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BENDING TEICHMULLER SPACES AND
CHARACTER VARIETIES

SHINPEI BABA

ABSTRACT. We consider the mapping by, : T — X from the Fricke-
Teichmiiller space T into the PSLyC-character variety X of the
surface, obtained by holonomy representations of bent hyperbolic
surfaces along a fixed measured lamination L. We prove that
this mapping is an equivariant symplectic real-analytic embedding,
and, for almost all measured laminations, proper.

In addition, we show that this “bending map” by: T — X con-
tinuously extends to a mapping from the Thurston boundary of T
to the Morgan-Shalen boundary of X, almost everywhere, as the
identity map.

Moreover, we complexify this real-analytic subvariety Im by, by
symplectically embedding it in the product variety X x X by the
diagonal mapping twisted by complex conjugation. We geometri-
cally construct a closed C-symplectic complex-analytic subvariety
of X x X containing Im b, as a half-dimensional real-analytic sub-
variety.
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1. INTRODUCTION

Thurston discovered the bent hyperbolic surfaces 7 on the bound-
ary of the convex core of a (geometrically finite) hyperbolic three-
dimensional manifold ([Thu81]). The intrinsic metric of the convex
surface is hyperbolic, and the surface is bent along a measured lamina-
tion, where the bending angles correspond to the transversal measure of
the lamination. Such bent surfaces are particularly useful for capturing
the global properties of the hyperbolic manifold.

Lifting the convex surface T to the universal cover H? of the hyper-
bolic three-manifold, we obtain an equivariant bending H? — H? which
preserves the (intrinsic) hyperbolic metric of the surface. Then, this
bending map is equivariant via a holonomy representation of a surface
group into PSLy,C. Moreover, if 7 is m-injective (equivalently, incom-
pressible) in the ambient hyperbolic 3-manifold, then the bending map
H? — H? is a proper embedding.

In this paper, we utilize this bending construction in a new gener-
alized manner and construct similar equivariant geometry-preserving
mappings, in fact, at the level of associated deformation spaces.

1.1. Holonomy varieties. Let Y be a marked Riemann surface struc-
ture on a closed oriented surface S of genus g at least two. Let QD(Y')
denote the space of the holomorphic quadratic differentials on Y, which
is a complex vector space of dimension 3g—3. Then QD(Y') is identified
with the space Py of all CP!-structures on Y, and this correspondence
yields the Schwarzian parameterization of CP-structures (see [Dum09)]
for example).
Let

Hol: P — X

be the holonomy map from the deformation space P of all CP-structures
on S to the PSLyC-character variety X of S. Recall that the character

variety X is an affine algebraic variety. Its smooth part has Goldman’s

complex symplectic structure invariant under the action of the mapping

class group; see [Gol84]. Many interesting properties of this mapping,

associated with the Schwarzian parametrization, have been discovered,

and particularly the following holds.
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Theorem 1.1. The restriction of the holonomy map to Py = QD(Y)
1s a proper Lagrangian complex-analytic embedding into X.

The injectivity of Theorem 1.1 is due to Poincaré [Poi84]; the proper-
ness is due to Kapovich [Kap95] (see [GKMO00] for the full proof; see
also [Duml17, Tan99]); the Lagrangian property is proven by Kawai
[Kaw96]. On the other hand, the entire holonomy map Hol: P — X of
CP*!-structures is neither injective nor proper (see [Hej75]).

By Theorem 1.1, for every marked Riemann surface structure Y,
the vector space QD(Y) = C3973 is properly embedded onto a half-
dimensional smooth subvariety of X. We call this image, associated
with the Schwarzian parametrization, the Poincaré holonomy variety of
Y. In particular, the holonomy variety of Y contains the Bers slice of
Y as a bounded pseudo-convex domain.

The Morgan-Shalen compactification of the character variety X con-
sisting of certain 7 (S)-actions of metric trees ([CS83, MS84]). Dumas
investigated the asymptotic behavior of the proper mapping Hol |P(X).
Namely, she showed that Hol |P(X) extends to the ray compactification
of the vector space QD(X) almost everywhere in a natural manner.

Theorem 1.2 (Corollary E in [Duml7]). Let ¢ € QD(X) \ {0} be a
generic direction. Let V' be the vertical measured foliation of q, and let
V be the pull-back measured foliation of V to the universal cover X.
Then Hol(tq) converges to the m (S)-action on the metric tree dual to
V ast — oo.

Moreover, Hol |Px continuously extends the full measure set of the
ray-compactification boundary 0QD(X) to the mapping to the Morgan-
Shalen boundary of X in a natural manner.

1.2. Real bending varieties. Recall that CP! is the ideal boundary
of the hyperbolic three-space H?, and the automorphism group PSL,C
of CP! is identified with the group of orientation-preserving isome-
tries of H?. Utilizing this correspondence in a sophisticated manner,
Thurston gave another parametrization of P, so that CP!l-structures
correspond to equivariant pleated surfaces in H® (§3.1.1). In this pa-
per, we first yield an analogue of Theorem 1.1 by specific slices in the
Thurston parametrization of CP-structures.

In fact, Tanigawa [Tan97], Wolf-Scannell [SW02], Dumas-Wolf [DW0§]
considered the CP!-structures with a fixed bending measured lamina-
tion and analyzed their conformal structures. In this paper, as in the
holonomy variety, we instead consider the holonomy representations of
such CP!-structures.

For a measured lamination L on a hyperbolic surface 7, we obtain
an equivariant pleated surface in H?® by bending the universal cover
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of 7, the hyperbolic plane H2, along the inverse-image L of L in HZ2,
and the pleated surface 7 = H? — H3 is equivariant via a represen-
tation m1(S) — PSLyC. (See §3.1 for details.) Let T be the space of
marked hyperbolic structures on S, the Fricke-Teichmiiller space; then
T is diffeomorphic to R%96 as a smooth manifold. The Weil-Petersson
form gives a symplectic structure on T, and Goldman extended it to a
complex symplectic structure on the smooth part of X (|[Gol84]). For a
measured lamination L on S, let by : T — X be the map taking 7 € T
to the holonomy representation 7 (S) — PSLyC of the pleated surface
given by 7 and L.

This mapping is closely related to the Thurston parametrization of
P (Theorem 3.1), and the following theorem is an analogue of Theo-
rem 1.1 in the Thurston parametrization.

Theorem A (Theorems 4.1, 15.4, Lemma 3.2). Let L be an arbitrary
measured lamination on S. Then, the bending map by, : T — X s a real-
analytic symplectic embedding, and it is equivariant by the subgroup of
the mapping class group Gy, of S preserving L.

Moreover, by, is proper if and only if L contains no periodic leaves of
weight m modulo 2.

This preservation of the symplectic structure of T by by, resembles the
preservation of the (intrinsic) hyperbolic metric by the bending map
H? — H3, and the equivariant property is also analogous. Moreover,
by Theorem A, the real bending map by, is a proper mapping for almost
all measured laminations L. In addition, for exceptional laminations,
we explicitly characterize the non-properness in the Fenchel-Nielsen
coordinates (Theorem 6.1).

Depending on L € ML, the stabilizer §;, can be a large subgroup
and, on the other hand, it can be the trivial subgroup of the mapping
class group MCG (Remark 3.3).

We next consider the asymptotic behavior of by, : T — X. Namely, we
give an analogue of Theorem 1.2 for the real bending map b;. Recall
that the Thurston boundary of the Teichmiiller space is canonically
embedded in the Morgan-Shalen boundary (see [Kap01l, §11.16]). In
this paper, the “boundary map” of by, is the identity for almost all the
points.

Theorem B. Let V € PMF = 0,,7 be a measured foliation such that
every singular leaf is a tripod, i.e. a union of three rays with a common
endpoint. For every L € ML and every sequence 1; € T converging to
V', the bent representation br(7;) converges to the m(S)-action on the
dual metric tree of V as i — oo. (Theorem 7.1.)
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Note that a full-measure set of measured foliations satisfies the as-
sumption that every singular leaf is a tripod.

1.3. Complex bending varieties. Historically, a real-analytic defor-
mation determined by a measured lamination or a measured foliation
(an equivalent object) often has a significant complexification: A Te-
ichmiiller geodesic in the Teichmiiller space 7T is determined by a mea-
sured foliation on a Riemann surface, and its complexification is a
Teichmiiller disk in T A measured lamination on a hyperbolic surface
yields a real-analytic earthquake line in T ([Thu86, Ker85]), and an
carthquake disk is its complexification ([McM98]).

We aim to geometrically complexify the real-analytic embedding
br,: T — X in Theorem A, and obtain a complex-analytic mapping
from a closed complex-analytic variety. It is plausible that such com-
plexifications of the real bending varieties Im b7, in a common analytic
space will lead us to discover intersecting properties of the original
real-analytic varieties.

We first explain the domain of the complexified bending map. Given
a representation p: m(S) — PSLyC, if a holonomy p(¢) € PSLyC along
a loop ¢ is either hyperbolic or elliptic, then one can certainly bend p
along ¢ as the axis of p(¢) gives the axis of bending deformation. How-
ever, it is not clear at all if one can define bending if p(¢) is parabolic
or the identity.

Therefore, given a weighted multiloop M on S, we introduce an ap-
propriate closed analytic set X, consisting of certain (double) framed
representations, so that the framing determines the bending axes even
when the holonomy along some loops of M is trivial (§8). In fact, this
modification of X essentially occurs only in a complex-analytic sub-
variety of X disjoint from J: Namely, when specific subvarieties are
removed from X,; and X, the map forgetting the framing induces a
finite-to-one holomorphic covering map from X,; to X (see §8.3). In
particular, there is a canonical embedding of the Fricke-Teichmiiller
space T into X, as a real-analytic smooth subvariety. In addition, we
can pull back the complex symplectic structure on X to X;; minus a
subvariety.

We next explain the target space. Notice that the Fricke-Teichmiiller
space T is a component of the real slice of the character variety X.
Moreover, the real bending map b,: T — X is in the complex affine
variety X (i.e. its tangent spaces contain no complex lines). Therefore,
it is necessary to enlarge the ambient space in order to obtain nontrivial
and different complexifications for different bending laminations.
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When the PSL,;C Lie algebra psl,C is regarded as a real Lie alge-
bra, its complexification is isomorphic to psl,C @ (psl,C)*, where x*
denotes the complex conjugate. Thus, for a representation p: m(S) —
PSL,C, we consider the diagonal representation m(S) — PSLyC x
PSL,C twisted by conjugation (of matrix entries), defined by ~
(p(7), p(7)*). Then, given a representation framed along loops of M,
we can appropriately bend it along the axes determined by their fram-
ings, where the bending happens in the space of representations into
PSL,C x PSLy;C. Then we obtain the complex bending map By;: Xy —
X x X. (See §9 for details.) Let

A" = {(p1,p2): T1(S) = X X X | pr = p3},

the anti-holomorphic diagonal in X x X. Define ¢): X — A* C X x X by
p — (p,p*). Let w be Goldman’s complex symplectic structure on X.
Then, the average of pull-back complex symplectic structures %(pr*{w +
priw) is a complex symplectic structure on X x X, where pr; and pry
are projections X X X — X to the first factor and the second factor,
respectively. Then the diagonal embedding X — X x X preserves the
C-symplectic structure.

Each hyperbolic surface 7 € T corresponds to a discrete faithful
representation m;(S) — PSLy, R whose image consists of hyperbolic
elements except the identity. Choose the orientation of each loop m
of M (oriented multiloop). Then, the hyperbolic element p(m) has a
unique repelling fixed point and attracting fixed point on CP!, and we
have a canonical embedding ¢y,: T — X); by adding the information
of the fixed points.

Theorem C (Complexified bending maps along multiloops). Let M
be a weighted oriented multiloop on S, i.e. a measured lamination only
with periodic leaves. Then Byr: Xy — X X X 18 a complex-analytic
mapping, such that

(1) the restriction of By of T is a real-analytic embedding into A*;

(2) Yoby: T — X XX coincides with By oty to T (Figure 1);

(3) By is complex symplectic in the complement of a proper sub-
variety of Xy;

(4) By is equivariant by the action of the subgroup of the mapping
class group preserving M.

(The complex-analyticity is proven in Theorem 12.1. For (1), see
Proposition 13.1. For (2), see Proposition 13.1. For (3), see Theo-
rem 15.5; For (4), see Lemma 9.2.) The removed subvariety in (3)
consists of the framed representations such that at least one loop of M
has trivial holonomy.
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FicurReE 1. The commutative diagram describing the
complexification By, of the real-analytic bending map

bar-

Moreover, the properness of Theorem A is also carried over to com-
plexified bending maps for a dense subset of ML.

Theorem D. If { is a non-separating oriented loop with weight not
equal to ™ modulo 2w, then, the bending map By: X; — X X X is a
proper mapping. (Theorem 1/.1.)

Therefore, under the assumption of Theorem D, the image of By is
a closed analytic subvariety in X x X (complex bending variety). Thus,
via v, Im b, is properly embedded in the real-analytic subvariety of the
closed analytic set Im By, and 1) preserves the R-symplectic structure
of Im b,.

