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NECK-PINCHING OF CP!-STRUCTURES IN THE
PSL,C-CHARACTER VARIETY

SHINPEI BABA

ABSTRACT. We characterize a certain neck-pinching degeneration of (marked) CP!-
structures on a closed oriented surface S of genus at least two. In a more general
setting, we take a path of CP!-structures C; (¢ > 0) on S which leaves every compact
subset in its deformation space, such that the holonomy of C; converges in the PSL,C-
character variety as ¢ — oco. Then it is well known that the complex structure X,
of Cy also leaves every compact subset in the Teichmiiller space of S. In this paper,
under an additional assumption that X; is pinched along a loop m on S, we describe
the limit of C; from different perspectives: namely, in terms of the developing maps,
holomorphic quadratic differentials, and pleated surfaces.
The holonomy representations of CP!-structures on S are known to be non-elementary

(i.e. strongly irreducible and unbounded). We also give a rather exotic example of
such a path C; whose limit holonomy is the trivial representation.
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1. INTRODUCTION

Let S be a (connected) closed oriented surface of genus at least two, throughout this
paper. For a (marked) CP!-structure C' on S, the holonomy of C' is a homomorphism
m1(S) — PSLyC uniquely determined up to conjugation by PSL,C; see §2.2. This
correspondence yields the holonomy map

Hol: P — X,

where P (2 R'97!2) is the deformation space of all CP!-structures on S and x is
the PSLyC-character variety of S. Note that there are many CP!-structures whose
holonomy is not discrete.

Hejhal [Hej75| proved that Hol is a local homeomorphism (moreover, it is a local
biholomorphic map [Hub81], [Ear81]). However, it is not a covering map onto its image
([Hej75]). Thus it is a natural question to ask how the path-lifting property fails:

Problem 1.1. (Kapovich |[Kap95, Problem 1], see also [GKMO00, Problem 12.5.1|.) Let
C; (t > 0) be a path of CP'-structures on S such that

(1) C; leaves every compact subset in P at t — oo, and
(2) the holonomy n, € X of Cy converges to 1y € X as t — oo.

What is the asymptotic behavior of Cy?

In this paper, we give various limiting behaviors to answer Question 1.1 in the
“neck-pinching” case.

1.1. Pinching loops on Riemann surfaces. For each t > 0, let X; denote the
complex structure on S induced by C;. Then, by the work of Kapovich ([Kap95|, see
also [GKMO00, Dum17] ), the conditions (1) and (2) imply that X; must also leave every
compact subset in the Teichmiiller space T (see Corollary 2.3).

We focus on the following basic type of degeneration of X;. Given a path X; € T ,
X, is pinched along a loop m if

e lengthy, m — 0, and
e if an essential loop £ in S\ m is not homotopic to m, then lengthy, ¢ is bounded
between two positive numbers for all £ > 0.

7

Here “lengthy, ” is either the extremal length of X; or the hyperbolic length of the
uniformization of X;. (In the augmented Teichmiiller space, this definition of pinching
is equivalent to saying that X, accumulates to a compact subset of the boundary
stratum corresponding to m being pinched.)

A multiloop is a union of disjoint finitely many essential simple closed curves. Then,
similarly, we say that X; is pinched along a multiloop M on S, if,

e for each loop m of M, lengthy, m — 0 as ¢ — oo, and
e for each loop ¢ in S\ M not homotopic to a loop of M, lengthy, ¢ is bounded
between two positive numbers for all ¢ > 0.

The quasi-Fuchsian representation w1 (S) — PSLsC is a discrete faithful represen-
tation whose limit set is a Jordan curve in CP!, the quasi-Fuchsian Space QF is an
open subset of the character variety X. There is no path C} in Problem 1.1, whose
limit holonomy 7, is in QF. On the other hand, a dense subset of the boundary of QF
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consists of holonomy representations of CP!-structures pinched along loops ([McM91]),
and it has been quite important to study such degeneration for the study of Kleinian
groups.

1.2. Asymptotic behaviors. One of our main results is that tr 7. (m) must be 2.
In other words, the holonomy along m at ¢t = oo corresponds to either (i) a parabolic
element (which is not the identity) or (ii) the identity of PSLyC. We will describe, in
both Cases (i) and (ii), the asymptotic behavior of C; from three different perspectives
of CP!-structures:

(A) A holomorphic quadratic differential on a marked Riemann surface homeomorphic
to S (Schwarzian parameters).

(B) A hyperbolic structure on S and a measured lamination, which induces an equi-
variant pleated surface H? — H? ( Thurston parameters).

(C) A developing map f: S — CP! and a holonomy representation p: 7 (S) — PSL,C.
(Developing pair)

The residue of a meromorphic quadratic differential ¢ at a pole is the integral of
+.,/q around the pole, which is well-defined up to sign (see [GW19]). Given a pole
of order two, letting r be its residue, ¢ is expressed as r?/z72dz* for an appropriate
parametrization in a neighborhood of the pole (see [Str84, Theorem 6.3]).

Let X be a nodal Riemann surface, and let X be the smooth part of X. Then the
normalization X of X is the smooth Riemann surface together with a continuous map
¢: X — X such that ¢ is a biholomorphic in 5_1()2') and for each node p of X, £71(p)
consists of exactly two points. A reqular quadratic differential on X is a meromorphic
quadratic differential ¢ on X such that

e cvery pole of ¢ has an order at most two and it maps to a node of X, and
e if 21,25 on Z map to the same node on X, then the residue around z; is equal
to that of z,

(see [Ber74] |LZ21]).

For Perspective (A), the path C; corresponds to a path of pairs (X, ¢), t > 0 in
Schwarzian coordinates, where X; is a marked Riemann surface homeomorphic to S
and ¢, is a holomorphic quadratic differential ¢, on X; for all ¢ > 0.

Theorem A. e Suppose that X, is pinched along a loop m. Then, exactly one of
the following holds:

(i) X; converges to a nodal Riemann surface X, with a single node, and g
converges to a reqular quadratic differential on X, such that the node s
at worst a pole of order one (Theorem 10.12.)

(i) For every diverging sequence 0 < t; < ty < ..., up to a subsequence,
Xy, converges to a nodal Riemann surface X, with a single node and ¢,
converges to a reqular quadratic differential ¢, on X such that the residue
of each pole is a non-zero integral multiple of /2. (Theorem 15.20.)

e Suppose that X; is pinched along a multiloop M consisting of n loops. Then,
for every diverging t1 < to < ..., there is a subsequence such that X;, converges

a nodal Riemann surface X, with n nodes and q; converges to a meromorphic

quadratic differential g on Xo such that each node of X, is, at most, a pole

of order two. (Corollary 7.6.)
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The convergence of the holomorphic quadratic differential in Theorem A is normal
convergence, and in particular, the CP!-structure C; converges to the CP!-structure
corresponding to (Xoo, ¢so) minus the node, uniformly on every compact subset.

The space of homomorphisms 7 (S) — PSLyC is called the representation variety,
and the character variety X is the GIT-quotient of the representation variety (see §3).
In order to obtain an equivariant object as a limit of Cy, we pick a (continuous) lift
pi: m(S) = PSLyC of gy € X, such that p, converges, as t — oo, to a homomorphism
Poo: T1(S) — PSLyC which maps to 1.. In fact, we prove the existence of such a lift
in Proposition 3.2, since it is not obvious when 7., is an elementary representation.

Note that for every discrete faithful representations m(S) — PSLsC, there is a
unique equivariant continuous map O, (S) = St — CP! called the Cannon-Thurston
map (|[Mj14]). This map is closely related to the question which we consider, by
identifying the ideal boundary of S with S.

Let N be a regular neighborhood of the loop m in S. For ¢t > 0, let Cy = (1, Ly)
be Thurston parameters, where 7; is a path of marked hyperbolic structures on S and
L, is a path of measured laminations on S (§2.2.2). Fixing a marking ¢,: S — 7 in its
isotopy class, (7, L;) yields to a pi-equivariant pleated surface S;: S =~ H2 — H3, which
changes continuously in ¢ > 0. Then, in fact, §; converges to a continuous equivariant
map:

Theorem B. Suppose that X, is pinched along a loop m. Then, by taking an appro-
priate path of markings v;: S — 1, (t > 0) , exactly one of the following holds:

(i) poo(m) € PSLyC is a parabolic element, and B,: S — H® converges to a peo-
equivariant continuous map Beo: S — H3 U CPY wniformly on compact sub-
sets, such that S (CP') is a m,(S)-invariant multicurve on S which is m (S)-
equivariantly homotopic to ¢~1(m), where ¢: S — S is the universal covering
map. (Theorem 10.5).

(11) poo(m) is the identity in PSLoC, and, for every sequence 0 < t; < ty < ...
diwverging to oo, up to a subsequence, [, : S — H? converges 10 a pso-equivariant
continuous map P S — H? U CP' such that B (CP') descends either to the
loop m or to a subsurface isotopic to one or two components of S\ N (§15.0.1.)

Let f;: S — CP! be the developing map of C, which is a pr-equivariant local
homeomorphism. As C; changes continuously in ¢, we may assume that f; also changes
continuously in ¢ > 0. Such a family (f;) is unique up to a path of isotopies S — S in
t > 0 homotopic to the identity.

Pick a regular neighborhood Nof m. Pick a component N of ¢~'(N). By abuse
of notation, we regard the loop m also as the element of 7;(S) which preserves N.
We show that the developing map f; converges in the complement of ¢~'(N), and the
asymptotic behavior on ¢~!(N) is well controlled by the holonomy p;(m). Hyperbolic
structures are in particular CP!-structures. If a hyperbolic surface has a cusp, it has a
neighborhood obtained by quotienting a horodisk in H? by the cyclic group generated
by a parabolic holonomy around the puncture.

Theorem C. Suppose that X; is pinched along a loop m. Then, by an appropriate
isotopy of S in t > 0 homotopic to the identity, exactly one of (i) and (i) holds.

(i)  ® ps(m) is parabolic;
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o the cusps of C, have horodisk quotient neighborhoods;

e f,: S — CP' converges to a Poo-equivariant continuous map fuo: S — CP!
uniformly on compact subsets, and moreover, there is a multiloop M which is
a union of finitely many parallel copies of m such that fs is a local homeo-
morphism ezactly on S\ ¢~ (M), and fs takes each component i of ¢~ (M)
to its corresponding parabolic fixed point (Theorem 10.9).

(11) peo(m) = I, and for every diverging sequence t; <ty < ..., up to a subsequence,

o the restriction of fi, to S \ ¢~ H(N) converges to a pe-equivariant continuous
map fso: S\ ¢ (N) = CP!, and

o Axis(pi,(m)) converges to a geodesic in H? or a point in CP' so that f., takes
the boundary components of N onto the ideal points (in CP') of lim;_, Axis(py, (m))
(Theorem 13.1), where Axis(py,(m)) is the convex hull of the fixed point on
CP! (Definition 5.6).

Remark 1.2. If a general CP-structure has a cusp with parabolic peripheral holonomy,
there is its cusp neighborhood isomorphic to either a horodisk quotient or a grafting of
a horodisk quotient. (See Proposition 5.2.)

A (2r-)grafting is a cut-and-paste operation of a CP!-structure, and it yields a new
CP!-structure with the same holonomy, by inserting an appropriate cylinder along an
(admissible) loop (|Gol87|, see also [Kap0l, Bab20]). Let n be the number of parallel
copies of m constituting M in (i). Then there is another diverging path C; of CP!-
structure on S with holonomy p; and a path of admissible loops m; on C} fort > 0
such that Cy is obtained by 2m(n — 1)-grafting of C.

In fact, Cases (i) and (ii) in Theorem A, Theorem B, and Theorem C correspond.
In particular, the Type (i) degeneration occurs on the boundary of the quasi-Fuchsian
space, by pinching a loop on a Bers slice.

On the other hand, Type (ii) degeneration is new indeed. In particular, 7, must be
a non-discrete representation for all sufficiently large t > 0, possibly except at t = oo
(Theorem 13.21). Notice that if the peripheral loop of a cusp of a CPl-structure
has trivial holonomy, then the CP!-structure can be deformed without changing its
holonomy (of the entire surface), by moving the cusp (c.f. Theorem 5.6). Then, since
Poo(m) = I, therefore it is necessary to take a subsequence. In §14, we give examples
of Type (ii) degenerations.

Next, we explain a certain uniform bound of C;, which yields the convergence of
C; away from the pinched loop m. This uniform bound holds for a more general path
C; with a multiloop being pinched. The integration of ,/g; along paths on X; yields a
singular Euclidean structure F; on X; such that a zero of order d of ¢; is the singular
point of cone angle (d/2 + 1)w of E; (see for example, [FM12, Str84]). Recall that the
upper injectivity radius of F; is the supremum of the injectivity radii over all points in
E; (as E; is compact, it is indeed maximum).

Theorem D. (Theorem 6.1) Suppose that X; is pinched along a multiloop. Then the
upper injectivity radius of Ey for all t > 0 is bounded from above.

It is a classical theorem that the holonomy map Hol is a local homeomorphism for
the closed surface S. In the limit of Cf, we have a CPl-structure with cusps, such
that cusp points are at most poles of order two in the Schwarzian coordinates. The
holonomy theorem is proved for such CP!-surfaces cusps by Luo ([Luo93]) if punctures
have non-trivial peripheral holonomy. In this paper, we prove a more general holonomy
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theorem (Theorem 5.6) for the developing pairs of CP!-structures allowing trivial holo-
nomy around punctures. We apply this holonomy theorem for the convergence on C} in
every thick part as ¢ — oo. This holonomy theorem is given by appropriately enlarging
the character variety, and this enlargement is a certain ramification of the framed repre-
sentation space introduced by Fock and Goncharov (|[FGO06]). (For recent developments

on CP!-structure corresponding to higher order poles, see [GM21, AB20].)

Gallo, Kapovich, and Marden algebraically characterized the image of Hol; in
particular, it is almost onto one of the two components of the character variety X
(JGKMO0]). To be more precise, p: m1(S) — PSLoC € ImHol if and only if Im p is
non-elementary and p lifts to a homomorphism from 7;(S) into SL(2,C). As an ex-
ample of Type (ii) degeneration, we construct a path Cy whose holonomy limits to an
elementary representation, or even to the trivial representation in the representation
variety (§14).

If the holonomy of a CP!-structure around a puncture is trivial, as stated above, the
CP!-structure can be deformed around the puncture without changing the holonomy of
the entire surface. A non-elementary subgroup of PSLoC has a non-trivial stabilizer, a
similar difficulty occurs when the limit holonomy of a component of S\ m is elementary.
As a result of such flexibility, we have rather exotic degenerations described in Case
(ii) of Theorem B and Theorem C.

One may certainly hope that some of the results extend to a more general setting
of Problem 1.1. In particular, Theorem D may hold in general:

Conjecture E. In the setting of Problem 1.1 (without the neck-pinching assumption),
let E; be the singular Fuclidean structure on X; given by the Schwarzian parameters of
Cy. Then the upper injectivity radius of E; is bounded from above uniformly in t > 0.

Recall that p; (t > 0) is a topological path in the character variety x which converges
to poo as t — oo without any regularity assumption. It is plausible that Cases (ii) in
Theorem A, Theorem B and Theorem C do not occur if p; has a one-side derivative at
t = oo (in the ambient affine space of x).

Conjecture F. Suppose that Xy is pinched along a loop m. If the path p; is tangential
at t = 00, Then neo(m) € PSLoC is a parabolic element (not equal to the identity I ).

1.3. Outline of this paper. In §2, we recall CP'-structures, the Schwarzian param-
eters, Thurston parameters, and the Epstein surfaces for CPl-structures. In §3, we
prove a lifting property of paths in the character variety to paths in the representation
variety. In §4, we give some estimates of the Epstein surfaces, based on Dumas’ work
[Dum17]. In §5, we prove a holonomy theorem for the space of developing pairs of
CP!-structures on surfaces with punctures, where punctures are at most poles of order

two. In §6, we show that there is an upper bound for the upper injectivity radius of
E; for all ¢ > 0.

In §7, we show that C; converges on every thick part as ¢ — oo, so that C} converges
to a CPl-structure on a surface with two punctures homeomorphic to S \ m. In §8,
we state our main theorems and prove some properties of developing maps of a surface
with punctures. The limit holonomy around m can only be parabolic or the identity.
This will be shown, in §11 and §12. In §10, we determine the asymptotic behavior
of Cy when poo(m) is parabolic. In §13, we give the asymptotic behavior of C; when
Poo(m) = 1.

In §14, we give new examples realizing (ii) in Theorem A, Theorem B, Theorem C.
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2. PRELIMINARIES

2.1. Hyperbolic geometry. Let 7 be a hyperbolic structure on S. Let L be a geo-
desic measured lamination on 7. Given a geodesic loop m on 7, for a point x in the
intersection of m and L, let Z;(L, m) € [0,7) denote the intersection angle of of the
leaf L and m intersecting at x. Then, the angle Z;(m, L) € [0,1) between L and m
be the maximum of Z,(L, m) over all intersection points x € L N'm if L Nm # (), and
Ziy(m,L)=0if LNm = 0.

Let ¢: H? — 7 denote the universal covering map. Then the ¢-inverse image L of
L is a m(S)-invariant measured lamination on HZ2. The pair (7, L) induces a bending
map 3: H? — H?3 which is equivariant via an associated homomorphism p: m(S) —
PSL,C. This mapping f is defined by bending the universal cover H? of 7 along L,
where the bending angle is given by the transversal measure of L (J[EMS87]). Then
the pair (7, L) determines 3: H? — H3 uniquely up to PSL2C; thus the pair (3, p) is
identified with (« o 3, apa~!) for a € PSLyC.

It follows from Corollary 4.3 in [Bab15] (see also Theorem 5.1 in [Bab17]) that, if a
geodesic loop on 7 intersects the lamination in a small angle, then the holonomy along
the loop must be hyperbolic.

Theorem 2.1. There is a universal constant 6 > 0 such that if Z-(L,m) < ¢, then
p(m) is hyperbolic.

Proof. Let m be a lift of m to the bi-infinite geodesic in the universal cover 7 = H?Z.
Then, the restriction of 5 to m is a (1 + €)-bilipschitz embedding (Corollary 4.3 in
[Bab15]). Since f is p-equivariant, p(m) is a hyperbolic element whose axis connects
the ideal point of the bilipschitz embedding (). 0

2.2. CPl-structures. (General references of CP!-structures are found in [Dum09,
Kap01].)

A CP'-structure C, or a complex projective structure, on S is a (CP!, PSLyC)-
structure, i.e. an atlas of charts embedding into CP! with transition maps given by

PSL,C.

Let S be the universal cover of S. Then, equivalently, a CPl-structure is a pair
(f,p) of a local homeomorphism f: S — CP! and a homomorphism 71(S) — PSLyC
such that f is p-equivariant. The map f is called the developing map and p is called
the holonomy representation of C.

The pair is defined up to PSLoC, ie. (f,p) ~ (af, apa™!) for all a € PSLyC.
Thus the holonomy is in the character variety X = Hom(7m(S), PSL2C) / PSLoC.

2.2.1. Schwarzian parametrization. Each CPl-structure corresponds to a holomorphic
quadratic differential ¢ on a marked Riemann surface X. Thus the deformation space
P of CP'-structures is an (affine) vector bundle over the Teichmiiller space T, such that
a fiber over a Riemann surface X is the vector space Q(X) of holomorphic quadratic
differentials on X (in fact, it is the cotangent bundle). In this paper, considering the



S.Baba 8

projection map II: P — T given by the uniformization, we regard the space of marked
hyperbolic structures on S as our real analytic zero section.

Although Hol: P — X is a highly non-proper map ([Hej75]), for each X € T, the
restriction of Hol to the space Q(X) is a proper embedding onto a complex analytic
subvariety of X (see |[GKMO00, Theorem 11.4.1] and its proof). Moreover

Theorem 2.2 (|[Kap95, Tan99|). For every compact subset K of T, the restriction of
Hol to II7Y(K) is a proper map.

Corollary 2.3. Suppose that Cy € P leaves every compact subset in P and its holonomy
pt converges in X. Then the complex structure X; of Cy also leaves every compact subset
m T ast — oo.

2.2.2. Thurston’s parametrization of CP-structures. ([KP94a, KT92|, see also [Bab20].)
Thurston gave a homeomorphism

P~Tx ML,

where T is the space of marked hyperbolic structures on S and ML is the space of
measured laminations on S.

A pair (7, L) € TxML yields a pleated surface H? — H? equivariant under the holo-

nomy 71 (S) — PSLaC of its corresponding CPl-structure on S. Given a CP!-structure
C on S, its associated collapsing map k: C' — 7 is a marking preserving continuous
map which relates the developing map and the bending map of C. First, there is a
measured lamination £ on C consisting of circular leaves, such that topologically £
is obtained by replacing each periodic leaf ¢ of L by cylinder foliated circumferences
so that the weight of £ is equal to the total transversal measure of the foliated cylin-
der. The collapsing map x, conversely, collapses such foliated cylinders of £ to their
corresponding periodic leaves of L, and x takes the strata of £ to the strata of L.

Moreover, r relates the developing map f: S — CP! and the pleated surface
f: H? — H? in an equivariant manner: For each z € S, let B, be the mazimal ball
in C' whose core contains z. Let U.: B, — ConvdsB, C H? denote the orthogonal
projection, where Convds B, is the hyperbolic plane (support plane) bounded by the
boundary circle. Then, in fact, the commutativity

Bok(z) =¥ f(2),

holds equivariantly, where & : C >~ H? — 7 be the lift of  to a map between universal
covers. Note that there is a canonical normal direction of the support plane ConvdB,
at U, f(z) toward f(z).

2.3. Epstein maps. Let C = (X,q) be a CP!'-structure on S in the Schwarzian
coordinates, where X is the complex structure of X, and ¢ is a holomorphic quadratic
differential on X. Then, the integration of /g along paths yields a singular Euclidean
metric £ on X in the same conformal class (see for example [FM12]). In the complex
plane, the lines parallel to the real axis give a foliation of C, and it has a transversal
measure induced by the vertical length (horizontal measured foliation). Similarly, the
lines parallel to the imaginary axis give a foliation of C, and it has a transversal measure
induced by the horizontal length (vertical measured foliation). Then, by pulling back
the vertical and the horizontal foliations of C, we obtain a vertical singular measured
foliation V' and a horizontal singular measured foliation H on E, where the singular
points are the zeros of the differential q. Moreover H and V' are orthogonal, and the
vertical and the horizontal foliation of C are orthogonal.

Given a point z € H?, we can normalize the unit disk model of H? so that z is
the center of the disk; then the ideal boundary of H? has the spherical metric uniquely
determined by z € H?3.
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Theorem 2.4 (Epstein [Eps|). Given a CP'-structure C = (f,p) on S, there is a
unique continuous p-equivariant map Ep: X — H3, such that, for every point z € X,

the Euclidean metric of E at z agrees with the spherical metric at f(z) € CP! when
CP! is identified with S? so that Ep(z) € H3 is at the center of the disk model of H?.

Moreover Ep: X — H3 is smooth away from the singular points of E (see Equation
(3.1) in [Duml7]).

Let UH? denote the unit tangent bundle of H?. Then Ep lifts to a (Lagrangian)
immersion Ep, : TE — U(H?) ([Dum17, Lemma 3.2]) which is a unit normal vector of

the surface Ep: X — H? in the complement of the singular points of E. For z € X, let
d(z) denote the Euclidean distance from z to the set Z of the zeros of the differential

q.
Lemma 2.5 (Lemma 2.6, Lemma 3.4 in [Dum17]). Let h'(z ) and v'(z) be the horizontal
and vertical unit tangent vectors at z € X \ Z.If d aeE < 4, then

(1) | Ep, M ()]l < g5

(2) V2 < | Ep, v/l < V3+ 755,

(3) K (2),v'(2) are the principal directions of Ep at z, and

(4) |kv| < %, where ky is the curvature of Ep in the v-direction.

3. A LIFTING PROPERTY OF PATHS IN THE CHARACTER VARIETY

Definition 3.1. A representation p: 71(S) — PSLyC is elementary if Imp fizes a

point in H? U CP! or preserves two points on CP'. Equivalently, p is elementary if
Im p is strongly irreducible and Im p is unbounded in PSLoC. Otherwise p is called
non-elementary.

