschitz curve Σ|v0.We normalize the exponential
map with respect to the endpoints of this geodesic. Then (i) and (ii) implies (1) with
this normalization.
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We next show (3). We first analyze f on each vertical leaf. By (i) and (iii), the
restriction of the developing map f to v0 is ε′-close to the normalized exponential map,
by isometrically embedding e onto C ∼= E2 in the scaled Euclidean metric

√
2E (i.e.

the metric on v0 is scaled by
√

2).

The Σ-images of horizontal segments are very short curves in H3. Therefore, for
every ε′ > 0, if R > 0 is sufficiently large, then for each vertical leaf v of Q 1

ε
(z), the

restriction of f to v is ε′-close to the restriction of the normalized exponential map to
a vertical segment in C by isometrically embedding v w.r.t.

√
2E.

Next, we analyze f on horizontal leaves. Let h be a horizontal leaf in Q 1
ε
(z). Con-

sider the vector field along h consisting of the unit vectors in the vertical direction.
Then, for every ε′ > 0, if R > 0 is sufficiently large, then, as in the proof of Proposi-
tion 4.8, the image of the tangent vectors are ε′-close to each other in the C0-topology.
By the curvature estimate along the horizontal direction in Lemma 4.1, for every ε′ > 0
if R > 0 is large enough, the amount of the total rotation of f along every horizontal
segment in Q 1

ε
(z) is close to the horizontal length times

√
2. Therefore, a restriction

of f to every horizontal segment h is ε′-close to the restriction of exp when h is iso-
metrically embedded onto a horizontal segment after scaling the length of h by

√
2.

Therefore, a restriction of Σ∗ to every horizontal segment h is ε′-close to the restric-
tion of Ψ∗ exp when h is isometrically embedded onto a horizontal segment w.r.t the√

2E-metric.
We proved that the restrictions of f to horizontal and vertical leaves in Q 1

ε
(z) are

ε′-close to the normalized exponential map when Q 1
ε
(z) is isometrically embedded in

C. This immediately implies (3).
Finally (1) and (3) immediately imply (2), since f(z) and Ψ(z) determines Ψ∗(z).

4.9

5. Holonomy maps for surfaces with punctures

5.1. Classification of cusps of CP1-structures.

Definition 5.1. Let F be a surface with punctures. A CP1-structure on F is a pair
(X, q) of a Riemann surface structure X on F and a holomorphic quadratic differential
q, such that at each puncture of X, q is at most a pole of order two.

This class is a natural class to consider, especially in our setting due to the upper
injectivity radius bound (see Theorem 6.1).
Proposition 5.2. Let F be a closed surface with at least one puncture c such that
the Euler characteristic of F is negative. Let C = (f, ρ) denote a CP1-structure on
F expressed by a developing pair. Denote by `c the peripheral loop around c. Let
C ∼= (τ, L) denote Thurston parameters, and (E, V ) be the singular Euclidean structure
E with the vertical foliation V given by the Schwarzian parameters of C.

(1) Suppose that a cusp neighborhood of c in E is an expanding cylinder of infinite
modulus shrinking towards c. Then
• ρ(`c) is parabolic,
• c has a horodisk quotient neighborhood, and
• in Thurston parameters (τ, L), c also has a horodisk quotient neighborhood
where the lamination L is the empty lamination.

(2) Suppose that a cusp neighborhood of c in E is a (half-infinite) flat cylinder F
of infinite modulus. Then exactly one of the following holds.
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(a) The circumferences of F are not orthogonal to V , ρ(`c) is hyperbolic, and√
2
∫
`c

√
q is its complex translation length.

In Thurston parameters, the cusp c corresponds to boundary component b
of τ whose length is the real part of the translation length (in C/2πiZ).

(b) The circumferences of F are orthogonal to V .
• If
√

2V (`c) is not a 2π-multiple, then ρ(`c) is an elliptic element of
angle

√
2
∫
`c

√
q (∈ R). In Thurston parameters, c is a cusp of τ and

the total weight of leaves of L around c (counted with multiplicity)
is, modulo 2π, equal to the rotation angle of ρ(`c).
• If
√

2V (`c) is a 2π-multiple, then ρ(`c) is either the identity I or a
parabolic element. In Thurston parameters, c is a cusp of τ and the
total weight of L around c is the 2π-multiple.

In (2b), by “counted with multiplicity”, we mean that, if a single leaf of L has both
endpoints at c, the weight of the leaf is counted twice.

Proof. (1) We first describe an intuition, and then make it precise. As the Euclidean
distance to the cusp is finite in E, in the hyperbolic metric on X, the quadratic differ-
ential q vanishes asymptotically towards the cusp c. A Riemann surface with the zero
differential (in our parametrization) corresponds to a hyperbolic structure.

To make it precise, for t > 0, let Dt be the punctured disk of radius t centered at
c. Note that the c may be the zero of the quadratic differential q induced by C. Thus,
if t > 0 is small enough, Dt is a union of the Euclidean semi-disks of radius t foliated
by geodesics parallel to the diameter segment. Consider the restriction of q to Dt.
Then, by conformally identifying a once-punctured unit disk with Dt, the holomorphic
quadratic differential on Dt, the differential goes to zero uniformly on every compact
subset as t→∞.

The solution of the Schwarzian equation depends continuously in the differential. As
a punctured disk with the zero differential corresponds to a hyperbolic structure h with
a cusp at the puncture, and the holonomy around the cusp is parabolic. Therefore,
the developing map of Dt converges to the developing map of the hyperbolic cusp-
neighborhood structure h, which is a quotient of horodisk by the infinite cyclic group
generated by a parabolic element. By the equivariance property of the developing
maps, the holonomy of Dt around the cusp must converge to a parabolic element,
and as the holonomy of Dt around the cusp is independent of t > 0, the holonomy is
genuinely parabolic. Moreover, if one deforms a little bit the hyperbolic structure h
on the punctured disk to any other CP1-structure on the punctured disk keeping the
holonomy around the cusp parabolic, it still contains a horodisk quotient as a cusp
neighborhood. Therefore c has a horodisk quotient neighborhood in C.

In Thurston parameters, c is a cusp of τ , and L is the empty lamination in a
sufficiently small neighborhood of c.

(2) By Proposition 4.9, the developing map of the half-infinite flat cylinder becomes
closer and closer to the exponential map exp: C → C∗ as a point in the domain
approaches the cusp, where, in the domain C, the vertical direction corresponds to the
real direction and the horizontal direction corresponds to the imaginal direction (to
be precise, the exp is composed with the calling to the domain C by

√
2). Thus the

assertions about the holonomy along `c hold.
It remains only to show the description in Thurston parameters.
(2a) By Proposition 4.4, outside of a large compact set of F , all circumferences of

F are admissible loops. Therefore an appropriate neighborhood of c corresponds to an
infinite grafting cylinder. By [Bab17, Proposition 8.3], the hyperbolic surface τ has a



S.Baba 21

(possibly open) boundary component corresponding to c, and its boundary length is
indeed the translation length of the hyperbolic element ρ(`c).

(2b) The developing map in an appropriate cusp neighborhood is the exponential
map exp: C → C∗ so that the deck transformation corresponds to the translation in
the imaginary direction in the domain.

Therefore, c is a cusp of τ and the total weight of leaves of L near c must be the
length of the circumference times

√
2 (Proposition 4.4 (2)). 5.2

5.2. PSL2C and fixed points on CP1. In order to construct an appropriate holonomy
map for a surface with punctures, we will make PSL2C slightly bigger as a topological
space, by carefully pairing its elements with their fixed points on CP1. Let (CP1)2/Z2

denote the set of unordered pairs of points on CP1. Let PSL2C
∧

be the set of all pairs
(γ,Λ) ∈ PSL2C× ((CP1)2/Z2) such that

• if γ is a hyperbolic element with zero rotation (i.e. tr γ ∈ R \ [−2, 2] when γ is
lifted to SL(2,C)), then Λ is a pair of (not necessarily distinct) fixed points of
γ, and
• otherwise, Λ is the pair (a, a) of identical fixed points a ∈ CP1 of γ.

We call the pair Λ a framing. In particular, if γ = I, then Λ can be (a, a) for any
a ∈ CP1. The second case also includes the case where γ is a hyperbolic element with
non-zero torsion. (By abuse of notation, if Λ is a pair (a, a) of identical points on CP1,
for simplicity, we may regard Λ as a single point a.)

Fock and Goncharov introduced a framing of a representation, which equivariantly
assigns a single fixed point to each peripheral element ([FG06]). What is new here is
that we are assigning a pair of fixed points in the first case.

Next we define a (non-Hausdorff) topology on PSL2C
∧

by the following open base
of neighborhoods at each (γ,Λ) ∈ PSL2C

∧

.

• If γ is hyperbolic, then, for every (small) connected neighborhood U of γ in
PSL2C consisting of hyperbolic elements, the set of all pairs (γ′,Λ′) ∈ PSL2C

∧

such that
– if tr γ is real and ]Λ = 2, then for γ′ ∈ U with tr γ′ real, ]Λ′ = 2, and
– otherwise γ′ ∈ U and, Λ′ is a pairs of identical points identified with Λ by

identifying the fixed points of γ with those of γ′ by a path connecting γ to
γ′ in U .

• If γ is not hyperbolic, then the topology near (γ,Λ) is given by the product
topology of PSL2C × (CP1)2/Z2 equipped with the Hausdorff topology on
(CP1)2/Z2.

Remark 5.3. Let C = (f, ρ) be a CP1-structure on a surface with punctures. Let
α ∈ π1(S) be such that its free homotopy class is the peripheral loop around a cusp
c of C. Then γ corresponds to a unique element in (CP1)2/Z2 as follows: As the
universal cover C̃ of C is conformally identified with H2 by the uniformization, let c̃
be the point on the ideal boundary of ∂H2 fixed by α ∈ π1(S). Let (τ, L) ∈ T×ML be
the Thurston parametrization of C, and let L be the circular measured lamination on
C which descends to L. For each leaf ` of L̃ ending at c̃, the corresponding endpoint
of the circular arc f(`) on CP1 is a fixed point of ρ(α). If L is non-empty in a small
neighborhood of the cusp, let Λ be the set of such half leaves of L̃ ending at c. Then
α corresponds to a unique element (ρ(α),Λ) in PSL2C

∧

. If L is empty near the cusp,
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elliptic, parabolic, identity

hyperbolic

Different spiraling directions

Figure 4. Cusp neighborhoods in Thurston parameters

an appropriate cusp neighborhood of c is a horodisk quotient, and α corresponds to
(ρ(α),Λ), where Λ is the parabolic fixed point of ρ(α).

5.3. Cusp neighborhoods in Thurston parameters. The following lemma deter-
mines the isomorphism classes of cusp neighborhoods of CP1-structures in Thurston
coordinates.
Lemma 5.4. Let C = (f, ρ) be a CP1-structure on a surface F with cusps. Let
C ∼= (τ, L) be Thurston parameters of C. Then, for each cusp c of C, its small
neighborhood (i.e. its germ) in C is determined by

• the holonomy h ∈ PSL2C around c,
• the transversal measure of a peripheral loop around c given L, and
• if h is hyperbolic, the direction in which the leaves of L spirals towards the
boundary component.

(See Figure 4.)

Proof. Let (E, V ) be the pair of a singular Euclidean structure E on F , and V be a
vertical foliation on E induced by C.

Hyperbolic Case. First suppose that h ∈ PSL2C is hyperbolic. Then, by Propo-
sition 5.2, its cusp neighborhood, in (E, V ), corresponds to a half-infinite cylinder A,
and the complex translation length is

√
2
∫
`c

√
q, where `c is a peripheral loop of c.

The developing map f of a small neighborhood of c is a restriction of the exponential
map C→ C∗. Thus the complex translation length determines the deck transformation
on the domain C by Z ∼= 〈`c〉, which determines the CP1-structure of a small cusp
neighborhood.

The cusp c corresponds to the geodesic boundary circle b of τ whose length is equal
to the translation length of h. By the properties of bending maps, one can show that
the total weight of L along `c times

√
2 is the rotational angle of h and the direction of

rotation in which leaves of L spiral towards b determines the orientation of the angle
(Figure 5).

Parabolic Case. Suppose that h is parabolic.
If a neighborhood of a cusp c in E is an expanding cylinder shrinking towards c,

then a neighborhood of c in (τ, L) is a hyperbolic cusp with the empty lamination
(Proposition 5.2 (1)).

Next suppose that the cusp neighborhood of c in (E, V ) is a half-infinite flat cylinder
A in E. Then the circumferences of A are orthogonal to V , and

√
2V (`c) is a positive

2π-multiple.
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Figure 5. The opposite spiral directions give the holonomy the opposite
rotational directions.

Let Ep: X̃ → H3 be the Epstein map associated with C = (X, q). Let Ṽ be
the pull-back of V to the universal cover of E, and let c̃ be the lift of c to the ideal
boundary of X̃ ∼= H2. Let γ ∈ π1(F ) be the element which fixes c̃ such that its free
homotopy class is `c. Then, for every leaf ` of Ṽ ending at c̃, its image Ep(`) is indeed
a quasi-geodesic limiting to the parabolic fixed point of ρ(γ) on CP1, and its curvature
of Ep(`) converges to zero as it approaches the fixed point by Lemma 2.5. Therefore c
corresponds to a cusp of τ . By Proposition 4.4, the total weight of the leaves must be√

2V (`c).
Elliptic Case. The proof when h is elliptic is similar to the parabolic case. 5.4

Let D be the unit closed disk in C centered at the origin O. Let D∗ = D \ {O},
and let ` be the peripheral loop around the origin. Let P(D∗) denote the space of all
developing pairs (f, h) for the CP1-structures on D \ {O} (not up to PSL2C) so that
O is a cusp and the boundary circle is smooth, where f : D̃∗ → CP1 is the developing
map and h ∈ PSL2C is the holonomy along `. Recall from Remark 5.3 that each
cusp corresponds to a unique element (γ,Λ) in PSL2C

∧
. Let Ď∗ be a subsurface of D∗

obtained by removing a regular neighborhood of the boundary circle of D∗.
By the following proposition, the deformation of the CP1-structures of the cusp

neighborhoods is locally modeled on PSL2C
∧

.

Proposition 5.5. Let F be a closed surface minus finitely many points, and let C be
a CP1-structure on F , and pick its developing pair (f, ρ). Then, each cusp c of C has
a disk neighborhood Σ = (f, γ) ∈ P(D∗) of c in C with the following properties:

(1) Let (γ,Λ) ∈ PSL2C
∧

be the element corresponding to the peripheral loop around
c. Then, for every ε > 0 and every compact subset K of the universal cover
Σ̃, there is a subset U = U(K, ε) of (γ,Λ) in PSL2C

∧
, such that, for every

(γ′,Λ′) ∈ U ,
(a) if ]Λ = 1, then there is Σ′ = Σ′(γ′,Λ′) ∈ P(D∗) with holonomy γ′ and

the framing Λ, such that its developing map f ′ of Σ(γ′,Λ′) is ε-close, in
C1-topology, to the developing map f of Σ in K,

(b) if ]Λ = 2, then there is a neighborhood W of γ in PSL2C, such that, for
every γ′ ∈ W , there is Σ′ = Σ′(γ′,Λ′) ∈ P(D∗) with holonomy γ′ and a
unique framing Λ, such that its developing map f ′ of Σ(γ′,Λ′) is ε-close,
in C1-topology, to the developing map f of Σ in K.
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(2) Moreover, Σ′ is uniquely determined on Ď∗ by an isotopy of D∗ (uniqueness
near the cusp).

Proof of Proposition 5.5. We divide the proof by the isometry type of γ. In each case,
we construct a deformation of Σ in a small neighborhood in PSL2C

∧
by specifying the

deformation of a fundamental membrane.
Elliptic Case. First, suppose that γ = I or γ is an elliptic element. Then the

puncture O corresponds to a unique point f(O) on CP1 by continuously extending f .
Then pick a cusp neighborhood Σ biholomorphic to a punctured disk, such that the
development of the boundary circle is a round circle α on CP1 and there is a unique
Lie subgroup of PSL2C isomorphic to SO(2) which preserves α and f(O). We identify
CP1 with C ∪ {∞} so that the puncture f(O) is at the origin and α is the unit circle
of C centered at the origin f(O).

Pick a “fan-shaped fundamental domain” in D̃∗ bounded by three circular arcs
e1, e2, e3 such that

• f |e1 and f |e2 are radii of α connecting f(O) to points on α, so that γf(e1) =
f(e2) are orthogonal to α, and
• f |e3 immerses into α, and it connects the endpoints of e1 and e2

(Figure 6, left). Let q be the endpoint of the arc f(e1) on r.
If the neighborhood U of (γ, f(O)) is sufficiently small, then given (γ′,Λ′) ∈ U , one

can easily construct a CP1-structure Σ′ = (f ′, γ′) close to Σ on D∗ realizing (γ′,Λ′).
Indeed, we pick z ∈ Λ′, we can construct a fundamental membrane bounded by e′1, e′2, e′3
such that,

(1) f ′(e′1) is a straight line on C connecting z and fq,
(2) f ′(e′2) is γ′(f ′(e′1)) (which is a circular arc connecting z and γ(q)),
(3) f ′(e′3) is an arc connecting q to γ(q) so that f(e′3) is a segment of a trajec-

tory under a one-dimensional Lie subgroup of the affine transformations of C
preserving z, and

(4) f ′(ei) is close to f(ei) in the Hausdorff topology on CP1.

(see Figure 6, right). (The choice of z may not be unique if r is identity and tr r′ ∈
R \ [−2, 2], i.e. hyperbolic without screw motion)

On the other hand, one can easily see that, for every small deformation Σ′ of Σ,
there is a “fan-shaped” fundamental membrane satisfying all conditions (1) - (4) such
that the fundamental membranes coincide on Ď∗. Therefore, we have the uniqueness
property of Σ′ near the cusp.