On the other hand, the complex bending map B,; is not proper
or injective in general. However, B), is injective and proper “almost
everywhere”: If an analytic subset is removed from the domain X,
and a subvariety is removed from the target X x X, then Bj; becomes
injective and proper (Theorem 10.1, Theorem 11.1).

Next, we consider this complexification of a general bending map by,.
A quasi-Fuchsian representation m1(S) — PSLyC is a discrete faithful
representation such that the limit set of its image Imp is a Jordan
curve in CP!. The set QF of quasi-Fuchsian representations is called
the quasi-Fuchsian space, and its real slice is the Teichmiiller space
J. It is straightforward to similarly define the complexified bending
map By on the quasi-Fuchsian space QF in X, since, for every quasi-
Fuchsian representation, every geodesic lamination is realized by the
pleating locus of an equivariant pleated surface.

Theorem E. For every measured lamination L on S, let {; be a se-
quence of mon-separating weighted loops converging to L as i — oo.
Then, up to a subsequence, the closed C-analytic set Im By, converges
to a closed C-analytic set in X X X as i — oo which is C-symplectic on
the smooth part.

Moreover, the closed C-analytic set lim;_,o, Im By, contains a unique
irreducible connected component By, containing By (QF), such that By, =

Yoby onT. (§10.)
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By,
QF HZBLCXXX

I

T —X

FiGURE 2. The commutative diagram describing the
complexification of Imby,.

1.4. Outline of the paper. In §3, we explain some basic notions
used in this paper. In particular, we recall that a measured lamination
on a hyperbolic surface induces an equivariant locally convex pleated
surface H? — H?, then we define the real bending map by : T — X for a
measured lamination. In §4, we show the injectivity of the real bending
map. In §5, we prove the properness of the real bending map for most
of the measured laminations L. On the other hand, in Theorem 6.1,
we characterize the non-properness of the bending map. §7.1, we prove
Theorem B.

In §8, we introduce the space of representations double-framed along
a weighted multiloop M on S (the framed character variety X ). Then,
in §9, we define the complex bending map from the framed character
variety Xy to the product character variety X x X. For the definition,
a more general type of bending deformation is introduced. In fact,
when a representation framed along M is bent along M, accordingly,
the hyperbolic space H? is equivariantly “bent” inside the H?® x H3
(89.4). In §10, we show that the complex bending map is injective
almost everywhere. In §11, we show that the complex bending map
is proper almost everywhere. In §12, using the “almost-everywhere”
injectivity, we prove the analyticity of the complex bending map on
the entire domain. In §13, we show that the complex bending map is
a complexification of the real bending map. In §14, we prove that the
complex bending map is, indeed, genuinely a proper mapping when M
is a single non-separating loop of the weight not equal to 7. In §15, we
show that the real bending map is symplectic and the complex bending
map is complex symplectic. In §16, we prove Theorem E.
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3. PRELIMINARIES

3.1. Bending deformation. ([Thu81], [EMS87].) Thurston discovered
that the boundary of the convex core of a hyperbolic three-manifold
is a hyperbolic surface bent along a measured lamination ([Thu81]).
More generally, one can bend a hyperbolic surface along an arbitrary
measured lamination and obtain a holonomy representation from the
surface fundamental group into PSL,C as follows.

We shall first describe basic bending maps when the bending locus
is a single loop. Let 7 be a hyperbolic structure on S, and let £ be
a geodesic loop on 7 with weight w > 0. The union ¢ of all lifts of ¢
to the universal cover H? of 7 is a set of disjoint geodesics, each with
weight w, and it is invariant under the deck transformation. We call
the union ¢ the total lift of ¢.

Put the universal cover H? in the three-dimensional hyperbolic space
H? as a totally geodesic hyperbolic plane. By this embedding, the iso-
metric deck transformations of H? extend to an isometric action on
H?3, and we obtain a representation of p,: m;(S) — PSLyC. Note that,
as S is oriented, the orientation of the universal cover H? determines
a normal direction of the plane. Thus we can bend H? along every
geodesic « of ¢ by angle w so that the normal direction is in the ex-
terior. Thus we obtain a bending map §: H* — H?, which is totally
geodesic on every complement of H? \ /. The map 3 is unique up to
an orientation-preserving isometry of H?. Moreover, 3 is equivariant
by its holonomy representation p: m1(S) — PSLyC. This p is called a
bending deformation of p, of L. .

If C,Cy are components of H? \ ¢ such that Cy,Cy are adjacent
along a geodesic a of £. Let G; and G, be the subgroups of m(S)
which preserve C; and (5, respectively. If § is normalized so that
B, = [ on (1, then the restriction of 5 to G5 is the conjugation of the
restriction of p, to G5 by the elliptic isometry with the axis a by angle
w.

More generally, given an arbitrary measured lamination L on 7, we
can take a sequence of weighted loops ¢; converging to L as i — oo.
For each i, let p;: m(S) — PSLyC be the bending deformation of p,
along ¢;. Then p; converges to a representation m1(S) — PSLyC as
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1 — oo if p; are appropriately normalized by PSLy;C. This limit is the
bending deformation of p, along L, and it is unique up to conjugation
by an element of PSL,C.

3.1.1. Equivariant property of the real bending map. The equivariant
property of by : m1(S) — PSLyC in Theorem A can directly be proven
from the definition of the bending map. Here, we show this property
in a broader context.

A CP'-structure on S is a (CP!, PSLyC)-structure. That is, an at-
las of charts mapping open subsets of S into CP! with translation
maps in Aut(CP') = PSLyC. (General references about CP!-structures
are[Dum09, Kap01, Gol22]). Recall that CP! is the ideal boundary
of the hyperbolic space H?, and PSL,C is the group of orientation-
preserving isometries of H?. Using equivariant bending maps described
above, Thurston gave a parametrization of the deformation space P
of CP'-structures by corresponding them with holonomy-equivariant
pleated surfaces in H.

Theorem 3.1 (Thurston, [KP94, KT92]). The following canonical
identification holds by a (tangential) homeomorphism,

P=TxML.

Then by, (7) = Hol(r, L) where (1,L) € T x ML denote the CP!-
structure in Thurston coordinates.

Lemma 3.2. For L € ML, let G, be the subgroup of MCG which
preserves L. Then, the real bending map br: T — X 1s G -equivariant.

Remark 3.3. If L is a multiloop, then G contains the subgroup of
MCG generated by Dehn twists along loops not intersecting L (but in-
cluding the loops of L). On the other hand, for almost all L in ML,
G1 is the trivial group, since MCG is a countable group.

Proof. The MCG-action on P is given by marking change and on X by
precomposing induces isomorphisms 7 (S) — m(S). Then the holo-
nomy map Hol: P — X is MCG-equivariant (see, for example, [Gol06]).
By Thurston’s parametrization, For 7 € T and h € MCG, h(r, L) =
(1,L).
h-by(1) = h-Hol(r, L) = Hol(h, L) = by, (hT).

Thus the desired equivariant property holds. U

3.2. Quasi-geodesics in the hyperbolic space. We first recall the
definition of quasi-isometries. Let (X, dx), (Y,dy) be metric spaces,
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where dx,dy are the distance functions. Then, for P > 1,Q > 0, a
mapping f: X — Y is a (P, Q)-quasi-isometry if, for all z1, 25 € X,

P_ldx(.lfl,fﬂg) — Q < dy(f(xl),f(l‘Q)) < de(xl,.ifg) + Q

In this section, we discuss some conditions for a piecewise geodesic
curve in H? to be a quasi-geodesic.

3.2.1. Quasi-geodesics in H3. Let ¢ be a bi-infinite piecewise geodesic
curve in H3. Let s; (i € Z) be the geodesic segments of ¢ indexed along
¢, so that s; and s;,; are adjacent geodesic segments for every ¢ € Z
and ¢ = Ujezs;.

Lemma 3.4. For every € > 0, there are (large) R > 0 and (small)
d > 0, such that if length s; > R for all i € Z and the (interior) angle
between arbitrary adjacent geodesic segment s;,s;11 s at least ™ — 0,
then ¢ is a (1 + €)-biLipschitz embedding.

Proof. This lemma follows from [CEG87, 1.4.2.10] and [EMMO04, Proof
of Theorem 4.2]. O

Proposition 3.5. For all e > 0 and € € (0,7), there are R > 0 and
@ > 0, such that if lengths; > R for all i € Z and the angle between
arbitrary every pair of adjacent geodesic segments is at least T —¢€', then
c is a (14 €, Q)-quasi-isometric embedding.

Proof. For each i € Z, let x; be the common endpoint of s;_; and s;,
so that z; is a non-smooth point of ¢. Pick r > 0 and we assume
that R > 2r. Let x; be the point on s;_; such that d(x;,x;) = r.
Let ] be the point on s; such that d(x;, z;) = r. Then, we replace
two geodesic segments [z, x;] U [z;, z]] of ¢ with the single geodesic

segment [z, , z;7]; see Figure 3. Let ¢, be the piecewise geodesic in H?

10

obtained from ¢ by applying this replacement for every 7 € Z.
By basic hyperbolic geometry, the following holds.

Lemma 3.6. For every § > 0, there is rs > 0 satisfying the following:
For every r > rs and every R > 3r, then the angle at every non-smooth
point of ¢, is more than ™ — 9.

Then Lemma 3.4 and Lemma 3.6 imply the proposition. 3.5

3.3. Angles between geodesic laminations. (See [Babl5].)

Let 7 be a hyperbolic surface. If two geodesics /1, {5 on 7 intersect
in a point p, then let Z,(¢,¢>) denote the angle between them which
takes a value in [0, 7/2]. More generally, let A\; and Ay be geodesic lam-
inations on 7. Then the angle Z, (A1, \2) € [0,7/2] be the supremum
of Z,(ly,¢5) over all leaves {1 € A\; and {5 € Ay intersecting a point p.
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FI1GURE 3. A modification of a piecewise geodesic

3.4. The Morgan-Shalen compactification. (See [Dum17] [Kap01].)
We describe a compactification of the PSL(2, C)-character variety of S.

X — RIS /RS,
be the mapping defined by

p = (log|tr p()] + 2)yem (s)-

Then the image is relatively compact in the infinite-dimensional pro-
jective space R;”O(S) /R<o, and the compactification in the projective
space is called the Morgan-Shalen compactification of X.

A boundary point p of the Morgan-Shalen compactification corre-
sponds to a minimal small 7 (S)-action on a metric tree 7,. Namely,
if a sequence p;: m(S) — PSLyC € X converges to p, then there is a
sequence 7; > 0 converging to 0 such that

e there is a sequence of points z; € H? such that 7 (S)-action on
H? with the base point x; converges to the m(S)-action on T,
when the metric of H? is scaled by r;, and

e the translation lengths of p(vy) for v € m(S) scaled by ~; con-
verge to the translation lengths on T, by the 7 (.S)-action.

A Teichmiiller space T can be regarded as the space of marked hy-
perbolic structures on S. Thus T can be regarded as a component of
the space of discrete faithful representations m1(S) — PSLyR up to
conjugation. The Thurston compactification of the Teichmiiller space
is the compactification given by the projective length spectra of the
translation lengths ([FLP79]). Thus, via Bonahon’s interpretation via
geodesic currents, the Thurston boundary can be regarded as a part of
the Morgan-Shalen boundary, by embedding T into X as a component
of a real slice. (See [Kap01, §11.16].)

3.5. Complex analytic geometry. ([Gol84].) We recall a standard
theorem about a complex-analytic set.
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Theorem 3.7 (Removable Singularity Theorem; see for example [Tay02],
§3.3.2). Let Y be an analytic set. Let A be a closed subset of Y con-
tained in a proper subvariety of Y. Suppose that f: Y \ A — C is
an analytic function which is bounded in a small neighborhood of every
point in A. Then f continuously extends to an analytic function on'Y .

3.6. Goldman’s symplectic form. ([Gol84].) Let g be the PSLyC-
Lie algebra. Then the adjoint representation Ad: PSL,C — Autg C
GL3C is induced by the conjugation of PSLyC by PSLyC. By gad,, we
regard g as a m;(S)-module via the composition of p: m1(S) — PSL,C.
Then the Zariski tangent space of the representation variety R at p € R
is Then the vector space of 1-cocycles

ZY(m(S); 9agp) = {u € g™ | u(zy) = u(z) + (Adp(x)) u(y)}.

The subspace of 1-coboundaries B'(7(S); ga4,) consists of u € g™,
such that there is uy € g satisfying u(z) = wy — Ad(p(x))uo for all
x € m(S)}. Then the Zariski tangent space of X at p is the quotient
vector space

Z(m1(S); gadp)

B'(m1(S); 84ap)

Let w(p) denote the bilinear form on the Zariski tangent space obtained
by the composition

HY(71(S); 9aap) X HY(m1(S); agp) = H2(m1(S); 9aap @ Gaap)
S H*(m(S):C) = C.

Hl(ﬁ(s);gAdp) =

Here the first mapping is the cup product, and the second mapping is
an isomorphism given by the coefficients pairing by the bilinear form
B gadp ® gadp — C given by (A, B) — tr AB. Goldman proved that
w is a complex symplectic form on X, i.e. a non-degenerate closed
holomorphic (2,0)-form on the character variety X; see [Gol84].