Let R denote the PSLoC-representation variety of S, the space of representations
71(S) — PSLeC. By fixing a generating set vi,...,7,, the topology of R is the
restriction of the product topology on PSLyC", which is independent on the choice of
1, .-, The Lie group PSLoC acts on R by conjugation, and its GIT-quotient

U:R—X= {71'1(5) — PSLQ(C} // PSL,C
is called the PSLyC-character variety of S.
Each fiber of this GIT-quotient is an extended orbit equivalence class: Namely, for
p1,p2: m1(S) = PSLaC, p; ~ po if and only if the closure of the PSLaC-orbit of p;

intersects that of py in R. In fact, equivalently p; ~ pg if and only if tr? pi(y) =

tr? pa(7) for all v € 71(S) [HP04]. In particular, for a non-elementary representation
m1(S) — PSLeC, its PSLyC-orbit is a closed subset of PSLyC and form a single
equivalence class (|[New]). For p € R, let [p] denote it equivalent class ¥(p) in X.

Proposition 3.2. Suppose that Cy (t > 0) is a one-parameter family of CP-structures
on S, such that its holonomy n; € X converges to 1~ € X. Then n; lifts a path py € R
which converges to peo € R ast — 00, so that [poc] = Moo-

Remark 3.3. The limit 1o, can be an elementary representation (§14), and thus this
proposition is nontrivial. In addition, there is n € R with [n] = pso such that there is
no lift ne of pt ending at n.

Proof of Proposition 3.2. Fix a generating set 71, ..., v, of m1(S). We divide the proof
into three cases:
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(1) nso is non-elementary.

(2) Moo is elementary and there is v € PSLoC such that 7. () is hyperbolic, i.e.
tr?(y) € C\ [0, 4].

(3) 7o is elementary and there is no hyperbolic element in its image, i.e. tr? 7. (Y) €

[0,4] for all v € w1 (5).
Case 1.

Lemma 3.4. Suppose that 1 is non-elementary. For every lift pooc € R of oo € X,
there is a lift pr € R of the path n; € X such that pr — peo ast — 0.

Proof. Over non-elementary representations, ¥ is a fiber bundle with fibers PSLyC.
This implies the lemma. L]

Case 2. Suppose that 1 is elementary and there is v € m1(.S) such that 7o(7y) is

hyperbolic. Then, if p € U~!(14), letting £ be the axis of the hyperbolic element p(7),
we have either:

(i) Im p preserves ¢ and contains an elliptic element which reverses the orientation of
l, or
(ii) Im p pointwise fixes the endpoints of £ on CP!.

Case (i). Suppose that p € U1 (1,) contains an elliptic element which exchanges
the endpoints of £.

Claim 3.5. There are generators vyi1,7%2,...,vn of mi(S), such that, for each i =
1,...,n,

(1) p(vi) is a hyperbolic element for i =1,...,n— 1, and
(2) p(yn) is an elliptic element of order two about a geodesic orthogonal to L.

Proof. By the hypothesis, one can pick generators 71,72,...,7v, of m1(S5), such that
p(71) is a (nontrivial) hyperbolic element. Then we can, in addition, assume that
p(72),...,p(ym) are not I, by composing ~; (¢ > 2) with = if necessary. If p(v;) is
an elliptic element preserving the orientation of ¢, then p(v17;) is hyperbolic— thus
without loss of generality, we can assume that if p(;) is an elliptic element, it must
reverse the orientation of £. Suppose that p(v;) and p(;) are both elliptic elements
reversing the orientation of ¢; then p(v;7v;) preserves the orientation of ¢. Thus, by
replacing y; with 7;7;, we can reduce the number of the generators which map to
elliptic elements reversing the orientation of ¢. We can repeat such replacements of
generators, we obtain a desired generating set.

Let v1,72, ..., be the generating set of m1(S) obtained by Claim 3.5. We show
that there is indeed a lift p; in R of n; converging to p as t — oc.

One can easily find a lift p; (¢ > 0) so that pi(y1) converges to p(y1). Then
Axis(pt(y1)) must converge to £. For all 1 <i <n —1, Axis(pt(y:)) and Axis(pi(vn))
are asymptotically orthogonal, as 7 is an equivalence class of some elementary rep-
resentation. In particular, we can in addition assume that p;(7,) converges to p(vy),
so that Axis(p¢(y,)) converges to a geodesic m orthogonal to £. Then, for 1 < i < n,
Axis(pt(7;)) converges ¢, since it is asymptotically orthogonal to m and 7. is elemen-
tary. Thus p; converges to p as t — oo.

Case (ii). Next suppose that p € U~1(n.,) preserves the endpoints of . Then, sim-
ilarly to Claim 3.5, we can find a generating set 71, . . ., 7, such that 7. (71), - - -, Moo (Vn)
are all hyperbolic elements (i.e. tr? 7. (7;) € C\ [0,4]).

Pick any lift p; of n; for ¢ > 0 (which may not converge as t — 00).



S.Baba 11

Fix a PSLyC-invariant metric on the projectivized unit tangent bundle PTH?
of H3. Then, given two geodesics (1, ¢y in H?, we can measure their distance by
embedding /1 and /2 into the bundle. Thus, similarly, for all 1 <, 5 < n, the distance
between Axis(p;(7;)) and Axis(pi(y;)) goes to zero as t — 0o, since otherwise 1 is an
equivalent class of some non-elementary representations due to the limit of p(;) and
pt(75). Thus we can continuously conjugate p; by elements of PSLyC so that all axes
of pe(71), - - -, pt(7n) converge to geodesics sharing an endpoint. Therefore p; converges
as t — oo by this normalization.

Case 3. Suppose that Imns contains no hyperbolic elements. Given an elliptic
element and a parabolic element in PSLyC sharing a fixed point on CP! then their
product is an elliptic element. Therefore we can pick generators 71, ...,7, of m(S5),
such that 7.0(7;) are either all elliptic or all parabolic: In fact, given a generating
set y1,...,n, if the ny-image of at least one ; is elliptic, then by replacing ~; with
parabolic 7o (7j) with 7;7;, we obtain a generating set with elements whose 7so-images
are all elliptic. Pick any lift p; € R of the path n; € X for t > 0, which may not
converge as t — 00.

Definition 3.6. For v € PSLoC, the axis of 7 is the convex hull of the fized point set
in H? U CP! of v, and we denote it by Axis(y) C H? U CP!.

In particular, if v is hyperbolic or elliptic, Axis(y) is a geodesic in H? plus its
endpoints in CP!, and if ~ is parabolic, Axis(y) is a single point on CP!. Clearly an
ideal point of Axis(7) is a fixed point of ¥ on CP!.

Suppose that v, w € PSLoC be hyperbolic or elliptic elements with axes £, {,. As
above, we measure the distance between /., {,, by embedding them into the projective

unit tangent bundle of H?3.

Lemma 3.7. (1) Suppose that neo (i) and 1nsc(7;) are both elliptic for distinct 1 <

i,j <n. Then the distance between Axis(p¢(y;)) and Axis(p(v;)) in PTL(H?)
limits to zero as t — 0.

(2) Suppose that 1o (Vi), Moo (V5), Neo(Vk) are all elliptic for distinct 1 <4, j, k < n.
Then there is a lift py € R of ny for t > 0, such that Axis(pi(7:)), Axis(pi(75)),

and Axis(pi(y)) converge to geodesics sharing a common endpoint on CP?.

Proof. (1) If there is a diverging sequence 0 < t; < tp < ... such that the distance
between Axis(p;(7;)) and Axis(p(7;)) in PT(H?) is bounded from below by a positive
number, then 7, is non-elementary. This is a contradiction.

(2) By (1), if the assertion of (2) fails, there is a lift p; such that Axis(p¢(7i)),
Axis(pi(v;)), and Axis(pt (7)) converge to the distinct edges of an ideal triangle in H?.
Then, 7~ is non-elementary against the hypothesis. (]

Corollary 3.8. Suppose that there is a generating set {vi,...,vm} of m1(S), such
that Neo(Y1), - - -y Moo () are all elliptic. Then, there is a lift pr € R of my such that
pe(7), -+, pe(m) converge to elliptic elements whose azes share an endpoint on CP!.

Last we suppose that 7o0(71), - - -, Moo (V) are all parabolic, and we show that there
is a lift of p; of n; to R such that p; converges to the trivial representation.

Pick a base point O € H3. For each t > 0, let 0ri = dms(O, pe(7i)O). Let iy €
{1,...,n} be such that
5t,it = max (5m.
1<i<n
Lemma 3.9. Let t; < ta < ... be a sequence diverging to oo, such that, at ty,, the
indices iy, € {1,...,n} (k=1,2,...) defined above are a fixed constant h. Suppose that
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there is a sequence wy, € PSLaC such that the conjugation wy, pr, (yh)wt_kl = Wi, Pt (V1)
converges in PSLoC, as k — oo, to a parabolic element <(1) 1f> in PSLoC with u # 0.
Then, for every j = 1,...,n, the conjugation wy,- py, () accumulates to a bounded

subset of ((1) (1:) which has a diameter less than |u| in C.

Proof. First we show that, unless wy,-pg, (7;) — I, the limit of the fixed point set of
wiye pr.(75) € CP! must converge to {oo}. Suppose, to the contrary, that this assertion
fails. Then, up to a subsequence, the limit set of the fixed point set of wy, pr, (v;) € CP!
converges to a point on CP! not equal to co. For sufficiently large positive integers
D, Wt Pte (’yh”yf ) are hyperbolic elements and their translation lengths diverge to oo as
p — 0o([GKMO00, Lemma 2.1.1 (iii)]). This contradicts that Im 7., consists of only
parabolic elements.

For each £ =1,2,..., set

1) wne () = (G5 )

Cjk

Thus ¢j; — 0 and a;,d;; — 1 as k — oco. Then the definition of h implies that
by, n — Maxi<i<p by, s — 0. Hence we have the upper bound on the image in C. UJ
By a straight computation, we obtain the following.
Corollary 3.10. For every j = 1,...,n, let s;; > 0 be a sequence in k, such that

\/W

sjk — 0 and

o (e ()0

as k — oo.

— 0. Then, using the notation from (1), we have

Moreover, Corollary 3.10 implies that the sequence max;—1,.. sjx in k yields the
convergence (2) for all j = 1,...,n. Therefore we have the following.

Proposition 3.11. There is a continuous path wy € PSLoC such that wi- pi(y;) accu-
mulates to a bounded subset of parabolic elements in <(1) ((1:) for each i. Therefore there

is a continuous path wy € PSLoC such that wy - py converges to the trivial representation

mR.

We have completed the proof for all cases.

3.1. Approximation of moduli. Let E be a singular Euclidean surface induced by
a holomorphic quadratic differential on a Riemann surface X. A regular annulus Agp
is a cylinder embedded in E such that there is a closed geodesic loop £ on E and the
annulus Ag is foliated by loops equidistant from ¢. Minsky gave a useful approximation
of the modulus of cylinders.

Theorem 3.12 ([Min92|, Theorem 4.6; see also [Ser12|, Theorem 6.2). Let E be a sin-
gular Euclidean surface induced by a holomorphic quadratic differential on a Riemann
surface X. There are constant 0 < ¢ < 1 depending on the topology of the surface, such
that, for every essential annulus A embedded in X, there is a reqular annulus Ag in E
homotopy equivalent to A satisfying Mod(E 4) > c¢Mod(A).
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4. HOLONOMY ESTIMATES AWAY FROM ZEROS

In this section, based on Dumas’ work on Epstein surfaces [Duml17|, we give some
further analysis of the Epstein surfaces in the horizontal direction. We use Dumas’
notations as below. Let g1 = e™|dz|,g2 = e*?|dz| be two conformal metrics on a
Riemann surface; then the Schwarzian derivative of g9 relative to g; is the quadratic
differential

B(g1,92) = [(@1)22 — 0422 — (a1)z2 + (Oél)z,]dZQ.

Let C' = (X, q) be a CP!-structure on S. Then, we set the following notations associ-
ated with C:

e Let 7 be the hyperbolic metric on S uniformizing X;

e let [,/g| denote the singular Euclidean metric on X obtain by integrating ,/q
along paths;

o let %(Cpl l;e the spherical metric on CP! given by some conformal identification
Cp! = §?;

e let f: X — CP! be the developing map of C, and f*(gcp1) be the pull back of
the conformal metric gepr by f to the universal cover X.

Then set
w = 2B(T, f*(g9cpr)),
w = 2B(|v4l, [ (gcpr)),
v = 23(07\/@’

which are holomorphic quadratic differentials on X.

4.1. Curvature of Epstein surfaces in the horizontal direction. Let kj; and k,

be the principle curvatures of Ep: X — H? in the horizontal and the vertical directions,
respectively. First by Equation 3.7 in [Dum17]

o o=l
@] + [wl
As the Gaussian curvature kpk, = 1 ( [Duml7, p448]), we have

| + ||
@] = ]

kp =

In addition, recalling that h’ denotes a unit tangent vector in the horizontal direction
at a non-singular point, we have

Al 2
1Ep 2 = (91— 1)

2|ww|
(Equation 3.6 in [Duml7, p448]). Therefore
6] + Jwl o (@] = |wl)?
(knll Ep.(A))* = (= )" -
@] = |wl 2]
L e
2|ww|
1
L Ll Ll

2

wl [l
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Since @ = w — v (|[Duml7, p447]), we have

w
w

- ‘1 - 3‘ ([Dum17, p449)).
w

By [Duml7, Lemma 2.6], we have

v(z)

w(2)

Thus, recalling that d(z) is the distance from the singular points, we have

<

d(z)?"

@) _ NP
o] © Lo, and

(kn ()| Ep (R ()])* = 2+0(d(2)7?).

Therefore, we have the following.

Lemma 4.1. For all nonzero z € X of the differential q,
kn(2)| Ep. (1 (2))]| = V2 + O(d(2) ).

4.2. Holonomy estimates of long flat cylinders. Let F be a singular Euclidean
surface. A flat cylinder in E is a cylinder foliated by closed geodesics. A cylinder A in
E is expanding if there is a geodesic loop ¢ or a puncture p on F, such that A is foliated
by a one-parameter family of circles equidistant from ¢ or p, respectively, whose length
strictly increases as the distance to ¢ or p increases.

Let Ep: X — H3 be the Epstein surface of a projective structure C' = (X, q) on
S. Let a: [0,1] = C = X be an arc such that a(0) and a(1) are in X \ Z and o
differentiable at both endpoints. Then the curve Epoa: [0,1] — H? is differentiable
at both endpoints. Let ((«) € PSL2C be such that ((«) takes the unit tangent vector
a’(0) to /(1) on Ep and the unit normal Ep, «(0) to the unit normal Ep, a(1). We
call ¢(a) € PSLoC the holonomy (of Ep) along .

Definition 4.2. For o € PSLoC, the rotation angle in [0, 7| is the (unsigned) rotation
angle of the tangent plane of CP at a fized point of c.

In the case that a has two fixed points on CP!, then the “signed” rotation angle
of o which takes a value in [—m, 7|/(m ~ —7) at a fixed point is —1 times the “signed”
rotation angle at the other fixed point, where the sign is determined by the orientation
from CP'; thus the unsigned rotation angle is well-defined in Definition 4.2.

Let (E, V') be the singular Euclidean surface given by C' = (X, ¢q).

Definition 4.3. Let a: [0,1] — H3 be a C'-smooth arc on the Epstein surface E —

H3. Let v(t) and h(t) denote the (unit) vector fields along o tangent to the vertical and
horizontal foliations of E, respectively.

Let ¢ be a geodesic in H3. Let H be the foliation of H? by the totally geodesic
hyperbolic planes H orthogonal to . Note that these hyperbolic planes are isometrically
wdentified by parallel transport along €, and thus their ideal boundary circles are also
identified diffeomorphically.

Suppose that v(t) is transversal to the foliation H. Let Hy be the leaf of H containing
a(t). The translation length of « along ¢ is the distance between Hy and Hy (i.e. the
length of the segment of ¢ between Hy and Hy ).

As v(t) is transversal to H, then, by the orthogonal projection H? — Hy, the hor-
izontal tangent vector h(t) projects to a non-zero vector at the tangent space Ti, ;) Hy.
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W;

FIGURE 1. Isotope m; to a union of a vertical and horizontal segment.

This non-zero tangent vector determines a geodesic ray in H? by being its initial tan-
gent direction. Let 0(t) € OsoHy be the endpoint of the geodesic ray in H; given by the

tangent vector. As all ideal boundaries OoHy are identified, 0(t) € St lifts to 0(t) € R.
The rotation angle of a about { is the total increase of 0(t), which takes a value in R.

Proposition 4.4. Let C; = (f;, p;) be a sequence of CP-structures on S, and let
(E;, Vi) be the pair of a singular Euclidean structure E; and a vertical foliation Vi on
E; induced by the Schwarzian parameters of Ci. Suppose that there are a loop m on
S, a geodesic representative m; of m on E; for each i, and a flat cylinder A; in E;
contains m;, such that

e m; is in the middle of A;, so that A; \ m; is a union of two isometric flat
cylinders,

e Mod(A;) = o0 as i — oo, and

e the height a; of A; diverges to oo as i — oo.

Let m; be a segment on the universal cover E; obtained by lifting the simple closed
curve m;. Then, by parametrizing m; by arc length s € [0, length(m;)], for every e > 0,
if i > 0 is sufficiently large, then

(1) the translation length of Ep; m;(s) along l; is (14-€)-bi-Lipschitz to /2 (Re fmi Vi)
(2) the total rotation angle of Epmy; about £; is (1+¢, €)-bi-Lipschitz to to /2 (Im fmv Vat)
where Ep; : E; — H3 denote the Epstein surface of C;.

Proof. Isotope m; in A;, fixing a point on m;, so that m; is a union of a vertical segment
u; and a horizontal segment w; (Figure 1). Then m; remains close to the middle of A;.

We first analyze the vertical segment Ep; |u;. In the principal direction, the normal
vector is preserved by parallel transports. Thus, the parallel transport along the curve
Yi|u; yields the holonomy (;(u;(s)) € PSL2C. By the hypotheses, the distance from
the loop u; U w; and the set Z; of zeros of the differential ¢; diverges to co. Therefore,
by Lemma 2.5 (4), the curvature along Ep; |u; limits to zero, and it asymptotically has
a constant speed /2 by Lemma 2.5 (2), so that its length is V/2 times the Euclidean
length of u;, which yields (1).

To analyze the total rotation angle in the vertical direction, we next consider the
total curvature. In a more general setting, the following holds.

Lemma 4.5. For every e > 0, if R > 0 1s sufficiently large, then, if a vertical segment
u on a CP-surface C' has Buclidean length less than R/e, then total curvature of the

curve Ep |u is less than €, where Ep: C — H? is the Epstein surface of C.
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FIGURE 2. Infinitesimal change of the rotation angle n’(t).

Proof. The curvature of the curve Ep|u at every point on u is bounded from % by

Lemma 2.5 (4). Since, by the hypothesis, the length of u is bounded from above by %,
the total curvature along u is bounded from above by

R 6 6

e« R?2 R

Therefore, if R > 6%, then the total curvature along u is bounded from above by e. [

In our current setting, as a; — oo and Mod(A;) — oo, one can easily show that,
for every €, the vertical segment wu; satisfies the conditions of Lemma 4.5 when i is
sufficiently large. Thus the following corollary holds.

Corollary 4.6. The total (principal) curvature of the vertical segment Ep; |u; limits
to zero as i — 00.

We next show that the rotational holonomy along u; asymptotically vanishes as
1 — 00.

Lemma 4.7. For everye > 0, if R > 0 is sufficiently large, then, if a vertical segment v
on a CP!-surface C has length less than R/e and a distance at least R from the singular
set w.r.t. the singular Fuclidean structure of C, then, letting Ep be its Epstein surface,
the deriwative of rotation of its Ep-image is bounded from above by €. Moreover, the
total rotation of its Ep-image bounded from above by € with respect to the geodesic ¢
connecting the endpoints of Ep.

Proof. Fix € > 0. Let v be a vertical segment on C' of length less than R/e. Let
a: [0,¢] — H3 be the curve Ep ov, where £ is the Euclidean length of v. Let s(t) be the
geodesic segment in H3 connecting a(0) and «(t) for each ¢ € [0, ¢]. For u € [0, /], let
Ep(u) be the surface which s(t) sweeps out over ¢ € [0, u], so that Ep(u) is bounded by
a([0,u]) and the geodesic segment s(u) connecting its endpoints. Then, the intrinsic
metric of Ep(u) is a hyperbolic surface. Then, if R > 0 is sufficiently large, then Ep(u)
isometrically embeds into a hyperbolic plane H? so that its image is bounded by a
geodesic segment isometric to s(u) and a curve isometric to a(u). The curvature of the
second segment is bounded from above the curvature of «|[0, u] at every point.

Therefore, if R > 0 is sufficiently large, then the area of Ep is less than e by the
Gauss-Bonnet theorem to Ep, since the total curvature « is small. Let n(t) denote the
unit normal vector Ep, at u(t). Let n/(t) be the parallel transport of n(t) along the
geodesic segment s(t), so that n/(t) be a tangent vector at «(0). By the Gauss-Bonnet
theorem, the norm of the derivative dn’(t)/dt is bounded from above by the curvature
of a and the derivative of the area of Ep(¢) (Figure 2). Thus, the total rotation of n'(¢)
from t = 0 to t = £ is bounded from above by the sum of the total curvature of o and
the total area of Ep. Therefore, by the combination of the small upper bounds above
if R > 0 is sufficiently large, the total rotation is bounded by e. L]
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Ww; 7

F1GURE 3. The Image of a horizontal segment far away from the zero
set under the Epstein surface map

Next we analyze the holonomy along the horizontal segment w;. By Lemma 2.5

(1),

6lengthp m;

@pr

lengthys Ep; w; <

as 1 — 00.

Proposition 4.8. Let v;(t) denote the tangent vector of Ep; at Ep; w;(t) in the direc-
tion of V. For every e > 0, if i is large enough, then along w;, Ep* w;(t) is contained
in an e-ball in the unit tangent bundle TTH?.

Proof. Let Ej; be the universal cover of E;. Pick a lift @; of the vertical segment u; in
E; to E;. Let R; be a Euclidean rectangle, in E;, bounded by vertical and horizontal
edges, such that w; divides R; into two isometric rectangles of half height (Figure 3,
left). We may in addition assume that the height of R; divided by the width of R; goes
to zero as i — oo.

The vertical foliation V; and the horizontal foliation H; of F; induce a vertical and
a horizontal foliation of R;. By Lemma 2.5 (2), for every e > 0, if 7 is large enough,
the restrictions of Ep; to vertical leaves in R; are (v/2 — €,v/2 + €)-bi-Lipschitz. By
Lemma 2.5 (1), the Ep;-images of the horizontal leaves in R; have diameters less than
€. Therefore, for sufficiently large ¢, the images of vertical leaves of R; are pairwise
e-close in the Hausdorff metric (Figure 3 below). As v; is tangent to the image of such
a vertical leaf, we have the lemma.

0

We have already shown a good approximation of the holonomy along the vertical
segment u;. For every € > 0, if ¢ is sufficiently large, then the translation length along
u; is (1 + €)-bilipschitz to /2 times the Euclidean length of u; and the rotation is less
than ¢ (Lemma 4.7). On the other hand, by Proposition 4.8 and Lemma 4.1, if 7 is
sufficiently large, then the total rotation along the horizontal segment w; is (1 + €, €)-

bi-Lipschitz to v/2 times the Euclidean length of w; and the translation is less than e.
Thus we obtained, (1) and (2).

4.3. The exponential map and Epstein surfaces. Recall that, given a CP!-structure
C =(X,q) on S, for x € C, d(x) is the Euclidean distance from the singular set of
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the singular Euclidean structure E induced by the holomorphic quadratic differential
q. Note that, if z € C' is not a singular point of E, then there is a neighborhood U
of z in E so that U is isometrically embedded in the Euclidean plane C =2 E? so that
vertical leaves of F in U map into horizontal lines of C, and horizontal leaves map into
vertical lines.