Generic hyperbolic case. Let (τ, L) be the Thurston parametrization of C, and let
L be the Thurston lamination on C. Let ` be the peripheral loop around O. Suppose
that γ is hyperbolic and L(`) 6= 0, so that Λ is a single point. Then τ has a geodesic
boundary loop b corresponding to the cusp c and, as L(`) > 0, leaves of L spiral towards
b. Let b̃ be a lift of b to the universal cover τ̃ of τ , so that b̃ is a boundary geodesic
of τ̃ . Then those spiraling leaves lift to geodesics in τ̃ having a common endpoint at
an endpoint of b̃; by the bending map β : τ̃ → H3, the endpoint maps to the point Λ.
Accordingly, the leaves of L near the cusp O develop onto circular arcs ending at Λ.

Normalize CP1 = C ∪ {∞} by an element of PSL2C, so that 0 = Λ and the other
fixed point of γ is at ∞. Let (E, V ) be the foliated singular Euclidean structure given
by C. Then, there is a half-infinite flat cylinder A in E which corresponds to a cusp
neighborhood of c ; then each circumference has a positive transversal measure given
by the horizontal foliation. Therefore, one can take a cusp neighborhood Σ bounded
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Figure 6. Perturbing a fundamental membrane of a cusp with elliptic holonomy.
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f(e2)

f(e3)

0

Figure 7. Perturbing a fundamental membrane of a cusp with a hyper-
bolic holonomy.

by a loop m such that m develops onto a spiral on CP1, i.e. a curve invariant under a
one-parameter subgroup in PSL2C which contains γ.

Take, similarly, a “fan-shaped” fundamental domain F in the universal cover Σ̃
which is bounded by three smooth segments e1, e2, e3 such that

• e1 and e2 are half-leaves of L̃ such that γe1 = e2 and the circular arcs f(e1) and
f(e2) end at 0 ∈ C„ and
• f(e3) is in a segment of the spiral which connects the other endpoints of f(e1)
and f(e2)

(Figure 7, left). Then γ(f(e1)) = f(e2) by the equivariant property.
Take a sufficiently small neighborhood U of (γ,Λ) such that the subsetW ⊂ PSL2C

of holonomy elements of pairs in U consists of only hyperbolic elements closed to γ;
then, for all (γ′,Λ′) ∈ U , the fixed point Λ′ of the hyperbolic element γ′ uniquely
corresponds to the fixed point of γ in Λ by every short path connecting γ′ to γ in W .
Then, similarly to the elliptic case, one can easily find a CP1-structure on D∗ close to
Σ which realizes (γ′,Λ′), by constructing a fundamental membrane close to F (Figure
7).

On the other hand, for every small deformation Σ′′ of Σ realizes (γ′,Λ′), one can
easily find a fundamental membrane of Σ′′ so that it coincides, on Ď∗ with that of Σ′

constructed above.
Special hyperbolic case (]Λ = 2). Suppose that γ is hyperbolic and L(`) = 0 (in

particular tr γ ∈ R). Then the boundary component b of τ is a leaf of L with weight
infinity ([Bab17, Proposition 8.3]).
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Figure 8. Deformation of a hyperbolic cusp neighborhood.

Let κ : C → τ be the collapsing map. Then κ−1(b) =: F is a half-infinite cylinder.
The developing map of F is the restriction of exp: C → C∗ to a half-space bounded
by a horizontal line in C. Then we identify the universal cover F̃ of F with the half-
space, so that γ acts as a horizontal translation tγ. Take a fundamental domain Q in
F̃ such that Q is a vertical half-infinite strip in C bounded by two vertical rays and
one horizontal segment (Figure 8).

If W is a small neighborhood of γ in PSL2C consisting of hyperbolic elements, for
every γ′ ∈ W , there is a translation tγ′ of C (close to the horizontal translation tγ),
such that tγ′ descends to γ′ by the exponential map up to PSL2C. Therefore, there is
a small deformation of Σ realizing (γ′,Λ′), and (1) holds.

On the other hand, arbitrary deformations of the cusp neighborhood F contain such
a deformation of such a half-infinite strip fundamental domain on D. Moreover, if U is
sufficiently small, then if there are two ε-small deformations of F with the same framed
holonomy (γ′,Λ′), up so isotopy, the structures on D∗ coincide by the ε-closeness to F .
Thus the uniqueness holds (2).

Parabolic case. Suppose that γ is parabolic. Then in Thurston parameters, the
puncture corresponds to a cusp of the hyperbolic surface τ , and the total weight of L
along the peripheral loop ` is a non-negative 2π-multiple. Then, similarly to the case
that γ = I, we can show the claim by finding a cusp neighborhood and a fundamental
domain in its universal cover which is bounded by circular arcs. 5.5

5.3.1. Holonomy maps of CP1-structures with cusps. Let F be a closed surface minus
finitely many points p1, . . . , pn. Recall that P(F ) denotes the space of all developing
pairs (f, ρ) for CP1-structures on F . Let (f, ρ) ∈ P(F ). Then (f, ρ) gives a CP1-
structure on F , and we let X be its induced complex structure on F . Identify the
universal cover X̃ ofX withH2; then for each i = 1, . . . n, pick a lift p̃i of pi to a point on
the ideal boundary of X̃. Then, by Remark 5.3, for every (f, ρ) ∈ P(F ) and a puncture
pi, we have a corresponding element in (γi,Λi) ∈ PSL2C

∧
. Thus, by the definition of the

topology of PSL2C
∧

, we have a continuous mapping from hol : P(F )→ (PSL2C
∧

)n×R(F )
taking (f, ρ) ∈ P(F ) to ((γi,Λi)

n
i=1, ρ). In fact, hol yields a holonomy theorem in our

setting.

Theorem 5.6. Every (f, ρ) ∈ P(F ) has a neighborhood W such that

hol |W
is a local homeomorphism onto its image. Moreover, for any (f, ρ) ∈ P(F ), if there is
a path ρt (t > 0) converging to ρ in R(F ) as t→∞, then there is a lift of ρt to a path
in P(F ) for t� 0 converging to (f, ρ).
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Remark 5.7. The image of hol(W ) is contained in
{ ((γi,Λi)

n
i=1, ρ) | ρ ∈ W, ρ(αi) = γi (i = 1, 2, . . . , n) }.

Furthermore, its subset cut by the condition on the framing given by Proposition 5.5
(1) determines the local image hol(W ).

Proof. Let (f, ρ) ∈ P(F ), and let C be the CP1-structure on F given by the developing
pair (f, ρ). Applying Proposition 5.5 to a small ε > 0, we obtain, for each i = 1, . . . , n, a
(small) cusp neighborhood Ci of the puncture pi of C, and a neighborhood Ui of (γi,Λi)

in PSL2C
∧

modeling the deformation of Ci. Let Ni be the underlying topological cusp
neighborhood of the punctured surface F supporting Ci. Without loss of generality,
we can assume C1, . . . , Cn are disjoint in C. Let C ′i be an open cusp neighborhood
of pi smaller than Ci and Ui be a subset of PSL2C

∧
containing hol((f, ρ)) given by

Proposition 5.5(2), such that the small deformation of Ci on C ′i is parametrized the
framed holonomy in Ui.

Let N ′′i be a (even smaller) cusp neighborhood of pi whose closure is contained in
the interior of N ′i . Let F̌ be F \tiN ′′i , and let Č be the restriction of C to F̌ . For every
(γ′i,Λ

′
i) ∈ Ui, let Ci(γ′i,Λ′i) denote the unique CP1-structure on N ′i with the framed

holonomy (γ′i,Λ
′
i) ∈ Ui such that Ci(γ′i,Λ′i) is sufficiently close to Ci.

We shall regard (f, ρ) as a smooth section Σ of a CP1-bundle B over F such that Σ
is transversal to the horizontal foliation Hρ associated with ρ (see for example [Gol22])
Let Σ̌ be the restriction of Σ to the bundle over the subsurface F̌ . Then, there is a
neighborhood U of ρ in the representation variety R(F ) such that, for each ξ ∈ U ,
letting Hξ be the horizontal foliation of B associated with ξ, Σ̌ is still transversal to Hξ

by the openness of transversality; then Σ̌ yields a projective structure Čξ on F̌ with
holonomy ξ. In this way, we obtain a unique CP1-structure on F̌ close to (f, ρ) on
F̌ . This new structure is unique in a compact subset of F̌ whose interior contains the
closure of F \ tni=1N

′
i .

For each i, pick any Λi in Fix ξi(γi) ∈ CP1 so that (ξi(γi),Λi) ∈ Ui. Then
Ci(ξi(γi),Λi) is its associated deformation. Then we can glue Čξ and Ci(ξi(γi),Λi)
in the overlapping region, and obtain a desired developing pair for a CP1-structure
on F . Consider the subset W in Πn

i=1Ui × R(F ) consisting (γi,Λi)
n
i=1, ρ) satisfying

ρ(αi) = γi (i = 1, 2, . . . , n); clearly W contains hol(f, ρ). In this way, given a suffi-
ciently small neighborhood of hol((f, ρ)) in this subset W , for every element in this
neighborhood, we construct a developing pair realizing it. This new CP1-structure on
F is unique by the uniqueness of the thick part Čξ on F \ tN ′i and the uniqueness of
the cusp neighborhoods Ci(ξi(γi),Λi) on N ′i .

Notice that W projects to a neighborhood of ρ in R. The path lifting along a path
in R easily follows from the construction as U is a neighborhood of ρ in R(F ). 5.6

6. Bound on the upper injectivity radius

Recall that Ct = (ft, ρt) is a path of CP1 structures on S such that Ct diverges to
∞ and the equivalence class [ρt] =: ηt converges in the character variety as t → ∞.
Recall also that Ct = (Xt, qt) is the expression in the Schwarzian parameters.

Let Et be the singular Euclidean structure on Xt given by |q 1
2 |. Let R(Et) ≥ 0

denote that the upper injectivity radius of Et. In this section we show
Theorem 6.1. Suppose that Xt is pinched along a multiloop M . Then the upper
injectivity radius R(Et) of Et is bounded from above for all t ≥ 0.
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Immediately we have the following.
Corollary 6.2. There is an upper bound for the area of the expanding cylinders in Et
for all t ≥ 0.

The rest of this section is a proof of Theorem 6.1. We suppose, to the contrary,
that lim supR(Et) = ∞ and show that ρt cannot converge. Let Mt be a geodesic
representative of M on Et (in the Euclidean metric) such that, for every ε > 0 if t > 0
is sufficiently large, then Mt is contained in the ε-thin part of Xt. We will find a
conformally thick part which is, in the Euclidean metric, bigger than its adjacent thick
parts:

Lemma 6.3. Suppose that there is a diverging sequence (0 <) t1 < t2 < . . . such that
Eti contains a flat cylinder Ati homotopy equivalent to a fixed loop m of M such that

(1) ModAti →∞ as i→∞ , and
(2) the circumference of Ati limits to ∞ (equivalently AreaAti →∞) as i→∞.

Then, leaves of the vertical foliation Vti must be asymptotically orthogonal to the cir-
cumferences of Ati.

Proof. Suppose, to the contrary, that Vti is not asymptotically orthogonal to circum-
ferences. Then, up to a subsequence, we may assume that there is a limiting angle
θ∞ ∈ [0, π/2) between the angle between Vti and the circumferences of Ati . Let mti

be a geodesic representative of m which sits in the middle of Ati . Since θ∞ 6= π/2,
Hypotheses (1) and (2) imply that the transversal measure of the horizontal foliation
Hti along mti diverges to infinity as i→∞. By Proposition 4.9, the translation length
of ρti(mti) is asymptotically

√
2 times the transversal measure. Therefore, the trans-

lation length of ρti(mti) must diverge to infinity, which contradicts the convergence of
[ρt] as t→∞. �

Proposition 6.4. Suppose that there are a component F of S \M and a diverging
sequence (0 <) t1 < t2 < . . . such that, letting Fti be the component of Eti \ Mti
homotopic to F on S,

• AreaEti Fti →∞ as i→∞, and.
• for each boundary component ` of F , there is an expanding cylinder B`,ti in Fti
bounded by the boundary component `i of Fti homotopic to ` on S such that
– B`,ti shrinks toward `i, i.e. `i is the shorter boundary component of B`,ti,
and

– ModB`,ti →∞ as i→∞.

Then [ρti ]|π1F diverges to ∞ in χ as i→∞.

Proof. Let ki > 0 be such that ki Area(Fti) = 1 for each i = 1, 2, . . . . Then, as
AreaFti →∞, thus kti → 0 as i→∞. All ends of Fti have conformally long expanding
cylinders shrinking towards adjacent components. Take a base point in the thick part
of Fti . Let F̂ denote the compact surface with finitely many punctures, obtained by
pinching the boundary loops of F to puncture points. Then the space of all holomorphic
quadratic differentials on Riemann surfaces structures on F̂ with Euclidean area one
is a sphere of finite dimension. Then, by compactness, up to a subsequence

• kiEti converges, in the Gromov-Hausdorff topology, to a compact singular Eu-
clidean surface minus finitely many points, E∞, which is homeomorphic to F ,
and
• the restriction of kiVti to kiEti converges to a measured foliation V∞ on E∞.

Take a piecewise geodesic loop ` on E∞ such that
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Figure 9. Staircase closed loops ` consisting of long vertical segments
and short horizontal segments

(1) ` does not cross any singular point of E∞,
(2) each segment of ` is either vertical or horizontal, and ` contains at least one

vertical segment, and
(3) ` is a geodesic in the L∞-metric, so that at adjacent singular points, ` bends in

the different direction by an angle π/2.

In fact, if V∞ contains a periodic leaf, then take it as `, which obviously satisfies the
conditions. Otherwise, V∞ contains a minimal irrational subfoliation, using the density
of each leaf in the subfoliation, a standard closing lemma gives a desired loop ` as in
Figure 9 (see [CEG87, I.4.2.15]). By the convergence kiEi → E∞, for i large enough,
we pick a piecewise geodesic loop `i on Ei satisfying the properties (1), (2), (3) such
that `i has the same number of horizontal and vertical segments as ` has, and ki`i on
kiEi converges to ` on E∞ smoothly on each segment as i → ∞. Then the distance
from `i to the singular set of Ei goes to ∞ as ki → 0. Therefore, by Proposition 4.9,
ρti(`) is a hyperbolic element of translation length close to

√
2 times the total length

of the vertical segment of `i. Then, as ki → 0, the total vertical length of `i on Ei goes
to infinity, and therefore tr ρi(`) must diverge to infinity. �

Let m1, . . . ,mp be the loops of the multiloop M .

Proposition 6.5. For every (large) T > 0, there are t > T and k ∈ {1, . . . , p} such
that

1

2
<

lengthEt(mk)

maxi=1,...,p lengthEt(mi)
≤ 2,

and ModEt(mk) is 1
3
-dominated by an expanding cylinder Bk,t homotopic to mk, i.e.

ModBk,t

ModEtmk

>
1

3
.

Proof. For u > T , let mku be the loop realizing maxi=1,...,q lengthEu(mi). We may as-
sume that maxi=1,...,p lengthEt(mi)→∞ as t→∞: in fact, otherwise, since lim supR(Et) =
∞, Proposition 6.4 implies that [ρt] diverges in χ.

We first show that if a long flat cylinder persists, then its circumference must stay
almost the same. Namely
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Claim 6.6. For every ε > 0, there is K > 0 such that, if there are w > u > K and a
flat cylinder in Et of height at least K homotopic to m, then, for every t ∈ [u,w], then

1− ε <
lengthEtm

lengthEum
< 1 + ε

for all t ∈ [u,w].

Proof. By Lemma 6.3, for every ε > 0, if K > 0 is sufficiently large, then the vertical
foliation Vt is ε-almost orthogonal to circumferences of the flat cylinder homotopic to
m. Then, by Proposition 4.4, for every ε > 0, if K > 0 is sufficiently large, then the
total rotation angle along m is (1 + ε)-bi-Lipschitz to

√
2 lengthEtm for t ∈ [u,w]. As

the holonomy of ρt(m) converges as t → ∞, for every ε > 0, if K is sufficiently large,
then the total rotation along m must be ε-almost constant for all t ∈ [u,w]. Thus, if
K is sufficiently large, then the ratio of lengthEtm and lengthEum is ε-close to 1. �

By Claim 6.6, for every ε > 0, if K > 0 is sufficiently large, then, if a flat cylinder
1
4
-dominates Modmku for all t ∈ [u, v] for some u > K; then 1− ε < lengthEt mku

lengthEu mku
< 1 + ε

for all t ∈ [u,w]. Suppose, in addition, that there is a loop mh ofM not mku , such that
mh on Et becomes exactly twice as long as mku on Eu for the first time at t = w < v
after t = u. Then, by applying Claim 6.6 to mh, we can show that there is t ∈ [u,w)
such that ModEtmh is 1/3-dominated by an expanding cylinder: Indeed, otherwise,
maxi=1,...,p lengthEt(mi) must bounded from above by 3

2
lengthEt(mku) for all t ∈ [u,w].

6.5

Corollary 6.7. There are a component F of S \M and a diverging sequence 0 < t1 <
t2 < . . . such that the corresponding component Fti of Eti\Mti satisfies the assumptions
of Proposition 6.4.

Proof. By Proposition 6.5, there is a loopm ofM and a diverging sequence t1 < t2 < . . .
such that

• lengthEti m→∞ as i→∞,
•

1

2
<

lengthEti m

max{lengthEti m1, . . . , lengthEti mp}
< 2

for all i = 1, 2, . . . , and
• there is an expanding cylinder Bti homotopic m which 1

3
-dominates ModEti m.

Then, up to a subsequence, we may in addition assume that Bti is expanding in the
same direction. Then, let F be the connected component of S \ M such that m is
a boundary component of F and Bti expands towards F . As the size of Fti becomes
bigger and bigger than the length of lengthEti m, the first assumption of Proposition 6.4
holds. Thus, by the second condition on the loop m and the sequence {ti}, the second
assumption of Proposition 6.4 is satisfied. �

By this corollary, we obtained a contradiction by Proposition 6.4 against the con-
vergence of ρt. Hence we obtain Theorem 6.1.