3.7. Harmonic maps between hyperbolic surfaces. (See ([Wol91,
Min92]; see also [Sak].)

For (marked) Riemann surfaces X,Y € T, there is a unique harmonic
map h: X — Y preserving the marking. Then the Hopf differential of
the harmonic map h is a holomorphic quadratic differential ¢ on X.
Away from the zeros of ¢, the differential ¢ gives natural coordinates
w =z + 4y in C so that ¢ = dw (see, for example, [FM12]). By these
coordinates, the Euclidean structure on C induces a singular Euclidean
metric on X where the zeros of ¢ are the singular points, and the
Euclidean structure realizes the conformal structure of X.



14 SHINPEI BABA

The Beltrami differential of h is given by
ez
- fdz

Then |v(2)] < 1. Then as Y leaves every compact in T while X is
fixed, |v,(2)| converges to 1. Let

G(h) = log (ﬁ)

Let gy denote the hyperbolic metric on Y, and let g = h*(gy ) be the
pull-back metric on X by h. Then g is, in a natural coordinates x + 1y
given by g,

40

1 _
cosh G2(t) 1,2 N cosh G2(t) 1

The L'-norm ||q|| = [ |¢i|dzdZ is the total area of the flat metric. If
the r-ball centered at p € X contains no zeros in the flat metric, then

Area X
2mr2

where Area X denotes the hyperbolic area 27(2g — 2) of X (Minsky
[Min92, Lemma 3.2]).

Therefore, if Y leaves every compact subset in T while X is fixed, the
hyperbolic metric is stretched in the horizontal direction and shrinks
in the vertical direction away from the zeros.

More specifically, we let (Y;)22, be a sequence in T converging to a
point [V] € PML = 07 in the Thurston boundary, where PML denotes
the space of projective measured foliations on S. Let h;: X — Y, be
the unique harmonic map, and let ¢; be the holomorphic quadratic
differential on X given by the Hopf differential of h;. Let V; be the
vertical measured foliation of ¢;, and let H; be the horizontal measured
foliation of ¢; = ¢;dz?. Then its projective class [V;] converges to [V]
as ¢ — oo ([Wol91]).

The total Euclidean area ||g;|| = [ |#:|dzdZz diverges to infinity as
i — 00, and by (1) and (2), h; stretches X in the horizontal direction
H; so that the Euclidean length and the hyperbolic length are close
away from the zeros, and shrinks in the vertical direction V; more and
more.

(1) ds® = dy?

(2) G(h)(p) < sinh™!

4. INJECTIVITY OF THE REAL BENDING MAPS

Let ML be the space of measured laminations on S. Each pair
(1,L) € T x ML induces an equivariant pleated surface H?* — H?,
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unique up to PSLyC. Let b: T x ML — X be the holonomy map of the
bending maps.

Theorem 4.1. Fizx arbitrary L € ML(S). Then the restriction b to
T x {L} is a real-analytic embedding. Moreover, this embedding is
proper if and only if L contains no periodic leaf of weight m modulo 2.

Let b: T — X denote the restriction of b to T x {L}. Given a
representation p: m;(S) — PSLyC, geodesic lamination A on S is real-
izable if there is a p-equivariant pleated surface H? — H?, such that its
pleating loci contains A. Then, for L € ML, let N = Ny, be an open
neighborhood of the Fuchsian space T in the smooth part of X such
that the underlying geodesic lamination |L| is realizable for all p € X.
Then, by,: T — X extends to the bending map br: Ni — X by bending
cocycle ([Bon96]).

Proposition 4.2. For all L € ML, br: Np — X is injective.

Proof. As |L| is realizable on Im BL, we have the unbending map b_r: Imby, —
X by —L . Then, clearly, b_j, o by, is the identity map on Ny. Thus by,
is injective. 0

Proposition 4.3. The injective map by,: T — X s a real-analytic em-
bedding.

Proof. (cf. [Ker85].) We regard T as the Fricke space, i.e. the space
of discrete faithful representations into PSL(2,R) up to conjugation by
PSLoR. Then, take a small open neighborhood N of T whose closure
is contained in Ny,

If L is a weighted multiloop, the bending map by, is holomorphic
on N as bending transforms the holonomy along a loop by some ellip-
tic elements in a holomorphic manner. In general, pick a sequence of
weighted multiloops M; converging to L as ¢ — oo. By the injectiv-
ity of Proposition 4.2, ZA)MZ.: Np;, — Ny, is a holomorphic embedding.
Then, the holomorphic embedding BMi|N converges uniformly to by |V
uniformly on compacts as ¢ — oo. Therefore l;L|N is a holomorphic

embedding.
Since T is a real-analytic submanifold of N in X, thus b.|7T is a real-
analytic embedding. 0

5. PROPERNESS OF THE BENDING MAPS FROM THE TEICHMULLER
SPACES

Theorem 5.1. Let L € ML. Then, the bending map by: T — X 1is
proper if and only if L contains no leaves of weight m modulo 27.
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First, we prove the sufficiency of the condition in Theorem 5.1.

Lemma 5.2. Fiz L € ML such that every closed leaf of L contains
no leaves of weight m modulo 2w. Let M be the (possibly empty) sub-
lamination of L consisting of the periodic leaves of L. Then, for all
v, R > 0, there are finitely many loops (1, ..., ¢, on S such that

e the lengths of {1, ..., L, form length parameters of T, and
e foreachi=1,...,n,
— the transversal measure (L \ M)({;) < v, and
— {; intersects at most one leaf m of M, and their intersection
number is at most two.

Proof. For every § > 0, there is a pants decomposition P = Ps (i.e. a
maximal multiloop) on S consisting of

e the loops of M,

e loops which are disjoint from L,

e loops ¢ with L(¢) < § (so that ¢ is a good approximation of a
minimal irrational sublamination of L).

By the third condition, if @) is a component of S\ P, and « is an arc
on () with endpoints on 0(), then there is an isotopy of a keeping its
endpoints on 0@ such that L(«) < 36. Therefore, if 6 > 0 is small
enough, for each loop m of P, we can take two loops my, mo such that

e m; intersects m at a point or two, and it does not intersect any
other loop of P, and
o (L\ M)(m;) <w.
Then we obtain a desired set of loops by adding two such loops for all
loops of M. (For length coordinates of T, see [FM12, Theorem 10.7]
for example.) O

Proof of the sufficiency of Theorem 5.1. For e > 0, let {1, ..., /¢, be the
set of loops given by Lemma 5.2. Let 7; be a sequence in T which leaves
every compact subset. Then, for some 1 < k < n, length,_ {; — oo as
1 — 00 up to a subsequence.

Claim 5.3. For every e > 0, if 0 > 0 is sufficiently small, then
(1) if L(ty) < 8, then Bi|ly is a (1 + €)-biLipschitz embedding for
sufficiently large v, and
(2) if €y, intersects a loop m of M, then Bi|ly is a (1 + €, q)-quasi-
isometric embedding for all sufficiently large i, where q only
depends on the weight of m.

Proof. (1) See [Bab10, Lemma 5.3], which was proved based on [CEG87,
1.4.2.10].
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(2) We straighten ¢, and M on 7; € 7. From Lemma 5.2, ¢ intersects
only one loop m of M, and their intersection number is one or two. We
thus assume that £, N'm consists of two points x1, z9 — the proof when
the intersection number is one is similar. Then z; and x5 decompose
(y into 2 geodesic segments a; and ap. Since length  f; — oo, the

lengths of a; and as both goes to oo as well. Let 0}, be the geodesic
in H* obtained by lifting ¢ to the universal cover. Let a; be a lift
of a; to Ek, and let Z; and 7,4, be its endpoints. For every ¢ > 0,
if v > 0, is sufficiently small, then f;(a;) is €’-close to the geodesic
segment [f;x;, f;x;41] connecting its endpoints f;z; and Sz, in the
Hausdorff metric. Since every periodic leaf of L has weight not equal
to m modulo 27, there is w > 0 such that, for every periodic leaf ¢
of L, the distance from the weight of ¢ to the nearest odd multiple
of m is at least w. Therefore, if 6 > 0 is sufficiently small, then the
angle between [5;x;, fxj41] and [Biz;_1, Biz;] at z; is at least w/2. Let
¢; be the piecewise geodesic in H? which is a union of the geodesic
segments [B;x;, Bix;+1] over all lifts @y,as of aj,as to ¢y Then ¢; is
¢-Hausdorff close to §;f. Therefore, by Proposition 3.5, we see that
¢; is a (1 + €, g)-quasi-geodesic. O

By this claim, for large i, the holonomy of by (7;) along ¢ is hyper-
bolic, and its translation length diverges to oo as i — oo. Thus by (7;)
leaves every compact set in X. Thus we have proven the properness.

6. CHARACTERIZATION OF NON-PROPERNESS

In this section, we explicitly describe how by : T — X is non-proper
when the condition in Theorem 5.1 fails. Let L be a measured lamina-
tion on S. Let mq, ..., m, be the periodic leaves of L which have weight
m modulo 27. Then, set M = m; U---Um,. Pick any pants decompo-
sition P of S which contains m;, ..., m,. Consider the Fenchel-Nielsen
coordinates of T associated with P. Recall that its length coordinates
take values in R.y and its twist coordinates in R.

Theorem 6.1. Let 7; be a sequence in T which leaves every compact
subset. Then br(7;) converges in X if and only if
e length, m; — 0 for some j € {1,...,p} as i — oo (pinched),
and
o the Fenchel-Nielsen coordinates of T; w.r.t. P converge in their
parameter spaces as i — 00, except that the length parameters
of the pinched loops go to zero.
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Proof of Theorem 6.1. Let F' be a component of S\ M. Then by (r;)|F
converges in X(F) if and only if 7;|F' := 7;|m, (F') converges.

Let F and F be adjacent components of S\ M. Let 7 be the
component of M separating E and F', and let m be the loop of M
which lifts to m. Let 'y and I'r be the subgroups of m(S) preserving

E and F, respectively. Then F/I'p and F/T'r are the components of

Proposition 6.2. Let 7; be a sequence in T, such that the restrictions
of 7; to Sg and to Sg converge in their respective Teichmailler spaces
as i — oo. Pick, for each i, a representative & : m(S) — PSLyC of
br(mi) € X so that &|U'g converges. Then, the restriction &|I'r con-
verges if and only if the Fenchel-Nielsen twist parameter along m con-
verges as ¢ — 0O.

Proof. For each i, let 3;: H* — H? be the bending map for (7, L)
equivariant via &;, so that ; converges on E. Let M, be the geodesic
representative of M on 7;, and let ]\Zn. be the total lift of M,, on H?.
Let m; be the component of Mn corresponding to m. Let F;, E; be the
region on 7; \ ]\NLZ. corresponding to F' and FE, respectively. For each i,
pick a geodesic ray r; in F; starting from m; such that r; is orthogonal
to m,; and that r; does not intersect the total lift L of L.

Let v be the unit tangent vector of r; at the base point on m,. Since
the weight of m; is 7 modulo 27, df;(v) is tangent to §;(E;) at a point
of m;; see Figure 4, Left. (Suppose, against the hypothesis, that the
weight of m; is not m modulo 27 and length, m; — 0. Let oy € m1(5)
represent m; fixing m;. Then §;(F;) must diverge to the parabolic fixed
point of the limit of the hyperbolic element by, (7;)«; as i — oo; therefore
br(7;) diverges to infinity, which contradicts the other hypothesis.)

First suppose that lim;_, length_m is positive. Then &[I'r con-
verges if and only if 3;(r;) converges, which is equivalent to saying the
twisting parameter of m converges in R as i — oo.

Next suppose that lim; . length, m is zero. Then the holonomy of
m converges to a parabolic element not equal to the identity. Then
&|T'r converges, if and only if §;(r;) converges to a geodesic starting
from the parabolic fixed point. Since the hyperbolic element by (7;)m
converges to the parabolic element, and we can take a sequence of
the hyperbolic one-parameter subgroups in PSL,;C containing by, (7;)m
which converges to the parabolic one-parameter subgroup of PSL,;C
containing the parabolic element, representing the twisting parameter
along m. Therefore, the above convergence is equivalent to saying the
twisting parameter of m converges as i — oo (Figure 4, Right). U
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F1GURE 4. The convergence of the twist coordinate un-
der neck-pinching.

The theorem follow from Proposition 6.2 as follows: Suppose that
br(7;) converges as i — oco. Then, the hyperbolic structure on every
component of S\ M must converge. Thus, for each loop m of M,
length, m limits to a non-negative number. By Proposition 6.2, as
by (7;) converges, the twist parameters along each loop of M converge.
Since 7; leaves every compact subset, at least one loop of M must be
pinched as ¢ — oo. Hence the two conditions hold.

To prove the other direction, suppose that the lengths of some loops
of M limit to zero and all the other Fenchel-Nielsen coordinates with
respect to P converge in the parameter space as ¢ — oo. Let M’ be the
sub-multiloop of M consisting of the loops whose lengths go to zero.
Then, for each component F of S\ M’, by, (7;)|m (F) converges as i — 00.
Therefore, by Proposition 6.2, by (7;) converges. This completes the

proof.