Consider the exp: C — C\ {0}. Its domain C is isometrically identified with
the Euclidean plane [E2, and the codomain C \ {0} admits a push-forward Euclidean
metric. Note that this induced Euclidean metric on C \ {0} is invariant under the
dilations C — C : z +— kz for all k € C\ {0}. Therefore, given, any two distinct points
p,q in CP!, by a conformal mapping from CP!\ {p,q} to C\ {0}, the complement
CP!\ {p,q} has the push-forward Euclidean metric. By abuse of notation, we denote
this composition by exp: C — \{p, ¢} and call it the normalized exponential map.

Let (p,q) be the geodesic in H? connecting p to q. Recalling that CP! is the ideal
boundary of H3, let W: CP!\ {p,q} — (p,q) be the orthogonal projection along a
geodesic rays in H®. Let W,: CP!\ {p,q} — T'H? be the map taking z € CP\ {p, ¢}
to the unit tangent vector at W(z) € H? which is tangent to the geodesic ray from W(z)
to z € OHB.

For r > 0, let @,(z) be a r-neighborhood of a point z of the singular Euclidean
surface F in the L*°-metric (w.r.t. the vertical and the horizontal directions). If @, (z)
contains no singular point, then it is a square with horizontal and vertical edges of
length 2r.

Proposition 4.9. For every ¢ > 0, there is R > 0 such that, if = € C satisfies
d(z) > R, then we have a normalized exponential map exp: C — CP'\ {p, ¢} and can
1sometrically embed the %—neighborhood Ql/g(z) of z in C exchanging the horizontal

and the vertical directions, such that, in the C*-metric,
(1) the restriction of the Epstein surface X to Q1 /() is e-close to w — W, exp(\%),

(2) the restriction of X to Q/(2) of z is e-close to w — U, exp(\%), and

(3) the restriction of the developing map f to Qy/.(2) is e-close to the normalized
exponential map.

Proof. we prove the desired approximations by showing them along all leaves of the
restriction of the vertical foliation V' and the horizontal foliation H to the square

Ql/e(z)'

For every ¢ > 0, by Lemma 2.5 and Lemma 4.7, if R > 0 is sufficiently large, then

(i) the restriction of ¥ to each leaf of the vertical foliation V' in @1 (2) is a smoothly
(V2 — €, /2 + €)-bilipschitz embedding,
(ii) the restriction of X to each leaf of the horizontal foliation H in Q)1 (2) has deriv-

ative less than €, and
(iii) the derivative of the rotation of X, along a vertical leaf in Q1 (2) is bounded from

above by ¢, and the total rotation along the leaf is also bounded from above by
/
€.

Pick a vertical leaf vg in Q1(z), and let £ be the geodesic in H? passing through the

endpoints of the (v/2 — €, v/2+¢€')-bilipschitz curve ¥|vg. We normalize the exponential
map with respect to the endpoints of this geodesic. Then (i) and (ii) implies (1) with
this normalization.
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We next show (3). We first analyze f on each vertical leaf. By (i) and (iii), the
restriction of the developing map f to vg is €’-close to the normalized exponential map,
by isometrically embedding e onto C 22 E? in the scaled Euclidean metric v/2E (i.e.
the metric on vy is scaled by \/5)

The ¥-images of horizontal segments are very short curves in H?. Therefore, for
every € > 0, if R > 0 is sufficiently large, then for each vertical leaf v of Q1(z), the

restriction of f to v is €/-close to the restriction of the normalized exponential map to
a vertical segment in C by isometrically embedding v w.r.t. v2E.

Next, we analyze f on horizontal leaves. Let h be a horizontal leaf in Q1(z). Con-

sider the vector field along h consisting of the unit vectors in the vertical direction.
Then, for every ¢ > 0, if R > 0 is sufficiently large, then, as in the proof of Proposi-
tion 4.8, the image of the tangent vectors are €’-close to each other in the C°-topology.
By the curvature estimate along the horizontal direction in Lemma 4.1, for every € > 0
if R > 0 is large enough, the amount of the total rotation of f along every horizontal
segment in Q1(z) is close to the horizontal length times v/2. Therefore, a restriction

of f to every horizontal segment & is €-close to the restriction of exp when £ is iso-
metrically embedded onto a horizontal segment after scaling the length of h by v/2.
Therefore, a restriction of ¥, to every horizontal segment h is €/-close to the restric-
tion of W, exp when h is isometrically embedded onto a horizontal segment w.r.t the
V2 E-metric.

We proved that the restrictions of f to horizontal and vertical leaves in Q1(z) are
¢’-close to the normalized exponential map when Q1(z) is isometrically embedded in
C. This immediately implies (3). ‘

Finally (1) and (3) immediately imply (2), since f(z) and ¥(z) determines W, (z).

5. HOLONOMY MAPS FOR SURFACES WITH PUNCTURES

5.1. Classification of cusps of CP!-structures.

Definition 5.1. Let F be a surface with punctures. A CP-structure on F is a pair
(X, q) of a Riemann surface structure X on F and a holomorphic quadratic differential
q, such that at each puncture of X, q is at most a pole of order two.

This class is a natural class to consider, especially in our setting due to the upper
injectivity radius bound (see Theorem 6.1).

Proposition 5.2. Let F' be a closed surface with at least one puncture ¢ such that
the Euler characteristic of F is negative. Let C = (f,p) denote a CP'-structure on
F expressed by a developing pair. Denote by {. the peripheral loop around c. Let
C = (1, L) denote Thurston parameters, and (E, V) be the singular Euclidean structure
E with the vertical foliation V' given by the Schwarzian parameters of C'.

(1) Suppose that a cusp neighborhood of ¢ in E is an expanding cylinder of infinite
modulus shrinking towards c. Then
e p({.) is parabolic,
e ¢ has a horodisk quotient neighborhood, and
e in Thurston parameters (1, L), ¢ also has a horodisk quotient neighborhood
where the lamination L is the empty lamination.
(2) Suppose that a cusp neighborhood of ¢ in E is a (half-infinite) flat cylinder F
of infinite modulus. Then exactly one of the following holds.
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(a) The circumferences of F' are not orthogonal to V', p(£.) is hyperbolic, and
V2 ffc \/q 18 its complex translation length.

In Thurston parameters, the cusp ¢ corresponds to boundary component b
of T whose length is the real part of the translation length (in C/2mwiZ,).
(b) The circumferences of F' are orthogonal to V.

o If\2V(L.) is not a 2m-multiple, then p(L.) is an elliptic element of
angle ﬁfg V4 (€ R). In Thurston parameters, c is a cusp of T and

the total weight of leaves of L around ¢ (counted with multiplicity)
is, modulo 27, equal to the rotation angle of p({.).

o If V2V (L.) is a 2m-multiple, then p(€.) is either the identity I or a
parabolic element. In Thurston parameters, ¢ is a cusp of T and the
total weight of L around c is the 2w-multiple.

In (2b), by “counted with multiplicity”, we mean that, if a single leaf of L has both
endpoints at ¢, the weight of the leaf is counted twice.

Proof. (1) We first describe an intuition, and then make it precise. As the Euclidean
distance to the cusp is finite in F, in the hyperbolic metric on X, the quadratic differ-
ential ¢ vanishes asymptotically towards the cusp ¢. A Riemann surface with the zero
differential (in our parametrization) corresponds to a hyperbolic structure.

To make it precise, for ¢t > 0, let D; be the punctured disk of radius ¢ centered at
c. Note that the ¢ may be the zero of the quadratic differential ¢ induced by C'. Thus,
if £ > 0 is small enough, Dy is a union of the Euclidean semi-disks of radius ¢ foliated
by geodesics parallel to the diameter segment. Consider the restriction of ¢ to D;.
Then, by conformally identifying a once-punctured unit disk with Dy, the holomorphic
quadratic differential on Dy, the differential goes to zero uniformly on every compact
subset as t — oc.

The solution of the Schwarzian equation depends continuously in the differential. As
a punctured disk with the zero differential corresponds to a hyperbolic structure A with
a cusp at the puncture, and the holonomy around the cusp is parabolic. Therefore,
the developing map of D; converges to the developing map of the hyperbolic cusp-
neighborhood structure h, which is a quotient of horodisk by the infinite cyclic group
generated by a parabolic element. By the equivariance property of the developing
maps, the holonomy of D; around the cusp must converge to a parabolic element,
and as the holonomy of D; around the cusp is independent of £ > 0, the holonomy is
genuinely parabolic. Moreover, if one deforms a little bit the hyperbolic structure h
on the punctured disk to any other CP!-structure on the punctured disk keeping the
holonomy around the cusp parabolic, it still contains a horodisk quotient as a cusp
neighborhood. Therefore ¢ has a horodisk quotient neighborhood in C'.

In Thurston parameters, ¢ is a cusp of 7, and L is the empty lamination in a
sufficiently small neighborhood of c.

(2) By Proposition 4.9, the developing map of the half-infinite flat cylinder becomes
closer and closer to the exponential map exp: C — C* as a point in the domain
approaches the cusp, where, in the domain C, the vertical direction corresponds to the
real direction and the horizontal direction corresponds to the imaginal direction (to

be precise, the exp is composed with the calling to the domain C by \/5) Thus the
assertions about the holonomy along ¢, hold.
It remains only to show the description in Thurston parameters.

(2a) By Proposition 4.4, outside of a large compact set of F', all circumferences of
F" are admissible loops. Therefore an appropriate neighborhood of ¢ corresponds to an
infinite grafting cylinder. By [Babl17, Proposition 8.3|, the hyperbolic surface 7 has a
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(possibly open) boundary component corresponding to ¢, and its boundary length is
indeed the translation length of the hyperbolic element p(¢.).

(2b) The developing map in an appropriate cusp neighborhood is the exponential
map exp: C — C* so that the deck transformation corresponds to the translation in
the imaginary direction in the domain.

Therefore, ¢ is a cusp of 7 and the total weight of leaves of L near ¢ must be the
length of the circumference times v/2 (Proposition 4.4 (2)).

5.2. PSL,C and fixed points on CP!. In order to construct an appropriate holonomy
map for a surface with punctures, we will make PSLoC slightly bigger as a topological
space, by carefully pairing its elements with their fixed points on CP!. Let (CP1)?/Zy

denote the set of unordered pairs of points on CP!. Let m be the set of all pairs
(7,A) € PSLyC x ((CPY)2/Zs) such that

e if v is a hyperbolic element with zero rotation (i.e. try € R\ [-2,2] when 7 is
lifted to SL(2,C)), then A is a pair of (not necessarily distinct) fixed points of
v, and

e otherwise, A is the pair (a,a) of identical fixed points a € CP! of ~.

We call the pair A a framing. In particular, if ¥ = I, then A can be (a,a) for any
a € CP!. The second case also includes the case where 7 is a hyperbolic element with
non-zero torsion. (By abuse of notation, if A is a pair (a, ) of identical points on CP!,
for simplicity, we may regard A as a single point a.)

Fock and Goncharov introduced a framing of a representation, which equivariantly
assigns a single fixed point to each peripheral element ([FGO06]). What is new here is
that we are assigning a pair of fixed points in the first case.

Next we define a (non-Hausdorff) topology on I—m by the following open base
of neighborhoods at each (v, A) € PSLyC.

e If ~ is hyperbolic, then, for every (small) connected neighborhood U of v in

PSL2C consisting of hyperbolic elements, the set of all pairs (7/,A") € PSLyC
such that
— if tr is real and A = 2, then for 7/ € U with trv/ real, A’ = 2, and
— otherwise 4/ € U and, A’ is a pairs of identical points identified with A by
i(}entifying the fixed points of v with those of 7/ by a path connecting 7 to
v in U.
e If v is not hyperbolic, then the topology near (v, A) is given by the product
topology of PSLyC x (CP')?/Zs equipped with the Hausdorff topology on
(CPY)2/Zs.

Remark 5.3. Let C = (f,p) be a CP'-structure on a surface with punctures. Let
a € m1(S) be such that its free homotopy class is the peripheral loop around a cusp
c of C. Then ~y corresponds to a unique element in (CPY)2/Zy as follows: As the
universal cover C of C' is conformally identified with H? by the uniformization, let ¢

be the point on the ideal boundary of OH? fired by o € w1(S). Let (7, L) € T x ML be
the Thurston parametrization of C, and let L be the circular measured lamination on

C' which descends to L. For each leaf ¢ of L ending at ¢, the corresponding endpoint
of the circular arc f(¢) on CP is a fized point of p(a). If L is non-empty in a small
neighborhood of the cusp, let A be the set of such half leaves of L ending at c. Then
a corresponds to a unique element (p(a),A) in m If L is empty near the cusp,
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an appropriate cusp neighborhood of ¢ is a horodisk quotient, and o corresponds to
(p(), N), where A is the parabolic fixed point of p(«).

5.3. Cusp neighborhoods in Thurston parameters. The following lemma deter-
mines the isomorphism classes of cusp neighborhoods of CP!-structures in Thurston
coordinates.

Lemma 5.4. Let C = (f,p) be a CPl-structure on a surface F with cusps. Let
C = (r,L) be Thurston parameters of C. Then, for each cusp ¢ of C, its small
neighborhood (i.e. its germ) in C is determined by

e the holonomy h € PSLyC around c,

e the transversal measure of a peripheral loop around ¢ given L, and

e if h is hyperbolic, the direction in which the leaves of L spirals towards the
boundary component.

(See Figure 4.)

Proof. Let (E, V) be the pair of a singular Euclidean structure F on F, and V be a
vertical foliation on F induced by C.

Hyperbolic Case. First suppose that h € PSLyC is hyperbolic. Then, by Propo-
sition 5.2, its cusp neighborhood, in (£, V'), corresponds to a half-infinite cylinder A,

and the complex translation length is v/2 fz \/4, where (. is a peripheral loop of c.

The developing map f of a small neighborhood of ¢ is a restriction of the exponential
map C — C*. Thus the complex translation length determines the deck transformation
on the domain C by Z = (/.), which determines the CPl-structure of a small cusp
neighborhood.

The cusp ¢ corresponds to the geodesic boundary circle b of 7 whose length is equal
to the translation length of h. By the properties of bending maps, one can show that

the total weight of L along (.. times v/2 is the rotational angle of k and the direction of
rotation in which leaves of L spiral towards b determines the orientation of the angle
(Figure 5).

Parabolic Case. Suppose that h is parabolic.

If a neighborhood of a cusp ¢ in F is an expanding cylinder shrinking towards c,
then a neighborhood of ¢ in (7, L) is a hyperbolic cusp with the empty lamination
(Proposition 5.2 (1)).

Next suppose that the cusp neighborhood of ¢ in (£, V) is a half-infinite flat cylinder

A'in E. Then the circumferences of A are orthogonal to V, and V2V (£.) is a positive
2m-multiple.
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FIGURE 5. The opposite spiral directions give the holonomy the opposite
rotational directions.

Let Ep: X — H? be the Epstein map associated with ¢ = (X,q). Let V be
the pull-back of V' to the universal cover of F, and let ¢ be the lift of ¢ to the ideal
boundary of X = H2. Let v € m1(F) be the element which fixes & such that its free
homotopy class is £.. Then, for every leaf ¢ of V ending at ¢, its image Ep(¢) is indeed
a quasi-geodesic limiting to the parabolic fixed point of p(y) on CP!, and its curvature
of Ep(¢) converges to zero as it approaches the fixed point by Lemma 2.5. Therefore ¢
corresponds to a cusp of 7. By Proposition 4.4, the total weight of the leaves must be

V2V (Le).

Elliptic Case. The proof when h is elliptic is similar to the parabolic case.

Let D be the unit closed disk in C centered at the origin O. Let D* = D\ {O},
and let ¢ be the peripheral loop around the origin. Let P(D*) denote the space of all
developing pairs (f, h) for the CP!-structures on D \ {O} (not up to PSLyC) so that
O is a cusp and the boundary circle is smooth, where f: D* — CP! is the developing
map and h € PSLy;C is the holonomy along ¢. Recall from Remark 5.3 that each

cusp corresponds to a unique element (v, A) in P/SLz\(C Let D* be a subsurface of D*
obtained by removing a regular neighborhood of the boundary circle of D*.

By the following proposition, the deformation of the CP!-structures of the cusp
neighborhoods is locally modeled on PSL,C.

Proposition 5.5. Let F' be a closed surface minus finitely many points, and let C' be
a CPl-structure on F, and pick its developing pair (f,p). Then, each cusp ¢ of C' has
a disk neighborhood ¥ = (f,~) € P(D*) of ¢ in C' with the following properties:

(1) Let (v,A) € PSL,C be the element corresponding to the peripheral loop around

c. Then, for every e > 0 and every compact subset K of the universal cover

Y, there is a subset U = U(K,€) of (v,A) in m, such that, for every

(v, A)eU,

(a) if 4N = 1, then there is ¥’ = ¥'(v/, ') € P(D*) with holonomy ~' and
the framing A, such that its developing map f' of (v, \') is e-close, in
Cl-topology, to the developing map f of ¥ in K,

(b) if $A = 2, then there is a neighborhood W of v in PSLyC, such that, for
every v € W, there is ¥' = ¥/'(v',A") € P(D*) with holonomy ~' and a
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unique framing A, such that its developing map f' of 3(v', A’) is e-close,
in C*-topology, to the developing map f of ¥ in K.
(2) Moreover, ¥/ is uniquely determined on D* by an isotopy of D* (uniqueness
near the cusp).

Proof of Proposition 5.5. We divide the proof by the isometry type of 7. In each case,

we construct a deformation of ¥ in a small neighborhood in PSL,C by specifying the
deformation of a fundamental membrane.

Elliptic Case. First, suppose that v = I or « is an elliptic element. Then the
puncture O corresponds to a unique point f(O) on CP! by continuously extending f.
Then pick a cusp neighborhood 3 biholomorphic to a punctured disk, such that the
development of the boundary circle is a round circle @ on CP! and there is a unique
Lie subgroup of PSLyC isomorphic to SO(2) which preserves o and f(O). We identify
CP! with CU {0} so that the puncture f(O) is at the origin and « is the unit circle
of C centered at the origin f(O).

Pick a “fan-shaped fundamental domain” in D* bounded by three circular arcs
e1, e, €3 such that

e fle; and fley are radii of o connecting f(O) to points on «, so that vf(e;) =
f(es) are orthogonal to «, and
e fles immerses into «, and it connects the endpoints of e; and e,

(Figure 6, left). Let ¢ be the endpoint of the arc f(e;) on 7.

If the neighborhood U of (v, f(O)) is sufficiently small, then given (7', A’) € U, one
can easily construct a CPl-structure X' = (f’,+') close to 3 on D* realizing (v, A').

Indeed, we pick z € A’, we can construct a fundamental membrane bounded by €, €5, e
such that,

(1) f'(€}) is a straight line on C connecting z and fq,

(2) f'(e}) is v/ (f'(€})) (which is a circular arc connecting z and v(q)),

(3) f'(€}) is an arc connecting ¢q to v(q) so that f(e}) is a segment of a trajec-
tory under a one-dimensional Lie subgroup of the affine transformations of C
preserving z, and

(4) f'(e;) is close to f(e;) in the Hausdorff topology on CP!.

(see Figure 6, right). (The choice of z may not be unique if r is identity and trr’ €
R\ [-2,2], i.e. hyperbolic without screw motion)

On the other hand, one can easily see that, for every small deformation ¥’ of 3,
there is a “fan-shaped” fundamental membrane satisfying all conditions (1) - (4) such
that the fundamental membranes coincide on D*. Therefore, we have the uniqueness
property of ¥’ near the cusp.

Generic hyperbolic case. Let (7, L) be the Thurston parametrization of C', and let
L be the Thurston lamination on C'. Let ¢ be the peripheral loop around O. Suppose
that v is hyperbolic and L(¢) # 0, so that A is a single point. Then 7 has a geodesic
boundary loop b corresponding to the cusp ¢ and, as L(¢) > 0, leaves of L spiral towards
b. Let b be a lift of b to the universal cover 7 of 7, so that b is a boundary geodesic
of 7. Then those spiraling leaves lift to geodesics in 7 having a common endpoint at
an endpoint of b; by the bending map 3: 7 — H?, the endpoint maps to the point A.
Accordingly, the leaves of £ near the cusp O develop onto circular arcs ending at A.

Normalize CP* = C U {oo} by an element of PSL,C, so that 0 = A and the other
fixed point of «y is at co. Let (E, V') be the foliated singular Euclidean structure given
by C. Then, there is a half-infinite flat cylinder A in £ which corresponds to a cusp
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FIGURE 7. Perturbing a fundamental membrane of a cusp with a hyper-
bolic holonomy.

neighborhood of ¢; then each circumference has a positive transversal measure given
by the horizontal foliation. Therefore, one can take a cusp neighborhood ¥ bounded
by a loop m such that m develops onto a spiral on CP!, i.e. a curve invariant under a
one-parameter subgroup in PSL,;C which contains .

Take, similarly, a “fan-shaped” fundamental domain F in the universal cover ¥
which is bounded by three smooth segments e, e, e3 such that

e ¢, and e, are half-leaves of £ such that ve1 = e and the circular arcs f(e;) and
f(ez) end at 0 € C,, and
e f(e3) is in a segment of the spiral which connects the other endpoints of f(e;)

and f(e2)

(Figure 7, left). Then v(f(e1)) = f(ea) by the equivariant property.

Take a sufficiently small neighborhood U of (v, A) such that the subset W C PSL,C
of holonomy elements of pairs in U consists of only hyperbolic elements closed to 7;
then, for all (7', A’) € U, the fixed point A’ of the hyperbolic element ~' uniquely
corresponds to the fixed point of 7 in A by every short path connecting +' to v in W.
Then, similarly to the elliptic case, one can easily find a CP!-structure on D* close to
Y. which realizes (7', A’), by constructing a fundamental membrane close to F' (Figure
7).

On the other hand, for every small deformation " of ¥ realizes (7', A’), one can

easily find a fundamental membrane of ¥ so that it coincides, on D* with that of ¥/
constructed above.
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FIGURE 8. Deformation of a hyperbolic cusp neighborhood.

Special hyperbolic case (A = 2). Suppose that 7 is hyperbolic and L(¢) = 0 (in
particular try € R). Then the boundary component b of 7 is a leaf of L with weight
infinity (|[Bab17, Proposition 8.3|).

Let : C — 7 be the collapsing map. Then x~!(b) =: F is a half-infinite cylinder.
The developing map of F' is the restriction of exp: C — C* to a half-space bounded
by a horizontal line in C. Then we identify the universal cover F' of F' with the half-
space, so that v acts as a horizontal translation ¢,. Take a fundamental domain () in
F such that () is a vertical half-infinite strip in C bounded by two vertical rays and
one horizontal segment (Figure 8).

If W is a small neighborhood of v in PSLyC consisting of hyperbolic elements, for
every 7/ € W, there is a translation ¢, of C (close to the horizontal translation t.),
such that ¢,/ descends to 7' by the exponential map up to PSLyC. Therefore, there is
a small deformation of ¥ realizing (7, A’), and (1) holds.

On the other hand, arbitrary deformations of the cusp neighborhood F' contain such
a deformation of such a half-infinite strip fundamental domain on D. Moreover, if U is
sufficiently small, then if there are two e-small deformations of F' with the same framed
holonomy (+/, A), up so isotopy, the structures on D* coincide by the e-closeness to F'.
Thus the uniqueness holds (2).

Parabolic case. Suppose that v is parabolic. Then in Thurston parameters, the
puncture corresponds to a cusp of the hyperbolic surface 7, and the total weight of L
along the peripheral loop ¢ is a non-negative 2r-multiple. Then, similarly to the case
that v = I, we can show the claim by finding a cusp neighborhood and a fundamental
domain in its universal cover which is bounded by circular arcs.

5.3.1. Holonomy maps of CP'-structures with cusps. Let F be a closed surface minus
finitely many points py,...,p,. Recall that P(F) denotes the space of all developing

pairs (f,p) for CPl-structures on F. Let (f,p) € P(F). Then (f,p) gives a CP!-
structure on F', and we let X be its induced complex structure on F. Identify the

universal cover X of X with H?2; then for each i = 1,...n, pick a lift p; of p; to a point on
the ideal boundary of X. Then, by Remark 5.3, for every (f, p) € P(F') and a puncture
pi, we have a corresponding element in (;, A;) € m Thus, by the definition of the
topology of PSL,C, we have a continuous mapping from hol: P(F) — (PSL,C)"xR(F)
taking (f,p) € P(F) to ((vi, Ai)iq,p). In fact, hol yields a holonomy theorem in our
setting.