7. Convergence of CP1-structures away from pinched loops

We continue to suppose that Xt is pinched along a multiloop. We will first see that
the holonomy ρ∞(m) determines the type of a conformally long Euclidean cylinder in
Et which is homotopic to m for t� 0.
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Lemma 7.1. (1) Suppose that there are a sequence t1 < t2 < . . . diverging to ∞
and a sequence of expanding cylinders Bti in Eti homotopic to m at time ti,
such that ModEti Bti →∞ as t→∞. Then ρ∞(m) is parabolic.

(2) Suppose that there is a sequence of flat cylinders Ati in Eti homotopic to a fixed
loop m on S such that ModAti diverges to ∞ and the circumference of Ati is
bounded from below and above by positive numbers. Let w ∈ C be such that the
Möbius transformation z 7→ (expw)z conjugates to ρ∞(m). Then,

√
2
∫
m

√
qti

converges to w mod 2πi up to a sign.

Proof. (1) If a puncture of a CP1-structure corresponds to a regular point of its holo-
morphic quadratic differential, its peripheral holonomy is parabolic. Suppose that there
are a sequence t1 < t2 < . . . and an expanding cylinder Bti in Eti homotopic to m
such that ModBti → ∞ as t → ∞. Then, by Corollary 6.2, the length of the shorter
boundary component of Bti goes to zero as i→∞, and it asymptotically corresponds
to, at most, a pole of order one of the quadratic differential. (A pole of order at least
two corresponds to an infinite area end.) Therefore ρ∞(m) is parabolic, against the
hypothesis.

(2) follows immediately from Proposition 4.4. �

Given a compact surface F with boundary, let F̂ denote the surface with punctures
obtained by pinching each boundary component of F to a (puncture) point.
Proposition 7.2. Let ε > 0 be a number less than the Bers constant. Let F be a
component of S \M , and let F ε

t be the component of the conformally ε-thick part of Et
isotopic to F for t� 0. Then, if

lim inf
t→∞

AreaEt(F
ε
t ) > 0,

there is a path of CP1-structures F̂t on the punctured surface F̂ such that

(1) for every ε > 0, if t > 0 is sufficiently large, then F ε
t isomorphically embeds

into F̂t,
(2) for each boundary component ` of F , there is a cylinder A`,t in Et homotopic

to ` such that
• ModA`,t →∞ as t→∞;
• A`,t is either a flat cylinder for all t� 0 or an expanding cylinder shrinking
towards the adjacent component of S \M across m for all t� 0;

(3) F̂t contains A`,t for every boundary component ` of F .

Proof. We first show that, for each boundary component ` of F , there is a cylinder A`
homotopic to `, such that

(i) ModA`,t →∞ as t→∞, and
(ii) A`,t remains either a flat cylinder for all sufficiently large t > 0 or an expanding

cylinder shrinking forwards ` for all sufficiently large t > 0,

Let Yt, Zt,Wt be disjoint cylinders homotopic to `, such that Zt is a maximal flat
cylinder, Yt is the maximal expanding cylinder expanding towards the thicker part of Ft
and Wt is the maximal expanding cylinder expanding towards the adjacent component
across the geodesic representative `t of `.

As Xt is pinched along M , by Theorem 3.12, max{ModYt,ModZt,ModWt} → ∞
as t→∞. Let diamWt and diamYt denote the diameters ofWt and Yt, respectively, in
the Euclidean metric Et. Then, by lim inft→∞AreaEt(F

ε
t ) > 0 and the upper injectivity

radius bound (Theorem 6.1), the ratio diamWt

diamYt+1
is bounded from above for all t > 0.

Thus ModWt

ModYt+1
is bounded from above for all t > 0. Therefore ModYt+ModZt diverges



S.Baba 32

to ∞ as t→∞. We claim, moreover, that either lim ModYt =∞ or lim ModZt =∞
holds.
Lemma 7.3. Suppose that lim supt→∞ModYt =∞. Then ModYt →∞ as t→∞.

Proof. Let t1 < t2 < . . . be a sequence with limi→∞ModYti = ∞. Then the circum-
ference of Zti limits to zero, and by Lemma 7.1 (1), ρ∞(`) is parabolic.

Suppose to the contrary that there is a sequence s1 < s2 < . . . diverges to ∞ such
that ModYsi is bounded from above by some constant b > 0. Then ModZsi → ∞,
and the circumference of Zsi is bounded from below c > 0. On the other hand, since
ModYti → ∞, the circumference of Zti goes to zero as i → ∞. We can assume that
s1 < t1 < s2 < t2 < . . . by taking subsequences of si and tj if necessary.

Therefore, for every r ∈ (0, c), for every sufficiently large i, there is ui ∈ [si, ti],
such that the circumference of Zui is r. Then, as ModYui is bounded from above,
ModZui →∞ as i→∞.

Then, by Lemma 7.1 (2), the limit holonomy of ρui(m) is determined by the complex
length of the circumference. For almost all r ∈ (0, c), ρui(m) is not parabolic. This
contradicts the convergence of ρt as ρ∞(`) is parabolic. �

Then, Yt satisfies (i) and (ii).
Next suppose that lim supt→∞ModYt <∞. Then ModZt diverges to∞ as t→∞,

and the circumference of Zt converges to a positive number. Then Zt satisfies (i) and
(ii).

We shall construct F̂t satisfying (3) as follows. Suppose that, for a boundary compo-
nent ` of F , limt→∞ModYt =∞. Let Ŷt be an expanding cylinder of infinite modulus,
obtained by extending the expanding cylinder Yt only in the shrinking direction, so
that Ŷt is conformally a punctured disk. Then replace Yt by Ŷt in Et by gluing Et \ Yt
and Ŷt along the boundary component of Ŷt. Then the boundary component ` of F
corresponds to the puncture of Ŷt.

Next suppose that lim supt→∞ModYt < ∞. Then, since ModZt → ∞ and the
circumference Circ(Zt) converges to a positive number as t → ∞, we extend the flat
cylinder Zt, in the direction of Wt, to the half-infinite flat cylinder Ẑt; then Ẑt is
conformally a punctured disk. Then replace Zt in Et with Ẑt so that it has a puncture
corresponding to `.

By applying, such a replacement for all boundary component ` of F , we obtains
a desired complete singular Euclidean surface F̂t satisfying (1), (2), (3), as (2) follows
from (i) and (ii). 7.2

Theorem 7.4. Let F be a component of S\M . Let ε > 0 be less than the Bers constant
of S. For every t > 0 large enough, let F ε

t be the component of the ε-thick part of Ct
isotopic to F .

(1) Suppose that
lim inf
t→∞

AreaEt(F
ε
t ) = 0.

Then, there is a continuous function εt > 0 in t with limt→∞ εt = 0, such
that F εt

t converges (in the Gromov-Hausdorff topology) to a complete hyperbolic
structure on a closed surface with finitely many punctures, denoted by F̂∞, which
is homeomorphic to F , as t→∞.

(2) Suppose that
lim inf
t→∞

AreaEt(F
ε
t ) > 0.
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Then, F̂t accumulates to a bounded subset on the space of CP1-structures on
F̂ . Moreover, if ρ∞(m) 6= I for each boundary component m of F , then F̂t
converges to a CP1-structure on F̂ as t→∞.

Remark 7.5. In Case (2), similarly to (1), one can take a sequence t1 < t2 < . . .

diverging to ∞ so that F̂t converges to a CP1-structure F̂∞ on F̂ . Then, for every
ε > 0 less than the Bers’ constant, the ε-thick part F ε

ti
converge to a subsurface of F̂∞.

If, in addition, the ρ∞(m) 6= I for every boundary component of F , then F ε
t converge

to a subsurface of F̂∞.

Proof. (1) Let t1 < t2 < . . . be a diverging sequence such that Area(Fti)→ 0 as t→∞.
Then the holomorphic quadratic differential on Fti asymptotically vanishes. Thus, for
every small ε > 0, F ε

ti
and Xti |F ε

ti
asymptotically identical, where Xti is regarded as a

hyperbolic surface by the uniformization theorem for each i. Here, by asymptotically
identical, we mean that, for every υ > 0 and every compact set K in the universal
cover H2 of Xti , if i is sufficiently large, the developing map of F ε

ti
is υ-close to the

developing map of the hyperbolic structure Xti |F ε
ti
on K.

The holonomy representations of F εi
ti and Xti |F ε

ti
are asymptotically identical in the

character variety. As the holonomy of F εi
ti converges in the representation variety, the

holonomy ofXti |F ε
ti
must converge in the representation variety. ThusXti |F ε

ti
converges

to a complete hyperbolic structure σ∞ on F . Therefore F εt
t must genuinely converge

to σ∞ (without taking a subsequence). In particular AreaEt F
εt
t → 0 as t→∞.

(2) Suppose that lim inft→∞AreaF ε
t > 0 for sufficiently small ε > 0. Then let

F̂t denote the singular Euclidean structure on F̂ obtained from Ft by Proposition 7.2.
Then F̂t induces a CP1-structure on F̂ . Let (Yt, wt) be the Schwarzian parameterization
of F̂t. Then, indeed, every puncture of Yt is, at most, a pole of order two.

As Xt is pinched along a multiloopM , Yt is bounded in the Teichmüller space T(F̂ ).
By Theorem 6.1, the upper injectivity radius of F̂t is also bounded from above, and
(Yt, wt) is also bounded in the parameter space. Thus, the CP1-structures F̂t are con-
tained in a compact subset of the deformation space of CP1-structures on F̂ . Therefore
F̂t accumulates to a bounded subset in the deformation space of CP1-structures on F̂ .

Moreover, if each peripheral loop has non-trivial holonomy at t = ∞, by Theo-
rem 5.6, the convergence of the holonomy of F̂t implies the convergence in (PSL2C

∧
)n×

R(F ). Therefore F̂t has a unique limit in P(F̂ ). �

Theorem 7.4 immediately implies

Corollary 7.6. Suppose that Xt is pinched along a multiloop M . Then, for every
sequence t1 < t2 < . . . diverging to ∞, up to a subsequence, Xti converges to a nodal
Riemann surface X∞ and qti converges to a regular quadratic differential on X∞.

8. Degeneration by neck-pinching

In this section, we summarize our main theorems on asymptotic behavior under
neck-pinching.

Let Ct = (ft, ρt), t ≥ 0 be a path of CP1-structures which diverges to ∞ in the
deformation space, such that its holonomy [ρt] =: ηt converges in the character variety
χ. By Proposition 3.2, we can assume that the holonomy ρt ∈ R also converges in the
representation variety. Let Xt be the complex structure of Ct.
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Theorem 8.1. Suppose that Xt is pinched along a loop m. Then ρ∞(m) is either I or
a parabolic element. Moreover ρt(m) 6= I for large enough t > 0.

Recall that φ : S̃ → S is the universal covering map. Let Nm be a regular neigh-
borhood of m in S. Regard the loop m also as a fixed element of π1(S) representing
m, and let Ñm be the component of φ−1(Nm) preserved by m ∈ π1(S).

Theorem 8.2 (Convergence of developing maps). Suppose that Xt is pinched along a
loop m. Then, exactly one of the following two holds.

(1) • ρ∞(m) is parabolic;
• the cusp neighborhoods of C∞ are horodisk quotients;
• ft : S̃ → CP1 converges a ρ∞-equivariant continuous map f∞ : S̃ → CP1

uniformly on compact subsets;
• there is a multiloop M on S consisting of finitely many parallel copies of
m, such that f∞ is a local homeomorphism on S̃ \φ−1(M) and it takes each
component of φ−1(M) to its corresponding parabolic fixed point.

(2) ρ∞(m) = I, and, for every sequence t1 < t2 < . . . diverging to ∞, up to a
subsequence, there is a path of markings S → Ct such that, as i→∞,
• Cti |S \Nm converges to a CP1-structure on a surface with punctures home-
omorphic to S \m;
• the axis ai of ρti(m) converges to a point on CP1 or a geodesic in H3;
• the restriction of fti to S̃ \ φ−1(Nm) converges to a continuous map, and
each boundary component of Ñm maps to an ideal point of limi→∞ ai.

For each t ≥ 0, let (τt, Lt) ∈ T×ML be the Thurston parameterization of Ct, and let
βt : H2 → H3 be the ρt-equivariant pleated surface. In fact, βt converges a continuous
map to H3 ∪ CP1:

Theorem 8.3. Suppose that Xt is pinched along a loop m on S. Let Nm be a regular
neighborhood of m on S. Then, by taking an appropriate path of markings ιt : S → τt,
exactly one of the following two holds:

(1) ρ∞(m) ∈ PSL2C is parabolic, and βt : S̃ → H3 converges to a ρ∞-equivariant
continuous map β∞ : S̃ → H3 ∪ CP1 uniformly on compact subsets as t → ∞,
such that β−1∞ (CP1) is a π1(S)-invariant multicurve which is π1(S)-equivariantly
homotopic to the multicurve φ−1(m).

(2) ρ∞(m) = I ∈ PSL2C, and for every diverging sequence t1 < t2 < . . . , up
to a subsequence, βti : S̃ → H3 converges to a ρ∞-equivariant continuous map
β∞ : S̃ → H3 ∪ CP1 as i → ∞ and the axis ai of ρti(m) converges to a point
CP1 or a geodesic of H3 such that
• if limi→∞ ai is a point on CP1, then β−1∞ (CP1) = φ−1(m), and
• if limi→∞ ai is a geodesic a∞ in H3, then β∞ takes each component of
φ−1(Nm) to its corresponding limit geodesic a∞ and each component of
S̃ \ φ−1(Nm) to either a pleated surface in H3 or a single point on CP1.

In order to prove Theorem 8.1, Theorem 8.2 and Theorem 8.3, we carefully observe
the behavior of Ct, fixing the isometry type of ρ∞(m). In particular, for Theorem 8.1,
we will show that, supposing, to the contrary, that ρ∞(m) is hyperbolic (§11) or elliptic
(§12), then ρt cannot converge. The convergence when ρ∞(m) = I is given in §13 and
the convergence when ρ∞(m) is parabolic is given in §10.



S.Baba 35

9. CP1-structures on punctured surfaces with elementary holonomy

Lemma 9.1. Let F be a closed surface with finitely many punctures, such that the
Euler characteristic of F is negative. Let C = (f, ρ) be a CP1-structure on F such that

• ρ is an elementary representation, and
• for each puncture of C, its peripheral holonomy is non-hyperbolic (so that its
developing image is a single point on CP1).

Let Λ be the subset in CP1 of cardinality 0, 1, or 2 which Im ρ preserves as a set.
Then, there is at least one puncture of C which maps to a point in the complement
CP1 \ Λ =: Ω by f .

Proof. The discrete subset f−1(Λ) in F̃ descends a finite subset D on F .
We can assume that Λ is a non-empty set, since if Λ is the empty set, then the

assertion is obvious. First, suppose that the cardinality of Λ is two, then Ω admits
a complete Euclidean metric invariant under Im ρ. Then, if all cups of F map to Λ,
F \D admits a complete Euclidean metric, which is a contradiction against the Euler
characteristic of F .

Next, suppose that the cardinality of Λ is one. Suppose, to the contrary, that all
cups of C map to the point Λ. Then C \D has a complex affine structure.

We claim that C\D is complete, i.e. the developing map of C\D is a diffeomorphism
onto C, when we normalize devC so that {∞} corresponds to the punctures. Suppose,
to the contrary, that C \ D is incomplete. As the cardinality of Λ is not two, Im ρ
does not preserve an incomplete point of C \ D in C. Thus C admits Thurston’s
parametrization (τ, L) where τ is a finite area hyperbolic structure on F and L is
a measured lamination on τ (Theorem [KP94b, Theorem 11.6], cf [Bab17, Theorem
3.1]). Since F is incomplete and the cardinality of Λ is not two, there is a maximal ball
B of devF such that its ideal point set contains two distinct points in C. Then the
holonomy of F must contain a hyperbolic element in PSL2C whose fixed points are in
C, whose endpoints are close to those two points in C. This leads to a contradiction
to all cups mapping to the same point. Therefore, the C \D is complete.

Thus, the holonomy of F consists of parabolic elements fixing ∞. Then the Euler
characteristic of F \ D is zero, since F \ D admits Euclidean structure. Therefore F
has a positive Euler characteristic, which is a contradiction. �

Proposition 9.2. Let F be a closed surface with two punctures p and q such that the
Euler characteristic of F is negative. Suppose that C = (f, ρ) is a CP1-structure on F
such that

• the holonomy of C is elementary, and the stabilizer of Im ρ (in PSL2C) is non-
discrete, and
• the degrees of f around the two punctures are the same.

Then, no cusp of F maps to the subset Λ defined in Lemma 9.1.

Proof. By Lemma 9.1, we can assume that p does not develop to Λ. As the Euler
characteristic of F is negative, we let C ∼= (τ, L) be the Thurston parameters of C ;
then by the assumption of the holonomy, p and q correspond to cusps of τ . Then, as
the degrees at p and q agree, the total weights of leaves of L around the punctures are
the same.

Suppose, to the contrary, that a puncture q develops to a point of Λ. Then f takes
all lifts of q to the same point r of Λ: Otherwise, as Λ has cardinality two, Im ρ contains
hyperbolic elements, and it also contains an elliptic element exchanging the points of
Λ; then the stabilizer of Im ρ must be discrete against the hypothesis.
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Let ` be a leaf of L initiating from q. Then its lift ˜̀ to the universal cover of τ
maps, by the bending map β : H2 → H3, to a geodesic in H3 initiating from q. As all
lifts of p map to r, the other endpoint of β(˜̀) is the image of a lift of q. Therefore
all leaves of L initiating from q must end at p. For every complementary region R of
τ \ L, letting R̃ be the universal cover of R (in τ̃ = H2), at most, one ideal point of R̃
maps to q by the pleated surface.