7. THE BOUNDARY MAP OF THE REAL BENDING MAP

Theorem 7.1. Let [V] € PML = 0T be a Thurston boundary point.
Suppose that every singular leaf of V' is a tripod, i.e. three rays sharing
a common endpoint. Let T, € T be a sequence of hyperbolic surfaces
converging to [V].

Then, for every measured lamination L € ML, the representation
br(7:) € X converges to the Morgan-Shalen boundary point correspond-
ing to [V] as i — oc.

Remark 7.2. Suppose, in contrast, that the projective measured folia-
tion [V'] contains a singular leaf that is not a tripod. Then, the limit tree
of T; may possibly be “folded” into a smaller tree by a “straight map”;
thus a limit of by (7;) might not coincide with the Morgan-Shalen bound-
ary point of V], similarly to the folding phenomenon in [Duml7]).
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Proof. Let ¢ be an essential simple closed curve on S. As every singular
leaf of V' is a tripod, £ is not contained in a leaf of V.

Pick a marked Riemann surface X € T as a base point of the har-
monic parametrization of T ([Wol91] [Hit87]). Then, for each ¢ =
1,2,..., there is a unique harmonic map h;: X — 7;, preserving the
marking. Let ¢; be its Hopf differential on X, which is a holomorphic
quadratic differential on X. In this manner, T is parametrized by the
complex vector space of dimension 39 — 3 consisting of holomorphic
quadratic differentials on X.

This harmonic map parametrization is compatible with Thurston’s
boundary of T. For each ¢« = 1,2,..., let E; be the flat surface cor-
responding to (X, ¢q;). As 7; converges to the boundary point [V] as
i — o0, the unit-area surface F;/v/Area E; converges to the flat sur-
face E, as i — oo so that E. realizes the conformal structure of X
and the projective measured foliation [V] as its vertical foliation.

For each i = 1,2,..., let ¢; be the geodesic loop on the hyperbolic
surface 7; representing ¢. Similarly, let m; be a geodesic representative
of £ on E;. We also let my, be a geodesic loop on E, realizing ¢. By
taking appropriate representatives m;, we may assume that m; on the
normalization E;/+/Area E; converges to ms, on E.,. Note that as V/
has no saddle connections, if ¢ is sufficiently large, m; is transversal to
the vertical foliation V; of E; except at the singular points.

We divide the proof into the following two cases.

(1) |L| = [V].
(2) L] # V]

(Case 1) Suppose that |L| = |V|. We show that, if ¢ is sufficiently
large, every unit-length segment of ¢; on 7; intersects the geodesic repre-
sentative of L uniformly small amount w.r.t. the transversal measure
of L— this implies that the translation length of ¢ does not change
much by bending along L.

Since |L| = |V, let V denote the measured foliation on S corre-
sponding to L. For € > 0, pick segments mqs 1 ... Ms,n of Mo, such
that

e when each of my ... M, is divided into three segments of

equal length, the middle one-third subsegments m/ m’

co,1 oo,n

of Moo 1, ... Mooy, cover the geodesic loop M., and
o V(M j) <e€/3forall j =1,....,n and the endpoints of m ;
are not at the singular points of E,, where Vi (m ;) denotes

the measure of m, ; given by the transversal measure of V.

As |L| = |V, let V; be the measured foliation supported on the
vertical foliation of Fj;, such that V; converges to Vi, as ¢ — oo. By
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the convergence of m; to my,, we cover m; by open geodesic segments
m;1 ... m;, which respectively converge to the cover Mo ... Mooy Of
Moo as 1 — 00. In addition, if ¢ > 0 is sufficiently large, then Vi, (m; ;) <
% forall j=1,...,n.

Using the asymptotic behavior of harmonic maps described in the
preliminaries (§3.7), the h;-image of m; is a quasi-geodesic loop on 7;
homotopic to ¢; such that the quasi-isometric distortion is bounded in
i=1,2,.... Pick a € m(S) representing ¢. Then, let m; be the lift of
m,; to the universal over Ei invariant by «, and similalily lz be the lift
of ¢; to the universal cover of 7; invariant by a. Let h; be the lift of
the harmonic map h;: X — 7; to a m(.S)-equivariant mapping between
their universal covers. The distance between ﬁz(mz) and ZZ is bounded
from above uniformly in ¢ by the convergence of 7; — [V] € 7.

Let Z; be the set of the singular points of the flat surface E;. For
r > 0, let N be the neighborhood of Z; on E; corresponding to the
r-neighborhood of Z; on FE;/y/Area E;. Fix a small r > 0. Thus, for
every € > 0, if ¢ > 0 is sufficiently large, then the h;-image of m;\ N] are
e-biLipschitz embedding w.r.t. the horizontal Euclidean length of E;.
Therefore, this h;-image is contained in an e-neighborhood of ¢; (§3.5).
Then, by the uniform quasi-isometric property of iLi|eri, we can cover
the geodesic loop £; by geodesic segments (;, ... ¢, corresponding to
m. .m7, , such that £; ; is a geodesic segment on 7; whose endpoints

00,1 * -

are e-close to the h;-image of the endpoints of m;, ;.

Lemma 7.3. For every r > 0, if © > 0 is sufficiently large, then
Li(€;;) < € and length((; ;) > r for all j = 1,...,n, where L;({; ;)
denote the measure of li; given by the transversal measure of L;.

Proof. We first prove L;((; ;) < €, the main part of the claim. Pick o €
m1(.S) representing the loop ¢. Then, let M, be a (bi-infinite) lift of m,
to the universal cover E. invariant by a. For each j = 1,...,n, pick
a lift M. ; of the segment my ; to the universal cover Eoo, such that
Moo, 1S contained in mq,. Let T, be the R-tree obtained by collapsing
the vertical leaf of Eoo, and let U : E., — T., denote the quotient
map. Then m., is embedded in T,, by W since m., is transversal to
Vo

For each endpoint p of mq ; and each component C' of E \ Moo,
pick a rectangle R in C' with horizontal and vertical edges such that:

e the interior of R contains no singular point of E.;
e p is a vertex of R; )
e the opposite vertex z of p is a singular point z of E;
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e U (2) is contained in M. and close to p, so that the total
measure of the leaves of the vertical foliation passing R is small
(Figure 7).

Let R;1, R;2 denote the rectangles for one endpoints of m., ; contained
in different components of Eoo \ Moo, and let R, 3, R; 4 denote the rect-
angles for the other endpoints of M ;. Similarly, let z;, 2z, denote the
singular points of E.. which are vertices of R;1, R;> opposite from the
endpoint vertex, and let z3, z4 denote the singular points of E., which
are vertices of R;3, R4 opposite from the other endpoint vertex. We
may assume that the projections W..(21), ¥oo(22), Yoo(23), Voo(24) lie
on My in this order, if necessary, by exchanging z; and z5, and 23 and
Z4.-
For each k = 1,2,3,4, pick a small tripod neighborhood ~; of the
singular point z; in the horizontal leaf containing z; (Figure 7). As
E;/v/Area E; converges to E,, for sufficiently large i, we pick a tripod
neighborhoods 7 1, Yij2, Yij3, Vija of the singular points of E; such
that

® Vi1 Vig2s Vigss Viga converge to 7j1,7;2,7;3, V4 as ¢ — 00,
respectively.

If ¢ is sufficiently large, by the harmonic map h;, a small neighbor-
hood of «; ;x maps to a region close to an ideal triangle A;;; in a
large compact subset in 7; [Min92]. Since the interior of R;;; con-
tains no singular point , we may assume that llis a common edge of
A1, Nijo, A js, A j4. Then the endpoints of ¢; are the ideal vertex
of A; k. Let v, be the (other) ideal vertex of A;;, which is not an
endpoint of ;. By reordering, we may additionally assume that Aija
and A; ;4 are contained in the same component of H? \ lz and A; ;o
and A, ;5 are contained in the other component of H? \ ;.

Let !7” be the a-invariant lift of ¢, ; in 7; = H?. Let L; denote the
geodesic measured lamination on the hyperbolic surface 7; representing
L. For sufficiently large i, if a leaf ¢ of L intersects lz ;» then an endpoint
of ¢ is between v; and v, and the other endpoint in vy and v3. Since
Vi(mi ;) < %, therefore, L((; ;) < e.

Since M ; is transversal to the vertical foliation and the harmonic
map h; stretches in the horizontal direction more and more, the length
of £} ; diverges to 0o as i — oo. O

Let 3; be the by (7;)-equivariant pleated surface H? — H? obtained
by bending, in H?, the universal cover of 7; along the inverse-image of
L. By Lemma 7.3, for every € > 0, if 7 is sufficiently large, then the
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FiGURE 5. The geodesic segment 57” has a small
transversal measure.

restriction of 3;: 7; — H?® to £ into H? is a (1 — ¢, 1 + €)-biLipschitz em-
bedding ([CEGS87, 1.4.2.10]). Hence the ratio of the translation length
of b, (7;)cr and the 7;-length of ¢; converges to one as i — co. Therefore
by (7;) converges to [V] in the Morgan-Shalen boundary.

(Case 2) Suppose that |L| # [V]. In this case, we show that ev-
ery unit segment of the geodesic representative of £ on 7; intersects L
uniformly small angle if 7 is sufficiently large.

Let £, be the geodesic representative of L on E,,. Recall that the
My 18 the geodesic representative of ¢ on the limi flat surface F, of unit
area. Consider the m(S)-invariant measured lamination of 7; obtained
by pulling back L; on 7; by the universal covering map. Let L; be its
a-invariant measured lamination on 7; consisting of leaves intersecting

l;.

Proposition 7.4. For every € > 0, if i > 0 is sufficiently large, then
4’7'1' (6“ Lz) < €.

(See §3.3 for the definition of the angle Z (f;, L;).)

Proof. Let u be a leaf of L intersecting meq, at a point pe.
Pick Euclidean rectangles R 1, Roo2 in Ey such that

® Ro1, Roo2 have horizontal and vertical edges and no singular
points in their interiors;

e the interiors of R 1 and R 2 are contained in different com-
ponents of E. \ Meoo;

e one horizontal edge of R x(k = 1,2) is contained in M, and
each vertical edge of R ; contains exactly one singular point
of B;
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e the singular points on the vertical edges of R divide the
boundary 0R« j into two piecewise linear curves, and p passes
through R ; and p intersects each piecewise-linear segment of
ORw in a single point (Figure 6).

Since F;/+/Area I; converges to Ey, as i — oo, for sufficiently large
1, we pick Euclidean rectangles R;;, R;2 in EZ- such that R;; — R;
as © — oo. Let L£; be the geodesic representative of the measured
lamination L on the flat surface F;. By the convergence, the properties
of Ry and Ry 2 carry over to R;; and R, for sufficiently large <.
Namely, letting u; be the leaf of L; on E; corresponding to 1,

e R;i,R;» have horizontal and vertical edges and no singular
points in their interiors;

e the interiors of R;; and R, - are contained in different compo-
nents of E, \ 5

e one horizontal edge of R;(k = 1,2) is contained in 7;, and
each vertical edge of R, contains a unique singular point of
Ei;

e the singular points on the vertical edges of R;; divide the
boundary OR; j, into two piecewise geodesic curves, and ji; passes
through R, and p; intersects each component of OR j minus
the singular point in a single point.

Let 21,2 be the singular points of OR 1 and z3, 24 be the singular
points of OR 2. For k =1,2,3,4, let 7 = 7% be a small horizontal
tripod neighborhood of z; (Figure 6). We may assume that the projec-
tions of 21, 29, 23, 24 to m; along vertical leaves lie on m; in this order
(of indices).

For ¢ large enough, let z; ; be a singular point of the vertical edge of
R, i, such that 2, — 2, as ¢ — oo.

Let i be a horizontal tripod neighborhood of z;; such that ;s
converges to Yook as @ — 00. As in Case One, by the work of Wolf and
Minsky ([Wol91, Min92]), if ¢ is sufficiently large, a small neighborhood
of vix in Ei /+v/Area E; maps to a region in 7; = H? close to an ideal
triangle A;; in a large compact subset. Since R;; and R ; contain
no singular points in their interiors, we may assume that the geodesic
¢; is a unique common boundary edge of A; 1, A;a, Ajs, Aj 4.

Let v;, be the ideal vertex of A, which is not an endpoint of lz
for k = 1,2,3,4. Then, since the hyperbolic metric stretches in the
horizontal direction and shrinks in the vertical direction of E; (§3.7),
the distance between the projections of v;5 and v;3 to lz diverges to
infinity.
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FIGURE 6. Z(u;,¥;) is small for large i.

Let \; be the geodesic in 7; fellow travels with h;(;). The boundary
circle 07; = S' with the four points V;1, V1,2, V; 3, Via Temoved consists
of four circular arcs. Then, one endpoint of ); is in the circular arc
between v;; and v;2, and the other endpoint is in the circular arc
between v; 3 and v; 4. Since those circular arcs contain the endpoints of
l;, the divergence of distance above implies Z, (EZ, Ai) > 0asi — o
(Figure 6).