Theorem 5.6. Every (f,p) € P(F) has a neighborhood W such that

hol [W
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is a local homeomorphism onto its image. Moreover, for any (f,p) € P(F), if there is
a path p; (t > 0) converging to p in R(F) ast — oo, then there is a lift of p; to a path
in P(F) fort >0 converging to (f,p).

Remark 5.7. The image of hol(W) is contained in
(o A p) | € Wipla) =7 (i = 1,2, m) ).

Furthermore, its subset cut by the condition on the framing given by Proposition 5.5
(1) determines the local image hol(W).

Proof. Let (f, p) € P(F), and let C' be the CP'-structure on F given by the developing
pair (f, p). Applying Proposition 5.5 to a small € > 0, we obtain, foreach7 =1,...,n, a
(small) cusp neighborhood C; of the puncture p; of C, and a neighborhood U; of (;, A;)
in PSL,C modeling the deformation of C;. Let N; be the underlying topological cusp
neighborhood of the punctured surface F' supporting C;. Without loss of generality,
we can assume C1,...,C, are disjoint in C'. Let C! be an open cusp neighborhood
of p; smaller than C; and U; be a subset of PSLyC containing hol((f, p)) given by
Proposition 5.5(2), such that the small deformation of C; on C/ is parametrized the
framed holonomy in Uj;.

Let N/ be a (even smaller) cusp neighborhood of p; whose closure is contained in
the interior of N/. Let ' be F'\L; N/, and let C' be the restriction of C' to F'. For every
(7vh, ) € U, let Cy(v), AL) denote the unique CP!-structure on N; with the framed
holonomy (v;, A}) € U; such that C;(v;, A}) is sufficiently close to C;.

We shall regard (f, p) as a smooth section X of a CP!-bundle B over F such that 2
is transversal to the horizontal foliation H, associated with p (see for example [Gol22|)

Let ¥ be the restriction of ¥ to the bundle over the subsurface F. Then, there is a
neighborhood U of p in the representation variety R(F') such that, for each £ € U,

letting H¢ be the horizontal foliation of B associated with &, > is still transversal to He
by the openness of transversality; then Y yields a projective structure C’g on I with
holonomy ¢. In this way, we obtain a unique CP'-structure on F close to (f,p) on
F. This new structure is unique in a compact subset of F' whose interior contains the
closure of F'\ LI?_; N/.

For each i, pick any A; in Fix&(y;) € CP! so that (&(v;),A:) € U;. Then
Ci(&(vi), ;) is its associated deformation. Then we can glue C’g and C;(& (i), i)
in the overlapping region, and obtain a desired developing pair for a CPl-structure
on F. Consider the subset W in II? ,U; x R(F) consisting (v;, A;)I,, p) satisfying
pla) = v (i = 1,2,...,n); clearly W contains hol(f, p). In this way, given a suffi-
ciently small neighborhood of hol((f, p)) in this subset W, for every element in this
neighborhood, we construct a developing pair realizing it. This new CP!-structure on
F is unique by the uniqueness of the thick part C’g on F'\ UN/ and the uniqueness of
the cusp neighborhoods C;(&;(7;), A;) on NJ.

Notice that W projects to a neighborhood of p in R. The path lifting along a path
in R easily follows from the construction as U is a neighborhood of p in R(F).

6. BOUND ON THE UPPER INJECTIVITY RADIUS

Recall that C; = (f;, p) is a path of CP! structures on S such that C; diverges to
oo and the equivalence class [p;] = 7, converges in the character variety as t — oc.
Recall also that Cy = (X, ¢;) is the expression in the Schwarzian parameters.
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1
Let E; be the singular Euclidean structure on X; given by |¢?|. Let R(E;) > 0
denote that the upper injectivity radius of F;. In this section we show

Theorem 6.1. Suppose that X, is pinched along a multiloop M. Then the upper
injectivity radius R(Ey) of Ey; is bounded from above for all t > 0.

Immediately we have the following.

Corollary 6.2. There is an upper bound for the area of the expanding cylinders in Ej
for allt > 0.

The rest of this section is a proof of Theorem 6.1. We suppose, to the contrary,
that limsup R(F;) = oo and show that p; cannot converge. Let M; be a geodesic
representative of M on E; (in the Euclidean metric) such that, for every e > 0 if t > 0
is sufficiently large, then M, is contained in the e-thin part of X;. We will find a
conformally thick part which is, in the Euclidean metric, bigger than its adjacent thick
parts:

Lemma 6.3. Suppose that there is a diverging sequence (0 <)t; < ty < ... such that
E,, contains a flat cylinder A;, homotopy equivalent to a fized loop m of M such that

(1) Mod A;, — o0 asi — oo , and
(2) the circumference of Ay, limits to oo (equivalently Area Ay, — 00) as i — oc.

Then, leaves of the vertical foliation V;, must be asymptotically orthogonal to the cir-
cumferences of Ay,.

Proof. Suppose, to the contrary, that V;, is not asymptotically orthogonal to circum-
ferences. Then, up to a subsequence, we may assume that there is a limiting angle
0~ € [0,7/2) between the angle between V;, and the circumferences of A;,. Let my,
be a geodesic representative of m which sits in the middle of A;,. Since 0, # /2,
Hypotheses (1) and (2) imply that the transversal measure of the horizontal foliation
H,, along m,, diverges to infinity as ¢« — oco. By Proposition 4.9, the translation length
of py,(my,) is asymptotically v/2 times the transversal measure. Therefore, the trans-
lation length of p;, (my,) must diverge to infinity, which contradicts the convergence of
[pi] as t — 0. O

Proposition 6.4. Suppose that there are a component F of S\ M and a diverging
sequence (0 <) t; < to < ... such that, letting F;, be the component of Ey, \ M,
homotopic to F' on S,

° AreaEti Fy, = 00 as i — oo, and.
e for each boundary component { of F', there is an expanding cylinder By, in I},
bounded by the boundary component {; of F;, homotopic to £ on S such that
— By, shrinks toward ¢;, i.e. {; is the shorter boundary component of By,,,
and
— Mod By, — 00 as i — 00.

Then [py,]|m F diverges to oo in X as i — oo.

Proof. Let k; > 0 be such that k; Area(F;,) = 1 for each i = 1,2,.... Then, as
Area F;; — o0, thus k;, — 0 as i — oo. All ends of F}, have conformally long expanding
cylinders shrinking towards adjacent components. Take a base point in the thick part
of F,,. Let F' denote the compact surface with finitely many punctures, obtained by
pinching the boundary loops of F' to puncture points. Then the space of all holomorphic
quadratic differentials on Riemann surfaces structures on F' with Euclidean area one
is a sphere of finite dimension. Then, by compactness, up to a subsequence
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_

FIGURE 9. Staircase closed loops ¢ consisting of long vertical segments
and short horizontal segments

o kI, converges, in the Gromov-Hausdorff topology, to a compact singular Eu-
clidean surface minus finitely many points, F.,, which is homeomorphic to F,
and

e the restriction of k;V;, to k;E;, converges to a measured foliation V, on E.

Take a piecewise geodesic loop ¢ on E, such that

(1) ¢ does not cross any singular point of F.,

(2) each segment of ¢ is either vertical or horizontal, and ¢ contains at least one
vertical segment, and

(3) ¢ 1is a geodesic in the L*>-metric, so that at adjacent singular points, ¢ bends in
the different direction by an angle 7/2.

In fact, if V,, contains a periodic leaf, then take it as ¢, which obviously satisfies the
conditions. Otherwise, V,, contains a minimal irrational subfoliation, using the density
of each leaf in the subfoliation, a standard closing lemma gives a desired loop ¢ as in
Figure 9 (see [CEG87, 1.4.2.15]). By the convergence k;E; — E.,, for i large enough,
we pick a piecewise geodesic loop ¢; on E; satisfying the properties (1), (2), (3) such
that ¢; has the same number of horizontal and vertical segments as ¢ has, and k;¢; on
k;E; converges to ¢ on F,, smoothly on each segment as ¢ — oo. Then the distance
from ¢; to the singular set of E; goes to oo as k; — 0. Therefore, by Proposition 4.9,
p, () is a hyperbolic element of translation length close to V2 times the total length
of the vertical segment of ¢;. Then, as k; — 0, the total vertical length of /; on F; goes
to infinity, and therefore tr p;(¢) must diverge to infinity. O

Let mq,...,m, be the loops of the multiloop M.

Proposition 6.5. For every (large) T > 0, there are t > T and k € {1,...,p} such
that

1 _ lengthp, (my)
2 max;—; . plengthy (m;) —

and Modg, (my) is %—domz’nated by an expanding cylinder By, homotopic to my, i.e.

MOdBk7t > 1
Modg, my = 3
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Proof. For v > T, let my,, be the loop realizing max;—1 4 lengthEu(ml-). We may as-
sume that max;—; ,lengthy (m;) — oo ast — oo: in fact, otherwise, since lim sup R(E;) =
00, Proposition 6.4 implies that [p;] diverges in X.

We first show that if a long flat cylinder persists, then its circumference must stay
almost the same. Namely

Claim 6.6. For every € > 0, there is K > 0 such that, if there are w > u > K and a
flat cylinder in Ey of height at least K homotopic to m, then, for everyt € [u,w], then

lengthp, m

1-— <l+e

‘ lengthy, m

for all t € [u,w].

Proof. By Lemma 6.3, for every € > 0, if K > 0 is sufficiently large, then the vertical
foliation V; is e-almost orthogonal to circumferences of the flat cylinder homotopic to
m. Then, by Proposition 4.4, for every ¢ > 0, if K > 0 is sufficiently large, then the
total rotation angle along m is (1 + €)-bi-Lipschitz to \/QlengthEt m for t € [u,w]. As
the holonomy of p,(m) converges as t — oo, for every € > 0, if K is sufficiently large,
then the total rotation along m must be e-almost constant for all ¢ € [u,w]. Thus, if
K is sufficiently large, then the ratio of lengthy, m and lengthy m is e-close to 1. [

By Claim 6.6, for every € > 0, if K > 0 is sufficiently large, then, if a flat cylinder
lengthp, myg,, <1+4e
lengthp, my,

for all t € [u, w]. Suppose, in addition, that there is a loop m;, of M not my,,, such that
my, on E; becomes exactly twice as long as my, on F, for the first time at t = w < v
after ¢ = u. Then, by applying Claim 6.6 to m;, we can show that there is ¢t € [u, w)
such that Modg, my, is 1/3-dominated by an expanding cylinder: Indeed, otherwise,
max;_1, ., lengthy, (m;) must bounded from above by 2 lengthy, (my, ) for all ¢ € [u, w].

1-dominates Mod my, for all ¢ € [u, w] for some v > K; then 1 —¢ <

Corollary 6.7. There are a component F' of S\ M and a diverging sequence 0 < t; <
to < ... such that the corresponding component Fy, of Ey,\ My, satisfies the assumptions
of Proposition 6./.

Proof. By Proposition 6.5, there is a loop m of M and a diverging sequence t; < t3 < ...
such that

e lengthy, m — oo as ¢ — oo,
[ J
1 lengthp, m

= < < 2
2 max{lengthy, m4,..., lengthy m,}
foralli=1,2,..., and
e there is an expanding cylinder B;, homotopic m which %—dominates Modg, m.

Then, up to a subsequence, we may in addition assume that B;, is expanding in the
same direction. Then, let F' be the connected component of S\ M such that m is
a boundary component of F' and B;, expands towards F. As the size of F}, becomes
bigger and bigger than the length of length B, M the first assumption of Proposition 6.4

holds. Thus, by the second condition on the loop m and the sequence {t;}, the second
assumption of Proposition 6.4 is satisfied.

By this corollary, we obtained a contradiction by Proposition 6.4 against the con-
vergence of p;. Hence we obtain Theorem 6.1.
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7. CONVERGENCE OF CP'-STRUCTURES AWAY FROM PINCHED LOOPS

We continue to suppose that X; is pinched along a multiloop. We will first see that
the holonomy p. (m) determines the type of a conformally long Euclidean cylinder in
FE; which is homotopic to m for t > 0.

Lemma 7.1. (1) Suppose that there are a sequence t; < to < ... diverging to oo
and a sequence of expanding cylinders By, in E;, homotopic to m at time t;,
such that Modg, B;, — 00 ast — oo. Then po(m) is parabolic.

(2) Suppose that there is a sequence of flat cylinders Ay, in E;, homotopic to a fized
loop m on S such that Mod A;, diverges to oo and the circumference of Ay, is
bounded from below and above by positive numbers. Let w € C be such that the
MGbius transformation z — (expw)z conjugates to pos(m). Then, V2 [ /&
converges to w mod 27 up to a sign.

Proof. (1) If a puncture of a CP!-structure corresponds to a regular point of its holo-
morphic quadratic differential, its peripheral holonomy is parabolic. Suppose that there
are a sequence t; < ty < ... and an expanding cylinder B;, in E;, homotopic to m
such that Mod B;, — oo as ¢ — o0o. Then, by Corollary 6.2, the length of the shorter
boundary component of B;, goes to zero as ¢ — oo, and it asymptotically corresponds
to, at most, a pole of order one of the quadratic differential. (A pole of order at least
two corresponds to an infinite area end.) Therefore p.(m) is parabolic, against the
hypothesis.

(2) follows immediately from Proposition 4.4. O

Given a compact surface F' with boundary, let F' denote the surface with punctures
obtained by pinching each boundary component of F' to a (puncture) point.

Proposition 7.2. Let € > 0 be a number less than the Bers constant. Let F be a
component of S\ M, and let Ff be the component of the conformally e-thick part of E,
isotopic to F' for t > 0. Then, if

lim inf Areag, (Fy) > 0,

t—o0
there is a path of CP-structures F, on the punctured surface F' such that

(1) for every e > 0, if t > 0 is sufficiently large, then Ff isomorphically embeds
mto Fy,
(2) for each boundary component ¢ of F, there is a cylinder Ay in E; homotopic
to ¢ such that
e Mod Ay — 00 ast — oo;
o Ay, is either a flat cylinder for allt > 0 or an expanding cylinder shrinking
towards the adjacent component of S\ M across m for all t > 0;

(3) E, contains Ay for every boundary component £ of F.

Proof. We first show that, for each boundary component ¢ of F', there is a cylinder A,
homotopic to ¢, such that

(i) Mod Apy — 00 as t — oo, and
(ii) Aps remains either a flat cylinder for all sufficiently large ¢ > 0 or an expanding
cylinder shrinking forwards ¢ for all sufficiently large ¢ > 0,

Let Y}, Z;, W, be disjoint cylinders homotopic to ¢, such that Z; is a maximal flat
cylinder, Y; is the maximal expanding cylinder expanding towards the thicker part of F}
and W; is the maximal expanding cylinder expanding towards the adjacent component
across the geodesic representative ¢; of ¢.
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As X, is pinched along M, by Theorem 3.12, max{Mod Y;, Mod Z;, Mod W, } — oo
as t — oco. Let diam W, and diam Y; denote the diameters of W; and Y}, respectively, in
the Euclidean metric F;. Then, by liminf; . Areag, (Fy) > 0 and the upper injectivity

radius bound (Theorem 6.1), the ratio d?;‘jn";‘f:jl is bounded from above for all ¢ > 0.

Thus MM‘;dY”j:l is bounded from above for all ¢ > 0. Therefore Mod Y, +Mod Z, diverges

to oo as t — oco. We claim, moreover, that either lim Mod Y; = oo or lim Mod Z; =
holds.

Lemma 7.3. Suppose that limsup,_, .. ModY; = co. Then ModY; — oo as t — oo.

Proof. Let t; <ty < ... be a sequence with lim; ,.o ModY;, = co. Then the circum-
ference of Z;, limits to zero, and by Lemma 7.1 (1), poo(¥) is parabolic.

Suppose to the contrary that there is a sequence s; < so < ... diverges to oo such
that Mod Y}, is bounded from above by some constant b > 0. Then Mod Z,, — oo,
and the circumference of Z;, is bounded from below ¢ > 0. On the other hand, since
ModY;, — oo, the circumference of Z;, goes to zero as i — 0co. We can assume that
51 <t < sp <ty <... by taking subsequences of s; and t; if necessary.

Therefore, for every r € (0,c¢), for every sufficiently large i, there is u; € [s;, ;]
such that the circumference of Z,, is . Then, as ModY,, is bounded from above,
Mod Z,, — oo as i — o0.

Then, by Lemma 7.1 (2), the limit holonomy of p,, (m) is determined by the complex
length of the circumference. For almost all » € (0,¢), p,,(m) is not parabolic. This
contradicts the convergence of p; as po.(¢) is parabolic. U

Then, Y; satisfies (i) and (ii).

Next suppose that limsup,_,,, ModY; < oo. Then Mod Z; diverges to oo as t — o0,
and the circumference of Z; converges to a positive number. Then Z; satisfies (i) and

(ii).
We shall construct F} satisfying (3) as follows. Suppose that, for a boundary compo-

nent ¢ of F, lim;_,,. ModY; = co. Let Y, be an expandlng cylinder of infinite modulus,
obtained by extending the expanding cylinder Y; only in the shrinking direction, so

that Yt is conformally a punctured disk. Then replace Y; by Y; in E, by gluing E, \ Y
and Y, along the boundary component of Y;. Then the boundary component ¢ of F'
corresponds to the puncture of Y;.

Next suppose that limsup, ,,, ModY; < oco. Then, since Mod Z; — oo and the
circumference Circ(Z;) converges to a positive number as t — oo, we extend the flat
cylinder Z;, in the direction of W;, to the half-infinite flat cylinder Zt; then 7, is
conformally a punctured disk. Then replace Z; in E; with Z, so that it has a puncture
corresponding to /.

By applying, such a replacement for all boundary component ¢ of F', we obtains
a desired complete singular Euclidean surface F} satisfying (1), (2), (3), as (2) follows

from (i) and (ii).

Theorem 7.4. Let F' be a component of S\M. Let e > 0 be less than the Bers constant
of S. For every t > 0 large enough, let Fy be the component of the e-thick part of C
1sotopic to F.

(1) Suppose that
liminf Areag, (Fy) = 0.

t—o00
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Then, there is a continuous function € > 0 in t with lim; . = 0, such
that Fy* converges (in the Gromov-Hausdorff topology) to a complete hyperbolic

structure on a closed surface with finitely many punctures, denoted by E.., which
18 homeomorphic to F', ast — oo.
(2) Suppose that

lim inf Areag, (Fy) > 0.

t—o00

Then, F, accumulates to a bounded subset on the space of CP'-structures on
F.  Moreover, if po(m) # 1 for each boundary component m of F, then F,
converges to a CP'-structure on F ast — oo.

Remark 7.5. In Case (2), similarly to (1), one can take a sequence t; < ty <
diverging to oo so that F, converges to a CP'-structure E on F. Then, for every
€ > 0 less than the Bers’ constant, the e-thick part Ff, converge to a subsurface of FL..
If, in addition, the po(m) # I for every boundary component of F, then Ff converge
to a subsurface of FL.

Proof. (1) Let t; <ty < ... be a diverging sequence such that Area(F;,) — 0 ast — oc.
Then the holomorphic quadratic differential on F;, asymptotically vanishes. Thus, for
every small € > 0, Ff, and X;,|F} asymptotically identical, where X, is regarded as a
hyperbolic surface by the uniformization theorem for each ¢. Here, by asymptotically
identical, we mean that, for every v > 0 and every compact set K in the universal
cover H? of X, if 7 is sufficiently large, the developing map of F¢ is v-close to the
developing map of the hyperbolic structure X, |Fy on K.

The holonomy representations of F’ and X, |Fy, are asymptotically identical in the
character variety. As the holonomy of Fy’ converges in the representation variety, the
holonomy of X;,|Fy must converge in the representation variety. Thus Xy, |Fy. converges
to a complete hyperbolic structure o, on F. Therefore Fy* must genuinely converge
to 0 (without taking a subsequence). In particular Areag, Ff* — 0 as t — oo.

(2) Suppose that liminf, ,,, Area F¥ > 0 for sufficiently small ¢ > 0. Then let
F}, denote the singular Euclidean structure on F' obtained from F, by Proposition 7.2.
Then F, induces a CP'-structure on F'. Let (Y:, wy) be the Schwarzian parameterization
of F}. Then, indeed, every puncture of Y; is, at most, a pole of order two.

As X; is pinched along a multiloop M, Y; is bounded in the Teichmiiller space T(F ).
By Theorem 6.1, the upper injectivity radius of F} is also bounded from above, and
(Y;,w,) is also bounded in the parameter space. Thus, the CP'-structures F} are con-
tained in a compact subset of the deformation space of CP!-structures on F'. Therefore
F, accumulates to a bounded subset in the deformation space of CP!-structures on F.

Moreover, if each peripheral loop has non-trivial holonomy at ¢ = oo, by Theo-
rem 5.6, the convergence of the holonomy of F}, implies the convergence in (m)” X
R(F). Therefore F, has a unique limit in P(F). O

Theorem 7.4 immediately implies

Corollary 7.6. Suppose that X; is pinched along a multiloop M. Then, for every
sequence t; < ty < ... diverging to oo, up to a subsequence, X;, converges to a nodal
Riemann surface X and q,, converges to a reqular quadratic differential on X
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8. DEGENERATION BY NECK-PINCHING

In this section, we summarize our main theorems on asymptotic behavior under
neck-pinching.

Let C; = (fi,p¢), t > 0 be a path of CP!-structures which diverges to oo in the
deformation space, such that its holonomy [p;] =: 1, converges in the character variety

X. By Proposition 3.2, we can assume that the holonomy p, € R also converges in the
representation variety. Let X; be the complex structure of C}.

Theorem 8.1. Suppose that X, is pinched along a loop m. Then ps(m) is either I or
a parabolic element. Moreover py(m) # I for large enough t > 0.

Recall that ¢: S — S is the universal covering map. Let N,, be a regular neigh-
borhood of m in S. Regard the loop m also as a fixed element of m;(S) representing

m, and let N,, be the component of ¢—*(N,,) preserved by m € m(S).

Theorem 8.2 (Convergence of developing maps). Suppose that X, is pinched along a
loop m. Then, exactly one of the following two holds.

(1) o ps(m) is parabolic;
e the cusp neighborhoods of Cw, are horodisk quotients; 3
o fi: S — CP! converges a ps-equivariant continuous map fo: S — CP!
uniformly on compact subsets;
e there is a multiloop M on S consisting of finitely many parallel copies of
m, such that f. is a local homeomorphism on S\ ¢~ (M) and it takes each
component of ¢~ (M) to its corresponding parabolic fized point.
(2) poo(m) = I, and, for every sequence t; < ty < ... diverging to co, up to a
subsequence, there is a path of markings S — C; such that, as 1 — 00,
e C;.|S\ N,, converges to a CP'-structure on a surface with punctures home-
omorphic to S\ m;
e the axis a; of p;,(m) converges to a point on CP! or a geodesic in H3;
e the restriction of fi, to S\ ¢~(N,,) converges to a continuous map, and
each boundary component of N,, maps to an ideal point of lim;_, a;.

For each t > 0, let (73, L;) € T x ML be the Thurston parameterization of C}, and let
B;: H? — H? be the pi-equivariant pleated surface. In fact, (3, converges a continuous
map to H? U CP!:

Theorem 8.3. Suppose that X; is pinched along a loop m on S. Let N,, be a reqular
netghborhood of m on S. Then, by taking an appropriate path of markings vy: S — T4,
exactly one of the following two holds:

(1) poo(m) € PSLyC is parabolic, and (;: S — H3 converges to a Poo-equivariant
continuous map Beo: S — H3 U CPY uniformly on compact subsets as t — oo,
such that B (CP) is a m (S)-invariant multicurve which is 71 (S)-equivariantly
homotopic to the multicurve ¢—'(m).