Moreover, every leaf of L initiating from p must end at q, since the total weights
of L around p and q agree. Let Lp,q be the sublamination of L consisting of the
isolated leaves of L connecting p and q. This implies that each component σ of τ \Lp,q
has a negative Euler characteristic. Since no leaves of L \ Lp,q has an endpoint on
the boundary of τ \ Lp,q, the restriction of ρ to π1(σ) is non-elementary, which is a
contradiction. �

10. Parabolic limit

In this section, we assume that ρ∞(m) is parabolic, and analyze the limit of Ct
as t → ∞ in terms of its bending map and developing map. First, by Theorem 7.4,
for each component F of S \ m, by taking an appropriate base point bt in the thick
part of Ct homotopic to F , (Ct, bt) converges to a CP1-structure F∞ on a compact
surface with one or two punctures, such that F∞ is homeomorphic to F . Let C∞ be
the disjoint union of all such geometric limits F∞ over all thick parts. Then C∞ is a
CP1-structure on a closed surface with two cusps homeomorphic to S \m. Note that
C∞ is not connected if and only if m is separating. Then the limit holonomy has the
following algebraic property.
Lemma 10.1. Suppose that ρ∞(m) is parabolic. Then, for each component F of S \m,
ρ∞(F ) is non-elementary.

Proof. Since S is a closed oriented surface of genus at least two, each component of
S \m is also of hyperbolic type. Thus let (σ, ν) be the Thurston parameterization of
F∞, where σ is a complete closed hyperbolic with one or two cusps homeomorphic to
F and ν is a measured lamination on σ. Clearly, the cusps of F∞ correspond to the
cusps of σ. Then there is a bi-infinite simple geodesic ` properly embedded in σ such
that ` is a leaf of ν or disjoint from ν (note that each endpoint of ` is at a cusp of σ).

Let β : H2 → H3 be the bending map given by (σ, ν), such that β is equivariant via
ρ∞|π1(F ). Let ˜̀be a lift of ` to the universal cover H2 of σ. Then the endpoints of ˜̀are
parabolic fixed points in the ideal boundary of H2. Let γ1, γ2 ∈ π1(F ) be the peripheral
elements fixing the endpoints. As ` does not cross ν, its image β(˜̀) is a geodesic in H3.
Moreover, as β is ρ∞-equivariant, ρ∞(γ1) and ρ∞(γ2) are parabolic elements fixing the
different endpoints of β(˜̀). Therefore ρ∞(γ1) and ρ∞(γ2) are non-commuting parabolic
elements in PSL2C, and they generate a non-elementary subgroup of PSL2C. �

Proposition 5.2 implies that the developing map extends to cups with parabolic
holonomy.

Proposition 10.2. Let C = (f, ρ) be a CP1-structure on a closed surface with finitely
many punctures, denoted by F , such that the holonomy around each puncture is par-
abolic. Then the developing map f : F̃ → CP1 extends continuously to the lift of cups
so that they map to their corresponding parabolic fixed points.

Proof. Set C ∼= (τ, L) in Thurston’s parameters, where τ is a hyperbolic surface homeo-
morphic to F and L is a measured lamination on τ . For each cusp c of C, by Proposition
5.2, as the holonomy ρ around c is parabolic element in PSL2C, c corresponds to a cusp
of τ and the total weight of leaves of L ending at the cusp is either 0 or a positive
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multiple of 2π. Let β : H2 → H3 be the bending map, and let L̃ be the π1(F )-invariant
measured lamination on H2 by pulling back L by the universal covering map H2 → τ .
Let r be a geodesic ray in the universal cover H2 ending at a parabolic fixed point p of
a peripheral element of π1(S). Then r eventually does not cross the L̃. Thus the curve
β(r) is eventually a geodesic ray in H3 ending at p. By the correspondence between
the developing map and the pleated surface, the assertion follows. �

Recall that φ : S̃ → S denotes the universal covering map. Then the above lemmas
imply a good convergence of the developing map of Ct away from m.

Theorem 10.3. Suppose ρ∞(m) is parabolic. Then there is a regular neighborhood N
of m such that ft|S̃ \ φ−1(N) converges to a ρ∞-equivariant continuous map f∞ : S̃ \
φ−1(N) → CP1 uniformly on compact subsets, such that the developing image of each
boundary component of S̃ \ φ−1(N) maps to its corresponding parabolic fixed point.

Proof. By Theorem 7.4 (2), the restriction Ct to S \ N converges to C∞ as t → ∞
by taking an appropriate isotopy of S uniformly. Since ρ∞(F ) is non-elementary
(Lemma 10.1), the restriction of ft to S̃ \ φ−1(N) converges to the developing map
of C∞ uniformly on compact subsets. By Proposition 10.2, each boundary component
S̃ \ φ−1(N) converges to its corresponding parabolic fixed point uniformly on compact
subsets. �

In the rest of this section, we show the convergence of the developing map of Ct on
the entire surface. First we analyze the holonomy of Ct along m.

Proposition 10.4. For sufficiently large t > 0, ρt(m) is not the identity element of
PSL2C. Moreover, if the cusp neighborhoods of C∞ are horodisk quotients. Then, for
sufficiently large t > 0, ρt(m) is hyperbolic.

Proof. Set Ct ∼= (τt, Lt) ∈ T × ML in Thurston’s parameters for t > 0. Similarly set
C∞ ∼= (τ∞, L∞), where τ∞ is a complete hyperbolic structure on F \ m with finite
volume, and L∞ is a measured geodesic lamination on τ∞.

Let mt denote the geodesic representative of m on τt. Then, the length of mt on τt
converges to 0 as t→∞ since ρ∞(m) is parabolic.

Suppose, to the contrary, that there is a sequence t1 < t2 < . . . diverging to ∞
such that ρti(m) is not hyperbolic. Then a leaf `i of Lti intersects the geodesic loop mti
for each i = 1, 2 . . . . Pick a point pi on mti ∩ Lti . Pick a lift m̃t of mt to the universal
cover τ̃i ∼= H2 which is preserved by an element γm in π1(S) whose free homotopy class
is m. Then, for each i, let pi,j (j ∈ Z) be the lifts of pti on m̃ti in H2 indexed linearly,
so that pi,j = γjm · pi,0.

For t > 0, let βt : H2 → H3 be the ρt-equivariant bending map induced by (τt, Lt).
Then, since {pi,j}j∈Z is an orbit of the infinite cyclic group generated by γm, its image
{βti(pi,j)}j∈Z is an orbit of the cyclic group generated by ρti(γm) ∈ PSL2C. Then, since
ρti(m) is elliptic or parabolic (possibly the identity), by basic hyperbolic geometry,
the points βti(pi,j) is contained in a totally geodesic hyperbolic plane Hti in H3. (In
comparison, if ρti(m) is hyperbolic and its screw rotation angle is not a multiple of π,
then most of its orbits do not lie in a totally geodesic plane.)

Note that Hti is uniquely determined by the choice of pi and the lift m̃i, unless
ρti(m) is the identity.

If ρti is the identity element in PSL2C, then, letting ˜̀
i be the leaf of L̃ti intersecting

m̃i in pi,j, let Hti be the hyperbolic plane orthogonal to the geodesic βti(˜̀
i) in the point
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βti(pi,j) for some j ∈ Z. Clearly Hti is independent on the choice of j ∈ Z, as ρti(m) is
the identity.

The infimum of ∠τti (mti , Lti) ≥ 0 over i = 1, 2, . . . is positive, since ∠τi(mti , Lti)
is close to zero, then ρti must be hyperbolic (Theorem 2.1). Then, there is δ > 0,
such that, if i is large enough, then, if a leaf ` of L̃ti intersects m̃ti , then the angle
between the geodesic βti(`) and the hyperbolic planeHti is at least δ. Indeed, otherwise,
limi→∞∠τi(mti , Lti) = 0.

Recall that τ∞ is a complete hyperbolic surface of finite volume homeomorphic to
S \m, so that each boundary component of S \m corresponds to a cusp of τ∞. Pick
a loop α on S such that

(1) α essentially intersects m in a single point if m is non-separating, and in two
points if m is separating,

(2) each segment α \ m descends to a geodesic g on τ∞ with endpoints at cusps,
and g does not crossing L∞.

Below we show that the translation length of ρti(α) diverges to∞, which contradicts
the convergence of ρt. We assume thatm is non-separating, and one can similarly prove
the case when m is separating.

For each i = 1, 2 . . . , let αi be the piecewise geodesic loop on τti to homotopic to
α, such that

• αi is a union of two geodesic segments,
• one geodesic segment si of αi has its interior contained in τti \mti , and at each
endpoint, si meets mti orthogonally, and
• the other geodesic segment ui contained in mti .

Since τti is pinched along m as i→∞, the length of si goes to ∞. Let α̃i be a lift
of αi to H2 which is a simple piecewise geodesic, and it is a bilipschitz curve.

For each i = 1, 2, . . . , let ũi be a lift of ui to a geodesic segment of α̃i. Then, let m̃i

be the lift of mti to H2 which contains ũi, and let γũi ∈ π1(S) be the element preserving
m̃ti . For every ε > 0 if i is large, the βti(ũi) is contained in the ε-neighborhood the
ρti(γũi)-invariant hyperbolic plane Hũi above, since lengthτti mti goes to 0.

Let s̃i be a lift of si to a segment of α̃i. Then, the length of s̃i goes to∞ as i→∞.
For every ε > 0, by (2), the transversal measure of si by Lti in the ε-thick part of τti
limits to 0 as i → ∞. In addition, there is r > 0, such that, the intersection angle of
Lti and si in the r-thin part of ττti goes to zero as i→∞. Therefore, for every ε > 0,
if i is sufficiently large, then the restriction of βti to s̃i is a (1 − ε, 1 + ε)-bilipschitz
embedding. Let gi be the bi-infinite geodesic in H3 passing through the endpoints of
βti(s̃i).

Let ui,1, ui,2 be the lifts of ui to the geodesic segments of α̃ti which are adjacent
to s̃i. Then let Hi,1 and Hi,2 be the hyperbolic planes corresponding to ui,1 and ui,2,
respectively. Then, gi transversally intersects Hi,1 and Hi,2 at angle at least δ/2.
Moreover, for every ε > 0, if i is large enough, then those intersection points are ε-
close to the endpoints of βti(s̃i). Therefore, the distance between the hyperbolic planes
Hi,1 and Hi,2 goes to ∞ as i → ∞ (Figure 10). Therefore the translation length of
ρt(α) goes to ∞ as desired. This contradicts the hypothesis. Therefore ρt(m) must be
parabolic for sufficiently large t > 0. �

Let φ : S̃ → S be the universal covering map. Let κt : Ct → τt denote the collapsing
map of Ct, and κ̃t : C̃t → H2 denote its lift from the collapsing of the universal cover
(§2.2.2). We next show the convergence of the bending map.
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βti(s̃i)
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Figure 10. The quasi-geodesic βti(α̃i) preserved by the hyperbolic ele-
ment ρti(α).

Theorem 10.5. Suppose that ρ∞(m) is parabolic. Then, up to an isotopy of S in t,
βt ◦ κ̃t : S̃ → H3 converges to a ρ∞-equivariant continuous map α : S̃ → H3 ∪CP1 such
that

• α−1(CP1) is a π1(S)-invariant multicurve on S̃ isotopic to φ−1(m) though π1(S)-
invariant multicurves, and
• for each component P of S̃ \ φ−1(m), the restriction βt ◦ κ̃t|P converges to the
pleated surface for the component of C∞ corresponding to P .

Proof. The second assertion holds immediately from Theorem 10.3.
The axis at of ρt(m) converges to the parabolic fixed point of ρ∞(m). By Propo-

sition 10.4, ρt(m) is a hyperbolic element for sufficiently large t > 0. Let D ⊂ H3 be
a horoball centered at the parabolic fixed point of ρ∞(m). Then we pick a continuous
path of ρt(m)-invariant subsets Dt in H3 bounded by the surface equidistant from the
axis of ρt(m) so that Dt converges to D as t→∞.

Pick a sufficiently small δ > 0. For sufficiently large t > 0, let N δ
t be the component

of the δ-thin part of τt homotopic to m. Let Ñ δ
t be the lift of N δ

t to the universal cover
τ̃ ∼= H2. If δ > 0 is sufficiently small, by the convergence of ρt, the βt-image of Ñ δ

t is
eventually contained in Dt. This implies the first assertion. �

Next, we prove that cusp neighborhoods of the limit surface are isomorphic to cusp
neighborhoods of a hyperbolic surface.
Proposition 10.6. Suppose that ρ∞(m) is parabolic. The cusps of C∞ must be horodisk
quotients.

Proof. Suppose, to the contrary, that the cusp neighborhoods of C∞ are not horodisk
quotients.

Let Ct ∼= (τt, Lt) denote the Thurston’s parameters of Ct. Then, as ρ∞(m) is
parabolic, Lt(m) converges to a non-negative integral multiple 2πn of 2π. As the
limit cusp neighborhoods are assumed to be not horodisk quotients, n is a positive
integer. Similarly, let C∞ ∼= (τ∞, L∞) denote Thurston parameters of C∞. Thus the
L∞-transversal measure of each peripheral loop of C∞ is 2πn.

For sufficiently large t > 0, ρt(m) is not the identity; let at be its axis (Defini-
tion 3.6). Pick δ > 0 less than the two-dimensional Margulis constant. Let Nt be
the δ-thin part of τt homotopic to m. Let Ñt be the lift of Nt to the universal cover
H2. If δ > 0 is sufficiently small, for all t large enough, each component of Nt ∩ Lt
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is a geodesic segment connecting one boundary component of Nt to the other. Since
the transversal measure of each peripheral loop of Lt is close to 2πn > 0 Thus, for
t � 0, pick a fundamental domain Ft in Ñt bounded by two leaves of L̃t such that
a component Ft,1 of Ft \ m̃t converges to a fundamental domain of the bending map
β∞ : H2 → H3 ∪ CP1 (Theorem 10.5) near a cusp of τ∞.

Let `t be a leaf of L̃∞ bounding Ft, so that, for each component rt of `t \ m̃t, the
restriction of βt converges to a bi-infinite geodesic in H3 as i→∞. Clearly the length
of `t ∩ Ñt goes to ∞, and the length of each segment of `t ∩ Ñt \ m̃t goes to ∞ as
t→∞.

Let Ft,2 be the other component of Ft \ m̃t. Then there is an element γt of Gt such
that the restriction of βt to γtFt,2 converges to the fundamental domain of the other
cusp of C∞.

We first show that if ρt(m) is hyperbolic, it must be “almost elliptic” for sufficiently
large t > 0.

Claim 10.7. Suppose that there is a sequence t1 < t2 < . . . diverging to ∞, such
that ρti(m) is hyperbolic for each i = 1, 2, . . . . Then, the complex translation of ρti(m)
goes to zero from the imaginary direction as i → ∞. In other words, the sequence
tr2 ρti(m) ∈ C converges to 4 tangentially to the real ray {x ∈ R | x ≤ 4}.

Proof. Suppose to the contrary that there is a sequence t1 < t2 < . . . such that
ρti(m) is hyperbolic and the complex translation length converges to 0 from the non-
imaginary direction. As ρti(m) is hyperbolic, the axis is a geodesic and it converges to
the parabolic fixed point of ρ∞(m). Pick a point pi on βti(Fti) closest to ati in H3. Let
Ri be the set of points in H3 whose distance from ati is at most the distance from pi
to the axis ati .

For each i, let Gi be a one-dimensional Lie subgroup of PSL2C containing ρti(m)
such that the infinite cyclic group 〈ρti(m)〉 is asymptotically dense in Gi as i→∞ w.r.t.
the path metric on Gi induced by the invariant metric on PSL2C. Since the complex
translation length of ρti converges to 0 from a non-imaginary direction, Gt converges
to a one-dimensional subgroup in PSL2C consisting of only hyperbolic elements except
the identity. For every i, let ci be the Gi-invariant smooth curve in H3 passing pi. Then
ci spirals on the boundary of Ri limiting to the endpoints of ai. (See Figure 11.)

The βti-image of the leaf `i is a geodesic in H3 tangent to Ri passing pi. Then,
moreover, the geodesic βti(`i) and the curve ci are asymptotically tangent to each
other at pi as i → ∞, because of the convergence of the bending map βti and the
holonomy ρti(m) as i→∞.

Let si,1 be the geodesic segment `i ∩ Fi,1, so that βti(si,1) converges to a geodesic
ray limiting to the fixed point of ρ∞(m). Let q1,i be the endpoint of si,1 that is on the
boundary of Ñi, and let q2,i be the other endpoint of `i ∩ Ñi. Then βti(qi,1) converges
to a point in H3 as i→∞. Then βti(γiqi,2) also converges to a point on H3.

Since the length of each segment of `i ∩ Ñi \ m̃i goes to infinity, and βi(`i) is
asymptotically tangent to the curve ci, therefore the distance between βti(qi,1) and
βti(qi,2) diverges to ∞ as i → ∞. This is a contradiction against the convergence of
the bending map βti as i→∞. �

Next we show the convergence of ρt forces the convergence of twisting parameter
along m.

Claim 10.8. The Fenchel-Nielson twisting parameter of τt along m must converge (in
R) as t→∞.
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Figure 11. The left figure is the normalization of the right figure so
that pi is at the center

Proof. First, for each non-identity element of PSL2C, we describe an associated foli-
ation. For a hyperbolic isometry or an elliptic isometry of H3, the hyperbolic planes
containing its axis give a foliation on H3 minus the axis. For a parabolic isometry
α ∈ PSL2C, pick a hyperbolic plane H in H3 invariant under α, which contains the
parabolic fixed point. Then there is a foliation of H3 by hyperbolic planes orthogonal to
H and containing the parabolic fixed point; this foliation is independent of the choice
of H. For sufficiently large t > 0, as ρt(m) is not the identity (Proposition 10.4), let
Ft denote such a foliation for ρt(m).