Suppose that another leaf p’ of Lo is sufficiently close to p in a large
compact subset containing the intersection point p., and the rectangles
Ro1, and Ry o in E.. Let A, be the leaf of L; corresponding to p'.
Then, similarly, an endpoint of )] is in the circular arc between v; ; and
v; 2 and the other endpoint is in the circular arc between v; 3 and v; 4
for sufficiently larege i. Therefore, by the divergence of the distance
between the projections, Zz (¢;, \}) — 0 as i — oo.

Since my, is a closed curve on E.,, by compactness, we see that
A;Z(g“le) — 0 as 1 — oo. [

By Proposition 7.4, Z.,(L;,m;) — Oasi — oo. Let p; = br(1;): m(S) —
PSL,C. Then, since the angle between L; and m; goest to zero, the ra-
tio of length  m; and the translation length of p;(a) converges to one
as i — oo ([Babl5, Proposition 4.1]). Thus by (7;) converge to [V] in
the Morgan-Shalen compactification.
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8. FRAMED CHARACTER VARIETIES ALONG LOOPS

We have analyzed the real-analytic embedding by : T — X defined
for an arbitrary measured lamination L € ML. As T is regarded
as the Fricke space, a component of the real slice of the character
variety X, one can certainly extend by, to a holomorphic mapping from
a neighborhood of T in X into X. However, it does not extend to the
entire character variety X for multiple reasons. In particular, for a
representation p: m1(S) — PSLyC, if there is no p-equivariant pleated
surface in H? realizing the measured lamination L, then the bending
the representation along L does not make sense.

For instance, if a representation p: m(S) — PSLyC takes a loop
¢ with weight w on S to a parabolic element, then there is no p-
equivariant pleated surface realizing /. Suppose in addition that the
restriction of p to each component of S\ ¢ is non-elementary (which
generically holds true). Then, if a sequence of representations p; real-
izing ¢ converges to p, then the bending of p; along ¢ by angle w must
diverges in X as ¢ — oo.

Therefore, in this section, we modify the character variety X and
obtain a closed complex-analytic set, which will be a domain of the
complexified bending map.

For a surface with punctures, Fock and Goncharov introduced a
framing of a surface group representation ([FG06]). Their framing as-
signs a fixed point of peripheral holonomy around each puncture. In
fact, this framing was useful for describing the deformation space of
CP!-structures on a surface with punctures via their framed holonomy
representations ([AB20, GM21, Bab25]).

In this paper, we introduce a certain framing along loops which as-
signs a pair of distinct fixed points of their holonomy. Such framings
will be used to determine the axes for bending deformation even when
the holonomy along loops is trivial.

8.1. Framing of Representations along a loop. For simplicity, we
first discuss the modification in the case that the bending lamination
is a single loop. Let R be the space of representations m; (S) — PSLy,C
(without any equivalence relation). Then R is an affine algebraic vari-
ety: Namely, pick a presentation of the fundamental group m(.S), for
instance

7T1(S) = <a1,b1, ce ,(lg,bg | H?:l[ai,bz-] >

Since PSLy(C) embeds into GL3(C) by the adjoint representation, PSLy(C)
is a complex affine Lie group sitting in C°. Then, by the embedding
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R — (C%)% defined by
p = (plar), p(b1), ..., plag), p(by)) € (C*)%,

R has an affine algebraic structure on cut by the equation corresponding
to the relator 117", [a;, b;].

Let ¢ be a simple closed curve on S. Let I'y be the set of elements in
m1(S) whose free homotopy classes are the homotopy class of ¢ on S;
clearly, elements in A are conjugate to each other by elements in 7 (.5).

Pick an element a, € T'y. Let p: m(S) — PSLyC be a homomor-
phism. Suppose that p(ay) is not a parabolic (but it can be the iden-
tity). Then, there is an ordered pair (u,v) of distinct points w,v on
CP! fixed by ay, pointwise. We can equivariantly extend a pair (u,v)
to pairs (u,,v,) for all representatives v € I'y so that 7 fixes u., and v,
in CP'. Such an equivariant assignment (u,,v,),er, of ordered fixed
points of « is called a framing of p along ¢. By abuse of notation, we
denote this equivariant framing {(w.,v)}yer,, by (u, v), since it is de-
termined by the initial choice (u,v) for a,. We call the triple (p,u,v)
a framed representation. We, later, utilize the equivariant framing to
produce the equivariant bending axes (§9.2). Let

R, = {(p, u,v) € R x (CPY)? | pa)u = u, p(oy)v = v, u # v}.

Then Ry is a closed analytic subset of R x (CP! x CP!\ D), where D
is the diagonal {(z, z) | z € CP'}. Note that if (p,u,v) € Ry, then the
p(ay) can not be a parabolic element, since u, v are distinct fixed points
of p(ay). On the other hand, p(ay) can be either hyperbolic, elliptic,
or the identity.

Let G, be the subgroup of the mapping class group of S which pre-
serves the loop ¢. Clearly, G, acts on R, by marking change.

We now assume that the loop ¢ has a weight in R-y. Suppose, first,
that the weight w of the loop £ is not equal to m modulo 27. Fix any
complex number w € C with |w| > 1. Then, given (u,v) € CP! x CP!
with u # v, there is a unique hyperbolic element 7,,., € PSLsC,
such that u is the repelling fixed point, v is the attracting fixed point
of Yuvw and that v,,. can be conjugated to the hyperbolic element
z — wz by an element of PSLyC. Clearly, this mapping (u,v)
Yuww 18 @ biholomorphic mapping onto its image. Then, (p,u,v) € R,
biholomorphically corresponds to a unique element (p,Yypw) of R x
PSL,C. Thus R, — R x PSL,C is a biholomorphic map onto its
image. Since PSL,C 2 SO3(C) C C?, we see that Ry is biholomorphic
to a closed analytic set in a complex vector space of finite dimension.
(It is closed, since if (u,v) € (CP')? \ A converges to a point in the
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diagonal A, then 7, ,,, must leaves every compact subset of PSL,C.)
Therefore R, is also a Stein space, as it is a closed analytic subset of a
Stein space.

The theory of categorical quotients of Stein manifolds has been de-
veloped analogously to GIT-quotients of affine algebraic varieties (see
[Sno82]). Let X, be the categorical quotient (Stein quotient) R, |/
PSL,C, which is again Stein. In this quotient, two framed representa-
tions (p1,u1,v1) and (pg, us,v9) in R, are identified if and only if ev-
ery PSLyC-invariant analytic function f on R, takes the same value at
(p1,u1,v1) and (pg, ug, v9); see [Sno82; §3]. We denote, by [p, u,v] € Xy,
the equivalence class of (p, u,v).

Next suppose that ¢ has weight m modulo 27. In this case, the
ordering of the framing (u,v) will not affect the complexified bending
map, and thus we take a slightly stronger quotient. Then, let v, , be the
elliptic element of angle 7 with the axes connecting v and v. Let R;/Z
be the quotient of R, by the Zs-action which switches the ordering of
the framing, namely, given by (p,u,v) — (p,v,u). Consider the map
Ry/Zy — R x PSLyC defined by (p, u,v) — (p, Yup). Thus Ry/Zs is
biholomorphic to a closed analytic set in R x PSL,C. Similarly, we let
X, be the Stein quotient (Ry/Zs) /) PSLyC. The action of G, on Ry
descends to an action on X,.

8.1.1. Coordinates for the quotient space of representations framed along
a single loop. We defined the Stein space X, as a Stein quotient. In
this section, we indeed realize X, as an analytic set in an affine space by
identifying it with a subset of a PSLyC-character variety X(m(S) * Z)
of m(S) *Z. Recall that, for (p, u,v) € Ry, the element 7, ,,, € PSLyC
is a certain hyperbolic element if the weight of the loop ¢ is not equal
to m modulo 27 and a certain elliptic element of angle m otherwise.

Given (p,u,v) € Ry, let p = pyupw be the homomorphism from the
free product m(S) * Z to PSLyC, such that every v € m(S) maps to
p(7) and 1 € Z maps to v,». Then, with respect to the PSLyC-action
on Ry, we clearly have the following.

Lemma 8.1. (1) Suppose that the weight of ¢ is not equal to w
modulo 2m. Then (p1,uy,v1) and (pa,usz,vs) are identified by
an element of PSLoC of and only if p1 and py are conjugate by
PSL,C.

(2) Suppose that the weight of ¢ is equal to m modulo 2w. Then
(p1,u1,v1) and (pa, ug, va) are identified by an element of PSLyCx
Zy if and only if py and ps are conjugate by PSLoC, where the
Zo-action exchanges the ordering of the framing.
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Let R be the space of representations 7 (S) * Z — PSLyC. Then R
is an affine algebraic variety. Suppose that the weight of ¢ is not equal
to m modulo 2w. We have seen that the mapping R, — R x PSL,C
is a blholomorphlc map onto its image by the mapping (p, u,v) — p
Let R, be this image. Then R, is the closed analytic subset in R
biholomorphic to Ry, and thus in particular it is Stein. Moreover, this
biholomorphism R, — Ry is equivariant with respect to the PSL,C-
action. Thus the Stein space X, = Ry J/ PSLyC is biholomorphic to the
subvariety R, // PSLyC of X(my(S)  Z).

A similar identification holds in the case when ¢ has weight m mod-
ulo 2w. The Stein space R;/Zs biholomorphically maps to its im-
age, denoted by Ry, in R by the mapping (p,u,v) — p. Then X, =
(R¢/7Zs) /| PSLyC is biholomorphic to the Stein space Ry // PSL,C.

Let v € m(S) * Z. Let tr’(y) be the (polynomial) function on Ry
defined by (p,u,v) + tr?p(y). Then tr?(y) is a PSLyC-equivariant
analytic function on Re. Then, by [HP04, Corollary 2.3], such trace
square functions form coordinates of the Stein quotient ﬁ%g /] PSLyC,
and they also form coordinates for X, (22 R, J PSL,C). Therefore we
have the following.

Proposition 8.2. There are finitely many elements y1,7%2,... N in
(S)*Z such that the analytic mapping Ry — CN given by tr? (fyl) tr2(72)
L t12(yw) induces an analytic embedding of X, into CN. Thus tr®(vy;),
r2(v2) ..., tr%(yn) form a coordinate ring.

8.2. Representations framed along a multi-loop. In §8.1, we in-
troduced the space of representations m(S) — PSLy;C framed along
a single (oriented) loop, constructed a quotient space by the PSL,C
action, and realized as an analytic subset of a complex affine space. In
this section, we similarly consider the space of representations framed
along a weighted multiloop, and then construct its Stein quotient by
the action of PSL,C.

Let mq,...m, be non-isotopic essential simple closed curves on S,
and let M be their union m; UmsyU - --Lm,,. Recall that R denotes the
representation variety {m;(S) — PSLsC}. For each i = 1,...,n, pick
a representative a; € m1(S) representing m;. Then, consider the space
Ry of tuples (p, (u;,v;)7 ;) € R x (CP')?" where

e p € R is a homomorphism 7 (S) — PSL,C, and
o u;,v; € CP! are different fixed points of p(a;) fori =1,...,n

As in the case of a single loop, p(«;) are not parabolic elements (but
can be the identity). Then R, is a closed analytic subvariety of R x
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(CP! x CP'\ A)", where A denotes the diagonal as before. Given
(p, (ui,v;);) € Ry, we can equivariantly extend (u;,v;) to the pairs
of fixed points for all representatives of my,...,m, in m(S). We call
this extension a framing of p along the multiloop M.

8.2.1. Framed character varieties. Now we assign a positive number
(weight) to each loop of M. Let p be the number of components m;
of M, such that the weight of m; is m modulo 27. Without loss of
generality, we can assume myq, ..., m, are the loops of M with weight
7w modulo 2w. Then, Z5 acts biholomorphically on Rj; by switching
the ordering of the fixed points of the framing along my, ..., m,. Note
that this Zb-action has no fixed points in Ry;.

Fix a complex number w € C with |w| > 1. As in §8.1.1, let
Yuiwiw € PSLoC be, if the weight of m; is m modulo 2w, then the
elliptic element of angle m whose axis is the geodesic connecting u; to
v;, and otherwise, the hyperbolic element with the repelling fixed point
u; and the attracting fixed point v; such that 7,, ., . is conjugate to the
dilation z — wz. Then, define the mapping Ry, — R x (PSLyC)™ by
(p, (i, v:)"1) = (P, (Yuswiw)i—y). This mapping takes Rys/Z% onto its
image R biholomorphically. Thus Ry, /Z5 is a closed analytic set in
a finite-dimensional complex vector space. Therefore Ry;/Z5 is Stein.
The Lie group PSLyC acts analytically on Ry, /Z5, by conjugation on p.
By this action, we obtain its Stein quotient (Ras/Z5) ) PSLyC =: Xyy.
Thus X, is a Stein space.

The biholomorphic map Ry /Z5 — Ry is equivariant w.r.t. the
PSLyC-action, X, is biholomorphic to the corresponding Stein quo-
tient }%M // PSLQC

We denote, by [p, (u;,v;)], the equivalence class of (p, (u;,v;)) € Ry
in X,s. The subgroup Gy of MCG acts on Rj;, and descends to an
action on X,y.