(2) poo(m) = I € PSLyC, and for every diverging sequence t; < ty < ..., up
to a subsequence, f3y, : S — H3 converges to a poo-equivariant continuous map
Boo: S — HPUCP! as i — oo and the awis a; of p,,(m) converges to a point
CP! or a geodesic of H?® such that

e if lim; ,.. a; is a point on CP', then B '(CP') = ¢~1(m), and

o if lim; ,oca; is a geodesic a~, in H3, then B takes each component of
¢~ Y(N,,) to its corresponding limit geodesic as, and each component of
S\ ¢ 1 (N,,) to either a pleated surface in H® or a single point on CP?.
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In order to prove Theorem 8.1, Theorem 8.2 and Theorem 8.3, we carefully observe
the behavior of C, fixing the isometry type of ps(m). In particular, for Theorem 8.1,
we will show that, supposing, to the contrary, that p.,(m) is hyperbolic (§11) or elliptic
(§12), then p; cannot converge. The convergence when p,,(m) = I is given in §13 and
the convergence when p.,(m) is parabolic is given in §10.

9. CP'-STRUCTURES ON PUNCTURED SURFACES WITH ELEMENTARY HOLONOMY

Lemma 9.1. Let F be a closed surface with finitely many punctures, such that the
Euler characteristic of F is negative. Let C = (f,p) be a CP'-structure on F such that

e p is an elementary representation, and
e for each puncture of C, its peripheral holonomy is non-hyperbolic (so that its
developing image is a single point on CP!).

Let A be the subset in CP' of cardinality 0,1, or 2 which Imp preserves as a set.
Then, there is at least one puncture of C' which maps to a point in the complement
CP'\A=Q by f.

Proof. The discrete subset f~1(A) in F descends a finite subset D on F.

We can assume that A is a non-empty set, since if A is the empty set, then the
assertion is obvious. First, suppose that the cardinality of A is two, then €2 admits
a complete Euclidean metric invariant under Im p. Then, if all cups of F' map to A,
F'\ D admits a complete Euclidean metric, which is a contradiction against the Euler
characteristic of F'.

Next, suppose that the cardinality of A is one. Suppose, to the contrary, that all
cups of C' map to the point A. Then C'\ D has a complex affine structure.

We claim that C'\ D is complete, i.e. the developing map of C\ D is a diffeomorphism
onto C, when we normalize dev C' so that {oo} corresponds to the punctures. Suppose,
to the contrary, that C'\ D is incomplete. As the cardinality of A is not two, Imp
does not preserve an incomplete point of C'\ D in C. Thus C' admits Thurston’s
parametrization (7,L) where 7 is a finite area hyperbolic structure on F' and L is
a measured lamination on 7 (Theorem [KP94b, Theorem 11.6], cf [Babl7, Theorem
3.1]). Since F is incomplete and the cardinality of A is not two, there is a maximal ball
B of dev F' such that its ideal point set contains two distinct points in C. Then the
holonomy of F' must contain a hyperbolic element in PSL,C whose fixed points are in
C, whose endpoints are close to those two points in C. This leads to a contradiction
to all cups mapping to the same point. Therefore, the C'\ D is complete.

Thus, the holonomy of F' consists of parabolic elements fixing oo. Then the Euler
characteristic of F'\ D is zero, since F''\ D admits Euclidean structure. Therefore F’
has a positive Euler characteristic, which is a contradiction. 0]

Proposition 9.2. Let F' be a closed surface with two punctures p and q such that the
FEuler characteristic of F is negative. Suppose that C' = (f, p) is a CP'-structure on F
such that

e the holonomy of C is elementary, and the stabilizer of Im p (in PSLyC) is non-
discrete, and
e the degrees of f around the two punctures are the same.

Then, no cusp of F' maps to the subset A defined in Lemma 9.1.

Proof. By Lemma 9.1, we can assume that p does not develop to A. As the Euler
characteristic of F is negative, we let C' = (7, L) be the Thurston parameters of C';
then by the assumption of the holonomy, p and ¢ correspond to cusps of 7. Then, as
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the degrees at p and q agree, the total weights of leaves of L around the punctures are
the same.

Suppose, to the contrary, that a puncture g develops to a point of A. Then f takes
all lifts of ¢ to the same point r of A: Otherwise, as A has cardinality two, Im p contains
hyperbolic elements, and it also contains an elliptic element exchanging the points of
A; then the stabilizer of Im p must be discrete against the hypothesis.

Let ¢ be a leaf of L initiating from ¢. Then its lift ¢ to the universal cover of 7
maps, by the bending map 3: H? — H?, to a geodesic in H? initiating from ¢. As all

lifts of p map to r, the other endpoint of (/) is the image of a lift of ¢q. Therefore
all leaves of L initiating from ¢ must end at p. For every complementary region R of

7\ L, letting R be the universal cover of R (in 7 = H?), at most, one ideal point of R
maps to ¢ by the pleated surface.

Moreover, every leaf of L initiating from p must end at ¢, since the total weights
of L around p and ¢ agree. Let L,, be the sublamination of L consisting of the
isolated leaves of L connecting p and ¢. This implies that each component o of 7\ L, ,
has a negative Euler characteristic. Since no leaves of L\ L,, has an endpoint on
the boundary of 7\ L, ,, the restriction of p to m (o) is non-elementary, which is a
contradiction. 0

10. PARABOLIC LIMIT

In this section, we assume that p..(m) is parabolic, and analyze the limit of C;
as t — oo in terms of its bending map and developing map. First, by Theorem 7.4,
for each component F' of S\ m, by taking an appropriate base point b; in the thick
part of C; homotopic to F, (Cy,b;) converges to a CPl-structure Fl, on a compact
surface with one or two punctures, such that F, is homeomorphic to F'. Let C., be
the disjoint union of all such geometric limits F, over all thick parts. Then Cy is a
CP!-structure on a closed surface with two cusps homeomorphic to S \ m. Note that
Cs 1s not connected if and only if m is separating. Then the limit holonomy has the
following algebraic property.

Lemma 10.1. Suppose that ps(m) is parabolic. Then, for each component F of S\ m,
Poo(F') is non-elementary.

Proof. Since S is a closed oriented surface of genus at least two, each component of
S\ m is also of hyperbolic type. Thus let (o, ) be the Thurston parameterization of
I, where ¢ is a complete closed hyperbolic with one or two cusps homeomorphic to
F and v is a measured lamination on o. Clearly, the cusps of F,, correspond to the
cusps of . Then there is a bi-infinite simple geodesic ¢ properly embedded in ¢ such
that ¢ is a leaf of v or disjoint from v (note that each endpoint of ¢ is at a cusp of o).

Let 5: H? — H? be the bending map given by (o, ), such that 3 is equivariant via
poo|m1(F). Let £ be alift of £ to the universal cover H? of 0. Then the endpoints of £ are
parabolic fixed points in the ideal boundary of H2. Let 1,7, € m;(F) be the peripheral

elements fixing the endpoints. As ¢ does not cross v, its image 3(¢) is a geodesic in H?.
Moreover, as 3 is pso-equivariant, p(71) and pe(72) are parabolic elements fixing the

different endpoints of 5(¢). Therefore p(71) and ps(72) are non-commuting parabolic
elements in PSL,C, and they generate a non-elementary subgroup of PSL,C. U

Proposition 5.2 implies that the developing map extends to cups with parabolic
holonomy.
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Proposition 10.2. Let C' = (f,p) be a CP-structure on a closed surface with finitely
many punctures, denoted by F, such that the holonomy around each puncture is par-

abolic. Then the developing map f: F — CP! extends continuously to the lift of cups
so that they map to their corresponding parabolic fixed points.

Proof. Set C' = (7, L) in Thurston’s parameters, where 7 is a hyperbolic surface homeo-
morphic to F' and L is a measured lamination on 7. For each cusp c of C', by Proposition
5.2, as the holonomy p around c is parabolic element in PSL;C, ¢ corresponds to a cusp
of 7 and the total weight of leaves of L ending at the cusp is either 0 or a positive

multiple of 27. Let 3: H2 — H? be the bending map, and let L be the 7 (F)-invariant
measured lamination on H? by pulling back L by the universal covering map H? — 7.
Let r be a geodesic ray in the universal cover H? ending at a parabolic fixed point p of
a peripheral element of 7 (S). Then r eventually does not cross the L. Thus the curve

B(r) is eventually a geodesic ray in H? ending at p. By the correspondence between
the developing map and the pleated surface, the assertion follows. U

Recall that ¢: S — S denotes the universal covering map. Then the above lemmas
imply a good convergence of the developing map of C; away from m.

Theorem 10.3. Suppose ps(m) is parabolic. Then there is a regular neighborhood N
of m such that f,|S\ ¢~1(N) converges to a pe-equivariant continuous map fso: S\
¢ YH(N) — CP! uniformly on compact subsets, such that the developing image of each
boundary component of S \ »~Y(N) maps to its corresponding parabolic fived point.

Proof. By Theorem 7.4 (2), the restriction C; to S\ N converges to Cy, as t — oo
by taking an appropriate isotopy of S uniformly. Since p.(F) is non-elementary
(Lemma 10.1), the restriction of f; to S\ ¢~ (V) converges to the developing map
of C'y, uniformly on compact subsets. By Proposition 10.2, each boundary component

S \ ¢~1(N) converges to its corresponding parabolic fixed point uniformly on compact
subsets.

In the rest of this section, we show the convergence of the developing map of C; on
the entire surface. First we analyze the holonomy of C; along m.

Proposition 10.4. For sufficiently large t > 0, py(m) is not the identity element of
PSL,C. Moreover, if the cusp neighborhoods of Cy, are horodisk quotients. Then, for
sufficiently large t > 0, p,(m) is hyperbolic.

Proof. Set C; = (1, L;) € T x ML in Thurston’s parameters for ¢ > 0. Similarly set

Coo = (Too, Loo), Where 7, is a complete hyperbolic structure on F \ m with finite
volume, and L., is a measured geodesic lamination on 7.

Let m; denote the geodesic representative of m on 7;. Then, the length of m; on 7
converges to 0 as t — 0o since po,(m) is parabolic.

Suppose, to the contrary, that there is a sequence t; < ty < ... diverging to oo
such that p;,(m) is not hyperbolic. Then a leaf ¢; of L;, intersects the geodesic loop my,
for each 7 = 1,2.... Pick a point p; on my, N L;,. Pick a lift m, of m; to the universal
cover 7; = H? which is preserved by an element -, in 7,(S) whose free homotopy class
is m. Then, for each i, let p;; (j € Z) be the lifts of p;, on my, in H? indexed linearly,
so that p; j =47, - pio.

For t > 0, let 3;: H? — H?® be the p;-equivariant bending map induced by (73, L;).
Then, since {p; ; };ez is an orbit of the infinite cyclic group generated by 7,,, its image

{B1;(pi ;) }jez is an orbit of the cyclic group generated by p, (1,) € PSLoC. Then, since
pi.(m) is elliptic or parabolic (possibly the identity), by basic hyperbolic geometry,
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the points f3,(p; ;) is contained in a totally geodesic hyperbolic plane Hy, in H?. (In
comparison, if p;,(m) is hyperbolic and its screw rotation angle is not a multiple of ,
then most of its orbits do not lie in a totally geodesic plane.)

Note that H;, is uniquely determined by the choice of p; and the lift 7m,;, unless
pi,(m) is the identity.

If p;, is the identity element in PSL,C, then, letting {; be the leaf of f:ti intersecting

m; in p; ;, let Hy, be the hyperbolic plane orthogonal to the geodesic 3, (¢;) in the point
B, (pi ;) for some j € Z. Clearly Hy, is independent on the choice of j € Z, as p,(m) is
the identity.

The infimum of 2, (my,, Ly;) > 0 over i = 1,2,... is positive, since Z,(my,, Lt,)
is close to zero, then p;, must be hyperbolic (Theorem 2.1). Then, there is § > 0,

such that, if ¢ is large enough, then, if a leaf ¢ of th,. intersects my,, then the angle
between the geodesic f,(¢) and the hyperbolic plane Hy, is at least §. Indeed, otherwise,
hml_mo 47’1‘ (mti, Ltl) = 0.

Recall that 7, is a complete hyperbolic surface of finite volume homeomorphic to
S\ m, so that each boundary component of S\ m corresponds to a cusp of 7... Pick
a loop a on S such that

(1) « essentially intersects m in a single point if m is non-separating, and in two
points if m is separating,

(2) each segment « \ m descends to a geodesic g on 7., with endpoints at cusps,
and g does not crossing L.

Below we show that the translation length of p;, (a) diverges to oo, which contradicts
the convergence of p;. We assume that m is non-separating, and one can similarly prove
the case when m is separating.

For each 7 = 1,2..., let o; be the piecewise geodesic loop on 7;, to homotopic to
a, such that

e «; is a union of two geodesic segments,

e one geodesic segment s; of o; has its interior contained in 7, \ my,, and at each
endpoint, s; meets m,, orthogonally, and

e the other geodesic segment u; contained in m,.

Since 7, is pinched along m as i — oo, the length of s; goes to co. Let &; be a lift
of a; to H? which is a simple piecewise geodesic, and it is a bilipschitz curve.

For each 1 = 1,2,..., let u; be a lift of u; to a geodesic segment of &;. Then, let m;
be the lift of m;, to H? which contains @;, and let 75, € m(S) be the element preserving
my,. For every e > 0 if i is large, the /3, (%;) is contained in the e-neighborhood the
pt, (7a, )-invariant hyperbolic plane H;, above, since lengthni my, goes to 0.

Let s; be a lift of s; to a segment of &;. Then, the length of §; goes to oo as i — oo.
For every € > 0, by (2), the transversal measure of s; by L;, in the e-thick part of 7,
limits to 0 as ¢ — oco. In addition, there is » > 0, such that, the intersection angle of
Li; and s; in the r-thin part of 77, goes to zero as ¢ — oco. Therefore, for every e > 0,
if 4 is sufficiently large, then the restriction of f;, to §; is a (1 — €, 1 + ¢€)-bilipschitz
embedding. Let g; be the bi-infinite geodesic in H? passing through the endpoints of
B ()

Let w;1,u;2 be the lifts of u; to the geodesic segments of &;, which are adjacent
to 5;. Then let H;; and H; 2 be the hyperbolic planes corresponding to u;; and w; s,
respectively. Then, g; transversally intersects H;; and H, at angle at least §/2.
Moreover, for every € > 0, if ¢ is large enough, then those intersection points are e-
close to the endpoints of 3, (3;). Therefore, the distance between the hyperbolic planes
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FIGURE 10. The quasi-geodesic (3, (&;) preserved by the hyperbolic ele-
ment py, ().

H;, and H;, goes to oo as i — oo (Figure 10). Therefore the translation length of
pi(a) goes to 0o as desired. This contradicts the hypothesis. Therefore p;(m) must be
parabolic for sufficiently large ¢t > 0. 0J

Let ¢: S — S be the universal covering map. Let r,: C; — 7, denote the collapsing

map of Cy, and &: C; — H? denote its lift from the collapsing of the universal cover
(§2.2.2). We next show the convergence of the bending map.

Theorem 10.5. Suppose that p..(m) is parabolic. Then, up to an isotopy of S in t,

Broiy: S — H3 converges to a peo-equivariant continuous map «: S — H3 UCP! such
that

e o (CPY) is a7, (S)-invariant multicurve on S isotopic to ¢~ (m) though m (S)-
invariant multicurves, and
e for each component P of S\ ¢~'(m), the restriction (; o k¢|P converges to the
pleated surface for the component of C, corresponding to P.
Proof. The second assertion holds immediately from Theorem 10.3.

The axis a; of p;(m) converges to the parabolic fixed point of p,(m). By Propo-
sition 10.4, p;(m) is a hyperbolic element for sufficiently large ¢ > 0. Let D C H? be
a horoball centered at the parabolic fixed point of p,(m). Then we pick a continuous
path of p;(m)-invariant subsets D; in H? bounded by the surface equidistant from the
axis of p;(m) so that D, converges to D as t — oo.

Pick a sufficiently small § > 0. For sufficiently large ¢ > 0, let N? be the component
of the d-thin part of 7, homotopic to m. Let N? be the lift of N? to the universal cover

7 = H2. If § > 0 is sufficiently small, by the convergence of p;, the 3;-image of Nt‘s is
eventually contained in D,. This implies the first assertion. 0

Next, we prove that cusp neighborhoods of the limit surface are isomorphic to cusp
neighborhoods of a hyperbolic surface.

Proposition 10.6. Suppose that ps(m) is parabolic. The cusps of Co, must be horodisk
quotients.

Proof. Suppose, to the contrary, that the cusp neighborhoods of C., are not horodisk
quotients.

~

Let Cy = (7, L;) denote the Thurston’s parameters of C;. Then, as py(m) is
parabolic, L;(m) converges to a non-negative integral multiple 27n of 27. As the
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limit cusp neighborhoods are assumed to be nmot horodisk quotients, n is a positive
integer. Similarly, let Coy & (7o, Loo) denote Thurston parameters of Cy,. Thus the
L..-transversal measure of each peripheral loop of C, is 2mn.

For sufficiently large ¢ > 0, p;(m) is not the identity; let a, be its axis (Defini-
tion 3.6). Pick § > 0 less than the two-dimensional Margulis constant. Let N; be
the d-thin part of 7, homotopic to m. Let NN, be the lift of NV, to the universal cover
H2. If § > 0 is sufficiently small, for all ¢ large enough, each component of N, N L;
is a geodesic segment connecting one boundary component of N; to the other. Since
the transversal measure of each peripheral loop of L; is close to 27n > 0 Thus, for
t > 0, pick a fundamental domain F; in Nt bounded by two leaves of Lt such that
a component F,1 of F} \ my; converges to a fundamental domain of the bending map
Boo: H? — H3 U CP! (Theorem 10.5) near a cusp of 7.

Let ¢, be a leaf of L, bounding F}, so that, for each component r; of ¢, \ m;, the
restriction of B; converges to a bi-infinite geodesm in H? as i — oo. Clearly the length

of 4, N Nt goes to oo, and the length of each segment of ¢; N Nt \ My goes to oo as
t — 00.

Let F; 2 be the other component of F; \ m;. Then there is an element v; of G; such
that the restriction of §; to 7, F} o converges to the fundamental domain of the other
cusp of Cy.

We first show that if p;(m) is hyperbolic, it must be “almost elliptic” for sufficiently
large t > 0.

Claim 10.7. Suppose that there is a sequence t; < ty < ... diverging to oo, such
that py,(m) is hyperbolic for each i =1,2,.... Then, the complex translation of p;,(m)
goes to zero from the tmaginary direction as i — oo. In other words, the sequence
tr? p;,(m) € C converges to 4 tangentially to the real ray {x € R |z < 4}.

Proof. Suppose to the contrary that there is a sequence t; < ty < ... such that
pt.(m) is hyperbolic and the complex translation length converges to 0 from the non-
imaginary direction. As p;,(m) is hyperbolic, the axis is a geodesic and it converges to
the parabolic fixed point of po,(m). Pick a point p; on 3, (F;,) closest to ay, in H3. Let
R; be the set of points in H? whose distance from a;, is at most the distance from p;
to the axis ay,.

For each i, let G; be a one-dimensional Lie subgroup of PSL,C containing py,(m)
such that the infinite cyclic group (p;, (m)) is asymptotically dense in G; as i — 0o w.r.t.
the path metric on GG; induced by the invariant metric on PSLyC. Since the complex
translation length of p;, converges to 0 from a non-imaginary direction, G; converges
to a one-dimensional subgroup in PSL,C consisting of only hyperbolic elements except
the identity. For every i, let ¢; be the G;-invariant smooth curve in H? passing p;. Then
¢; spirals on the boundary of R; limiting to the endpoints of a;. (See Figure 11.)

The B;,-image of the leaf ¢; is a geodesic in H?® tangent to R; passing p;. Then,
moreover, the geodesic (3, (¢;) and the curve ¢; are asymptotically tangent to each other
at p; as 1 — 0o, because of the convergence of the bending map 3, and the holonomy
pr;(m) as i — oco. Let s;; be the geodesic segment ¢; N F; 1, so that (3, (s; 1) converges to
a geodesic ray limiting to the fixed point of po(m). Let ¢;; be the endpoint of s; ; that

is on the boundary of Ni, and let ¢2; be the other endpoint of ¢; N N;. Then B, (gi1)
converges to a point in H® as ¢ — oo. Then 3;,(7;¢;2) also converges to a point on H?.

Since the length of each segment of ¢; N N; \ m; goes to infinity, and S;(¢;) is
asymptotically tangent to the curve ¢;, therefore the distance between f(¢;1) and
Bt,(gi2) diverges to co as i — oo. This is a contradiction against the convergence of
the bending map 3, as i — oo. U
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FIGURE 11. The left figure is the normalization of the right figure so
that p; is at the center

Next we show the convergence of p; forces the convergence of twisting parameter
along m.

Claim 10.8. The Fenchel-Nielsen twisting parameter of T, along m must converge (in
R) ast — oc.

Proof. First, for each non-identity element of PSL,;C, we describe an associated foli-
ation. For a hyperbolic isometry or an elliptic isometry of H?, the hyperbolic planes
containing its axis give a foliation on H?® minus the axis. For a parabolic isometry
a € PSL,C, pick a hyperbolic plane H in H? invariant under o, which contains the
parabolic fixed point. Then there is a foliation of H? by hyperbolic planes orthogonal to
H and containing the parabolic fixed point; this foliation is independent of the choice
of H. For sufficiently large ¢ > 0, as p;(m) is not the identity (Proposition 10.4), let
F: denote such a foliation for p;(m).

Let m be a lift of m to the universal cover S. Let Py, P be the connected compo-
nents of S\ ¢~1(m) adjacent along m. For each i = 1,2, given a point z; in P, near
m, let v ; be the tangent vector at the point B, 0 Keo(r;) in H? orthogonal its sup-
port hyperbolic plane of z; in the normal direction (§2.2.2). Since the L,-transversal
measure along m; converges to 2mn > 0, we can pick x; so that v, ; is tangent to the
foliation F,. Similarly, for each ¢ > 0, pick a point x;; in P; such that, letting v;; be
the tangent vector of 3; o K, at x;,; orthogonal to its support plane, v, is tangent to F;
and v;; converges to v ; as t — 0o. (See Figure 12.)

Let L; be the circular measured lamination on C} which descends to the measured
lamination of Thurston’s parametrization by the collapsing map. Let e; be the minimal
transversal measure, given by L;, of arcs connecting 1 to p;(7:)x:2. Note that, since
the isometry p;(m) preserves the foliation F;, the tangent vector p(v:)vio at pr(71) 2
is also tangent to F;. By Claim 10.7, p;(m) is either parabolic, elliptic, or “almost
elliptic” for t > 0. Therefore, for every ¢ > 0, if § > 0 is sufficiently small, then, for
t > 0, the transversal measure e; is e-close to a multiple of 2. Thus the twisting
parameter along m converges modulo 27. By continuity, the twisting parameter of 7,
along m must converge as t — oo.

O

By Claim 10.8, the Fenchel-Nielsen twisting parameter of 7, along m converges. For
allt > 0, let Q,; and Q; » be the adjacent components of H?\¢~!(m;) corresponding to
P, and P, respectively, so that ()1 and @), are separated by the geodesic m;. Then,
as the restriction of 3; of the component );; converges, uniformly on compact subsets,
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FI1GURE 12. The right figure is a normalization of the left figure so that
the axis a; passes the center.

to the bending map of the corresponding cusp neighborhood of C, by Theorem 10.5.
Then, since the length of the geodesic loop m; goes to 0 as ¢ — oo, the convergence
of the twisting parameter implies that the restriction of 3; to ()2 converges to the
parabolic fixed point of p(m) uniformly on compact subsets. This is a contradiction
against the convergence of the bending map ; of ()2 uniformly on compact subsets
guaranteed by Theorem 10.5.

Theorem 10.9. Suppose that p,.(m) is parabolic. Then, by an appropriate isotopy of

Sint, f;: S — CP! converges to a Poo-equivariant continuous map S — CP! such
that, for some multiloop M on S consisting of finitely many parallel copies of m,

e fo is a local homeomorphism on S\ ¢~ (M), and
o fo takes each component of 1 (M) to its corresponding parabolic fized point.

Under the assumption of Theorem 10.9, each cusp of Cy is a horodisk quotient
by Proposition 10.6. Thus, by Proposition 10.4, p,(m) is hyperbolic for all sufficiently
large t > 0, and it converges to the parabolic element p.,(m) as t — oc.