Let m̃ be a lift of m to the universal cover S̃. Let P1, P2 be the connected compo-
nents of S̃ \ φ−1(m) adjacent along m̃. For each i = 1, 2, given a point xi in Pi near
m̃, let v∞,i be the tangent vector at the point β∞ ◦ κ̃∞(xi) in H3 orthogonal its sup-
port hyperbolic plane of xi in the normal direction (§2.2.2). Since the Lt-transversal
measure along mt converges to 2πn > 0, we can pick xi so that v∞,i is tangent to the
foliation F∞. Similarly, for each t� 0, pick a point xt,i in Pi such that, letting vt,i be
the tangent vector of βt ◦ κ̃t at xt,i orthogonal to its support plane, vt,i is tangent to Ft
and vt,i converges to v∞,i as t→∞. (See Figure 12.)

Let Lt be the circular measured lamination on Ct which descends to the measured
lamination of Thurston’s parametrization by the collapsing map. Let et be the minimal
transversal measure, given by Lt, of arcs connecting x1 to ρt(γt)xt,2. Note that, since
the isometry ρt(m) preserves the foliation Ft, the tangent vector ρt(γt)vt,2 at ρt(γt)xt,2
is also tangent to Ft. By Claim 10.7, ρt(m) is either parabolic, elliptic, or “almost
elliptic” for t � 0. Therefore, for every ε > 0, if δ > 0 is sufficiently small, then, for
t � 0, the transversal measure et is ε-close to a multiple of 2π. Thus the twisting
parameter along m converges modulo 2π. By continuity, the twisting parameter of τt
along m must converge as t→∞.

�

By Claim 10.8, the Fenchel-Nielsen twisting parameter of τt along m converges. For
all t > 0, let Qt,1 and Qt,2 be the adjacent components of H2\ψ−1(mt) corresponding to
P1 and P2, respectively, so that Qt,1 and Qt,2 are separated by the geodesic m̃t. Then,
as the restriction of βt of the component Qt,1 converges, uniformly on compact subsets,
to the bending map of the corresponding cusp neighborhood of C∞ by Theorem 10.5.
Then, since the length of the geodesic loop mt goes to 0 as t → ∞, the convergence
of the twisting parameter implies that the restriction of βt to Qt,2 converges to the
parabolic fixed point of ρ∞(m) uniformly on compact subsets. This is a contradiction
against the convergence of the bending map βt of Qt,2 uniformly on compact subsets
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Figure 12. The right figure is a normalization of the left figure so that
the axis at passes the center.

guaranteed by Theorem 10.5. 10.6

Theorem 10.9. Suppose that ρ∞(m) is parabolic. Then, by an appropriate isotopy of
S in t, ft : S̃ → CP1 converges to a ρ∞-equivariant continuous map S̃ → CP1 such
that, for some multiloop M on S consisting of finitely many parallel copies of m,

• f∞ is a local homeomorphism on S̃ \ φ−1(M), and
• f∞ takes each component of φ−1(M) to its corresponding parabolic fixed point.

Under the assumption of Theorem 10.9, each cusp of C∞ is a horodisk quotient
by Proposition 10.6. Thus, by Proposition 10.4, ρt(m) is hyperbolic for all sufficiently
large t > 0, and it converges to the parabolic element ρ∞(m) as t→∞.

More generally, let γt ∈ PSL2C, t ≥ 0 be a path of hyperbolic elements such that
γt converges to a parabolic element γ∞ in PSL2C as t → ∞. Let Gt be the one-
parameter subgroup of PSL2C containing γt such that the cyclic group generated by
γt is asymptotically dense in Gt with respect to the path metric on Gt induced by the
(left) invariant metric on PSL2C.

Continuously conjugate γt by elements ωt of PSL2C so that the axis of ωt · γt :=
rtwtr

−1
t remains, for all t, to be the geodesic in H3 which connects 0 to ∞ in the ideal

boundary CP1 = C ∪ {∞}.
Proposition 10.10. Let A be a cylinder and homeomorphically identify A with [−1, 1]×
S1, and let Ã be the universal cover of A. Let At (t > 0) be a path of CP1-structures
on a cylinder A, and let ft be its developing map which changes continuously in t, such
that

• the holonomy of At is the limit holonomy isomorphism π1(S) ∼= Z→ 〈γt〉,
• each boundary of At develops onto a Gt-invariant curve on CP1 for all t > 0.
• for each boundary circle b of A, the restriction of ft to the lift b̃ to Ã converges
to a G∞-invariant simple curve on CP1 (which is a G∞-invariant round circle
minus the parabolic fixed point).

Then, by an isotopy of A fixing the boundary, devAt : Ã → CP1 converges to an
continuous map f∞ : Ã→ CP1 such that

• f∞ is equivariant via the isomorphism Z→ 〈γ∞〉;
• there is a multiloop M consisting of loops homotopy equivalent to A, such that
f∞ is a local homeomorphism on Ã \ M̃ ;
• f∞ takes M̃ to the parabolic fixed point of γ∞.
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Proof. We construct a path of fundamental membranes Zt for the developing maps ft
which give the desired limit as t→∞.

The normalized developing map ωt ◦ft : Ã→ C∪{∞} is identified with the restric-
tion of exp: C→ C∗ to a bi-infinite strip It bounded by parallel lines in C ∼= E2. Let b1
and b2 denote the boundary components of A. Regarding b1, b2 as simple closed curves,
we can lift b1 and b2 to segments s1 and s2, respectively, of segments of the boundary
components of Ã. For each t > 0 and i = 1, 2, let si,t be the segment of the boundary
line of It such that ωt ◦ ft(si) = exp(si,t). Then s1,t and s2,t are parallel and have the
same length. Thus s2,t is the Euclidean translation of s1,t by unique zt ∈ C \ {0}.

Claim 10.11. (1) The length of si,t goes to zero as t→∞, and
(2) zt converges to an integer multiple of 2πi as t→∞.

Proof. (1) As 0 and ∞ are the fixed points of ωtγtω−1t and γt converges to γ∞, both
ω−1t (0) and ω−1t (∞) converge to the parabolic fixed point of γ∞ as t → ∞. Since the
development of bi converges to a G∞-invariant curve on CP1, clearly the development
of si,t converges to a simple arc contained in the G∞-invariant curve. Therefore, since
ft = w−1t exp on Ã, the norm of the derivative of ft at each point on the segment si
goes to infinity as t→∞. Hence the Euclidean length of si,t must go to zero as t→∞.

(2) Since the Euclidean length of s1,t goes to zero on It ⊂ C, translating It by a
multiple of 2πi, we may assume that s1,t converges to a point p on C. Let q ∈ CP1 be
the parabolic fixed point of γ∞. Let K be a compact subset K in CP1 \ {q} and Up be
a neighborhood of p in C. Let U denote the union of translates of Up by the integer
multiples of 2πi. Then, if t is sufficiently large, then ω−1t exp(It \ U) is contained in
CP1 \ K. Therefore, as the developments of s1,t and s2,t converge to simple arcs in
CP1 \ {q}, their difference zt must converge to a multiple of 2πi. �

Let n be the integer such that zt converges to 2πin. Pick a polygonal fundamental
domain Zt of At in It with following properties: Zt is a union of (n + 1)-rectangles
Rt,1, Rt,2, . . . , Rt,n+1 and n parallelograms Pt,1, . . . , Pt,n as in the figure (Figure 13) so
that

• for each i = 1, . . . , n, n+ 1, a pair of edges of Rt,i are parallel to the boundary
of the Euclidean strip It , the boundary segment s1,t is an edge of Rt,1, the
boundary segment s2,t is an edge of Rt,n+1, and, for each i = 2, . . . , n − 2,
the Euclidean translation of st,i by 2πi decomposes Rt,i+1 into two isometric
rectangles, and
• for each i = 1, . . . , n, the parallelogram Pt,i have edges parallel to the boundary
of It which are an edge Rt,i and an edge Rt,i+1.

In addition, we take Rt,1, Rt,2, . . . , Rt,n+1 and n parallelograms Pt,1, . . . , Pt,n appropri-
ately so that

• the development of Pt,i by ft converges to the parabolic fixed point of γ∞ as
t→∞;
• the ft-images of Rt,1 and Rt,n+1 converge to horodisks bounded by the limit of
ft(b̃) in the hypothesis, and the restriction of ft to Rt,1 and Rt,n+1 converge to
a developing map of horodisk quotients;
• for i = 2, . . . , n, the restriction of ft to Rt,i converges to a developing map of
the Euclidean cylinder (CP1 \ {p})/〈γ∞〉

(Figure 14). Let M be a multiloop on A consisting of n boundary parallel loops. Pick
a path of regular neighborhood Nt of M so that Nt converges to M as t→∞. Isotope
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Figure 13. The limiting behavior of the fundamental membrane Zt of
At, where n = 2 and t1 < t2.
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A so that a fundamental domain F of Ã maps to Zt and that Nt are identified with
Pt,1, . . . , Pt,n. Then we a desired convergence.

�

Proof of Theorem 10.9. We already know the convergence of the developing map in
every thick part by Theorem 10.3. There are two cusps c1, c1 of C∞, which are horodisk
quotients by Proposition 10.6. For each cusp ci of C∞, pick a simple closed curve `i
which develops to a G∞-invariant simple curve on CP1. Then, for large t > 0, pick a
simple closed curve `i,t on Ct such that `i,t develops onto a Gt-invariant curve on CP1

and `i,t converges to `i as t→∞.
Let At be the cylinder in Ct bounded by `1,t and `2,t. Then we can take such a

path of cylinders At in Ct and a constant δ > 0 such that At contains the δ-thin part
of Ct for all sufficiently large t. Thus, by applying Proposition 10.10 to At, we obtain
a multiloop for the desired convergence property of devCt. �

10.1. Convergence in holomorphic quadratic differential in the case of para-
bolic cusps. Under the assumption that ρ∞(m) is parabolic, we already have the limit
C∞ of Ct as t→∞ where C∞ is a CP1-structure on a Riemann surface X∞ with two
cusps homeomorphic to S \m. Moreover, each cusp of C∞ has a neighborhood which
is a horodisk quotient (i.e. isomorphic, as a CP1-structure, to a cusp neighborhood of
a hyperbolic surface) by Proposition 10.6. Then the holomorphic quadratic differential
φ∞ on X∞ representing C∞ has, at worst, a first order pole at each cusp. Therefore
we have the following convergence of the differential.
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Theorem 10.12. Suppose that ρ∞(m) is parabolic. Then Xt converges to a nodal
Riemann surface X∞ such that X∞ minus the node is homeomorphic to S \ m and
qt converges to a quadratic differential q∞ on X∞ such that the node is at worst first
order pole.

11. ρ∞(m) cannot be hyperbolic

In this section, we show that ρ∞(m) cannot be a hyperbolic element.

Lemma 11.1. Suppose that Xt is pinched along a loop m and ρ∞(m) is hyperbolic.
Then

(1) Ct converges to a CP1-structure C∞ on a compact surface with two punctures,
which is homeomorphic to S \m, in the sense that, for every ε > 0, the ε-thick
part of Ct converges to the ε-thick part of C∞ uniformly, and

(2) ρ∞(F ) is non-elementary for each component F of S \m.

Proof. (1) is an immediate corollary of Theorem 7.4.
(2) Let F∞ be the component of C∞ corresponding to F . Let (σ, ν) denote the

Thurston parametrization of F∞. Then σ is a hyperbolic surface with geodesic bound-
ary, such that the lengths of the boundary components are the translation length of
ρ∞(m) (see the proof of Lemma 5.4). Let (σ̃, ν̃) be the universal cover of (σ, ν) so
that σ̃ is a convex subset of H2 bounded by geodesics and that ν̃ is a π1(σ)-invariant
lamination on σ̃.

Let α : σ̃ → H3 be its pleated surface equivariant by the holonomy of F∞. Let ` be
a boundary geodesic of σ̃. Then the endpoints of α(`) are in the limit set Λ of HolF∞,
as α(`) is the axis of the hyperbolic ρ∞(m). Every component R of σ̃ \ ν̃ has at least
three ideal points. Then the ideal points of α(R) are in Λ (see [Bab20, Lemma 5.1]).
Thus ρ∞|F is non-elementary. �

Lemma 11.2. For each cusp p of C∞, there is a neighborhood of p foliated by iso-
morphic admissible loops which develop to simple curves on CP1 invariant under a
one-parameter subgroup in PSL2C containing ρt(m).

Proof. The developing map near a cusp neighborhood is the restriction of the expo-
nential map exp: C→ C∗; moreover, by taking an appropriate neighborhood, one can
assume that the restriction is to a half-plane bounded by a straight line in C invariant
under the deck transformation corresponding to the hyperbolic element ρt(m).

The half-plane is foliated by straight lines parallel to the boundary, and this foliation
descends to a desired foliation of the cusp neighborhoods by admissible loops. �

Proposition 11.3. If ε > 0 is sufficiently small, then, for every sufficiently large t > 0,
there is a cylinder At in Ct homotopy equivalent to m such that

• At changes continuously in t� 0;
• At is foliated by admissible loops whose developments are invariant under a
one-parameter subgroup Gt in PSL2C containing ρt(m);
• At contains the conformally ε-thin part of Ct;
• Ct \At converges to a CP1-structure on S \m whose boundary components are
admissible loops.

Proof. Consider the cusp neighborhoods of C∞ foliated by admissible loops by Lemma
11.2. By the convergence of Lemma 11.1 and the stability of the admissible loops,
for t � 0, there is a cylinder At foliated by admissible loops whose developments are
invariant under Gt. Then it is easy to realize other desired properties. �
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By Claim 11.1 (2), the developing map of Ct \At converges uniformly on compacts.
By normalizing ρt by PSL2C continuously, so that, for sufficiently large t > 0, we can,
in addition, assume that the axis of the hyperbolic element ρt(m) connects 0 and∞ of
CP1 = C ∪ {∞}. Then the developing map of the cylinder At is the restriction of the
exponential map exp: C→ C∗ to the strip region Rt bounded by parallel lines, since the
boundary components of At develop to Gt-invariant curves by Proposition 11.3. Since
the boundary components of At converge to peripheral loops of C∞, by the continuity
of devCt in t, the region Rt converges to a strip in C with finite width. Therefore At
must converge as t→∞. Thus Ct converges to a CP1-structure on S— this contradicts
the divergence of Ct in the deformation space. Hence ρ∞(m) cannot be hyperbolic.

12. ρ∞(m) cannot be elliptic

In this section, similarly to the previous section (§11), we show that ρ∞(m) cannot
be elliptic. To show this, we assume, to the contrary, that ρ∞(m) is elliptic and obtain
a contradiction against the convergence of ρt as t→∞. By Theorem 7.4, we have

Proposition 12.1. Suppose that ρ∞(m) is elliptic. Then Ct converges to a CP1-
structure C∞ on a compact surface minus two points homeomorphic to S \m, in the
sense that, for every ε > 0, the ε-thick part of Ct converges to the ε-thick part of C∞.

Lemma 12.2. For each component F∞ of C∞, the stabilizer of ρ∞(F∞) by conjugation
is a discrete subgroup in PSL2C.

Proof. Let F∞ be a component of C∞. Then let (σ, ν) be the Thurston parametrization
of F∞, and let (σ̃, ν̃) be the universal cover of (σ, ν). Then the rotation angle of the
elliptic element ρ∞(m) is, modulo 2π, equal to the total weight, given by ν, of the
leaves ending at a puncture (Proposition 5.2). Let β∞ : σ̃ → H3 be the equivariant
pleated surface. Pick a leaf ` of ν whose endpoints are at cusps of ν; then ` is an
isolated leaf. Let ˜̀be a leaf of ν̃ which is a lift of `. Then its image β∞(`) is a geodesic
in H3. Each endpoint of this geodesic is a fixed point of the parabolic element in the
image ρ∞(π1(F )) corresponding to its associated peripheral loop.

As the leaf ` is isolated, ` bounds a component P of σ̃ \ ν̃, and P has at least three
ideal points. Then, for each ideal point p of P , let γ ∈ π1(F∞) be such that γ fixes p.
Then β∞(p) is fixed by the elliptic element ρ∞(γ). Therefore, the stabilizer of ρ∞(F∞)
is a discrete subgroup of PSL2C. �

Similarly to Proposition 11.3, the following follows from Lemma 12.1 and Lemma
12.2:
Proposition 12.3. If ε > 0 is sufficiently small, then for every sufficiently large t > 0,
there is a cylinder At in Ct homotopy equivalent to m such that

• At changes continuously in t� 0;
• At is foliated by loops whose developments are invariant under the one-dimensional
subgroup Gt of PSL2C containing ρt(m), and Gt converges to a one-dimensional
subgroup G∞ of PSL2C containing ρ∞(m);
• At contains the conformally ε-thin part of Ct homotopic to m;
• Ct\At converges to a CP1-structure on S\m such that the boundary components
cover round circles on CP1.

Proposition 12.4. Suppose that ρ∞(m) is elliptic. Then Ct converges to a CP1-
structure on S, which is a contradiction as desired.

Proof. Fix sufficiently small ε > 0, and let At be a cylinder given by Proposition
12.3. Let φt : C̃t → Ct be the universal covering map. Then the developing map of
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C̃t \ φ−1t (At) converges uniformly on compacts. Let Ãt be the component of φ−1t (At)
invariant under m ∈ π1(S), so that At changes continuously in t. We can normalize
devCt by PSL2C continuously in t, such that, for sufficiently large t > 0, the geodesic
axis of ρt(m) connects 0 and∞ of CP1 = C∪{∞}. Then, the restriction of devCt = ft
to Ãt is the restriction of the exponential map exp: C → C∗ to an infinite strip in C.
Since ft converges on the boundary components of Ãt, thus the restriction of ft to Ã
converges as t → ∞. Hence At must converge as t → ∞ as a CP1-structure on a
cylinder with boundary. Therefore Ct converges to a CP1-structure on S, which is a
contradiction. �

13. Limit when ρ∞(m) = I

Let A be a regular neighborhood of a loopm on S. For t ≥ 0, let (τt, Lt) be Thurston
parameters of Ct. Let βt : H2 → H3 be its ρt-equivariant pleated surface. Let κt : C → τ
be the collapsing map, and κ̃t : C̃ → H2 denote the lift of κ to the map between their
universal covers. Let at denote the axis of ρt(m) ∈ PSL2C (Definition 3.6).