8.2.2. Coordinates of the quotient space of representations framed along
a multiloop. Let g1, g9, ..., g, be a standard generating set of the free
group F” of rank n, so that there are no relators. Every (p, (u;, v;)",) €
Ry corresponds to a unique representation 7y (.S) x F" — PSL,yC such
that

e v € m(S) maps to p(7y), and

® g; maps to vy, ;. for every i =1,..., n.
By this correspondence, Rj; analytically embed into the space of rep-
resentations m(S5) * F* — PSLyC. As in §8.1.1, by the quotient of the
image Ry, by PSLyC, [HP04, Corollary 2.3] yields the coordinate ring
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Proposition 8.3. There are finitely many elements v1,7vs,...,Yn of
m1(S) *F™, such that tr?(7), ... tr2(yn) form a coordinate ring of Xyr.

8.3. The projection from the framed character variety to the
character variety. In thissubsection, we explain the relation between
the famed character variety Xj; and the original character variety X.
Let X%, be the subvariety of X consisting of representations p: m(S) —
PSL,C, such that at least one loop of M corresponds to a parabolic or
the identity element of PSLyC. Let X%, be the subvariety of X, whose
representations are in X%,. Every representation p: m1(S) — PSLyC in
X\ Xps has 2V choices for a framing along M, where are exactly N is
the number of components of M. Then the projection map from \ X%,
to X\ X4, is a finite holomorphic covering map, and the covering degree
is 2V. Therefore, by the removable singularity theorem (Theorem 3.7),
Xy — X is a C-analytic branched covering map.

9. BENDING A SURFACE GROUP REPRESENTATION INTO PSL,C
INSIDE THE REPRESENTATION SPACE INTO PSL,C x PSL,C

Originally, bending deformation equivariantly bends a totally geo-
desic H? along a measured lamination ([Thu81, EM87]), so that bend-
ing is in one direction and the bent H? is locally convex. Moreover,
one can extend it to an equivariant bending pleated surface along the
pleated locus using bending cocycles ([Bon96]). In both cases, bending
is done along (bi-infinite) geodesics in H? which are embedded in the
pleated surfaces.

In this section, we introduce a certain bending deformation of more
general equivariant surfaces in H3. Using such a more general bending,
define a complex-analytic bending map X,; — X x X which complexifies
the real-analytic bending map T — X.

9.1. A complexification of the Lie group PSL,C regarded as
a real Lie group. We first recall a complexification of PSL,C when
regarded as a real Lie group.

Proposition 9.1 (See Proposition 1.39 in [Zil] for example). Regard
psl,C as a real Lie algebra. Then the complezification of the Lie alge-
bra psl,C is isomorphic to psl,C & (psl,C)* by the mapping given by
(u,0) = (u, Iu) and (0,v) — (v,—1Iv), where (psl,C)* is the complex
conjugate of psloC and I s the complex multiplication of psl,C.
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As we discussed in §16, we regard PSL,C as a real Lie group, and
we complexify PSL,C by

C: PSLQC e PSL2<C X PSLQC
W W )
g ——) 7 7S

where Y* denote the complex conjugate of Y, so that it corresponds
to Proposition 9.1. Then ¢ is holomorphic in the first factor and anti-
holomorphic in the second factor. Thus c is, in particular, a proper real-
analytic embedding of PSL(2, C) into the complex Lie group PSL,C x
PSL,C.

9.2. Bending framed representations. We first define a complex
bending of representations framed along a single loop. Let ¢ be a loop
on S, and we fixed a weight w > 0 of ¢. Fix o € m;(5) representing
0. Let [(p,u,v)] € Xy, where p: m(S) — PSLyC and u,v are distinct
fixed points of p(a). Let (p, p): m(S) — PSLyC x PSL,C denote the
diagonal representation given by v — (p(v), p(7)).

Recall that (u,v) generates a p-equivariant framing f along ¢ and
Ay denotes the subset of m;(S) corresponding to ¢. That is, for every
element v € Ay, an ordered pair (u.,v,) € CP' x CP! of different
fixed points of p(7) is assigned p-equivariantly. Consider the oriented
geodesic ¢, = (u, v,) in H?* connecting u., to v, for all v € A,. Those
equivariant geodesics {g,} will be the axes of the bending.

First, we coherently define the direction of the bending so that bend-
ing is continuously defined on X,. Pick any p-equivariant (topolog-
ical) surface X: S — HB3: For instance, give a triangulation of S,
which induces a m;(S)-invariant triangulation of S; first construct a
p-equivariant > on the one-skeleton of the triangulation on S ; then
equivariantly extend to the interiors of the triangles of S. Let ¢ be the
lift of ¢ to the universal cover S invariant by v € A,. Then, homotope
> in H? so that ¥ takes £ into the bi-infinite geodesic (u, v) connecting
u to v.

We remark that, if p(«) is either an elliptic or the identity element,
then we can not take ¥ to be a pleated surface realizing £. In such a
case, the image of 3(¢) is a compact subset of the bi-infinite geodesic
(u,v) since ¥ is p-equivariant.

Then, for every 6 € R, we can equivariantly bend ¥ along the equi-
variant oriented axes {g,} by angle 6. Then we can accordingly bend
the representation p: m (S) — PSLyC so that the bent surface is equi-
variant via the bent representation. Here the bending direction is given
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FiGURE 7. Bending direction. Left: The orientation of
the loop ¢ determines the rotation side. Middle: The
framing of ¢ and the orientation of H?® determine the
direction of the rotation. Right: Bending deformation is
determiend by the orientation and the framing of /.

by the orientation of the hyperbolic three-space H?® and the oriented
geodesic (u,v). Namely, those orientations determine the orientation of
the plane orthogonal to the geodesic (u,v), and the counter-clockwise
direction is the positive bending direction (Figure 7). Thus, if we re-
verse the order of w and v of the framing (u,v), then the positive
bending direction is reversed. 3

By the orientation of ¢, we decide which side of ¢ is rotated by this
bending (Figure 7 Left).

Then, the representation m1(S) — PSLyC obtained by bending p
by 60 is denoted by beg(p,u,v). We now define a complex bending
map BZ: XZ — X X X by B&w(p,U,U) = (bﬁ,w(pv u, U)vbﬁ,—w(p7uav))'
Note that, in the fast factor and the second factor, the bending p is
equivariantly done along the same axes and by the same angle, but in
the opposite directions (Figure 8).

The bent representation is well-defined up to conjugation by an ele-
ment of PSLyC x PSLyC, and thus By(p, u,v) € X x X is well-defined.
We remark that, if p: m(S) — PSLyC is Fuchsian, then the represen-
tation of By(p,u,v) in the first factor X is the complex conjugate of
that in the second factor.

For a weighted multiloop M on S, we can similarly define the com-
plex bending map Bj;: X3 — X x X as follows. Let my,...,m, be the
weighted loops of M. Pick ~; € m(S) reprersenting m;. Let m; be a +;
invariant lift of m; to the universal cover S. Let [p, (us, v:)™,] € X,
where (u;,v;) be the fixed point of p(v;). Then the oriented geodesic
g; connecting u; to v;, equivariantly extends to a system of bending
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Positive-bending Negative bending

FiGURE 8. Bending in opposite directions in different factors.

axes corresponding to all lifts of m; to S. Find a p-equivariant surface
¥: S — H? such that 7; maps into its corresponding oriented axes g;.

Let 0y, ..., 0, bereal numbers. We can similarly bend the p-equivariant
surface ¥: S — H? along the oriented geodesics gy, . .., g, and their or-
bit geodesics by angles 6., ..., 0,, respectively, in the positive bending
direction (defined by the orientation of H? and the orientations of the
geodesics). Since we bend ¥ in an equivariant manner, the new bent
surface t: S — H3 is also equivariant via a unique representation.
We denote the bent representation by

Dmy00) (s (s vi)iy) = by (p, (wi, vi)iny) : mi(S) — PSLoC.
Similarly, we can bend ¥ along the same axes by the same angles but in

opposite directions, and we obtain another bent surface ¥~ : S — H?3.
Then X ~is also equivariant via a unique representation

b]\_/l(p7 (ui7 ,Ui)?:l) = b(mi,—wi)(p’ (ui7 vi)?:l) - T (S) — PSL,C.
By combining those two bending of framed representations, we obtain
the bending map Bj;: Xy — X X X by
BM(p’ (uia vi)?:l) = (b(mi/wi)(p7 (ui7 vi)?:l)? b(mh*wi)i (:07 (uiv Ui)?:l))'
Then the mapping S — H? x H? defined by z — (X*(z), % (z)) is
equivariant via By (p, (u;, v;)Py): m(S) — PSLy x PSL,C.
9.3. Equivariant property.

Lemma 9.2. Let M be a weighted multiloop on S. Let Gy be the sub-
group of the mapping class group MCG(S), which preserves M. Then
By Xy — X X X 1s Gyr-equivariant.

Proof. Recall that G, acts on Xj; by marking change. Therefore
D)t Xar — X and b(y,,—w,): Xy — X are both Gy-equivariant,
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since the equivariant construction of those mappings respect the G-
action. Hence B, is also Gj-equivariant. U

9.4. Support planes and spaces. For a marked hyperbolic surface
7 homeomorphic to S and a measured lamination L on 7, we have a
71(S)-equivariant bending map 3, r: H> — H? which is “locally con-
vex”. Letting L be the m;(S)-invariant measured lamination on the
universal cover H? of 7. Then, for each component P of H?\ L, the
mapping 3, embeds P into a totally geodesic hyperbolic plane P in
H?. Such a hyperbolic plane is a support plane for 31 .. (See [EMS87]
for more general support planes.) On the other hand, this equivariant
system {Hp}p of totally geodesic hyperbolic planes, indexed by the
components, determines the original bending map b, 1 : H* — H?.

In §9.2, we bend framed representations n = [p, (u;,v;)] in Xy
along a weighted multiloop M, and obtained a representation m(S) —
PSL,C x PSLyC. As the symmetric space associated with PSLyC x
PSL,C is the product H3 x H?, we consider a system of supporting hyper-
bolic three-spaces in the product H? x H® as follows. For every compo-
nent P of S\ M, the restriction of ©* to P coincides with the restriction
of ¥~ to P composed with an element v of PSLyC. Therefore, the re-
striction of the surface (X, %7): S — H? x H? to P is contained in a
totally geodesic copy Hp of H? given by {(z,vz) | x € H?} C H? x H3.

Hence, we obtain an equivariant collection of supporting hyperbolic
3-spaces Hp for all components P of S\ M. We call this collection
{Hp}p the (equivariant) bending support system of By, at 1. Let Gp
denote the subgroup of 71 (S) consisting of the elements preserving the
P. Then Hp is preserved by the restriction of the bent representation

BM(p, (Ui,Ui)?zl)i Wl(S) — PSLQC X PSLQC

to the subgroup Gp.

Suppose that P and P’ are adjacent components of S \]\7[ across a lift
m of a loop m of M. Let w be the weight of m. Then, in H?® x H3, the
support spaces Hp and Hp: intersect in a geodesic at angle w (complex
bending axis), which corresponds to the bending axis in H? induced by
the framing in the definition of By, (Figure 9). In particular, if the
weight of m is a multiple of 7, then Hp = Hp/. Indeed, for an elliptic
element e € PSL,C with rotation angle 7, we have

{(z,7) eM* x B’ | 2 € B’} = {(ex,e'x) € H’ x H® | x € H?)}.

Definition 9.3. Let &: m(S) — PSLyC x PSLsC be a representation.
A support system of & with respect to M is an equivariant collection
of totally geodesic hyperbolic spaces Hp in H? x H? for all components



36 SHINPEI BABA
H3
Hp
H3
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FIGURE 9. The intersection angle w of totally geodesic
copies Hp, Hp of H? in H? x H3.

P of S \ M such that the restriction of § to Gp preserves Hp for all
components P of S\ M.

In general, a representation m(S) — PSLyC x PSLyC may have no
support system or many support systems. On the other hand, we will
prove that the support system is uniquely determined by By, (p, (us, v;)P;)
in most cases; see Lemma 10.2.

10. COMPLEX BENDING MAPS ARE ALMOST INJECTIVE

In this section, we prove the injectivity of the complex bending map
B Xy — X X X when restricted to the complement of certain sub-
varieties.

Let M be a weighted multiloop on S, and let n be the number of
loops of M. Let X%, be the subset of X, consisting of the framed
representations (p, (u;, v;) ;) such that tr? p(m) = 4 for, at least, one
loop m of M, i.e. p(m) is either a parabolic element or the identity.
As it is an algebraic equation, X}, is an analytic subvariety of X ;.

Let X} be the subset consisting of the framed representations (p, u, v)
such that, for some component F' of S\ M, the restriction of p to m (F)
is weakly reducible, i.e. the image is, up to a finite index, reducible.

Given a complex Lie subgroup G of PSLyC, the set of all represen-
tations p: m(S) — G gives a subvariety of X. The reducible repre-
sentations m;(S) — PSLyC form a subvariety of X. A representation
p: m(S) — PSLyC is weakly reducible but not reducible, if and only if
Im p preserves a pair of points on CP! but it does not fix the pair point-
wise. (If Tm p preserves a triple of distinct points on CP!, then Im p is
a finite group.) Thus, the set of weakly reducible representations forms
a subvariety of X.