More generally, let 74, € PSL,C, ¢t > 0 be a path of hyperbolic elements such that
v; converges to a parabolic element 7, in PSL,C as t — oo. Let G; be the one-
parameter subgroup of PSL,C containing 7; such that the cyclic group generated by
v, is asymptotically dense in GG; with respect to the path metric on G, induced by the
(left) invariant metric on PSL,C.

Continuously conjugate ~; by elements w; of PSLyC so that the axis of w; - 3 =
raw,r; * remains, for all £, to be the geodesic in H? which connects 0 to oo in the ideal
boundary CP! = C U {co}.

Proposition 10.10. Let A be a cylinder and homeomorphically identify A with [—1, 1] x

SY, and let A be the universal cover of A. Let A, (t > 0) be a path of CP'-structures
on a cylinder A, and let f; be its developing map which changes continuously in t, such
that

e the holonomy of A; is the limit holonomy isomorphism m(S) = Z — (y),

e cach boundary of Ay develops onto a Gy-invariant curve on (CP~1 for allt > 0.

e for each boundary circle b of A, the restriction of f; to the lift b to A converges
to a Guo-invariant simple curve on CPY (which is a G -invariant round circle
minus the parabolic fized point).

Then, by an isotopy of A fizing the boundary, dev A;: A — CP! converges to an
continuous map foo: A — CP! such that
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o fo is equivariant via the isomorphism Z — (Yoo);
e there is a multiloop M consisting of loops homotopy equivalent to A, such that
foo 18 a local homeomorphism on A\ M ;

o f.. takes M to the parabolic fized point of Voo -

Proof. We construct a path of fundamental membranes Z; for the developing maps f;
which give the desired limit as ¢ — oo.

The normalized developing map w;o f;: A — CU {o0} is identified with the restric-
tion of exp: C — C* to a bi-infinite strip I; bounded by parallel lines in C = E2. Let b,
and by denote the boundary components of A. Regarding by, by as simple closed curves,
we can lift b; and by to segments s; and s, respectively, of segments of the boundary
components of A. For each ¢ > 0 and i = 1,2, let s;; be the segment of the boundary
line of I; such that w; o fi(s;) = exp(s;+). Then s;; and sy, are parallel and have the
same length. Thus sy, is the Euclidean translation of s;; by unique 2z € C\ {0}.

Claim 10.11. (1) The length of s;; goes to zero ast — oo, and
(2) z; converges to an integer multiple of 2mi as t — oo.

Proof. (1) As 0 and oo are the fixed points of w;y,w; 1 and ~; converges to Y., both
w; H(0) and w; '(00) converge to the parabolic fixed point of 4, as t — oo. Since the
development of b; converges to a G.-invariant curve on CP!, clearly the development
of s;; converges to a simple arc contained in the G'»-invariant curve. Therefore, since

fi = w;texp on A, the norm of the derivative of f; at each point on the segment s;
goes to infinity as t — oo. Hence the Euclidean length of s; ; must go to zero as ¢ — oo.

(2) Since the Euclidean length of s;; goes to zero on I; C C, translating I, by a
multiple of 27i, we may assume that s;; converges to a point p on C. Let ¢ € CP! be
the parabolic fixed point of 7,. Let K be a compact subset K in CP'\ {¢} and U, be
a neighborhood of p in C. Let U denote the union of translates of U, by the integer
multiples of 2mi. Then, if ¢ is sufficiently large, then w, ' exp(I, \ U) is contained in
CP! \ K. Therefore, as the developments of s;; and sy; converge to simple arcs in
CP! \ {q}, their difference z; must converge to a multiple of 2i. O

Let n be the integer such that z; converges to 2min. Pick a polygonal fundamental
domain Z; of A, in I; with following properties: Z; is a union of (n + 1)-rectangles
Ri1, R, ..., Rint1 and n parallelograms Py, ..., P, as in the figure (Figure 13) so
that

e for each 7 =1,...,n,n + 1, a pair of edges of R, are parallel to the boundary
of the Euclidean strip I; , the boundary segment s;; is an edge of R;;, the
boundary segment s,; is an edge of R;,+1, and, for each ¢ = 2,...,n — 2,

the Euclidean translation of s;; by 2mi decomposes R; ;1 into two isometric
rectangles, and

e for each 7 = 1,...,n, the parallelogram F,; have edges parallel to the boundary
of I; which are an edge R,; and an edge R ;1.

In addition, we take Ry, I 2,..., Riyny1 and n parallelograms P, ..., P, appropri-
ately so that

e the development of P,; by f; converges to the parabolic fixed point of 7, as
t — o0;

e the fi-images of R, and R, converge to horodisks bounded by the limit of
f:(b) in the hypothesis, and the restriction of f; to R;; and Ry,41 converge to
a developing map of horodisk quotients;
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FIGURE 14. The development of a part of the polygonal fundamental
domain on CP*.

e for i = 2,...,n, the restriction of f; to R;; converges to a developing map of

the Euclidean cylinder (CP!\ {p})/{7s0)

(Figure 14). Let M be a multiloop on A consisting of n boundary parallel loops. Pick
a path of regular neighborhood N; of M so that N; converges to M as t — co. Isotope
A so that a fundamental domain I’ of A maps to Z; and that N; are identified with
Pii,..., P Then we a desired convergence.

O

Proof of Theorem 10.9. We already know the convergence of the developing map in
every thick part by Theorem 10.3. There are two cusps ¢y, ¢; of C,, which are horodisk
quotients by Proposition 10.6. For each cusp ¢; of C., pick a simple closed curve /¢;
which develops to a G-invariant simple curve on CP!. Then, for large ¢ > 0, pick a
simple closed curve ¢;; on C; such that ¢;, develops onto a G-invariant curve on CP!
and ¢;; converges to {; as t — o0.

Let A; be the cylinder in C; bounded by ¢, and ¢5;. Then we can take such a
path of cylinders A; in C; and a constant § > 0 such that A; contains the d-thin part
of C; for all sufficiently large ¢. Thus, by applying Proposition 10.10 to A;, we obtain
a multiloop for the desired convergence property of dev C;. O

10.1. Convergence in holomorphic quadratic differential in the case of para-
bolic cusps. Under the assumption that p.,(m) is parabolic, we already have the limit
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C., of Cy as t — oo where C, is a CP'-structure on a Riemann surface X,, with two
cusps homeomorphic to S\ m. Moreover, each cusp of C, has a neighborhood which
is a horodisk quotient (i.e. isomorphic, as a CP!-structure, to a cusp neighborhood of
a hyperbolic surface) by Proposition 10.6. Then the holomorphic quadratic differential
0o On X, representing C,, has, at worst, a first order pole at each cusp. Therefore
we have the following convergence of the differential.

Theorem 10.12. Suppose that ps.(m) is parabolic. Then X; converges to a nodal
Riemann surface X such that X minus the node is homeomorphic to S \ m and
q; converges to a quadratic differential g on X such that the node is at worst first
order pole.

11. pe(m) CANNOT BE HYPERBOLIC

In this section, we show that p.(m) cannot be a hyperbolic element.

Lemma 11.1. Suppose that X, is pinched along a loop m and p..(m) is hyperbolic.
Then

(1) C; converges to a CP*-structure Cs, on a compact surface with two punctures,
which is homeomorphic to S\ m, in the sense that, for every e > 0, the e-thick
part of Cy converges to the e-thick part of Cy, uniformly, and

(2) poo(F) is non-elementary for each component F' of S\ m.

Proof. (1) is an immediate corollary of Theorem 7.4.

(2) Let Fi be the component of Cy corresponding to F. Let (o,v) denote the
Thurston parametrization of F,,. Then o is a hyperbolic surface with geodesic bound-
ary, such that the lengths of the boundary components are the translation length of
Poo(m) (see the proof of Lemma 5.4). Let (¢,7) be the universal cover of (o,v) so
that ¢ is a convex subset of H? bounded by geodesics and that 7 is a 7 (o)-invariant
lamination on .

Let a: & — H? be its pleated surface equivariant by the holonomy of F... Let ¢ be
a boundary geodesic of . Then the endpoints of a(¢) are in the limit set A of Hol Fi,,
as «(f) is the axis of the hyperbolic py(m). Every component R of 6 \ 7 has at least
three ideal points. Then the ideal points of a(R) are in A (see [Bab20, Lemma 5.1]).
Thus po|F is non-elementary. U

Lemma 11.2. For each cusp p of Cy, there is a neighborhood of p foliated by iso-
morphic admissible loops which develop to simple curves on CP! invariant under a
one-parameter subgroup in PSLyC containing p(m).

Proof. The developing map near a cusp neighborhood is the restriction of the expo-
nential map exp: C — C*; moreover, by taking an appropriate neighborhood, one can
assume that the restriction is to a half-plane bounded by a straight line in C invariant
under the deck transformation corresponding to the hyperbolic element p,(m).

The half-plane is foliated by straight lines parallel to the boundary, and this foliation
descends to a desired foliation of the cusp neighborhoods by admissible loops. 0

Proposition 11.3. Ife > 0 is sufficiently small, then, for every sufficiently large t > 0,
there is a cylinder A; in Cy homotopy equivalent to m such that

e A, changes continuously in t > 0;

o A, is foliated by admissible loops whose developments are invariant under a
one-parameter subgroup Gy in PSLyC containing py(m);

e A, contains the conformally e-thin part of Cy;

o C;\ A; converges to a CP-structure on S\ m whose boundary components are
admissible loops.
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Proof. Consider the cusp neighborhoods of C, foliated by admissible loops by Lemma
11.2. By the convergence of Lemma 11.1 and the stability of the admissible loops,
for t > 0, there is a cylinder A, foliated by admissible loops whose developments are
invariant under GG;. Then it is easy to realize other desired properties. 0

By Claim 11.1 (2), the developing map of C} \ A; converges uniformly on compact
subsets. By normalizing p; by PSLyC continuously, so that, for sufficiently large t > 0,
we can, in addition, assume that the axis of the hyperbolic element p;(m) connects
0 and oo of CP! = C U {oo}. Then the developing map of the cylinder A; is the
restriction of the exponential map exp: C — C* to the strip region R, bounded by
parallel lines, since the boundary components of A; develop to Gi-invariant curves by
Proposition 11.3. Since the boundary components of A; converge to peripheral loops of
Cs, by the continuity of dev C; in ¢, the region R; converges to a strip in C with finite
width. Therefore A; must converge as t — oo. Thus C; converges to a CP!-structure
on S— this contradicts the divergence of C; in the deformation space. Hence po.(m)
cannot be hyperbolic.

12. poo(m) CANNOT BE ELLIPTIC

In this section, similarly to the previous section (§11), we show that p(m) cannot
be elliptic. To show this, we assume, to the contrary, that p,.(m) is elliptic and obtain
a contradiction against the convergence of p; as t — oo. By Theorem 7.4, we have

Proposition 12.1. Suppose that ps(m) is elliptic. Then C; converges to a CP!-
structure C, on a compact surface minus two points homeomorphic to S\ m, in the
sense that, for every e > 0, the e-thick part of Cy converges to the e-thick part of Cy.

Lemma 12.2. For each component F., of Cw, the stabilizer of ps(Fx) by conjugation
15 a discrete subgroup in PSLyC.

Proof. Let F,, be a component of C,. Then let (o, r) be the Thurston parametrization
of F, and let (¢,7) be the universal cover of (o,v). Then the rotation angle of the
elliptic element py,(m) is, modulo 27, equal to the total weight, given by v, of the
leaves ending at a puncture (Proposition 5.2). Let Bs: & — H? be the equivariant
pleated surface. Pick a leaf ¢ of v whose endpoints are at cusps of v; then £ is an
isolated leaf. Let ¢ be a leaf of 7 which is a lift of £. Then its image [ (¢) is a geodesic
in H3. Each endpoint of this geodesic is a fixed point of the parabolic element in the
image poo(m (F)) corresponding to its associated peripheral loop.

As the leaf ¢ is isolated, ¢ bounds a component P of &\ 7, and P has at least three
ideal points. Then, for each ideal point p of P, let v € m(F4) be such that v fixes p.
Then S (p) is fixed by the elliptic element p. (7). Therefore, the stabilizer of po.(Fi)
is a discrete subgroup of PSL,C. O

Similarly to Proposition 11.3, the following follows from Lemma 12.1 and Lemma
12.2:

Proposition 12.3. If e > 0 is sufficiently small, then for every sufficiently large t > 0,
there is a cylinder A; in Cy homotopy equivalent to m such that

e A, changes continuously in t > 0;

o A, is foliated by loops whose developments are invariant under the one-dimensional
subgroup Gy of PSLaC containing py(m), and Gy converges to a one-dimensional
subgroup G of PSLsC containing poo(m);

e A, contains the conformally e-thin part of Cy homotopic to m;

o Ci\ A; converges to a CP-structure on S\m such that the boundary components
cover round circles on CP?.
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Proposition 12.4. Suppose that ps(m) is elliptic. Then C; converges to a CP!-
structure on S, which is a contradiction as desired.

Proof. Fix sufficiently small ¢ > 0, and let A; be a cylinder given by Proposition
12.3. Let ¢y: C, — C, be the universal covering map. Then the developing map of
Cy \ 671 (A;) converges uniformly on compact subsets. Let A; be the component of
¢; ' (A;) invariant under m € 7,(S), so that A; changes continuously in . We can
normalize dev C; by PSLyC continuously in ¢, such that, for sufficiently large ¢ > 0, the
geodesic axis of p;(m) connects 0 and co of CP' = CU {oco}. Then, the restriction of
devC; = f; to A, is the restriction of the exponential map exp: C — C* to an infinite
strip in C. Since f, converges on the boundary components of A,, thus the restriction
of f, to A converges as t — oo. Hence A, must converge as t — oo as a CP'-structure

on a cylinder with boundary. Therefore C; converges to a CP!-structure on S, which
is a contradiction. 0

13. LIMIT WHEN py(m) =1

Let A be a regular neighborhood of a loop mon S. Fort > 0, let (73, L;) be Thurston
parameters of C;. Let 3,: H? — ]I:]I?’ be its p;-equivariant pleated surface. Let x;: C' — 7

be the collapsing map, and #,: C' — H? denote the lift of x to the map between their
universal covers. Let a; denote the axis of p;(m) € PSLyC (Definition 3.6).

Note that a CP!-structure on S is defined up to an isotopy of the base surface S.

Thus the developing map f;: S — CP! of the path C; of CP!-structures on S can
be modified by an isotopy ¥;: S — S in t without changing C;. Finally, recall that

$: S — S is the universal covering map.
Theorem 13.1. Suppose that poo(m) = 1. Then the following hold:
(1) ps(m) # I for sufficiently large t > 0.

(2) The Fenchel-Nielsen twisting parameter (in R) of X, along m diverges to either
00 o1 to —00.

(8) For every diverging sequence 0 < t; < to < ..., there is a subsequence such that
(a) the azis a;, converges to a point on CP or a geodesic in H?, denoted by
Qoo 5

(b) there is a CP-structure in P(S\'m) such that, for every e > 0, the e-thick
part of Cy, converges to the e-thick part of C uniformly;

(¢) up to an isotopy of S in t, the restriction of f;, to S \ 971 (A) converges to
0 pos-equivariant continuous map fso: S\ ¢~ 1(A) — CP! as t; — oo such
that, for each component A of 971 (A), its boundary components map onto
the ideal points of G-
(4) the pleated surface By, o Ry, : S — H? converges to a Poo-equivariant continuous
map S — H3 UCPY, up to an isotopy of S.

Notice that, by the surjectivity in (3c), if a is a geodesic, then the different
boundary components of A map to the different endpoints of a.

We will prove (4) in the next subsection (§13.0.1). In this section, we will prove
the other assertions: (1) will be proved in Lemma 13.8; (2) will be proved in Lemma
13.9; (3c) will be proved in Proposition 13.12. The proof of (3b) is similar to the proof
of Theorem 7.4.

Let Cy = (0o, Voo) denote the Thurston parameterization, where o, be a hyper-
bolic structure in the Teichmiiller space T(S\m) and v, be a measured lamination on
Oso- Then o, has two cusps. At each cusp c of 0, there are only finitely many leaves
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of v, ending at ¢ by a basic property of geodesic laminations ([CEG87]). Then, since
Poo(m) = I, the total weight of those leaves is a positive 2r-multiple.

Lemma 13.2. If v, contains an irrational sublamination, then the holonomy of Cy
15 non-elementary.

Proof. Suppose that v, contains an irrational sublamination. Then, there is a minimal
irrational sublamination N of L, so that every leaf of N is dense in N. Let I’ be
a (topologically) smallest subsurface of S containing N, such that FF C N is a m-
injective. Let ¢ be a geodesic loop in o, which is a good approximation of N. Let
Boo: H? — H? be the equivariant pleated surface corresponding to (0w, Vso). Then, for
each component R of F'\ ¢, the restriction of S to R is a quasi-isometric embedding
(|Bab10]). Thus puo|m R is non-elementary, immediately implying the lemma. O

Using the assumption that C} is pinched along a single loop, we prove the following;:

Proposition 13.3. For each component F' of S\ m, the restriction of ps to m F is a
non-trivial representation in the representation variety.

Remark 13.4. On the other hand, the restriction ps|mi(F) may be the trivial repre-
sentation in the character variety (see Theorem 1.5).

Proof. If v, contains an irrational lamination, by Lemma 13.2, p., is non-elementary.
Then we can assume, without loss of generality, that v, contains only isolated leaves,
and v, divides o, into ideal polygons.

Since each component of o, has one or two cusps, there is a leaf ¢ of v, whose end-
points are at a single cusp c of o,.. Let D be a small horodisk quotient neighborhood
of c. Then ¢\ D is a long geodesic segment, and by connecting its endpoints by a horo-
cyclic simple arc in 9D, we obtained a simple loop v (which is a good approximation
of £); see Figure 15 (Left).

Pick a lift £ of ¢ to the universal cover H? of 0o and fix an orientation. Then there
is a, € m(S) representing y which takes the oriented (bi-infinite) geodesic £ to an
oriented geodesic starting from the endpoint of /; see Figure 15 (Right). Clearly o, ([7)
is an oriented geodesic in H?. Then, by the equivariant proeprty, the holonomy along
a takes the oriented geodesic ﬂoo(g) to an oriented geodesic starting from the endpoint

of Boo(f), and thus poo(7y) # 1.

S
(/

FIGURE 15. The loop 7 and its action on H?.

O

Lemma 13.5. Let G be a non-trivial subgroup of PSLoC. Consider the (pointwise)
stabilizer of the action PSLoC ~ G by conjugation. Suppose that the stabilizer is
continuous. Then there is a set A of one or two points of CP! fized pointwise by the
action of G.
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Proof. Suppose that G has a continuous stabilizer. Then, clearly, G is an elementary
subgroup of PSL,C. First suppose, in addition, that G contains a hyperbolic element
h. Then no element in G' exchanges the fixed points of h, as otherwise, the stabilizer
cannot be continuous. Therefore A is the fixed point set of h, and all elements in
G \ {I} must be hyperbolic or elliptic elements with the same axis.

Next suppose that G contains a parabolic element p. Then there is no elliptic
element or hyperbolic element in GG, as otherwise, the stabilizer cannot be continuous.
Then A must be the single fixed point of p, and all G\ {I} are all parabolic elements
with the same fixed point.

Suppose that GG contains an elliptic element e and contains no hyperbolic element.
Then, similarly, A must be the fixed point set of e, and G contains no parabolic element.
Moreover G\ {I} are all elliptic elements with a common axis. Then A is the set of
the two endpoints of the axis. O

Given a CP!-surface with a cusp such that the holonomy around the cusp is trivial,
its developing map continuously extends to the cusp, so that it is a branched covering
map near the cusp.

Lemma 13.6. Let F' be a compact surface with finitely many punctures, such that the
Euler characteristic of F is negative. Let (f, p) be a developing pair of a CP-structure
C on F such that

e p: m(F) — PSLyC is not the trivial representation,

e the holonomy around each puncture s trivial, and

e the stabilizer of Im p in PSLyC is continuous; thus let A C CP! be the one- or
two-point set in Lemma 15.5.

Then, there is a cusp p of F' such that f(p) is not a point of A.

Proof. Notice that CP! minus A admits a complete Euclidean metric invariant under
Im p, which is unique up to scaling. Thus, if f takes all cusps of F' into A, then the
surface I’ minus finitely many points admits a complete Euclidean metric. This is a
contradiction as the Euler characteristic of F' is negative. U

The next proposition immediately follows from Proposition 9.2.

Proposition 13.7. Let F' be a compact connected surface with two punctures, such
that the Euler characteristic of F is negative. Let C = (f, p) be a CP'-structure on F,
such that

e Im p has a continuous stabilizer in PSLyC;
e the holonomy around each puncture is trivial;
e the degrees around the two punctures are the same.

Then no cusp of C maps to a point of A by f, where A is as in Lemma 15.5.

Let 7 be a lift of m to S. Let @ and R be the adjacent components of S\ ¢~ (m)
across m. Let Stab () and Stab R denote the subgroups in 7 (S) which setwise preserve
Q and R, respectively. Let C9,CZ denote the component of C., corresponding Q, R

(if m is non-separating, C< = CZ).

We first prove (1) in Theorem 13.1.
Lemma 13.8. For sufficiently large t > 0, p;(m) # I.

Proof. Suppose, to the contrary, that there is a diverging sequence 0 < t; <ty < ...
such that py,(m) = I for each i. We may, in addition, assume that C;, converges to
Cw as ¢ — oo uniformly on compact subsets as i — co. Then, as p;,(m) = I and C} is
pinched along m, for ¢ > 0, there is a cylinder A; in C}, homotopic to m such that
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e A; is bounded by round circles (i.e. the development of each boundary compo-
nent is a round circle on CP'),

e Mod A; — oo, and

o (;, \ A; converges to C, minus cusp neighborhoods bounded by round circles
(in other words, for every e > 0, if ¢ is sufficiently large, then A; is contained in
e-thin part of Cy, ).

We can normalize p;, so that p;,| Stab R converges as ¢ — oo and the developing map
ft,| R also converges to a developing map of C as i — oo. Then the development of
m converges to a point p on CP!,

First suppose that the stabilizer of p| Stab @ is discrete. Then, there are elements
ai, o of Stab @ with disjoint fixed point sets on CP!. Pick a sequence 7; € PSL,C
such that the restriction of the conjugation ~ip;, v, ' = pi, to Stab @ converges as
1 — oo. Therefore, the properties of A; imply that +; must leave every compact in
PSL,C. As ay, as have disjoint fixed point sets in CP!, one of the fixed point sets does
not contain the puncture point of C%. Therefore either p;, () or p, () diverges to
infinity in PSL,C as ¢ — oo against the hypothesis.

Next suppose that the stabilizer of p| Stab @ is continuous. Then, by Proposition
13.7 and Lemma 13.6, with respect to the normalization p; , no cusp of C2 develops to
a point of A for C¢. Let w € Stab @ such that p.(w) is non-trivial (Proposition 13.3).

Then, by the properties of A;, p;,(w) must diverges to oo since the continuous stabilizer
preserves A.

This is a contradiction against the convergence of p;. 0

Lemma 13.9. The Fenchel-Nielsen twist coordinate along m must diverge to oo or
—00 as t — oo.

Proof. The proof is similar to that of Lemma 13.8. Suppose to the contrary that there
is a sequence t; < ty < t3 < ... such that the Fenchel-Nielsen twist parameter of C},
along m converges as i — 0o. We normalize p;, so that p;,| Stab R converges as i — 0o
the developing map f;,|R also converges to a developing map of C as i — oo. Then,
similarly to the proof of Lemma 13.8, one can show that p,,| Stab @ diverges to infinity,
since the cylinder A; becomes longer and longer and it pushes p;,| Stab @) farther and
farther away; this contradicts the convergence of p; as t — oo. O

Then, for each t > 0, let ¢; be some power of the Dehn twist of S along m such that
the twist coordinates of ¢,C; along m is bounded from above and below in R uniformly
in ¢t > 0. Then, by Lemma 13.9, the power must diverge to either co or —oo as t — oo.

There is a diverging sequence 0 < t; < to < ... such that C}, - C as 7 = o0
uniformly on compact. Let F' be a component of S\ m. Let F' be the universal cover
of F.