Note that a CP1-structure on S is defined up to an isotopy of the base surface S.
Thus the developing map ft : S̃ → CP1 of the path Ct of CP1-structures on S can
be modified by an isotopy ψt : S → S in t without changing Ct. Finally, recall that
φ : S̃ → S is the universal covering map.

Theorem 13.1. Suppose that ρ∞(m) = I. Then the following hold:

(1) ρt(m) 6= I for sufficiently large t > 0.
(2) The Fenchel-Nielsen twisting parameter (in R) of Xt along m diverges to either
∞ or to −∞.

(3) For every diverging sequence 0 < t1 < t2 < . . . , there is a subsequence such that
(a) the axis ati converges to a point on CP1 or a geodesic in H3, denoted by

a∞;
(b) there is a CP1-structure in P(S \m) such that, for every ε > 0, the ε-thick

part of Cti converges to the ε-thick part of C∞ uniformly;
(c) up to an isotopy of S in t, the restriction of fti to S̃ \ φ−1(A) converges to

a ρ∞-equivariant continuous map f∞ : S̃ \ φ−1(A)→ CP1 as ti →∞ such
that, for each component Ã of φ−1(A), its boundary components map onto
the ideal points of a∞.

(4) the pleated surface βti ◦ κ̃ti : S̃ → H3 converges to a ρ∞-equivariant continuous
map S̃ → H3 ∪ CP1, up to an isotopy of S.

Notice that, by the surjectivity in (3c), if a∞ is a geodesic, then the different
boundary components of Ã map to the different endpoints of a∞.

We will prove (4) in the next subsection (§13.0.1). In this section, we will prove
the other assertions: (1) will be proved in Lemma 13.8; (2) will be proved in Lemma
13.9; (3c) will be proved in Proposition 13.12. The proof of (3b) is similar to the proof
of Theorem 7.4.

Let C∞ ∼= (σ∞, ν∞) denote the Thurston parameterization, where σ∞ be a hyper-
bolic structure in the Teichmüller space T(S \m) and ν∞ be a measured lamination on
σ∞. Then σ∞ has two cusps. At each cusp c of σ∞, there are only finitely many leaves
of ν∞ ending at c by a basic property of geodesic laminations ([CEG87]). Then, since
ρ∞(m) = I, the total weight of those leaves is a positive 2π-multiple.

Lemma 13.2. If ν∞ contains an irrational sublamination, then the holonomy of C∞
is non-elementary.
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Proof. Suppose that ν∞ contains an irrational sublamination. Then, there is a minimal
irrational sublamination N of L, so that every leaf of N is dense in N . Let F be
a (topologically) smallest subsurface of S containing N , such that F ⊂ N is a π1-
injective. Let ` be a geodesic loop in σ∞ which is a good approximation of N . Let
β∞ : H2 → H3 be the equivariant pleated surface corresponding to (σ∞, ν∞). Then, for
each component R of F \ `, the restriction of β∞ to R is a quasi-isometric embedding
([Bab10]). Thus ρ∞|π1R is non-elementary, immediately implying the lemma. �

Using the assumption that Ct is pinched along a single loop, we prove the following:
Proposition 13.3. For each component F of S \m, the restriction of ρ∞ to π1F is a
non-trivial representation in the representation variety.
Remark 13.4. On the other hand, the restriction ρ∞|π1(F ) may be the trivial repre-
sentation in the character variety (see Theorem 14.5).

Proof. If ν∞ contains an irrational lamination, by Lemma 13.2, ρ∞ is non-elementary.
Then we can assume, without loss of generality, that ν∞ contains only isolated leaves,
and ν∞ divides σ∞ into ideal polygons.

Since each component of σ∞ has one or two cusps, there is a leaf ` of ν∞ whose end-
points are at a single cusp c of σ∞. Let D be a small horodisk quotient neighborhood
of c. Then `\D is a long geodesic segment, and by connecting its endpoints by a horo-
cyclic simple arc in ∂D, we obtained a simple loop γ (which is a good approximation
of `); see Figure 15 (Left).

Pick a lift ˜̀ of ` to the universal cover H2 of σ∞ and fix an orientation. Then there
is αγ ∈ π1(S) representing γ which takes the oriented (bi-infinite) geodesic ˜̀ to an
oriented geodesic starting from the endpoint of ˜̀; see Figure 15 (Right). Clearly β∞(˜̀)
is an oriented geodesic in H3. Then, by the equivariant proeprty, the holonomy along
α takes the oriented geodesic β∞(˜̀) to an oriented geodesic starting from the endpoint
of β∞(˜̀), and thus ρ∞(γ) 6= I.

σ∞

γ ˜̀

αγ ˜̀H2

Figure 15.

�

Lemma 13.5. Let G be a non-trivial subgroup of PSL2C. Consider the (pointwise)
stabilizer of the action PSL2C y G by conjugation. Suppose that the stabilizer is
continuous. Then there is a set Λ of one or two points of CP1 fixed pointwise by the
action of G.

Proof. Suppose that G has a continuous stabilizer. Then, clearly, G is an elementary
subgroup of PSL2C. First suppose, in addition, that G contains a hyperbolic element
h. Then no element in G exchanges the fixed points of h, as otherwise, the stabilizer
cannot be continuous. Therefore Λ is the fixed point set of h, and all elements in
G \ {I} must be hyperbolic or elliptic elements with the same axis.
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Next suppose that G contains a parabolic element p. Then there is no elliptic
element or hyperbolic element in G, as otherwise, the stabilizer cannot be continuous.
Then Λ must be the single fixed point of p, and all G \ {I} are all parabolic elements
with the same fixed point.

Suppose that G contains an elliptic element e and contains no hyperbolic element.
Then, similarly, Λ must be the fixed point set of e, and G contains no parabolic element.
Moreover G \ {I} are all elliptic elements with a common axis. Then Λ is the set of
the two endpoints of the axis. �

Given a CP1-surface with a cusp such that the holonomy around the cusp is trivial,
its developing map continuously extends to the cusp, so that it is a branched covering
map near the cusp.
Lemma 13.6. Let F be a compact surface with finitely many punctures, such that the
Euler characteristic of F is negative. Let (f, ρ) be a developing pair of a CP1-structure
C on F such that

• ρ : π1(F )→ PSL2C is not the trivial representation,
• the holonomy around each puncture is trivial, and
• the stabilizer of Im ρ in PSL2C is continuous; thus let Λ ⊂ CP1 be the one- or
two-point set in Lemma 13.5.

Then, there is a cusp p of F such that f(p) is not a point of Λ.

Proof. Notice that CP1 minus Λ admits a complete Euclidean metric invariant under
Im ρ, which is unique up to scaling. Thus, if f takes all cusps of F into Λ, then the
surface F minus finitely many points admits a complete Euclidean metric. This is a
contradiction as the Euler characteristic of F is negative. �

The next proposition immediately follows from Proposition 9.2.
Proposition 13.7. Let F be a compact connected surface with two punctures, such
that the Euler characteristic of F is negative. Let C = (f, ρ) be a CP1-structure on F ,
such that

• Im ρ has a continuous stabilizer in PSL2C;
• the holonomy around each puncture is trivial;
• the degrees around the two punctures are the same.

Then no cusp of C maps to a point of Λ by f , where Λ is as in Lemma 13.5.

Let m̃ be a lift of m to S̃. Let Q and R be the adjacent components of S̃ \ φ−1(m)
across m̃. Let StabQ and StabR denote the subgroups in π1(S) which setwise preserve
Q and R, respectively. Let CQ

∞, C
R
∞ denote the component of C∞ corresponding Q,R

(if m is non-separating, CQ
∞ = CR

∞).
We first prove (1) in Theorem 13.1.

Lemma 13.8. For sufficiently large t > 0, ρt(m) 6= I.

Proof. Suppose, to the contrary, that there is a diverging sequence 0 ≤ t1 < t2 < . . .
such that ρti(m) = I for each i. We may, in addition, assume that Cti converges to C∞
as i → ∞ uniformly on compacts as i → ∞. Then, as ρti(m) = I and Ct is pinched
along m, for i� 0, there is a cylinder Ai in Cti homotopic to m such that

• Ai is bounded by round circles (i.e. the development of each boundary compo-
nent is a round circle on CP1),
• ModAi →∞, and
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• Cti \ Ai converges to C∞ minus cusp neighborhoods bounded by round circles
(in other words, for every ε > 0, if i is sufficiently large, then Ai is contained in
ε-thin part of Cti ).

We can normalize ρti so that ρti | StabR converges as i → ∞ and the developing map
fti |R also converges to a developing map of CR

∞ as i → ∞. Then the development of
m̃ converges to a point p on CP1.

First suppose that the stabilizer of ρ∞| Stab Q is discrete. Then, there are elements
α1, α2 of Stab Q with disjoint fixed point sets on CP1. Pick a sequence γi ∈ PSL2C
such that the restriction of the conjugation γiρtiγ

−1
i =: ρ′ti to StabQ converges as

i → ∞. Therefore, the properties of Ai imply that γi must leave every compact in
PSL2C. As α1, α2 have disjoint fixed point sets in CP1, one of the fixed point sets does
not contain the puncture point of CQ

∞. Therefore either ρti(α1) or ρti(α2) diverges to
infinity in PSL2C as i→∞ against the hypothesis.

Next suppose that the stabilizer of ρ∞| Stab Q is continuous. Then, by Proposition
13.7 and Lemma 13.6, with respect to the normalization ρ′ti , no cusp of CQ

∞ develops to
a point of Λ for CQ

∞. Let ω ∈ StabQ such that ρ∞(w) is non-trivial (Proposition 13.3).
Then, by the properties of Ai, ρti(ω) must diverges to∞ since the continuous stabilizer
preserves Λ.

This is a contradiction against the convergence of ρt. �

Lemma 13.9. The Fenchel-Nielsen twist coordinate along m must diverge to ∞ or
−∞ as t→∞.

Proof. The proof is similar to that of Lemma 13.8. Suppose to the contrary that there
is a sequence t1 < t2 < t3 < . . . such that the Fenchel-Nielsen twist parameter of Cti
along m converges as i→∞. We normalize ρti so that ρti | StabR converges as i→∞
the developing map fti |R also converges to a developing map of CR

∞ as i→∞. Then,
similarly to the proof of Lemma 13.8, one can show that ρti | Stab Q diverges to infinity,
since the cylinder Ai becomes longer and longer and it pushes ρti | Stab Q farther and
farther away; this contradicts the convergence of ρt as t→∞. �

Then, for each t > 0, let ιt be some power of the Dehn twist of S along m such that
the twist coordinates of ιtCt along m is bounded from above and below in R uniformly
in t > 0. Then, by Lemma 13.9, the power must diverge to either∞ or −∞ as t→∞.

There is a diverging sequence 0 ≤ t1 < t2 < . . . such that Cti → C∞ as i → ∞
uniformly on compact. Let F be a component of S \m. Let F̃ be the universal cover
of F .

First suppose that ρ∞|F has a discrete stabilizer (in PSL2C). Let F∞ be a com-
ponent of C∞ which corresponds to F . Then devF∞ is the limit of fti |F̃ , so that
limi→∞ fti takes each boundary component of F̃ to a single point corresponding to a
cusp of C∞.

Pick a fundamental domain Di in F̃ with an arc si on ∂Di ∩ ∂F̃ such that si
descends to a loop mi isotopic to m, the loop mi is contained in the εi-thin part of Cti
with εi ↘ 0 as i→∞, and the development of mi is invariant under a one-dimensional
subgroup Gi of PSL2C containing ρi(m). As ρti(m)→ I, the image of si becomes more
and more like a round circle ci as i→∞.

Next suppose that ρ∞(F ) has a continuous stabilizer. Then ρ∞(F ) is elementary,
and the restriction of fti to F̃ may not converge to a local homeomorphism, even up
to a subsequence. Nonetheless, as Cti converges to C∞ in P(S \ m), clearly we can
normalize ρti for the convergence of developing pairs:
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Lemma 13.10. Suppose that there is no subsequence of ti such that fti|F̃ converges
to a developing map of F∞. Then there is a sequence γi of PSL2C such that, up to a
subsequence, γi(fti |F̃ , ρti |π1F ) converges to a developing pair (h∞, ζ∞) of F∞.

Next, without normalization, we show a convergence of the developing map as a
continuous map.

Proposition 13.11. Suppose that there is no subsequence such that the restriction
fti |F̃ converges to a developing map of F∞ as i → ∞. Then fti |F̃ converges to a
ρ∞|π1F -equivariant continuous map fF,∞ : F̃ → CP1 uniformly on compacts, such that
each boundary component of F̃ maps to a single point. Moreover, either fF,∞ is a
constant map to a fixed point of ρ∞|F or there are open disks D1, . . . , Dn on F such
that fF,∞ takes F̃ \ φ−1(D1 t · · · tDn) to a fixed point p of ρ∞(F ) and each lift D̃i of
Di to CP1 \ {p} for all i = 1, . . . , n.

Proof. Let γi ∈ PSL2C be the sequence and (h∞, ζ∞) be the normalized limit obtained
by Lemma 13.10. By the non-subconvergence hypothesis, ρ∞(π1F ) is an elementary
representation. We divide the proof into cases depending on the types of elementary
subgroups.

First suppose that ρ∞(π1F ) contains a loxodromic or elliptic element. Then, let `
be the axis of the loxodromic or the elliptic element. Then, there is a corresponding lox-
odromic or elliptic element in Imh∞, and let `′ be its axis. By the non-subconvergence
hypothesis, there is ω ∈ π1F such that h∞(ω) is a parabolic element but ρ∞(ω) is the
identity in PSL2C. Thus γi must be a hyperbolic element for sufficiently large i such
that as i → ∞, the translation length of γi diverges to infinity. In addition, Axis(γi)
converges to the `′ in H3. Let p be the limit of the repelling fixed point of γi, and let
q be the limit of the attracting fixed point of γi, so that {p, q} are the endpoints of `′.
Note that as ρ∞(π1(F )) is elementary, ρ∞π1(F ) preserves p and q point-wise.

Take a connected compact fundamental domain Q in F̃ . We can assume that
Q∩∂F̃ is disjoint from q, by perturbing the loop mi on Cti if necessary. For simplicity,
we first suppose that h∞(Q) is disjoint from q. Then, letting fi = fti , the restriction
fi|Q converges to the constant map to p uniformly, as i→∞, and thus fi : F̃ → CP1

converges to the constant map to p uniformly on compacts.
Suppose that h∞(Q) ∩ {q} 6= ∅. Then, by the compactness of Q, there are finitely

many points of h−1∞ (q) in the interior of Q. Pick small disjoint open disk neighborhoods
of the points in h−1∞ (q) in Q. Then, as the disks are contained in a fundamental domain,
their images D1, . . . , Dn in F are disjoint. Then, as ζ∞ preserves q, the restriction of fi
to F̃ \ φ−1(D1 t · · · tDn) converges to the constant map to p uniformly on compacts.
Moreover, for each lift D̃i of Di to F̃ , D̃i contains a unique point mapping to q. Thus up
to an isotopy of S, we can in addition assume that fi|Di converges to a homeomorphism
to CP1\{p}, as desired. By Lemma 9.1 and Proposition 9.2, the boundary components
of F̃ all map to p.

Next, suppose that ρ∞(F ) contains a (non-trivial) parabolic element but no hyper-
bolic and elliptic element. Let ω ∈ π1F such that ρ∞(ω) is also a non-trivial parabolic
element. Therefore ρ∞ and ρ′∞ are conjugate to each other, and (fti , ρti |π1F ) converges
to a developing pair of F∞. This contradicts the non-subconvergence hypothesis.

Last, suppose that ρ∞(π1F ) is the trivial representation. This case will be similar
to the case when ρ∞(π1F ) contains an elliptic or a hyperbolic element. Then the
normalized holonomy ζ∞ is a parabolic representation. Let p be the parabolic fixed
point of ζ∞. We can assume that γi is a hyperbolic element for i large, and the axis
of γi converges to a geodesic ` starting from p. Let q be the other endpoint of `. Pick
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Figure 16.

a connected fundamental domain Q in F̃ so that h−1(p) is disjoint from ∂Q. Suppose
in addition that no point of Q maps to p. Then, up to a subsequence, fi|F̃ converges
to a constant map to q uniformly on compacts. Suppose there are (finitely many)
points of Q which map to p. Then, similarly to the case of a hyperbolic and an elliptic
representation, take disjoint open ball neighborhoods of those points in Q, and let
D1, D2 . . . Dn be disjoint disks on F which lift to those open balls. Then the desired
convergence follows similarly. �

By Proposition 13.11, the restriction of fi to S̃\φ−1(A) converges to a ρ∞-equivariant
map f∞ : S̃ \ φ−1(A)→ CP1. We next prove the convergence of the boundary compo-
nents to complete the proof of (3c).

Proposition 13.12. For each component Ã of φ−1(A), let γ ∈ π1(S) be the repre-
sentative of γ preserving Ã. Then, by taking a subsequence so that Axis(ρtiγ) =: ai
converges to a subset a∞ ∈ H3 ∪ CP1, which is either a point on CP1 or a geodesic in
H3, then f∞ takes the boundary components of Ã onto the ideal points of a∞.

Proof. By Lemma 13.8, ρti(m) 6= I for sufficiently large i ∈ Z>0. Thus, by taking a
subsequence, we may in addition assume that ρti(γ) converges to I tangentially to a
unit tangent vector of PSL2C at I. Let Gi be the one-parameter subgroup of PSL2C
which contains ρti(γ), such that the cyclic group generated by ρti(γ) is asymptotically
dense in Gi with respect to the intrinsic metric on Gi. Then the trajectories of Gi

yields a unique foliation of H3 except that, if ρti(γ) is elliptic, only of H3 \ ai (Figure
16). We have chosen a subsequence ti so that Cti → C∞ uniformly on every thick part
and the axis ai converges to a closed subset a∞ of H3. Let P,Q be the components of
S̃ \ φ−1(A) adjacent across Ã.