Thus X7} is also an analytic subset of X;;. We prove that the injec-
tivity of the complex bending map holds in the complement of those
analytic subsets.
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Theorem 10.1. Let M be a weighted oriented multiloop on S. Then,
the complex bending map By Xar — X X X is injective on X\ (X5, U
X))

We first show the uniqueness of the support systems of the complex
bending.

Lemma 10.2. Letn € X \(X},UXY,). Fiz a representative §: m1(S) —
PSLyC x PSLyC of By(n). Let P be a component of S\ M. Then,
the support space Hp of € is the unique totally geodesic copy of H? in

H? x H? which contains the bending axes of the boundary components
of P.

Proof. As n ¢ XTI the bending axes of the boundary components
of P are uniquely determined by £. Let Gp be the subgroup of m;(S5)
preserving P. Since n & X{;, the restriction n|Gp is strongly irreducible
(i.e. not weakly reducible). Therefore one can prove that there is a
unique totally geodesic copy of H? in H? x H?, containing those bending
axes, as follows:

Set Byr(n) = (m,m2): m1(S) = PSLeCxPSLyC, where ny,m2: m(S) —
PSL,C. Then, since ;|G p is strongly irreducible, the PSLy;C-action on
n;|/Gp by conjugation has the trivial stabilizer for each ¢ = 1,2. Sup-
pose that there are two totally geodesic copies {(z,v1z) | * € H3}
and {(z,72r) | ¥ € H3} of H® in H3 x H? preserved by 7;(Gp), where
v1,7% € PSLyC. By the definition of the complexified bending map
By, we have 7177171_1 = 12 and 727]172_1 = 19 when restricted to Gp.
Combining those equations, we have 7, 'v17:7; *v2 = m on Gp. Hence
71 = 72, and the two copies of H? coincide. U

Lemma 10.2 immediately implies the following.

Corollary 10.3. Suppose that m,ns € X \(X5,UXY) satisfy By () =
Buy(n2) € X x X. Let &: m1(S) — PSLyC x PSLsC be a representative
of Byr(m) = Bar(n2). Then, the &-equivariant bending support system
of By at 1 equivariantly coincides with that at ns.

Proof of Theorem 10.1. Suppose that 7,72 € Xy \ (X5, U X};) map
to the same representation m1(S) — PSLyC x PSLyC in X x X by Byy.
Then, let &: m(S) — PSLyC x PSLyC be a representative of their
image.

By Corollary 10.3, the support system of the bending of n; equiv-
ariantly coincides with that of 7,. Therefore n; and 7y are obtained
by unbending ¢ exactly in the same manner, and we obtain n; = 1, as
follows:
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Let {Hp}p denote the support planes of &, where P varies over
all components P of S \ M. Recall that, if P and P’ are adjacent
components of S \ M along a lift of a loop m of M, then Hp and
H}, intersect in a geodesic by the angle equal to the weight of m.
Take an abstract union UpHp of the support 3-spaces Hp obtained
by gluing adjacent support spaces along the bending geodesic axes.
Then we have an ¢-equivariant mapping o: Up Hp — H? x H? by the
inclusions Hp C H? x H?. Note that, letting Gp be the subgroup of
71(S) preserving P in S, clearly £(Gp) preserves Hp.

Set m = (p1, (w14, v1,)) and n2 = (p1, (ug4,v2,)). Then, unbending
o by —M, we have an equivariant mapping o(—M): Up Hp — H3,
and ¢ is deformed to an representation of m(S) — PSLyC. This un-
bent representation must coincide with p; and p, up to conjugation by
PSL,C, due to the definition of By;. Moreover, since the endpoints of
the bending axes correspond to the framing, we see that 1, = n,.

10.1. A non-injective example. We shall see, in an example, the
non-injectivity of a complex bending map. Let m be a separating loop
on S with some positive weight. Pick a connected subsurface F' of S
bounded by m. Fix a homomorphism p: m(S) — PSL,C such that
p|lm F' is the trivial representation. Then, as p(m) is in particular the
identity, any pair (u,v) € CP! x CP! is a framing of p along m.

Lemma 10.4. Fiz an arbitrary orientation of m and an arbitrary
weight on m. Then B,,(p, (u,v)) = (p,p) € X x X for all framings
(u,v) along m. In particular, B,, is not injective and non-proper.

Proof. Pick a loop ¢ on S which essentially intersects m exactly in
two points (see Figure 10). We can assume, without loss of generality,
that the base point of m1(S) is on m. Let v be an element of 7 (S5)
corresponding to ¢. Then homotope ¢ so that ¢ is a composition of a
loop ¢, on S\ F and a loop ¢y on F. Since p|m;(F') is trivial, we have
Bnn(ve) = Bmn(ve,). We can take a generating set of 7 (.S) consisting
of loops in S\ F' and loops in F. Therefore B, (p, (u,v)) = (p,p) in
X X X.

In particular, as (u,v) may leave every compact in (CP')? minus
the diagonal, B,,(p, (u,v)) = (p, p) remains true. Therefore B, is non-
proper. [

11. COMPLEX BENDING MAPS ARE ALMOST PROPER

In this section, we prove the properness of the complex bending map,
similarly to the injectivity in §10, in the complement of certain proper
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FiGURE 10. A loop / essentialy intersects a bending loop
m in two points.

subvarieties. Similarly to X%, we let X%, be the subvariety of the
PSLyC-character variety X consisting of representations £: m(S) —
PSL,C such that, for, at least, one loop m of M, its holonomy &(m)
is parabolic or the identity in PSL,C. Similarly to X}, we let X}, be
the subvariety of X such that, consisting of representations £: m(S) —
PSL,C such that, for at least one component F of S\ M, £|F is weakly
reducible.

Theorem 11.1. The restriction of By to Xar\ (X5, UX})) is a proper
mapping to (X \ (X4, UXY))%

Proof. Let m; € Xy \ (X1, U X¥) be a sequence such that By(n;)
converges to a representation in (X \ (X, NXY,))? as i — oco. It suffices
to show that n; also converges in Xy, \ (X1 U X¥).

Pick a representative &;: m1(S) — PSLyC x PSLyC of By (n;) so that
& converges to &: m(S) — PSLyC x PSL,C, so that its equivalence
class € is in (X\ (X4, NXY,))?. Let {H; p} be the &-equivariant bending
support system of the complex bending of 7; along M, where P varies
over all connected components of S\ M. By the hypothesis, the restric-
tion of £ to each component of S\ M is strongly irreducible. Therefore,
by Lemma 10.2, the &;-equivariant support system {H; p} converges to
a unique support system {Hp} of £ as i — oo.

We also show that the bending axes converge.

Claim 11.2. The &;-equivariant axis system for bending n; along M in
H? x H? converges to a &-equivariant axis system as i — 0o.

Proof. Let m be a loop of M, and let 7 be a component of M which
descends to m. Let a € m1(S) denote the element preserving m such
that the free homotopy class of o is m. Let P, () denote the adjacent
components of S \ M separated by m. Then H; p N H,; g is the complex
bending axis ¢; 5 for m in H? x H3, and also the axis of &(a). The
angle of the intersection of H; p and H; ¢ along the axis is equal to the
weight of m. As &;(m) converges to a non-parabolic element £(m), the
axis H; p N H; o converges to the axis of £(a) as i — oo. O



40 SHINPEI BABA

For each i = 1,2,..., let {g;»} denote the &-equivariant bending
axis system in H?® x H3 of By, at ;. Note that n; is obtained by
unbending ¢; along the axes g; 5 by the angles given by the weights M.
By the convergence, similarly unbending the limit & in (X'\ (X4, UXY))?
along the limit bending axis system by the angles given by M, we obtain
the limit of 7; as i — co. As £ is in (X \ (X4, U X¥))?, thus lim; . 7;
is contained in X, \ (X7, U X}). [111]

12. ANALYTICITY OF COMPLEX BENDING MAPS

Theorem 12.1. For every weighted oriented multiloop M on S, the
bending map Byr: Xy — X X X is complex analytic.

Proof. Recall that X%, is the subvariety of the complex-analytic variety
X consisting of representations such that at least one loop of M is
parabolic, and also that X} is the subset of Xj; consisting of repre-
sentations 1 such that the restriction of 7 to a component of S\ M
is weakly reducible. We have shown that the restriction of By, to
X\ X5, U XY is injective (Theorem 10.1). We first prove the asser-
tion of Theorem 12.1 for almost everywhere.

Lemma 12.2. The restriction of By to Xp \ (X5, U X)) is complex
analytic.

Proof. Recall that R, is the space of representations framed along M,
and that Ry J/ PSLyC = X,,. Let R%, be the subset of Ry, consisting
of framed representations, such that at least one loop of M is parabolic
(or the identity). Let n = (p, (u;, v;)",) be an arbitrary framed repre-
sentation in Ry \ (Rh;UR},), where n is the number of the loops of M.
As the closed subvariety Rh, U R}, is PSLyC-invariant, we can take a
PSLyC-invariant open neighborhood U of n in Ry, \ (RY;URY,). Then,
for every framed representation ¢ € U, the stabilizer of ( in PSL,C is a
discrete group, since ( is not in R}, Thus, if we take U appropriately,
U is holomorphically a product of PSLy;C and an open disk D. Let W
be the image of U in Xj;. Then, we can biholomorphically identify W
in X, with D in U and take a holomorphic section s: W — U.

Pick any component of Q of S \ M, where M is the inverse image of
Min S. Let G be the stabilizer of @ in m(5). By C-bending along
M (normalizing so that the restriction to G is unchanged), we obtain
a holomorphic mapping s(W) — (R\ Rh, UR},)? which is a lift of the
restriction of By, to W. Then, for every ¢ € s(W), its image by this
mapping is a pair of strongly irreducible representations in R. Since
W is isomorphic to s(W) and the quotient map from R x R to X x X
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is algebraic, the analyticity of s(W) — (R \ R, U R},)? implies the
analyticity of By, at the equivalent class of n in X;. U

By Lemma 12.2, X,/ \ (X,UX}) — (AXEUXY) x (XA\XL,UXY,) is an
injective analytic mapping. Since X}, UX}; is an analytic subvariety of
X, by the removable singularity theorem (Theorem 3.7), the mapping
By Xy — X X X is analytic.

13. THE REAL-BENDING MAP SITS IN THE COMPLEX-BENDING MAP

In this section, we observe that the complex-analytic bending map
By Xy — X X X is a natural extension of the real-analytic bending
map byr: T — X. Recall that A* is the twisted diagonal {(p, p*) | p €
X)} and ¢: X — A* C X x X is the embedding given by p — (p, p*).

The forgetful map X,; — X restricts to an analytic covering map
X \ X3y — X\ X4, of degree 2", where n is the number of loops of
M. As the base surface S is oriented, we let T be the Teichmiiller
space of S is identified with a unique component of the real slice of
X. Since each loop of M is oriented, there is a unique lift of T to Xj;:
Namely, given a discrete faithful representation p: m(S) — PSL(2,R)
in T, for each (oriented) loop m of M, assign the reprelling fixed point
of p(m) € PSLyC in CP! and the attacting fixed point of p(m) in
this order as its framing. Let tp;: T — X, denote this real-analytic
embedding.

Proposition 13.1. Let M be a weighted multiloop on S. Then, the
restriction of By to T s a real-analytic embedding into the twisted
diagonal A* of X x X, such that By o tyy coincides with ) o by : T —
X X X.

Proof. Let b},: T — X denote the complex conjugate of by;: T — X, i.e.
the Fuchsian representation p: m1(S) — PSLyR maps to the mapping
taking v € m1(S) to (ba(p)(7))* € PSLyC. When applying the complex
bending B, a representation into PSL,C is bent in opposite directions
in the first and the second factor of X x X (§9.2). Therefore, when
applying Bj; to a Fuchsian representation, the representation in the
second factor is the complex conjugate of the representation in the first
factor. Therefore By o tpr(p) is (bar(p), by, (p)) for p € T, as desired.
The analyticity of the mapping was already proven in Theorem 12.1.

O



42 SHINPEI BABA

14. PROPERNESS OF THE COMPLEX BENDING MAP ALONG A
NON-SEPARATING LOOP

Theorem 14.1. Let ¢ be a non-separating oriented loop on S with
weight not equal to ™ modulo 2m. Then, the complexr bending map
By: Xy — X X X is proper.

Corollary 14.2. The tmage of By is a closed analytic set in X X X.

Remark 14.3. By Theorem /.1, the properness of the complex bending
map By fails if M contains a loop of weight m modulo 2w. Nonetheless,
it is still plausible that the image of By is a closed analytic subset of
X X X for every weighted multiloop M on S as long as the weight of
each loop is not equal to m modulo 2.

Pick 6 € (0, 7). Let
Ey = {(7,e) € PSLyC x PSL,C | e is elliptic of rotation angle 6}.

Clearly, for every (v,e) € &g, tr?e is a fixed constant in (0,4) only
depending on 6. Thus FEy is a smooth affine algebraic variety. Then
PSL,;C acts on €y by conjugating both parameters v and e simultane-
ously. Let &y be the GIT-quotient Ey J/ PSLyC. Then &, is an affine
algebraic variety. Then the following holds.