First suppose that po|F has a discrete stabilizer (in PSL,C). Let Fio be a com-
ponent of Cy, which corresponds to F. Then dev F,, is the limit of f, |F, so that

lim;_,~ f;, takes each boundary component of F to a single point corresponding to a
cusp of C.

Pick a fundamental domain D; in F' with an arc s; on 0D; N OF such that s;
descends to a loop m; isotopic to m, the loop m; is contained in the €;-thin part of C},
with €; \, 0 as i — oo, and the development of m; is invariant under a one-dimensional
subgroup G; of PSLyC containing p;(m). As p;,(m) — I, the image of s; becomes more
and more like a round circle ¢; as i1 — oo.
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Next suppose that p..(F) has a continuous stabilizer. Then p..(F') is elementary,

and the restriction of f;;, to F' may not converge to a local homeomorphism, even up
to a subsequence. Nonetheless, as C;, converges to Cy in P(S \ m), clearly we can
normalize p;, for the convergence of developing pairs:

Lemma 13.10. Suppose that there is no subsequence of t; such that ftz|}~7 converges
to a developing map of F. Then there is a sequence v; of PSLyC such that, up to a

subsequence, v;(fi,|F, pi,|m F) converges to a developing pair (heo, () of Fuo.

Next, without normalization, we show a convergence of the developing map as a
continuous map.

Proposition 13.11. Suppose that there is no subsequence such that the restriction
fi,|F converges to a developing map of Fy, as i — oo. Then f;|F converges to a
Poo|T1 F-equivariant continuous map fro: F — CP uniformly on compact subsets,

such that each boundary component of F' maps to a single point. Moreover, either fr
is a constant map to a fived point of poo|F or there are open disks Dy, ..., D, on F

such that freo takes F\ ¢ YDyU---UD,) to a fizred point p of pes(F) and each lift
D; of D; to CPY\ {p} foralli=1,... n.

Proof. Let ~; € PSLyC be the sequence and (ho, (+) be the normalized limit obtained
by Lemma 13.10. By the non-subconvergence hypothesis, p(m F') is an elementary
representation. We divide the proof into cases depending on the types of elementary
subgroups.

First suppose that p(m F') contains a loxodromic or elliptic element. Then, let ¢
be the axis of the loxodromic or the elliptic element. Then, there is a corresponding lox-
odromic or elliptic element in Im h.,, and let ¢’ be its axis. By the non-subconvergence
hypothesis, there is w € m F' such that h.(w) is a parabolic element but ps(w) is the
identity in PSLy;C. Thus ~; must be a hyperbolic element for sufficiently large ¢ such
that as i — oo, the translation length of v; diverges to infinity. In addition, Axis(v;)
converges to the ¢ in H3. Let p be the limit of the repelling fixed point of ~;, and let
q be the limit of the attracting fixed point of 7;, so that {p, ¢} are the endpoints of ¢'.
Note that as ps(m1(F)) is elementary, p.m (F') preserves p and ¢ point-wise.

Take a connected compact fundamental domain () in F. We can assume that
QNOF is disjoint from ¢, by perturbing the loop m; on Cy, if necessary. For simplicity,
we first suppose that h.(Q) is disjoint from g. Then, letting f; = f;,, the restriction

fil@Q converges to the constant map to p uniformly, as i — oo, and thus f;: F — CP?
converges to the constant map to p uniformly on compact subsets.

Suppose that ho(Q) N {q} # 0. Then, by the compactness of @, there are finitely
many points of h!(g) in the interior of Q). Pick small disjoint open disk neighborhoods
of the points in A '(q) in Q. Then, as the disks are contained in a fundamental domain,
their images Dy, ..., D, in F" are disjoint. Then, as (., preserves ¢, the restriction of
fito F\ ¢ ' (D;U---UD,) converges to the constant map to p uniformly on compact
subsets. Moreover, for each lift D; of D; to F, D; contains a unique point mapping
to g. Thus up to an isotopy of S, we can in addition assume that f;|D; converges to
a homeomorphism to CP! \ {p}, as desired. By Lemma 9.1 and Proposition 9.2, the
boundary components of F' all map to p.

Next, suppose that p(F') contains a (non-trivial) parabolic element but no hyper-
bolic and elliptic element. Let w € 7 F such that p.(w) is also a non-trivial parabolic
element. Therefore p., and pl_ are conjugate to each other, and (f;,, pi,|m1 F') converges
to a developing pair of Fl,. This contradicts the non-subconvergence hypothesis.
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FIGURE 16. The trajectories of G; when G; is hyperbolic (Left) and
parabolic (Right).

Last, suppose that ps(m F) is the trivial representation. This case will be similar
to the case when p..(m F) contains an elliptic or a hyperbolic element. Then the
normalized holonomy (., is a parabolic representation. Let p be the parabolic fixed
point of (.. We can assume that ~; is a hyperbolic element for 7 large, and the axis
of v; converges to a geodesic ¢ starting from p. Let ¢ be the other endpoint of ¢. Pick
a connected fundamental domain @Q in F' so that A~!(p) is disjoint from AQ. Suppose
in addition that no point of () maps to p. Then, up to a subsequence, f;|F converges
to a constant map to ¢ uniformly on compact subsets. Suppose there are (finitely
many) points of () which map to p. Then, similarly to the case of a hyperbolic and
an elliptic representation, take disjoint open ball neighborhoods of those points in @),
and let Dy, Dy ... D, be disjoint disks on I’ which lift to those open balls. Then the
desired convergence follows similarly. OJ

By Proposition 13.11, the restriction of f; to S\¢~'(A) converges to a pe-equivariant

map fs: S\ ¢~ 1(A) — CP'. We next prove the convergence of the boundary compo-
nents to complete the proof of (3c).

Proposition 13.12. For each component A of ¢~(A), let v € m(S) be the repre-

sentative of m preserving A. Then, by taking a subsequence so that Axis(py, (7)) = a;
converges to a subset a,, € H? U CPY, which is either a point on CP! or a geodesic in
H3, then f. takes the boundary components of A onto the ideal points of tss.

Proof. By Lemma 13.8, p;.(m) # I for sufficiently large i € Z-o. Thus, by taking a
subsequence, we may in addition assume that p;,(7y) converges to I tangentially to a
unit tangent vector of PSLyC at I. Let GG; be the one-parameter subgroup of PSL,C
which contains py,(7y), such that the cyclic group generated by py, () is asymptotically
dense in G; with respect to the intrinsic metric on G;. Then the trajectories of G;
yields a unique foliation of H? except that, if p,(7) is elliptic, only of H? \ a; (Figure
16). We have chosen a subsequence t; so that C;, — C,, uniformly on every thick part
and the axis a; converges to a closed subset a,, of H?. Let P, @ be the components of
S\ ¢7'(A) adjacent across A.

Claim 13.13. Let ¢ be the common boundary component of P and A. Suppose, to
the contrary, that lim f,(£) is not a point, in CP', of the limit azis a. Then p;,|Q
diverges to oo in X.

Proof. Let 1; be some power of the Dehn twist of S along m so that the Fenchel-Nielsen
twist parameter of the remarked Riemann surface ¢, X;, along m is bounded from above
and below uniformly in .
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The axis at the puncture. The axis off the puncture; diverging.

FIGURE 17. The limt axis a. and the location of the puncture. The
left picture illustrates the convergence of holonomy and the right picture
illustrates the divergence of holonomy.

Let ¢/ be the common boundary component of A and ). By Proposition 13.3,
there is v € m(.S) belonging to Stab @) such that p () is not the identity matrix. We
may in addition assume the axis of py, (¢; - ) converges to the point fr«(¢) on CP! (if
Poo(Stab @) is elementary, use Lemma 13.6 and Proposition 13.7). By the tangential
convergence of p;(m) — I, the G-invariant foliation F; of H3converges to a foliation
Foo of HA. If fp oo (€) is not the ideal point of as,, Axis(pi(s; - y)) be eventually disjoint
from every compact subset in the space of the leaves of F,,. Therefore, since the G;-
invariant foliations F; limit to Fu., Axis(p;(7y)) also leaves every compact subset of the
leaf space of F, . Hence p;(y) must diverge to oo in PSLyC, which is a contradiction.

(Figure 17.) O
This claim completes the proof.

It remains only to prove the surjectivity in Theorem 13.1 (3c¢):

Lemma 13.14. Suppose that a. is a geodesic in H3. Then fo () and f(¢') are the
different endpoints of ts.

Proof. By Claim 13.13. f;|¢ converges to the constant map to an endpoint of a..

Let n; € Z be the power of the Dehn twist along m which gives ¢; € MCG(S). Thus
pi(7™) is a hyperbolic element whose axis a; converges to a,, and its translation length
diverges to infinity as i« — oo. Then the attracting fixed point of p;(7™) converges to
the endpoint of a,, which is not fo.(¢). Thus fo(¢') must be at the other endpoint. [

13.0.1. Convergence of pleated surfaces when po(m) = I. First we compare developing
maps of CP!-structures and the exponential map exp: C — C*. Let ¢ be the geodesic
in H? connecting 0 to oo of OH? = CU{oo}. Let ¥: C* — ¢ be the continuous extension
of the nearest point projection H? — ¢. Then, the composition is ¥ o exp: C — H? is
the Epstein map of the CP!-structure on C given by exp.

Recall that, given a CP!-structure C' = (X, q), for x € C, d(x) is the Euclidean
distance from x to the set of the zeros of the holomorphic differential q. Note that, if
d(z) is large, then we can naturally embed a large neighborhood of x into C(= E?) by
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an isometric map onto its image, so that vertical leaves map into horizontal lines, and
horizontal leaves map into vertical lines.

Proposition 13.15. For every ¢ > 0, there is R > 0, such that, if v € C satisfies
d(z) > R, then the Epstein map ¥: C =2 S — H? is e-close, in the C'-topology, to the
composition of the collapsing map &: S — H? and the bending map B: H?> — H? at
every lift T of x.

Proof of Proposition 15.15.

Lemma 13.16. For every € > 0, there is R > 0, such that, if z € C satisfies d(z) > R,
then the maximal ball centered at z is e-close to the maximal ball of the corresponding
exponential map.

Proof. As the Epstein map of C' and exp are close, their developing maps are also
close. This implies the closeness of their maximal balls centered at z and their ideal

points. [
The proposition follows from the above lemma, and Proposition 4.9.

Recall that we have already proved Theorem 13.1 (1), (2), (3) regarding the asymp-
totic behavior of C; using the decomposition of C; into the restriction of C; to the thin
part A and its complement. We prove additional compatibility of the corresponding
bending map.

Proposition 13.17. Suppose that p.(m) = I. Then for every diverging sequence
ty < ty < ..., up to taking a subsequence, there are a sequence of diffeomorphisms
1 S = 1, representing the marking of Cy, and a path of cylinders A; in Cy, homotopy
equivalent to m, such that in addition to Theorem 13.1 (1), (2), (3), the following
holds:

(1) A maps to A; by v;; .
(2) By, 0k, S — H? converges to a ps-equivariant continuous map S — H?> UCP?
uniformly on compact subsets;

(3) for each connected component F of S\ ¢~ (A), the restriction of B;, o ks, to F
converges to the pleated surface of the corresponding component of Cy or the
constant map to an ideal point of as (in Proposition 13.12);

(4) letting A be a connected component of ¢~ (A) in S, then By, ok, | A converges to

a map onto a., uniformly on compact subsets in A with respect to a fixed closed
disk metric on H?® U CP®.

Proof. For t > 0, there is a one-parameter family of loops homotopic to m such
that their developments are invariant under a unique one-dimensional subgroup G; of
PSL,C which contains p;(m) (as in the proof of Proposition 13.11). Then we can pick
a cylinder A; in C; homotopy equivalent to m, such that

e A, is foliated by loops whose developments are invariant under G, for each
t>0,

e C; \ A; converges to Cy as t — 00, and

e Mod A, — 0o as t — oo.

By the second property, A; is contained in a thinner and thinner part of C; as t — oc.
Then, the developing map of A; is the restriction of exp: C — C* to a bi-infinite strip
Ty, i.e. a region in C bounded by a pair of parallel lines. Then its deck transformation
group (= Z) is generated by a translation of 7;. Then A; has a natural Euclidean

metric by identifying C with E2.



S.Baba 55

Recall that A is a cylinder in .S homotopic to m, and fix a finite volume Euclidean
structure on A with geodesic boundary (by picking a homeomorphism A — S*x[—1, 1]).
We can easily pick a marking ¢;: S — C} such that

e 1, takes A to A; ((1));
e the restriction of C; to ¢(S\ A) converges to Cu;
e ;| A is linear with respect to the Euclidean structures on A and A;.

Given a component F of S\ ¢~!(A), suppose that f,|F converges to a developing
map of the component of C,. Then, clearly g; o k;|F' converges to a pleated surface for
the corresponding component of C',. By Proposition 13.11, if f;,|F does not converge
to a developing map, then f3; o &;| F' converges to the constant map to an ideal point of
the axis limit a.,. Thus we have (3).

Last we prove (4). As we have already shown the convergence of the developing
map in the thick part, we need to show that the convergence extends to the convergence
on the neck. As the developing map of some components of S\ m may degenerate as
described in Proposition 13.11, accordingly one needs to be careful about the behavior
of f; o k; on the neck.

By Theorem 13.1(2), the Fenchel-Nielsen twisting parameter of C; along m diverges
to either oo or —oo as t — oo. We can assume that the twisting of Cy along m occurs
in A; by isotopy of S.

(Case One) Suppose that as = lim;_,o, Axis p;,(m) is a bi-infinite geodesic. Then
pt,(m) is hyperbolic if ¢ is large enough, and the translation length of p;,(m) times the
number of twist goes to infinity as ¢ — co. For r > 0, let U;(r) be the r-neighborhood
of a; in H3. Clearly U;(r) is invariant under p;(m). Let (7;,L;) € T x ML be the
Thurston parameters of C; for each ¢. Pick € > 0 less than the Bers’ constant, and let
N; = Nf be the e-thin part of 7;. Let N; be the lift of N; to the universal cover H? of
7; invariant under the fixed representative the loop m in 7 (S). Let ¢;1,¢; 2 denote the

boundary components of N;, which connect the endpoints of the geodesic a;

Lemma 13.18. If r > 0 is sufficiently large, then [B;(N;) is contained in Ui(r) for
sufficiently large 1.

Proof. Let A be the lift of A to S which is invariant under m € m(S). Let P, and P,
be the components of S\ ¢~1(A) adjacent across a lift A. Suppose, to the contrary,

that for every r > 0, the image (3;(NN;) is not eventually contained in U; as i — oo.
Then, either

(i) for every r > 0, if 7 is sufficiently large, then 3;(¢;1) and 5;(¢;2) are both not
contained in Uj;, or

(ii) for every large r > 0, if i is sufficiently large, then one of 3;(¢;1) and f;(¢;2) is
contained in U; but the other is not.

First, suppose (i). Then, let ¢;: H?> — 7; be the universal covering map. Let P/, and
P/, be the component of H? \ ¢; *(N;). Foreachi =1,2,... and j = 1,2, pick compact
fundamental domains D; ; of Stab P; ~ PZ»’J., such that D; ; converges to a fundamental
domain of the e-thick components of 7.,. Recall that Uj is invariant under p;(m). Then,
for every r > 0, if 4 is sufficiently large, both fundamental domains of F/; or P/, map
to outside U; by ;. Therefore, it follows from Proposition 13.3 and Proposition 13.7
that p;| Stab Py or p;| Stab P, must diverge to co up to a subsequence, against to the
convergence of p;.

Next we suppose (ii). Without loss of generality, we can assume that 3;(¢; 1), not
contained in U; but §;(¢;2) is contained in U; for sufficiently large i. Then, for every
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a; Ui(r') a;

FIGURE 18. This figure illustrates the divergence of p;| Stab P; in the
upper half space model of H?. The arrows indicate how the action by an
clement w in Stab P; changes, and it diverges as ¢ increases in PSL,C,
where 1’ > r and i’ > i.

r > 0, similarly, the fundamental domain P;; of P| maps to outside U; by f; if i is
sufficiently large. Then, by the assumption of j;(¢;2) being contained in U;, one can
similarly show p;| Stab P; diverges to oo, up to a subsequence. 0

If follows from Lemma 13.18 that, for every ¢ > 0, by taking ¢ > 0 sufficiently
smaller than € > 0 above, similarly letting N/ be the p;(m)-invariant lift of N? to the
universal cover H?2, the image 3;(N?) is €-close to the axis a; for sufficiently large 1.

Recall that we have a convergence of 3; o k; on Pp, P, so that, in the limit, the

boundary components of A map to the endpoints of a.,. Therefore, by taking an
appropriatq isotopy of S, (; o k; converges to a continuous map, up to a subsequence,

such that N maps to a.

(Case Two) Suppose that a., is a single point on CP!. Pick any horoball B in
H? tangent at a... For each i, pick a subset U; C H? converging to B uniformly on
compact subsets as ¢ — oo, such that, if p;(y) is either hyperbolic or elliptic, then Uj is
an r;-neighborhood of a; for some r; > 0, and if p;(7) is parabolic, then U; is a horoball
centered at the parabolic fixed point of p;(7).

For sufficiently large i, Let N; be the e-thin part of 7; homotopy equivalent to m.
Let N; be a component of 1; '(N;).

Lemma 13.19. If e > 0 is sufficiently small, then BZ(NZ) 15 eventually contained in U;
as i — oo. Therefore, B; o k;|N converges to the constant map to the point .

Proof. Let P; and P, be the components of S\ ¢~ '(A) adjacent across the lift A of A

invariant by p;(m). Suppose, to the contrary, for every € > 0, the image (5;(Nf) is not
eventually contained in U;. Then, at least one of 5;(¢;1) or f;(¢;2) is not contained in
U; for sufficiently large . Therefore, it follows from using Proposition 13.3 and Propo-
sition 13.7 that either p;| Stab Py or p;| Stab P, diverges to oo, up to a subsequence. [J

13.0.2. Convergence of holomorphic quadratic differentials when ps(m) = I. We next
describe the limit quadratic differential. In the case that p,(m) = I, the singular
Euclidean structure E}, contains a flat cylinder A; homotopic to m, such that Mod A, —
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a1

a2

by

FIGURE 19. A singular Euclidean surface obtained from a L-shaped
polygon, and A generating set of its fundamental group.

oo and the complex length of its circumference converges to a positive multiple of 7/+/2,
by Proposition 5.2. Therefore

Proposition 13.20. Let Cy be the limit of C; in Theorem 15.1 (3b). Then, the
Schwarzian parameters of C consist of a Riemann surface with two punctures homeo-
morphic to S\ m and a holomorphic quadratic differential ¢, such that both punctures
are a pole of order two and their residues are the same non-zero integer multiple of

V2.

13.1. Non-discreteness of holonomy. We in addition show the non-discreteness of
the holonomy representation p; for large ¢.

Theorem 13.21. Suppose that po(m) = I. Then Im p; C PSLyC is a non-discrete
subgroup for sufficiently large t > 0.

Proof. Recall that p;(m) — I but p,(m) # I (Theorem 13.1(1)). For each component
F of S\'m, p;(m1(F)) is nontrivial for sufficiently large ¢ > 0 (Proposition 13.3). Recall
from Proposition 13.12 that, if C}, converges to a CP'-structure of a punctured surface
homeomorphic to F' for a diverging sequence t; < ty < ..., then, in the limit, its cusp
point develops to an endpoint of the limit of the axis of p;,. Therefore the subgroup of
Im p; generated by { p;(m)ypi(m)~' |~y € p:(F) } is non-elementary since the endpoint
in CP! is not preserve by some non-trivial element in p;(71(F)) by (Lemma 13.6 and
Proposition 13.7). As p;(m) — I, by the Margulis lemma, Im p; cannot be discrete. [

14. EXAMPLES OF EXOTIC DEGENERATION

We construct examples of a path Cy = (f;, p;) of CP-structures on S asymptotically
pinched along a loop m as t — oo such that p.(m) = I and [p;] converges in X as
t — 00, as in the second case of Theorem C. We construct two examples: one with
pi(m) hyperbolic and one with p,(m) elliptic for all sufficiently large ¢ > 0.

14.1. Hyperbolic p;(m) converging to I. Let E be the singular Euclidean surface
obtained from an L-shaped polygon by identifying the opposite edges (Figure 19).
Then E has exactly one cone point, and its cone angle is 67. Let F' be the underlying
topological surface of E, which is a closed surface of genus two. Let E’ denote £ minus
the cone point, and let F” denote the underlying topological surface of E’. Let ¢, be
the (oriented) peripheral loop around the removed cone point. Let &: m (F') — PSL,C
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FIGURE 20. The axies of reflections to construct ; ;.

be the holonomy of E’. Then, as I’ has a Euclidean structure, the image of ¢ consists
of parabolic elements, and we can assume that its image consists of upper triangular
matrices with 1’s on the diagonal. In particular £(¢,) = I (as before, by abuse of
notation, we regard £, also as a fixed element of m(S) by picking a basepoint of m;(.5)
on ¢.) Notice that there is a point in the universal cover E of E corresponding to
l, € m(5). (Namely, by lifting £, to a loop in the universal cover E starting from the

base point, there is a unique cone point of E in the disk region bounded by the lift.)

Proposition 14.1. There is a path of CP-structures, D; = (hy,&;), on F' converging
to E' = (h,§) ast — oo, such that §(¢,) is a hyperbolic translation whose azis converges
to a geodesic connecting the global (parabolic) fized point of & and the h-image of the

corresponding singular point of E.

Proof. Note that elements of Im ¢ are translations of C. Pick non-separating simple
closed curves aq,by,as,bs on E as in Figure 19 forming a standard generating set of
m1(F) so that

e for each i = 1,2, a; and b; intersect in a single point, and [aq, b][as, bo] = I,

e the translation directions of a; and a9 are the same and the translation direction
of by and b, are the same, and

e the translation directions of a; and b; are orthogonal for each i = 1, 2.

Let ¢ be a separating loop on E which separates {aj, b} and {as,bs}. Then, let Fy
and Fy be the components of F'\ ¢ which are homeomorphic to a torus minus a disk.

Lemma 14.2. Let g; be any geodesic in H? starting from the global fized point p € CP*
of Hol E, and let H; be the hyperbolic plane, in H3, containing an {(a;)-orbit of ¢;. For
each i = 1,2, given any path h;; (t > 0) of hyperbolic elements in PSLyC such that

(1) the azis of h;y is orthogonal to H; at a point in q; for allt > 0, and
(2) hiy = I ast — oo.

Then, there is a path (;y: m(F;) — PSLoC of homomorphisms which converges to the
restriction of Hol(E) to mi(F;) ast — oo such that (;(c) = his.

Proof. The point p is contained in the ideal boundary of H;. Let r; be a geodesic in H;,
such that R(r;)R(q;) = £(a;), where R(r;) and R(gq;) are the m-rotations of H® about r;
and ¢;, respectively (Figure 20, Right).

Let H;- be the hyperbolic plane in H? orthogonal to the hyperbolic plane H; along
the geodesic ¢;. As Axis(h;;) is in Hi* and orthogonal to ¢;, we let ¢;; and q; be
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FIGURE 21. The axies Axis hy, Axishy; in H and their endpoints.

continuous paths of geodesics in Hi* such that R(¢i)R(q;;) = hig, the geodesics q;
and ¢q;, converge to ¢; as t — oo uniformly on compact subsets, and the m-rotation
R(q;) exchanges q;; and ¢;,. By this symmetry, there is a path of geodesics r;; in H;
such that, for all ¢ > 0,

e there is a hyperbolic plane intersecting r;;, q., ¢; ; orthogonally, and
o dys(7it, Gig) = ds (T, qg,t)'

Thus by the symmetry, tr R(q; ) R(r:) = tr R(q; ;) R(ri;) € R\ [-2,2].