Claim 13.13. Let ` be the common boundary component of P and Ã. Suppose, to
the contrary, that lim fti(`) is not a point, in CP1, of the limit axis a∞. Then ρti |Q
diverges to ∞ in χ.

Proof. Let ιi be some power of the Dehn twist of S along m so that the Fenchel-Nielsen
twist parameter of the remarked Riemann surface ιiXti along m is bounded from above
and below uniformly in i.

Let `′ be the common boundary component of Ã and Q. By Proposition 13.3,
there is γ ∈ π1(S) belonging to StabQ such that ρ∞(γ) is not the identity matrix. We
may in addition assume the axis of ρti(ιi · γ) converges to the point fF,∞(`) on CP1 (if
ρ∞(StabQ) is elementary, use Lemma 13.6 and Proposition 13.7). By the tangential
convergence of ρi(m)→ I, the Gi-invariant foliation of H3 by Fi converges to a foliation
of F∞ of H3. If fP,∞(`) is not the ideal point of a∞, Axis(ρi(ιγ)) be eventually disjoint
from every compact subset in the space of the leaves of F∞. Therefore Axis(ρi(γ))
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The axis at the puncture. The axis off the puncture; diverging.

Figure 17.

leaves every compact subset of the leaf space of F∞, and thus ρi(γ) must diverge to∞
in PSL2C, which is a contradiction. (Figure 17.) �

This claim completes the proof. 13.12

It remains only to prove the surjectivity in Theorem 13.1 (3c):

Lemma 13.14. Suppose that a∞ is a geodesic in H3. Then f∞(`) and f∞(`′) are the
different endpoints of a∞.

Proof. By Claim 13.13. fi|` converges to the constant map to an endpoint of a∞.
Let ni ∈ Z be the power of the Dehn twist along m which gives ιi ∈ MCG(S). Thus

ρi(γ
ni) is a hyperbolic element whose axis ai converges to a∞, and its translation length

diverges to infinity as i → ∞. Then the attracting fixed point of ρi(γni) converges to
the endpoint of a∞ which is not f∞(`). Thus f∞(`′) must be at the other endpoint. �

13.12

13.0.1. Convergence of pleated surfaces when ρ∞(m) = I. First we compare developing
maps of CP1-structures and the exponential map exp: C→ C∗. Let ` be the geodesic
in H3 connecting 0 to∞ of ∂H3 = C∪{∞}. Let Ψ: C∗ → ` be the continuous extension
of the nearest point projection H3 → `. Then, the composition is Ψ ◦ exp: C→ H3 is
the Epstein map of the CP1-structure on C given by exp.

Recall that, given a CP1-structure C = (X, q), for x ∈ C, d(x) is the Euclidean
distance from x to the set of the zeros of the holomorphic differential q. Note that, if
d(x) is large, then we can naturally embed a large neighborhood of x into C(∼= E2) by
an isometric map onto its image, so that vertical leaves map into horizontal lines, and
horizontal leaves map into vertical lines.
Proposition 13.15. For every ε > 0, there is R > 0, such that, if x ∈ C satisfies
d(x) > R, then the Epstein map Σ: C̃ ∼= S̃ → H3 is ε-close, in the C1-topology, to the
composition of the collapsing map κ̃ : S̃ → H2 and the bending map β : H2 → H3 at
every lift x̃ of x.

Proof of Proposition 13.15.

Lemma 13.16. For every ε > 0, there is R > 0, such that, if z ∈ C̃ satisfies d(z) > R,
then the maximal ball centered at z is ε-close to the maximal ball of the corresponding
exponential map.
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Proof. As the Epstein map of C and exp are close, their developing maps are also
close. This implies the closeness of their maximal balls centered at z and their ideal
points. �

The proposition follows from the above lemma, and Proposition 4.9. 13.15

Recall that we have already proved Theorem 13.1 (1), (2), (3) regarding the asymp-
totic behavior of Ct using the decomposition of Ct into the restriction of Ct to the thin
part A and its complement. We prove additional compatibility of the corresponding
bending map.

Proposition 13.17. Suppose that ρ∞(m) = I. Then for every diverging sequence
t1 < t2 < . . . , up to taking a subsequence, there are a sequence of diffeomorphisms
ιi : S → τti representing the marking of Cti and a path of cylinders Ai in Cti homotopy
equivalent to m, such that in addition to Theorem 13.1 (1), (2), (3), the following
holds:

(1) A maps to Ai by ιi;
(2) βti ◦ κ̃ti : S̃ → H3 converges to a ρ∞-equivariant continuous map S̃ → H3∪CP1

uniformly on compact subsets;
(3) for each connected component F of S̃ \ φ−1(A), the restriction of βti ◦ κti to F

converges to the pleated surface of the corresponding component of C∞ or the
constant map to an ideal point of a∞ (in Proposition 13.12);

(4) letting Ã be a connected component of φ−1(A) in S̃, then βti ◦ κ̃ti|Ã converges to
a map onto a∞ uniformly on compacts in Ã with respect to a fixed closed disk
metric on H3 ∪ CP1.

Proof. For t � 0, there is a one-parameter family of loops homotopic to m such
that their developments are invariant under a unique one-dimensional subgroup Gt of
PSL2C which contains ρt(m) (as in the proof of Proposition 13.11). Then we can pick
a cylinder At in Ct homotopy equivalent to m, such that

• At is foliated by loops whose developments are invariant under Gt for each
t� 0,
• Ct \ At converges to C∞ as t→∞, and
• ModAt →∞ as t→∞.

By the second property, At is contained in a thinner and thinner part of Ct as t→∞.
Then, the developing map of At is the restriction of exp: C→ C∗ to a bi-infinite strip
Tt, i.e. a region in C bounded by a pair of parallel lines. Then its deck transformation
group (∼= Z) is generated by a translation of Tt. Then At has a natural Euclidean
metric by identifying C with E2.

Recall that A is a cylinder in S homotopic to m, and fix a finite volume Euclidean
structure on A with geodesic boundary (by picking a homeomorphism A→ S1×[−1, 1]).
We can easily pick a marking ιt : S → Ct such that

• ιt takes A to At ((1));
• the restriction of Ct to ιt(S \ A) converges to C∞;
• ιt|A is linear with respect to the Euclidean structures on A and At.

Given a component F of S̃ \ φ−1(A), suppose that fti |F converges to a developing
map of the component of C∞. Then, clearly βi ◦ κ̃i|F converges to a pleated surface for
the corresponding component of C∞. By Proposition 13.11, if fti |F does not converge
to a developing map, then βi ◦ κ̃i|F converges to the constant map to an ideal point of
the axis limit a∞. Thus we have (3).
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Last we prove (4). As we have already shown the convergence of the developing
map in the thick part, we need to show that the convergence extends to the convergence
on the neck. As the developing map of some components of S \m may degenerate as
described in Proposition 13.11, accordingly one needs to be careful about the behavior
of βi ◦ κi on the neck.

By Theorem 13.1(2), the Fenchel-Nielsen twisting parameter of Ct along m diverges
to either ∞ or −∞ as t→∞. We can assume that the twisting of Ct along m occurs
in At by isotopy of S.

(Case One) Suppose that a∞ := limi→∞Axis ρti(m) is a bi-infinite geodesic. Then
ρti(m) is hyperbolic if i is large enough, and the translation length of ρti(m) time the
number of twist goes to infinity as i→∞. For r > 0, let Ui(r) be the r-neighborhood
of ai in H3. Clearly Ui(r) is invariant under ρi(m). Let (τi, Li) ∈ T × ML be the
Thurston parameters of Ci for each i. Pick ε > 0 less than the Bers’ constant, and let
Ni = N ε

i be the ε-thin part of τi. Let Ñi be the lift of Ni to the universal cover H2 of
τi invariant under the fixed representative the loop m in π1(S). Let `i,1, `i,2 denote the
boundary components of Ñi, which connect the endpoints of the geodesic ai

Lemma 13.18. If r > 0 is sufficiently large, then βi(Ñi) is contained in Ui(r) for
sufficiently large i.

Proof. Let Ã be the lift of A to S̃ which is invariant under m ∈ π1(S). Let P1 and P2

be the components of S̃ \ φ−1(A) adjacent across a lift Ã. Suppose, to the contrary,
that for every r > 0, the image βi(Ñi) is not eventually contained in Ui as i → ∞.
Then, either

(i) for every r > 0, if i is sufficiently large, then βi(`i,1) and βi(`i,2) are both not
contained in Ui, or

(ii) for every large r > 0, if i is sufficiently large, then one of βi(`i,1) and βi(`i,2) is
contained in Ui but the other is not.

First, suppose (i). Then, let φi : H2 → τi be the universal covering map. Let P ′i,1 and
P ′i,2 be the component of H2 \φ−1i (Ni). For each i = 1, 2, . . . and j = 1, 2, pick compact
fundamental domains Di,j of StabPj y P ′i,j, such that Di,j converges to a fundamental
domain of the ε-thick components of τ∞. Recall that Ui is invariant under ρi(m). Then,
for every r > 0, if i is sufficiently large, both fundamental domains of P ′i,1 or P ′i,2 map
to outside Ui by βi. Therefore, it follows from Proposition 13.3 and Proposition 13.7
that ρi| StabP1 or ρi| StabP2 must diverge to ∞ up to a subsequence, against to the
convergence of ρi.

Next we suppose (ii). Without loss of generality, we can assume that βi(`i,1), not
contained in Ui but βi(`i,2) is contained in Ui for sufficiently large i. Then, for every
r > 0, similarly, the fundamental domain Pi,1 of P ′1 maps to outside Ui by βi if i is
sufficiently large. Then, by the assumption of βi(`i,2) being contained in Ui, one can
similarly show ρi| StabP1 diverges to ∞, up to a subsequence. �

If follows from Lemma 13.18 that, for every ε′ > 0, by taking δ > 0 sufficiently
smaller than ε > 0 above, similarly letting Ñ δ

i be the ρi(m)-invariant lift of N δ
i to the

universal cover H2, the image βi(Ñ δ
i ) is ε′-close to the axis ai for sufficiently large i.

Recall that we have a convergence of βi ◦ κi on P1, P2 so that, in the limit, the
boundary components of Ã map to the endpoints of a∞. Therefore, by taking an
appropriate isotopy of S, βi ◦ κi converges to a continuous map, up to a subsequence,
such that Ñ maps to a∞.
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Figure 18. This figure illustrates the divergence of ρi| StabPj in the
upper half space model of H3. The arrows indicate how the action by an
element ω in StabPj changes, and it diverges as i increases in PSL2C,
where r′ > r and i′ > i.

(Case Two) Suppose that a∞ is a single point on CP1. Pick any horoball B in
H3 tangent at a∞. For each i, pick a subset Ui ⊂ H3 converging to B uniformly on
compacts as i → ∞, such that, if ρi(γ) is either hyperbolic or elliptic, then Ui is an
ri-neighborhood of ai for some ri > 0, and if ρi(γ) is parabolic, then Ui is a horoball
centered at the parabolic fixed point of ρi(γ).

For sufficiently large i, Let Ni be the ε-thin part of τi homotopy equivalent to m.
Let Ñi be a component of ψ−1i (Ni).

Lemma 13.19. If ε > 0 is sufficiently small, then βi(Ñi) is eventually contained in Ui
as i→∞. Therefore, βi ◦ κi|Ñ converges to the constant map to the point a∞.

Proof. Let P1 and P2 be the components of S̃ \ φ−1(A) adjacent across the lift Ã of A
invariant by ρi(m). Suppose, to the contrary, for every ε > 0, the image βi(Ñ ε

i ) is not
eventually contained in Ui. Then, at least one of βi(`i,1) or βi(`i,2) is not contained in
Ui for sufficiently large i. Therefore, it follows from using Proposition 13.3 and Propo-
sition 13.7 that either ρi| StabP1 or ρi| StabP2 diverges to∞, up to a subsequence. �

13.17

13.0.2. Convergence of holomorphic quadratic differentials when ρ∞(m) = I. We next
describe the limit quadratic differential. In the case that ρ∞(m) = I, the singular
Euclidean structure Eti contains a flat cylinder At homotopic tom, such that ModAt →
∞ and the complex length of its circumference converges to a positive multiple of π/

√
2,

by Proposition 5.2. Therefore
Proposition 13.20. Let C∞ be the limit of Ct in Theorem 13.1 (3b). Then, the
Schwarzian parameters of C∞ consist of a Riemann surface with two punctures homeo-
morphic to S \m and a holomorphic quadratic differential q∞, such that both punctures
are a pole of order two and their residues are the same non-zero integer multiple of√

2π.

13.1. Non-discreteness of holonomy. We in addition show the non-discreteness of
the holonomy representation ρt for large t.
Theorem 13.21. Suppose that ρ∞(m) = I. Then Im ρt ⊂ PSL2C is a non-discrete
subgroup for sufficiently large t > 0.
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Proof. Recall that ρt(m) → I but ρt(m) 6= I (Theorem 13.1(1)). For each component
F of S \m, ρt(π1(F )) is nontrivial for sufficiently large t� 0 (Proposition 13.3). Recall
from Proposition 13.12 that, if Cti converges to a CP1-structure of a punctured surface
homeomorphic to F for a diverging sequence t1 < t2 < . . . , then, in the limit, its cusp
point develops to an endpoint of the limit of the axis of ρti . Therefore the subgroup of
Im ρt generated by { ρt(m)γρt(m)−1 | γ ∈ ρt(F ) } is non-elementary since the endpoint
in CP1 is not preserve by some non-trivial element in ρt(π1(F )) by (Lemma 13.6 and
Proposition 13.7). As ρt(m)→ I, by the Margulis lemma, Im ρt cannot be discrete. �

14. Examples of exotic degeneration

We construct examples of a path Ct = (ft, ρt) of CP1-structures on S asymptotically
pinched along a loop m as t → ∞ such that ρ∞(m) = I and [ρt] converges in χ as
t → ∞, as in the second case of Theorem C. We construct two examples: one with
ρt(m) hyperbolic and one with ρt(m) elliptic for all sufficiently large t > 0.

14.1. Hyperbolic ρt(m) converging to I. Let E be the singular Euclidean surface
obtained from an L-shaped polygon by identifying the opposite edges (Figure 19).
Then E has exactly one cone point, and its cone angle is 6π. Let F be the underlying
topological surface of E, which is a closed surface of genus two. Let E ′ denote E minus
the cone point, and let F ′ denote the underlying topological surface of E ′. Let `p be
the (oriented) peripheral loop around the removed cone point. Let ξ : π1(F

′)→ PSL2C
be the holonomy of E ′. Then, as F ′ has a Euclidean structure, the image of ξ consists
of parabolic elements, and we can assume that its image consists of upper triangular
matrices with 1’s on the diagonal. In particular ξ(`p) = I (as before, by abuse of
notation, we regard `p also as a fixed element of π1(S) by picking a basepoint of π1(S)

on `.) Notice that there is a point in the universal cover Ẽ of E corresponding to
`p ∈ π1(S). (Namely, by lifting `p to a loop in the universal cover E starting from the
base point, there is a unique cone point of Ẽ in the disk region bounded by the lift.)

Proposition 14.1. There is a path of CP1-structures, Dt = (ht, ξt), on F ′ converging
to E ′ = (h, ξ) as t → ∞, such that ξt(`p) is a hyperbolic translation whose axis con-
verging to a geodesic connecting the global (parabolic) fixed point of ξ and the h-image
of the corresponding singular point of Ẽ.

Proof. Note that elements of Im ξ are translations of C. Pick non-separating simple
closed curves a1, b1, a2, b2 on E as in Figure 19 forming a standard generating set of
π1(F ) so that

• for each i = 1, 2, ai and bi intersect in a single point, and [a1, b1][a2, b2] = I,
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• the translation directions of a1 and a2 are the same and the translation direction
of b1 and b2 are the same, and
• the translation directions of ai and bi are orthogonal for each i = 1, 2.

Let c be a separating loop on E which separates {a1, b1} and {a2, b2}. Then, let F1

and F2 be the components of F \ c which are homeomorphic to a torus minus a disk.

Lemma 14.2. Let qi be any geodesic in H3 starting from the global fixed point p ∈ CP1

of HolE, and let Hi be the hyperbolic plane, in H3, containing an 〈ai〉-orbit of qi. For
each i = 1, 2, given any path hi,t (t ≥ 0) of hyperbolic elements in PSL2C such that

(1) the axis of hi,t is orthogonal to Hi at a point in qi for all t ≥ 0, and
(2) hi,t → I as t→∞.

Then, there is a path ζi,t : π1(Fi)→ PSL2C of homomorphisms which converges to the
restriction of Hol(E) to π1(Fi) as t→∞ such that ζi,t(c) = hi,t.

Proof. The point p is contained in the ideal boundary of Hi. Let ri be a geodesic in Hi,
such that R(ri)R(qi) = ξ(ai), where R(ri) and R(qi) are the π-rotations of H3 about ri
and qi, respectively (Figure 20, Right).

Let H⊥i be the hyperbolic plane in H3 orthogonal to Hi in the geodesic qi. As
Axis(hi,t) is in H⊥i and orthogonal to qi, we let qi,t and q′i,t be continuous paths of
geodesics in H⊥i such that R(qi,t)R(q′i,t) = hi,t, the geodesics qi,t and q′i,t converge to qi
as t → ∞ uniformly on compact subsets, and the π-rotation R(qi) exchanges qi,t and
q′i,t. By this symmetry, there is a path of geodesics ri,t in Hi such that, for all t� 0,

• there is a hyperbolic plane intersecting rt,i, qt,i, q′i,t orthogonally, and
• dH3(ri,t, qi,t) = dH3(ri,t, q

′
i,t).

Thus by the symmetry, trR(qi,t)R(ri) = trR(q′i,t)R(ri) ∈ R \ [−2, 2].