Lemma 14.4. The analytic mapping Ey J| PSLyC — C? defined by
o: (v, €) = (tr?~,tr2 ve) is a proper mapping.

Proof. The map SLyCxSLyC /SLyC — C? given by (v, €) — (tr,tre, trye)
is a biholomorphic map (see for example, [Gol09]).

Let (a4, e;) be a sequence in €y C PSLyC x PSLy,C J/ PSLyC which
leaves every compact as i — oo. Pick any lift (&;, é;) € SLyC x SLyC //
SLsC of (o, e;) for each i. Then (&, é;) also leaves every compact set
as ¢ — 00.

By a basic trace identity, we have tr a;é;+tr a;;e; v'— tr &, tré;. There-
fore, since tr ¢; is a fixed non-zero constant, up to a subsequence, either
tr &; or tr a;€; diverges to co as i — oco. Thus the image ¢(ay, ¢;) leaves
every compact in C? as i — oo. U

Since /¢ is non-separating, we can pick a generating set {v1,..., 724}
of m(S) such that 71, ..., 7, correspond to loops on S intersecting ¢
exactly once. Let n; = [p;, (u;,v;)] € X¢ be a sequence which leaves
every compact in X,.

Let w(¢) denote the weight of ¢, and let e; € PSLyC be the elliptic
element by angle w(¢) along the geodesic from w; to v;. Then we can
normalize (p;, (u;,v;)), by an element of PSL,C, so that e; € PSL,C is
independent of 7; let e denote this elliptic element in PSLyC.
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As n; leaves every compact and 7, ...,7, form a generating set of
m1(S), then there is k € {1,...,n} such that, up to a subsequence,
pi(7k) leaves every compact subset as ¢ — oc.

Then, since v intersects ¢ exactly at once, by the properness of
Lemma 14.4, the image By(n;)y: also leaves every compact set as i —
00. (The hypothesis of the weight of ¢ not being 7 corresponding to
the rotation angle of e not being 7 in Lemma 14.4.) This immediately
implies the properness of By, and completes the proof of Theorem 14.1.

15. SYMPLECTIC PROPERTY

In this section, we prove the symplectic property of the bending
maps. Complex Fenchel-Nielsen coordinates on the quasi-Fuchsian
space are introduced by [Kou94] and [Tan94], and the coordinates
holomorphically extend to most part of the character variety X. We
explicitly explain the subset of X where the complex Fenchel-Nielsen
coordinates are defined.

Let M be a maximal multiloop on S. Then M contains 3g — 3 loops,
where g is the genus of S. Let X%, be the (Euclidean) open full-measure
subset of X consisting of p: m(S) — PSLyC such that

e all loops of M are hyperbolic, and
e for each component P of S\ M, the restriction of p to m(P) is
irreducible.

Pick (real) Fenchel-Nielsen coordinates on the Teichmiiller-Fricke
space T with respect to M (see [FM12] for example). Let C, = {z €
C | Rez > 0}. For each p: m(S) — PSL,C in X%, let ¢; € C, /27IZ
be the complex translation length of p(m;): When we ¢; = z; + Iy;
in real and imaginary coordinates, x; € R is the (real) translation
length and the y; € R is the rotation angle of the screw motion of the
hyperbolic element p(m;).

Clearly, for real representations m1(S) — PSLsR, their length pa-
rameters (1, ..., 03,3 are all real numbers. Let 7, € C/2wIZ be the
twist coordinate along ¢; which complexifies the Fenchel-Nielsen twist
coordinate, so that the imaginary direction is the direction of bending
deformation (where I denotes the imaginary unit). Similarly, for real
representations m(S) — PSLoR, their twist parameters 7,..., 73,3
are all real numbers.

Lemma 15.1. X%, is a (Zariski) open dense subset of X and biholomor-
phic to (C4 /2w IZ)*9 3 @(C/2mIZ)%973 by (€1, la, ..., lag—3,T1, T2, - ., T39—3)-

Proof. The mapping X%, — (C, /271Z)33 @(C/271Z)393 is a holo-
morphic mapping, as the coordinates are given by traces of loops.
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Given a pair of pants P, the irreducible representations 7 (P) are
algebraically parametrized by the holonomy traces of the three bound-
ary components of P ([Vog89] [Fri96]; see also [Gol09]). Now let P be
a component of S\ M. Then p € X%, the p|m;(P) is parametrized by
the complex length coordinates of the boundary components of P.

For a loop m; of M, let F' be the component of S\ (M \ ¢) which
contains M. Then the representation on m(F) — PSLyC is deter-
mined by the twisting parameter 7; of m; and the length parameters
¢; of m; and the boundary loops of F. We see that the mapping is
biholomorphic. O

Due to Platis [Pla01] and Goldman [Gol04], the complex Fenchel-
Nielsen coordinates yield Darboux coordinates for Goldman’s complex
symplectic structure.

we = SP0d0S A dts

(see Loustau [Loul5] for details). To be concrete and self-contained,
we first explain the Darboux coordinates on X%,.

Lemma 15.2. Let M = m;Umol---Umsgg_3 be a maximal multiloop
on S. Then wg = S °d(S, A dtS, on X%,

Proof. The symplectic structure wg is a complex symplectic structure,
so that the 2-form changes holomorphically in X. On the Fricke-
Teichmiiller space space, wg|T is given by Ed@%i A dtﬁi. Therefore,
since the complex Fenchel-Nielsen coordinates are holomorphic coordi-
nates (Lemma 15.1), wg = Xdl5, Adts, on X5, O

Then these Darboux coordinates on X%, give the symplectic property
of the real bending map.

Proposition 15.3. If M s a weighted multiloop on S, then by;: T — X
1s a symplectic embedding.

Proof. As M may not be maximal, we pick a maximal multiloop M’
on S containing M. Set my,mo, ..., ms,_3 to be the loops of M'. Let
Wy, Ws, ... w3e—3 € R>o be the weight of the loops of M’ (so that, if ¢; is
not a loop of the original multiloop M, then w; = 0). The Teichmiiller-
Fricke space T is a component of the real slice of X%,. In the Darboux
coordinates of Lemma 15.2, the real bending map by, : T — X extends
to by - X%, — X" by the translation

(61, ce ,£39_3,7'1, cee ,7'39_3) — (61, cee ,539_3,7'1+w1], cee ,7'39_3+w39_31).

As it is a translation in the Darboux coordinates, by, : T — X is clearly
a symplectic embedding. 0
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By the limiting argument, all real bending maps are symplectic.

Theorem 15.4. For every L € ML, by,: T — X s a symplectic em-
bedding w.r.t. Goldman’s symplectic structure.

Proof. Let £; be a sequence of weighted loops which converges to L in
ML as i — oco. (Recall that by, : T — X is a real-analytic embedding.)
For each 7 € T, the tangent space of b,, at 7 converges to the tangent
space of by, at 7. By Proposition 15.3, by,: T — X is a symplectic
embedding for each ¢+ = 1,2,.... Therefore, by the continuity of the
symplectic structure wg, the limit by, is also symplectic at 7. 0

15.1. Symplectic property for complex bending map. As X, \
X% — X\ X4, is an analytic covering map, X, \ X%, has a pull-back
symplectic structure.

A representation p: m(S) — PSLyC is reductive, if the Zariski-
closure of the image Im p C PSLyC is reductive. (That is, the maximal
normal unipotent subgroup of Im p is the trivial group.) Then a rep-
resentation p: m1(S) — PSLyC is non-reductive, if and only if Im p is
conjugate to a subgroup consisting of upper triangular matrices which
contains at least one (non-identity) parabolic element. Let X7}, be the
set of framed representations n = [p, (u;,v;)] of Xy, such that p is a
reductive representation other than the trivial representation.

Theorem 15.5. The restriction of By to X5, \ X%, is a complex sym-
plectic map.

Proof. We show that the restriction of bﬁ: X}, — X is symplectic on
X" . For every framed representation in R}, its PSLyC-orbit is a closed
subset of Ry, and biholomorphic to PSLyC. Therefore, the reductive
part X7j, is contained in the smooth part of the framed character variety
X

Recall that X%, is the subset of character variety X consisting of
71(S) — PSLyC such that every loop of M maps to a hyperbolic ele-
ment by p and for every component I of S\ M, the restriction of p to
the fundamental group of F' is irreducible.

Let X!, denote the subset of X7, consisting of framed representations
whose representations are in X%,. Then X is a (Euclidean) open
dense full-measure subset of X,;. The complex bending map B, is
symplectic on X% by Lemma 15.2. Therefore, by continuity, By, is
symplectic on X7, \ X%,. O
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N

b
XA\ X X\ X X

EN‘ jb;/[xbxf

X X X

FiGUure 11. A local commutative diagram describing
the complexification of the real bending map.

16. THE GENERAL COMPLEX BENDING VARIETY

Let L be a non-empty measured lamination on S. Let ¢; be a se-
quence of non-separating weighted oriented loops on S converging to
L as i — oo. By Corollary 14.2, the image of By,: Xy, = X x X is a
closed complex-analyticsubset of X x X.

Theorem 16.1. The analytic set Im B,, converges, up to a subse-
quence, to a closed complex-analytic subset of X X X as i — 0.

Proof. By Theorem 15.5, the bending maps bZ: Xy, — X is a complex
symplectic mapping on Xj \ X0 = X

Claim 16.2. Let ¢ be an essential simple closed curve with weight w

not equal to ™ modulo 2w. Then b;t: Xy — X is two-to-one mapping on
X\ Xy

Proof. Let p: m(S) — PSLyC be a representation in Xj \ X}. Let
a € m(S) be an element representing ¢. As p(a) is not a parabolic
element or the identity, pick a framing (u,v) of ¢, where u,v are the
fixed points of p(«).

Since b and b, bend each representation in opposite directions,
they are inverse to each other, when the framing is kept: Namely b,
takes b~ (p, (u,v)) € X with the framing (u,v) back to (p, (u,v)) €
Xy. Similarly b, takes b (p, (u,v)) € X with the framing (u,v) back
to (p, (u,v)) € X,. Therefore the inverse image (b)) '(p) consists
of (b= (p, (u,v)), (u,v)) and (b*(p, (u,v)), (v,u)). Moreover, the above
inverse relation of b and b, implies that there are no other framed
representations mapping to p by b/ . Hence b/ is a two-to-one mapping
on X7 \ X7 .

One can similarly prove that b, is a two-to-one mapping on X \
X O

As By, is complex symplectic almost everywhere, it preserves the
complex volume (i.e. Jacobian is one). Therefore, since By, is a two-to-
one mapping almost everywhere (see §8.3), the volume of the analytic
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set Im By, is locally finite in X x X and uniformly bounded in 7. Hence,
up to a subsequence, the closed C-analytic set Im By, converges to a
closed C-analytic set in X X X as ¢ — oo by Bishop’s theorem [Chi89,

Corollary in p205]).

Remark 16.3. Since Im By, is symplectic in the smooth part, the closed
C-analytic set in the limit is also C-symplectic in the smooth part.

Let QF be the quasi-Fuchsian space, which contains the Fricke space
J. Then, the domain X, of By, contains QF for all e =1,2,....

Let QF; be the open subset of X, so that the restriction of bZ to
the Fuchsian space 7 in QJF; is the real bending map b,,. Moreover,
L is realizable for all quasi-Fuchsian representations, i.e. there is a p-
equivariant pleated surface S — H? whose pleating lamination contains
the geodesic lamination supporting L. Therefore the R-analytic bend-
ing map by: T — X extends to a holomorphic mapping b;,: QF — X.
Similarly to the complex bending map Bj;: X3 — X x X for a weighted
multiloop, we can define By : QF — X x X by bending p: QF — X x X
by L and by —L,

p = (br(p), b-1(p))-
Then By, complex analytically embeds QF into X xX. Therefore B, |QJF;
converges to Bp|QF as i — oo. By the identity theorem for analytic
sets ([FGO02, §5.1.1]), the limit of Theorem 16.1 contains the canonical
irreducible component B which contains By (QF).

Corollary 16.4. The irreducible component By containing the real
bending map image Yobyr(T) is independent of the choice of the sequence
¢; converging to L and the subsequence in Theorem 16.1.

We obtained a unique irreducible closed complex-analytic set B
in X X X containing the real-analytic subvariety ¢ o by (7T), and it is
symplectic on the smooth part. We finished the proof of Theorem E.

For a general measured lamination L, the complex bending variety
B is constructed as the limit as above. Since L is realizable for all
quasi-Fuchsian representations, B contains quasi-Fuchsian represen-
tations bent in opposite directions along L analogues to the complex
bending map along a weighted multiloop defined in §9.2. We can more
generally hope that generic representations in B have similar proper-
ties.

Question 16.5. Let L be a measured lamination on S (containing
a non-periodic leaf). Let By be the complex bending variety of L in
X X X. Let n = (p1,p2) be a generic point in Bp. Are there a pi-
equivariant pleated surface 1: H? — H? and a ps-equivariant pleated
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surface fo: H? — H3 both realising |L|, such that ps is obtained by
bending p; along the geodesic lamination |L|?
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