The surface F;\a; is a pair of pants, and two of its boundary components correspond
to a;. Consider the path of homomorphisms (;;: m(F; \ a;) — PSLyC for ¢ > 0,
such that the two boundary components corresponding to a; map to R(g;+)R(r:;) and
R(rit)R(q;,)— thus the other boundary corresponding to dF; maps to R(q;:)R(q;;) =
hi; (see [Gol09]). Then, by Theorem 5.6, there is a path of CP!-structures on F;\a; with
holonomy ¢; ; which converges to the component of E'\ (cUa;) as t — oo corresponding
to F; \ a;. As the holonomies along the two boundary components are conjugate, for
large enough ¢ > 0, there is a path of CP'-structures %;; on F; which converges to the
component of £ \ ¢, so that Hol ¥, ;|m F; = (;;. In particular, the holonomy of 3;;
around the puncture is the hyperbolic element R(q; ) R(q;,) = hi- O

Notice that H, and H, are totally geodesic hyperbolic planes in H? tangent at p.
Therefore we can, in addition, assume that H, and Hs are different and Hi- = Hy- =: H.
Pick a geodesic ¢ in H initiating from p contained in the region bounded by the
geodesics ¢ = H N Hy and ¢o = H N Hs.

Proposition 14.3. We can choose, the path of the hyperbolic isometries hy 4, hay (given
by Lemma 14.2) so that their composition hythey is eventually a hyperbolic element
whose axis converges to q ast — 0o.

Proof. Pick hi; and hy, such that their axes converge to the parabolic fixed point p.
Since hy; and hy, converge to I, their product hy hs, also converges to I in PSLyC.

For each i = 1,2, let u;; be the attracting fixed point, and let v;; be the repelling
fixed point of h;;. We may first assume that the endpoints of Axis hy,, Axis hy; lie on
OH in this cyclic order ugy, vy, voy, ur (Figure 21). The composition hy the, fixes a
point on the arc in 0H between vy, and vy, for each ¢ > 0. Note that the segment
contains p. Then as Axis(h; ), Axis(hg,) converge to the parabolic fixed point p, there
is a fixed point of hj ho, converging to p. Moreover, as hy; — I, one can continuously
adjust the translation length of h; so that h; ;ho, also fixes the other endpoint of ¢ for
sufficiently large t > 0. Let s be the endpoint of the geodesic ¢ which is not p. Then,
after this adjustment, clearly h;;ho,(s) = s holds for all large ¢ > 0 and hgy(s) — s as
t — oo. Since the axis of the hyperbolic element h; ; converges to the ideal point p(# s),
the translation length of hy; must converge to zero; thus h;, converges to the identity
(so that the condition (2) in Lemma 14.2 remains satisfied after the modification).
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Clearly the composition hs ths; does not fix the endpoints of the axes of the hyper-
bolic elements h; ; and hq, for all large t > 0. Therefore hy ;ho; is a hyperbolic element
with the axis ¢ for sufficiently large ¢t > 0, which is not the identity. O

Let hiy4, hoy € PSLyC be the paths given by Proposition 14.3. Then, by Lemma
14.2, for each i = 1,2, we have a path of homomorphisms (;+: m1(F;) — PSLyC such
that (;+(¢) = h;¢ for t > 0. Then there is a unique path ¢ : m(F’) — PSLyC so that
Glmi(F;) = Gy for @ = 1,2; thus ((¢,) = hythey. Then, by the holonomy theorem
(Theorem 5.6), there is a path D, of CP!-structures on F’ with holonomy ¢; for ¢ > 0
such that D; converges to E’ as t — oo.

Remark 14.4. Since & converges to the parabolic representation & and the azis of
the hyperbolic element pi(€,) converges to a geodesic starting from the parabolic fized
point of & as t — oo, by normalizing by an appropriate power ry of isometries &(¢,),
the conjugation &(€,)™ - & - &(€,)~ " converges to the trivial representation, and the
developing map &({,)"*hy converges to the constant map to the endpoint of q which is
not p.

14.1.1. Constructing a closed surface from punctured surfaces. To make a desired ex-
ample of exotic degeneration, we take two copies D, of CPl-surfaces with a single
puncture from Proposition 14.1, and glue them together with many twists.

Theorem 14.5. There is a path of CP-structures Cy = (f;, pt) on a closed surface S
of genus four with following properties:

e The conformal structure X; is pinched along a separating loop m ast — oo; let
Fy and Fy be the connected components of S\ m.

e p;: m(S) = PSLyC converges in the representation variety as t — 0o.

e Pick an element v € m(S) whose free homotopy class is m. Then poo(y) = 1,
and, for all t > 0, the holonomy pi(7y) is a hyperbolic element such that its axis
a; converges to a geodesic o in H? as t — 00.

o Let Iy, Fy be the connected components of S\ ¢~(m) which are adjacent across

the lift . of m preserved by v € m1(S) . Then Cy|Fy converges to the developing
map of a CP'-structure on a genus two surface minus a point such that the cusp
maps to an endpoint of as ast — oo.

o fi|Fs converges to the constant map to the other endpoint of as uniformly on
compact subsets, and ps|mi(Fy) is the trivial representation.

Remark 14.6. In fact, Im p,, consists of parabolic elements with a global fixed point
on CP, and therefore the limit representation ps is identified with the trivial repre-
sentation in the character variety X. In other words, the frontier of PSLyC-orbit of pso
contains the trivial representation. Thus, there is a path oy (t > 0) in PSLyC such that

apro ! converges to the trivial representation.

Proof. For sufficiently large ¢t > 0, the CP!-structure D, with a single puncture from
Proposition 14.1 has a cusp neighborhood N, foliated by admissible loops whose de-
velopments are invariant under the one-dimensional subgroup G, of PSL,;C containing
&(¢,). We can assume that N, changes continuously in ¢ and is asymptotically the
empty set on E’' as t — oo. Note that as G; is a one-dimensional subgroup p;(m) of
PSL,C, integer powers p;(m)" for n € Z continuously extends to real powers.

First take two copies Xy 4, 3o+ of D, \ NV, and, since the boundary of N; are invariant
by the one-parameter subgroup Gy, glue them together along their boundary compo-
nents without adding a twist. Let C; = (f/, p;) be the resulting developing pair. Then
we can normalize by PSLyC so that the axis of the hyperbolic element p}(m) is the
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geodesic ¢ for all ¢. In addition, we can renormalize the developing pair by PSL;C so

that the restriction of f/ to F1 and the restriction of p, to the stabilizer Stab F1 of F1
in 71 (S) converges to a developing pair of E’ as t — co. Then, as INV; converges to the

empty set, the restriction of p} to Stab F) leaves every compact in the representation
variety, and the restriction of f/ to F, does not converge to a continuous map as ¢t — 0o.

Recall that the holonomy p) along m is a hyperbolic element with axis ¢, and the
translation length of pj(m) goes to zero as t — oco. Therefore, when we glue 3 4, ¥
of Dy \ NV;, we can continuously add more and more twists along m, which conjugates

the structure on Fy by pj(m) raised to the power of the amount of twist along ¢, so
that

e the restriction of f! to Fy and the restriction of p} to Stab F} still converges to
a developing pair for E’, and

e the restriction of p} to Stab F, converges to the trivial representation, and the

restriction of f] to F, converges to the constant map to the other endpoint of
q (by Remark 14.4) as t — oo.

We obtained a desired path Cj. O

14.2. Elliptic p;(m) converging to the identity. In this section, we construct an
example of Cy = (f, p;) in Theorem C (ii) such that p;(m) is an elliptic element for all
sufficiently large ¢ > 0 and it converges to I as t — oc.

Given an elliptic element e € PSL,C, normalize the unit disk model D? C R?
of H? centered at the origin, so that Axis(e) is contained in the axis of the third
coordinate. Let ¢ € (0,27) be the rotation angle of e. Then, define b,: R — dH3 by
x +— (cos(Cx) sin x, sin((z) sin x, cos ) which is equivariant under Z — (e).

Lemma 14.7. Let r be a geodesic in H?. Pick a parallel vector field V C TH? along r
such that V' is orthogonal to r. Then, there are a path of (nontrivial) elliptic elements
er € PSLyC and a continuous function 0, € Rsg in t > 0 which satisfies the following:

e ¢, — 1 ast — oco.

o Axis(e;) orthogonally intersects v, and Axis(e;) converges to an endpoint of r
on CP! ast — oc.

e Letting 0; € R be a continuous function such that the angle between Axise; and
V' is 0, mod 27, when an orientation of Axis(e;) is fized continuously in t.

o Let uy = 20;. Then the rotation angle of e}t is w for all t > 0, so that e} takes
r to itself, reversing the orientation.

Proof. 1t is easy to construct an example satisfying the first three conditions. Then
adjust the rotation angle of e; so that it also satisfies the last condition. 0

Lemma 14.8. Let e; be as in Lemma 1/.7. Let p be the endpoint of r to which Axis(e;)
converges. Pick a round disk D in CP! containing p such that the hyperbolic plane in
bounded by the boundary of D is orthogonal to the geodesic r. Then, there is a path A;

of CP-structures on an annulus A with smooth boundary for sufficiently large t > 0,
such that

o A; converges to the once-punctured disk D\ {p} ast — oo as a CP'-structure,
and

e the developments of the both boundary components of A; are curves equivalent
to be, by elements of PSLyC.

Proof. For sufficiently large ¢ > 0, one can easily construct the fundamental membrane
for A, for sufficiently large ¢t > 0 (Figure 22). O



S.Baba 62

FIGURE 22. The development of the fundamental membrane for A;.

Proposition 14.9. Let P be a pair of pants, and pick a boundary component ¢ of P.
Let ¢ be a lift of £ to the universal cover of P. Consider a (flat) Fuclidean cylinder with
geodesic boundary, and let Py, be the surface obtained by removing an interior point p
of Py; regard Ps, as a CP'-structure on P, and let (h,§) be its developing pair, so that

h takes ¢ to a single point v on CP*.

Let r be the geodesic in H? connecting v and the parabolic fized point of h, and let
e; € PSLyC be a path of (non-trivial) elliptic elements given by Lemma 14.7 for r.

Then, there is a path of CPl-structures P, = (hy,&) on P satisfying the following:

(1) For allt > 0, &(0) = e;.

(2) P, converges to Py, ast — oo. Let v, € PSLsC be a path of hyperbolic elements
with the azis r, such that v; Axis(e;) converges to a geodesic g, in H? orthogonal
tor ast — oo (so that v, is a large hyperbolic translation towards v for t >
0). Let H C H3 be the totally geodesic hyperbolic plane orthogonal to r and
containing goo. Then, the developing pair vy,(hy, &) normalized by v converges
to a developing pair for a round disk minus a point, where the removed point is
v and the disk is the component of CP1\ OH containing v.

(3) Let ¢; be the boundary component of P, corresponding to £. Then dev P, along
a lift of €y is by, (up to PSLyC).

(4) Let a be a boundary component of P not equal to {. Then &(«) is a hyperbolic
element for all t > 0 (converging to a parabolic element as t — o0).

Proof. First we construct an appropriate path of representations & : m(P) — PSL,C.
Let a; denote Axis(e;). Pick a pair of geodesics ¢, ¢, in H? for each ¢t > 0 such that

e R(q)R(q)) = e;, where R(q;), R(q}) € PSLyC are the m-rotations of H? about
qt, q;, respectively;

g: and ¢, change continuously in t > 0;

q: and ¢, intersect at the intersection a; Nr;

q: and ¢; are symmetric about r;

q: and g, are orthogonal to ay;

q; and ¢q; converge to r as t — oo (see Figure 23).

There is a path of geodesics h; (t > 0) in H? such that

e h; is disjoint from ¢ and ¢ for all ¢ > 0, and
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FIGURE 23. Realize e; as the compositions of the m-rotations about ¢;
and ¢;.

e /i, converges to a geodesic h in H? sharing an endpoint with r as ¢t — oo, such
that the composition R(r)R(h) is the parabolic holonomy along a boundary
geodesic of P.

Indeed one can first find the limit geodesic h which satisfies the second condition, then
as ¢, q, converges to r, one can take a desired path h;.

Let & : m (P) — PSLyC be such that the holonomy along boundary components are
R(hi)R(q:), R(q:)R(q;), R(q;)R(ht). Note that R(h:)R(q:), R(q;)R(h:) are hyperbolic
elements, as the rotation axes are disjoint, and they converge to the parabolic holonomy
along the boundary geodesics of P...

Pick a round disk D on P, containing p such that 9D on CP! bounds a hyperbolic
plane in H? orthogonal to 7. Then, apply Lemma 14.8 to D, let D, be a path of CP!-
structures on an annulus converging to D \ {p}, so that it gives the desired path only
near the punctured of P,..

Pick a smaller closed regular neighborhood D’ of the puncture p of P,, such that 0D’
bounds a hyperbolic plane orthogonal to r and that D’ is contained in the interior of D.
Clearly its complement K in P, and the interior of D\ {p} form an open cover of P...
Then K is topologically a pair of pants. Similarly to the proof of Theorem 5.6 using the
stability of transversal sections for the Thurston-Ehresmann principle ([Gol22|), we can
prove that there is a path of CP!-structures on a pair of pants K, for sufficiently large
t > 0 such that K, converges to K and e; is the holonomy of K; around the boundary
component corresponding to dD’. Moreover, by deformation nearly the boundary, we
can in addition assume that the boundary of K} is equivalent to by,.

Then, since K and D \ {p} form an open cover of P, for sufficiently large t.
by gluing K; and A; in the overlapping region, we obtained a desired path of CP!-
structures P;. L]

Proposition 14.10. Let P, = (hy,&) be a path of CP-structures on a pair of pants

from Proposition 14.9. Then, there is a path 3, of CP!-structures on a closed surface
F minus a point which satisfies the following:

e There is a subsurface A of F' whose interior contains p, such that A is homeo-
morphic to a pair of pants, and 3;|A = Py for all large enough t > 0.
e X, converges to a CP-structure ¥, on F ast — oo.

Proof. First we construct the limit structure X.,. Take any complete hyperbolic surface
7 with a single cusp, such that 7 is homeomorphic to a closed surface minus a point,
denoted by F’. Pick a cusp neighborhood N of 7, a horodisk quotient. The pair of
pants P, has two boundary components and one puncture. As the two boundary
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components of P, lift to horocycles, we can glue a copy of 7\ N along each boundary

component of P,,. We thus obtained a CP!-structure on a closed surface with a single
puncture so that P, is its subsurface.

There are paths (;; and (»; of representations m;(7) — PSL,C which converge
to the holonomy of 7 as t — oo, such that their images of the peripheral loop are
R(ry)R(q;) and R(q:)R(r:), respectively, which are hyperbolic elements (c.f. [Gol09)]).
Let 714,72 be paths of CP!-structures homeomorphic to 7\ N for ¢ > 0 such that
Hol(7y4) = (14, and Hol(ma) = (o4 and 714, 7o converge to 7\ N. We may in addition
assume that the boundary components of 7 ;, 7o, are invariant under one-dimensional
subgroups of PSL,C containing R(r)R(q;) and R(q;)R(r), respectively.

Then by gluing 7,1, 72, P, along their boundary, we obtain a desired path >, of
CP!-structures. O

Let ¥; be the path of CP! -structures, obtained from Proposition 14.10, on a
compact surface with one boundary component. Let R, be the m-rotation of H? around
the axis a; of the elliptic e;. By Proposition 14.9(2, 3), we can glue two copies of ¥; by
the involution R;, and we obtain a path of CP!-structures C; on a closed surface, so
that two copies of ¥; are embedded in C} disjointly up to an isotopy. Let m be the loop
along which the two copies are glued. Then, to obtain a marked projective structure,
we need to specify the twisting along m. We glue then so that the Fenchel-Nielsen
twisting parameter matches to be u; so that, by the w-rotation along a;, the developing
maps of adjacent components of S\ m are identical. Let X} = (h}, p}), X2 = (h2, p?)
are the subsurfaces of C; corresponding to ;.

Theorem 14.11. Let C; = (fy, p;) be the path of CP-structures as above, and let m be
the loop on Cy corresponding to the boundary components of ¥.} and ¥:2. Let N be the
reqular neighborhood of m. Then, by taking an appropriate isotopy of S, Cy satisfies
the following.

(1) pi(m) converges to I ast — oo, and p;(m) is an elliptic element for all t > 0;
(2) the axis of p;(m) converges to the point p of CP;

(3) fi: S\ ¢~ (N) — CP' converges to a peo-equivariant continuous map fo: S '\
¢~H(N) — CP!, such that f is a local homeomorphism in the interior;

(4) for each connected component N of ¢~ Y(N), the boundary components of N
map to its corresponding limit given by (2).

Proof. Let Fy, Fy be the connected components of S\ N. We normalize the developing

pair of Cy by a path of PSL,C so that the restriction to I} converges to a developing pair
for ¥. Then (1) and (2) clearly hold. Moreover, we can take an appropriate isotopy

of S so that each boundary component of F; converges to the corresponding limit
point of its corresponding axis. Since the rotation angle of ¢j* is 7 by Lemma 14.7,

the restriction of f; to Fy is the same as that to to Fy (Figure 24). Therefore, the
restriction of f; to Fy converges to a developing map of 3, as well. Thus we have (3).

Then, by the equivariant property, we also have (4). O
REFERENCES

[AB20] Dylan G. L. Allegretti and Tom Bridgeland. The monodromy of meromorphic projective
structures. Trans. Amer. Math. Soc., 373(9):6321-6367, 2020.

[Bab10] Shinpei Baba. A Schottky decomposition theorem for complex projective structures. Geom.
Topol., 14(1):117-151, 2010.



S.Baba

65

Qg

b

FIGURE 24. The left figure is a section of the right figure by a horizontal
plane containing a,. It illustrates the rotation about a; by 7, and it makes
the restriction of f; on Fi coincide with that to Fy coincide.

[Bab15]
[Bab17]
[Bab20]
[Ber74]

[CEGST]

[Dum09]

[Dum17]

[Ear81]

[EMS87]

[Eps]
[FGO6]
[FM12]
[GKMO0]
[GM21]
[Gols7]

[Gol09]

Shinpei Baba. 2r—grafting and complex projective structures, I. Geom. Topol., 19(6):3233—
3287, 2015.

Shinpei Baba. 27-grafting and complex projective structures with generic holonomy. Geom.
Funct. Anal., 27(5):1017-1069, 2017.

Shinpei Baba. On Thurston’s parametrization of CP!-structures. In In the Tradition of
Thurston, pages 241-254. Springer, 2020.

Lipman Bers. Spaces of degenerating Riemann surfaces. pages 43-55. Ann. of Math. Studies,
No. 79, 1974.

R. D. Canary, D. B. A. Epstein, and P. Green. Notes on notes of Thurston. In Analytical
and geometric aspects of hyperbolic space (Coventry/Durham, 1984 ), volume 111 of London
Math. Soc. Lecture Note Ser., pages 3-92. Cambridge Univ. Press, Cambridge, 1987.
David Dumas. Complex projective structures. In Handbook of Teichmiiller theory. Vol. 11,
volume 13 of IRMA Lect. Math. Theor. Phys., pages 455-508. Eur. Math. Soc., Ziirich,
20009.

David Dumas. Holonomy limits of complex projective structures. Adv. Math., 315:427-473,
2017.

Clifford J. Earle. On variation of projective structures. In Riemann surfaces and related
topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony
Brook, N.Y., 1978), volume 97 of Ann. of Math. Stud., pages 87-99. Princeton Univ. Press,
Princeton, N.J., 1981.

D. B. A. Epstein and A. Marden. Convex hulls in hyperbolic space, a theorem of Sulli-
van, and measured pleated surfaces. In Analytical and geometric aspects of hyperbolic space
(Coventry/Durham, 1984), volume 111 of London Math. Soc. Lecture Note Ser., pages
113-253. Cambridge Univ. Press, Cambridge, 1987.

Charles Epstein. Envelopes of horospheres and weingarten surfaces in hyperbolic 3-space.
Preprint.

Vladimir Fock and Alexander Goncharov. Moduli spaces of local systems and higher Teich-
miiller theory. Publ. Math. Inst. Hautes Etudes Sci., (103):1-211, 2006.

Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of Princeton
Mathematical Series. Princeton University Press, Princeton, NJ, 2012.

Daniel Gallo, Michael Kapovich, and Albert Marden. The monodromy groups of Schwarzian
equations on closed Riemann surfaces. Ann. of Math. (2), 151(2):625-704, 2000.

Subhojoy Gupta and Mahan Mj. Meromorphic projective structures, grafting and the mon-
odromy map. Adv. Math., 383:107673, 49, 2021.

William M. Goldman. Projective structures with Fuchsian holonomy. J. Differential Geom.,
25(3):297-326, 1987.

William M. Goldman. Trace coordinates on Fricke spaces of some simple hyperbolic surfaces.
In Handbook of Teichmiiller theory. Vol. II, volume 13 of IRMA Lect. Math. Theor. Phys.,
pages 611-684. Eur. Math. Soc., Ziirich, 2009.



S.Baba

[Gol22]
[GW19]
[Hej75]
[HP04]

[Hub81]

[Kap95]
[KapO1]
[KP94al
[KP94b]

[KT92]

[Luo93]
[LZ21]

[McMO1]
[Min92]

[Mj14]
[New]
[Ser12]

[Str84]

[Tan99]

66

William M. Goldman. Geometric structures on manifolds, volume 227 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, [2022] (©)2022.
Subhojoy Gupta and Michael Wolf. Meromorphic quadratic differentials and measured fo-
liations on a Riemann surface. Math. Ann., 373(1-2):73-118, 2019.

Dennis A. Hejhal. Monodromy groups and linearly polymorphic functions. Acta Math.,
135(1):1-55, 1975.

Michael Heusener and Joan Porti. The variety of characters in PSLy(C). Bol. Soc. Mat.
Mezicana (3), 10(Special Issue):221-237, 2004.

John H. Hubbard. The monodromy of projective structures. In Riemann surfaces and related
topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony
Brook, N.Y., 1978), volume 97 of Ann. of Math. Stud., pages 257-275. Princeton Univ.
Press, Princeton, N.J., 1981.

Michael Kapovich. On monodromy of complex projective structures. Invent. Math.,
119(2):243-265, 1995.

Michael Kapovich. Hyperbolic manifolds and discrete groups, volume 183 of Progress in
Mathematics. Birkhduser Boston Inc., Boston, MA, 2001.

Ravi S. Kulkarni and Ulrich Pinkall. A canonical metric for Mobius structures and its
applications. Math. Z., 216(1):89-129, 1994.

Ravi S. Kulkarni and Ulrich Pinkall. A canonical metric for Mobius structures and its
applications. Math. Z., 216(1):89-129, 1994.

Yoshinobu Kamishima and Ser P. Tan. Deformation spaces on geometric structures. In
Aspects of low-dimensional manifolds, volume 20 of Adv. Stud. Pure Math., pages 263—299.
Kinokuniya, Tokyo, 1992.

Feng Luo. Monodromy groups of projective structures on punctured surfaces. Invent. Math.,
111(3):541-555, 1993.

John Loftin and Tengren Zhang. Coordinates on the augmented moduli space of convex
RP? structures. J. Lond. Math. Soc. (2), 104(4):1930-1972, 2021.

Curt McMullen. Cusps are dense. Ann. of Math. (2), 133(1):217-247, 1991.

Yair N. Minsky. Harmonic maps, length, and energy in Teichmiiller space. J. Differential
Geom., 35(1):151-217, 1992.

Mahan Mj. Cannon-Thurston maps for surface groups. Ann. of Math. (2), 179(1):1-80,
2014.

Peter Newstead. Geometric invariant theory 3-space. CIMAT Lectures, 2006.

Caroline Series. Kerckhoff’s lines of minima in Teichmiiller space. In Handbook of Teich-
mailler theory. Volume III, volume 17 of IRMA Lect. Math. Theor. Phys., pages 123-153.
Eur. Math. Soc., Ziirich, 2012.

Kurt Strebel. Quadratic differentials, volume 5 of Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin,
1984.

Harumi Tanigawa. Divergence of projective structures and lengths of measured laminations.

Duke Math. J., 98(2):209-215, 1999.

OSAKA UNIVERSITY

Email address: sb.sci@osaka-u.ac.jp



	1. Introduction
	2. Preliminaries
	3. A lifting property of paths in the character variety
	4. Holonomy estimates away from zeros
	5. Holonomy maps for surfaces with punctures
	6. Bound on the upper injectivity radius
	7. Convergence of CP1-structures away from pinched loops
	8. Degeneration by neck-pinching
	9. CP1-structures on punctured surfaces with elementary holonomy
	10. Parabolic limit
	11. (m) cannot be hyperbolic
	12. (m) cannot be elliptic
	13. Limit when (m) = I 
	14. Examples of exotic degeneration
	References