The surface Fi\ai is a pair of pants, and two of its boundary components correspond
to ai. Consider the path of homomorphisms ζi,t : π1(Fi \ ai) → PSL2C for t > 0,
such that the two boundary components corresponding to ai map to R(qi,t)R(ri) and
R(ri)R(q′i,t)— thus the other boundary corresponding to ∂Fi maps to R(qi,t)R(q′i,t) =

hi,t (see [Gol09]). Then, by Theorem 5.6, there is a path of CP1-structures on Fi\ai with
holonomy ζi,t which converges to the component of E \ (c∪ai) as t→∞ corresponding
to Fi \ ai. As the holonomies along the two boundary components are conjugate, for
large enough t > 0, there is a path of CP1-structures Σi,t on Fi which converges to the
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Figure 21.

component of E \ c, so that Hol Σi,t|π1Fi = ζi,t. In particular, the holonomy of Σi,t

around the puncture is the hyperbolic element R(qi,t)R(q′i,t) = hi,t. �

Notice that H1 and H2 are totally geodesic hyperbolic planes in H3 tangent at p.
Therefore we can, in addition, assume thatH1 andH2 are different andH⊥1 = H⊥2 =: H.
Pick a geodesic q in H initiating from p contained in the region bounded by the
geodesics q1 = H ∩H1 and q2 = H ∩H2.

Proposition 14.3. We can choose, the path of the hyperbolic isometries h1,t, h2,t (given
by Lemma 14.2) so that their composition h1,th2,t is eventually a hyperbolic element
whose axis converges to q as t→∞.

Proof. Pick h1,t and h2,t such that their axes converge to the parabolic fixed point p.
Since h1,t and h2,t converge to I, their product h1,th2,t also converges to I in PSL2C.

For each i = 1, 2, let ui,t be the attracting fixed point, and let vi,t be the repelling
fixed point of hi,t. We may first assume that the endpoints of Axish1,t,Axish2,t lie on
∂H in this cyclic order u2,t, v1,t, v2,t, u1,t (Figure 21). The composition h1,th2,t fixes a
point on the arc in ∂H between v1,t and v2,t for each t > 0. Note that the segment
contains p. Then as Axis(h1,t),Axis(h2,t) converge to the parabolic fixed point p, there
is a fixed point of h1,th2,t converging to p. Moreover, as h1,t → I, one can continuously
adjust the translation length of h2,t so that h1,th2,t also fixes the other endpoint of q for
sufficiently large t > 0. Let s be the endpoint of the geodesic q which is not p. Then,
after this adjustment, clearly h2,t(h1,t(s)) = s holds for all large t > 0 and h1,t(s)→ s
as t → ∞. Since the axis of the hyperbolic element h2,t converges to the ideal point
p(6= s), the translation length of h2,t must converge to zero; thus h2,t converges to the
identity.

Clearly the composition h1,th2,t does not fix the endpoints of the axes of the hyper-
bolic elements h1,t and h2,t for all large t > 0. Therefore h1,th2,t is a hyperbolic element
with the axis q for sufficiently large t > 0, which is not the identity. �

Let h1,t, h2,t ∈ PSL2C be the paths given by Proposition 14.3. Then, by Lemma
14.2, for each i = 1, 2, we have a path of homomorphisms ζi,t : π1(Fi) → PSL2C such
that ζi,t(`) = hi,t for t � 0. Then there is a unique path ζt : π(F ′) → PSL2C so that
ζt|π1(Fi) = ζi,t for i = 1, 2; thus ζt(`p) = h1,th2,t. Then, by the holonomy theorem
(Theorem 5.6), there is a path Dt of CP1-structures on F ′ with holonomy ζt for t� 0
such that Dt converges to E ′ as t→∞. 14.1

Remark 14.4. Since ξt converges to the parabolic representation ξ and the axis of
the hyperbolic element ρt(`p) converges to a geodesic starting from the parabolic fixed
point of ξ as t → ∞, by normalizing by an appropriate power rt of isometries ξt(`p),
the conjugation ξt(`p)

rt · ξt · ξt(`p)−rt converges to the trivial representation, and the
developing map ξt(`p)rtht converges to the constant map to the endpoint of q which is
not p.
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14.1.1. Constructing a closed surface from punctured surfaces. To make a desired ex-
ample of exotic degeneration, we take two copies Dt of CP1-surfaces with a single
puncture from Proposition 14.1, and glue them together with many twists.

Theorem 14.5. There is a path of CP1-structures Ct = (ft, ρt) on a closed surface S
of genus four with following properties:

• The conformal structure Xt is pinched along a separating loop m as t→∞; let
F1 and F2 be the connected components of S \m.
• ρt : π1(S)→ PSL2C converges in the representation variety as t→∞.
• Pick an element γ ∈ π1(S) whose free homotopy class is m. Then ρ∞(γ) = I,
and, for all t > 0, the holonomy ρt(γ) is a hyperbolic element such that its axis
at converges to a geodesic a∞ in H3 as t→∞.
• Let F̃1, F̃2 be the connected components of S̃ \φ−1(m) which are adjacent across
the lift m̃ of m preserved by γ ∈ π1(S) . Then Ct|F̃1 converges to the developing
map of a CP1-structure on a genus two surface minus a point such that the cusp
maps to an endpoint of a∞ as t→∞.
• ft|F̃2 converges to the constant map to the other endpoint of a∞ uniformly on
compacts, and ρ∞|π1(F2) is the trivial representation.

Remark 14.6. In fact, Im ρ∞ consists of parabolic elements with a global fixed point
on CP1, and therefore the limit representation ρ∞ is identified with the trivial repre-
sentation in the character variety χ. In other words, the frontier of PSL2C-orbit of ρ∞
contains the trivial representation. Thus, there is a path αt (t > 0) in PSL2C such that
αtρtα

−1
t converges to the trivial representation.

Proof. For sufficiently large t > 0, the CP1-structure Dt with a single puncture from
Proposition 14.1 has a cusp neighborhood Nt foliated by admissible loops whose de-
velopments are invariant under the one-dimensional subgroup Gt of PSL2C containing
ξt(`p). We can assume that Nt changes continuously in t and is asymptotically the
empty set on E ′ as t → ∞. Note that as Gt is a one-dimensional subgroup ρt(m) of
PSL2C, integer powers ρt(m)n for n ∈ Z continuously extends to real powers.

First take two copies Σ1,t,Σ2,t of Dt\Nt and, since the boundary of Nt are invariant
by the one-parameter subgroup Gt, glue them together along their boundary compo-
nents without adding a twist. Let C ′t = (f ′t , ρ

′
t) be the resulting developing pair. Then

we can normalize by PSL2C so that the axis of the hyperbolic element ρ′t(m) is the
geodesic q for all t. In addition, we can renormalize the developing pair by PSL2C so
that the restriction of f ′t to F̃1 and the restriction of ρ′t to the stabilizer Stab F̃1 of F̃1

in π1(S) converges to a developing pair of E ′ as t→∞. Then, as Nt converges to the
empty set, the restriction of ρ′t to Stab F̃2 leaves every compact in the representation
variety, and the restriction of f ′t to F̃2 does not converge to a continuous map as t→∞.

Recall that the holonomy ρ′t along m is a hyperbolic element with axis q, and the
translation length of ρ′t(m) goes to zero as t → ∞. Therefore, when we glue Σ1,t,Σ2,t

of Dt \Nt, we can continuously add more and more twists along m, which conjugates
the structure on F2 by ρ′t(m) raised to the power of the amount of twist along q, so
that

• the restriction of f ′t to F̃1 and the restriction of ρ′t to Stab F̃1 still converges to
a developing pair for E ′, and
• the restriction of ρ′t to Stab F̃2 converges to the trivial representation, and the
restriction of f ′t to F̃2 converges to the constant map to the other endpoint of
q (by Remark 14.4) as t→∞.

We obtained a desired path C ′t. �
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Figure 22.

14.2. Elliptic ρt(m) converging to the identity. In this section, we construct an
example of Ct = (f, ρt) in Theorem C (ii) such that ρt(m) is an elliptic element for all
sufficiently large t > 0 and it converges to I as t→∞.

Given an elliptic element e ∈ PSL2C, normalize the unit disk model D3 ⊂ R3

of H3 centered at the origin, so that Axis(e) is contained in the axis of the third
coordinate. Let ζ ∈ (0, 2π) be the rotation angle of e. Then, define be : R → ∂H3 by
x 7→ (cos(ζx) sinx, sin(ζx) sinx, cosx) which is equivariant under Z→ 〈e〉.
Lemma 14.7. Let r be a geodesic in H3. Pick a parallel vector field V ⊂ TH3 along r
such that V is orthogonal to r. Then, there are a path of (nontrivial) elliptic elements
et ∈ PSL2C and a continuous function θt ∈ R≥0 in t > 0 which satisfies the following:

• et → I as t→∞.
• Axis(et) orthogonally intersects r, and Axis(et) converges to an endpoint of r
on CP1 as t→∞.
• Letting θt ∈ R be a continuous function such that the angle between Axis et and
V is θt mod 2π, when an orientation of Axis(et) is fixed continuously in t.
• Let ut = 2θt. Then the rotation angle of eutt is π for all t ≥ 0, so that eutt takes
r to itself, reversing the orientation.

Proof. It is easy to construct an example satisfying the first three conditions. Then
adjust the rotation angle of et so that it also satisfies the last condition. �

Lemma 14.8. Let et be as in Lemma 14.7. Let p be the endpoint of r to which Axis(et)
converges. Pick a round disk D in CP1 containing p such that the hyperbolic plane in
bounded by the boundary of D is orthogonal to the geodesic r. Then, there is a path At
of CP1-structures on an annulus A with smooth boundary for sufficiently large t� 0,
such that

• At converges to the once-punctured disk D \ {p} as t→∞ as a CP1-structure,
and
• the developments of the both boundary components of At are curves equivalent
to bet by elements of PSL2C.

Proof. For sufficiently large t > 0, one can easily construct the fundamental membrane
for At for sufficiently large t > 0 (Figure 22). �

Proposition 14.9. Let P be a pair of pants, and pick a boundary component ` of P .
Let ˜̀ be a lift of ` to the universal cover of P . Consider a (flat) Euclidean cylinder with
geodesic boundary, and let P∞ be the surface obtained by removing an interior point p
of P∞; regard P∞ as a CP1-structure on P , and let (h, ξ) be its developing pair, so that
h takes ˜̀ to a single point v on CP1.
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Let r be the geodesic in H3 connecting v and the parabolic fixed point of h, and let
et ∈ PSL2C be a path of (non-trivial) elliptic elements given by Lemma 14.7 for r.

Then, there is a path of CP1-structures Pt = (ht, ξt) on P satisfying the following:

(1) For all t > 0, ξt(`) = et.
(2) Pt converges to P∞ as t→∞. Let γt ∈ PSL2C be a path of hyperbolic elements

with the axis r, such that γt Axis(et) converges to a geodesic g∞ in H3 orthogonal
to r as t → ∞ (so that γt is a large hyperbolic translation towards v for t �
0). Let H ⊂ H3 be the totally geodesic hyperbolic plane orthogonal to r and
containing g∞. Then, the developing pair γt(ht, ξt) normalized by γt converges
to a developing pair for a round disk minus a point, where the removed point is
v and the disk is the component of CP1 \ ∂H containing v.

(3) Let `t be the boundary component of Pt corresponding to `. Then devPt along
a lift of `t is b`t (up to PSL2C).

(4) Let α be a boundary component of P not equal to `. Then ξt(α) is a hyperbolic
element for all t� 0 (converging to a parabolic element as t→∞).

Proof. First we construct an appropriate path of representations ξt : π1(P )→ PSL2C.
Let at denote Axis(et). Pick a pair of geodesics qt, q′t in H3 for each t > 0 such that

• R(qt)R(q′t) = et, where R(qt), R(q′t) ∈ PSL2C are the π-rotations of H3 about
qt, q

′
t, respectively;

• qt and q′t change continuously in t > 0;
• qt and q′t intersect at the intersection at ∩ r;
• qt and q′t are symmetric about r;
• qt and q′t are orthogonal to at;
• qt and q′t converge to r as t→∞ (see Figure 23).

There is a path of geodesics ht (t ≥ 0) in H3 such that

• ht is disjoint from qt and q′t for all t ≥ 0, and
• ht converges to a geodesic h in H3 sharing an endpoint with r as t→∞, such
that the composition R(r)R(h) is the parabolic holonomy along a boundary
geodesic of P∞.

Indeed one can first find the limit geodesic h which satisfies the second condition, then
as qt, q′t converges to r, one can take a desired path ht.

Let ξt : π1(P )→ PSL2C be such that the holonomy along boundary components are
R(ht)R(qt), R(qt)R(q′t), R(q′t)R(ht). Note that R(ht)R(qt), R(q′t)R(ht) are hyperbolic
elements, as the rotation axes are disjoint, and they converge to the parabolic holonomy
along the boundary geodesics of P∞.

Pick a round disk D on P∞ containing p such that ∂D on CP1 bounds a hyperbolic
plane in H3 orthogonal to r. Then, apply Lemma 14.8 to D, let Dt be a path of CP1-
structures on an annulus converging to D \ {p}, so that it gives the desired path only
near the punctured of P∞.

Pick a smaller closed regular neighborhood D′ of the puncture p of P∞ such that
∂D′ bounds a hyperbolic plane orthogonal to r and that D′ is contained in the interior
of D. Clearly its complement K in P∞ and the interior of D \ {p} form an open
cover of P∞. Then K is topologically a pair of pants. By the Thurston Ehresmann
principle, there is a path of CP1-structures on a pair of pants Kt for sufficiently large
t > 0 such that Kt converges to K and et is the holonomy of Kt around the boundary
component corresponding to ∂D′. Moreover, by deformation nearly the boundary, we
can in addition assume that the boundary of Kt is equivalent to b`t .
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Figure 23. Realize et as the compositions of the π-rotations about qt
and q′t.

Then, since K and D \ {p} form an open cover of P∞, for sufficiently large t.
by gluing Kt and At in the overlapping region, we obtained a desired path of CP1-
structures Pt. �

Proposition 14.10. Let Pt = (ht, ξt) be a path of CP1-structures on a pair of pants
from Proposition 14.9. Then, there is a path Σt of CP1-structures on a closed surface
F minus a point which satisfies the following:

• There is a subsurface A of F whose interior contains p, such that A is homeo-
morphic to a pair of pants, and Σt|A = Pt for all large enough t > 0.
• Σt converges to a CP1-structure Σ∞ on F as t→∞.

Proof. First we construct the limit structure Σ∞. Take any complete hyperbolic surface
τ with a single cusp, such that τ is homeomorphic to a closed surface minus a point,
denoted by F ′. Pick a cusp neighborhood N of τ , a horodisk quotient. The pair of
pants P∞ has two boundary components and one puncture. As the two boundary
components of P∞ lift to horocycles, we can glue a copy of τ \N along each boundary
component of P∞. We thus obtained a CP1-structure on a closed surface with a single
puncture so that P∞ is its subsurface.

There are paths ζ1,t and ζ2,t of representations π1(τ) → PSL2C which converge
to the holonomy of τ as t → ∞, such that their images of the peripheral loop are
R(rt)R(q′t) and R(qt)R(rt), respectively, which are hyperbolic elements (c.f. [Gol09]).
Let τ1,t, τ2,t be paths of CP1-structures homeomorphic to τ \ N for t � 0 such that
Hol(τ1,t) = ζ1,t, and Hol(τ2,t) = ζ2,t and τ1,t, τ2,t converge to τ \N . We may in addition
assume that the boundary components of τ1,t, τ2,t are invariant under one-dimensional
subgroups of PSL2C containing R(r)R(q′t) and R(qt)R(r), respectively.

Then by gluing τt,1, τt,2, Pt along their boundary, we obtain a desired path Σt of
CP1-structures. �

Let Σt be the path of CP1 -structures, obtained from Proposition 14.10, on a
compact surface with one boundary component. Let Rt be the π-rotation of H3 around
the axis at of the elliptic et. By Proposition 14.9(2, 3), we can glue two copies of Σt by
the involution Rt, and we obtain a path of CP1-structures Ct on a closed surface, so
that two copies of Σt are embedded in Ct disjointly up to an isotopy. Let m be the loop
along which the two copies are glued. Then, to obtain a marked projective structure,
we need to specify the twisting along m. We glue then so that the Fenchel-Nielson
twisting parameter matches to be ut so that, by the π-rotation along at, the developing
maps of adjacent components of S̃ \ m̃ are identical. Let Σ1

t = (h1t , ρ
1
t ),Σ

2
t = (h2t , ρ

2
t )

are the subsurfaces of Ct corresponding to Σt.
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at
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Σ1
t

e−utt Σ2
t

Figure 24. The left figure is a section of the right figure by a horizontal
plane containing at. It illustrates the rotation about at by π, and it makes
the restriction of ft on F1 coincide with that to F2 coincide.

Theorem 14.11. Let Ct = (ft, ρt) be the path of CP1-structures as above, and let m be
the loop on Ct corresponding to the boundary components of Σ1

t and Σ2
t . Let N be the

regular neighborhood of m. Then, by taking an appropriate isotopy of S, Ct satisfies
the following.

(1) ρt(m) converges to I as t→∞, and ρt(m) is an elliptic element for all t > 0;
(2) the axis of ρt(m) converges to the point p of CP1;
(3) ft : S̃ \ φ−1(N)→ CP1 converges to a ρ∞-equivariant continuous map f∞ : S̃ \

φ−1(N)→ CP1, such that f∞ is a local homeomorphism in the interior;
(4) for each connected component Ñ of φ−1(N), the boundary components of Ñ

map to its corresponding limit given by (2).

Proof. Let F1, F2 be the connected components of S \N . We normalize the developing
pair of Ct by a path of PSL2C so that the restriction to F̃1 converges to a developing pair
for Σ∞. Then (1) and (2) clearly hold. Moreover, we can take an appropriate isotopy
of S so that each boundary component of F̃1 converges to the corresponding limit
point of its corresponding axis. Since the rotation angle of eutt is π by Lemma 14.7,
the restriction of ft to F̃2 is the same as that to to F̃1 (Figure 24). Therefore, the
restriction of ft to F̃2 converges to a developing map of Σ∞ as well. Thus we have (3).
Then, by the equivariant property, we also have (4). �

14.11
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