On Elliptic Artin Groups

Yoshihisa Saito (Univ. of Tokyo)

Dec 11, 2015 © Shanghai
§ Introduction

○ History

- K. Saito (1985):
Motivated by the study of simple elliptic singularities, he introduced a notion of the (marked) elliptic root systems.
§ Introduction

○ History

● K. Saito (1985):
Motivated by the study of simple elliptic singularities, he introduced a notion of the (marked) elliptic root systems.

Properties

• One of generalization of finite or affine root systems.
• The structure of them is described by the elliptic Dynkin diagrams.
• In his original motivation, vertices in an elliptic Dynkin diagram correspond to vanishing cycles and edges describe intersection numbers of them.
• Elliptic root systems appear as “root systems” of toroidal / double loop Lie algebras.
§ Introduction

- History

- K. Saito (1985):
 Motivated by the study of simple elliptic singularities, he introduced a notion of the (marked) elliptic root systems.

Properties
 - One of generalization of finite or affine root systems.
 - The structure of them is described by the elliptic Dynkin diagrams.
 - In his original motivation, vertices in an elliptic Dynkin diagram correspond to vanishing cycles and edges describe intersection numbers of them.
 - Elliptic root systems appear as “root systems” of toroidal / double loop Lie algebras.

- K. Saito and Takebayashi (1990):
 They studied the corresponding Weyl groups (the elliptic Weyl groups).
 - Presentations by generators and relations attached to the elliptic Dynkin diagrams are given.
Yamada (2000):
He studied a \(q \)-analogue of the elliptic Weyl groups (the elliptic Hecke algebras) for several types of marked elliptic root systems.

Shiota-S (2011):
They studied elliptic Hecke algebras for (almost) all marked elliptic root systems, and made a complete dictionary between them and Cherednik-Macdonald's double affine Hecke algebras.
Yamada (2000): He studied a q-analogue of the elliptic Weyl groups (*the elliptic Hecke algebras*) for several types of marked elliptic root systems.

Remark. He also studied the corresponding Artin groups (*the elliptic Artin groups*) for some special types of marked elliptic root systems, and relationship between these groups and the fundamental groups of the compliments of the discriminants in the semi-universal deformations of simple elliptic singularities studied by Looijenga, Givental and van der Lek.
• Yamada (2000):
He studied a q-analogue of the elliptic Weyl groups (*the elliptic Hecke algebras*) for several types of marked elliptic root systems.

Remark. He also studied the corresponding Artin groups (*the elliptic Artin groups*) for some special types of marked elliptic root systems, and relationship between these groups and the fundamental groups of the compliments of the discriminants in the semi-universal deformations of simple elliptic singularities studied by Looijenga, Givental and van der Lek.

• Shiota-S (2011):
They studied elliptic Hecke algebras for (almost) all marked elliptic root systems, and made a complete dictionary between them and Cherednik-Macdonald’s double affine Hecke algebras.
What are (marked) elliptic root systems?

- **finite case** = a root system lives in vector spaces with a positive definite bilinear form I

- **affine case** = a root system lives in vector spaces with a bilinear form I of $\dim(\text{rad}(I)) = 1$

- In an elliptic root system, there are two primitive imaginary roots $\mathbf{1}$ and $\mathbf{2}$.

- An elliptic root system automatically has a $\text{SL}_2(\mathbb{Z})$-symmetry:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

where $(a, b, c, d) \in \text{SL}_2(\mathbb{Z})$.

- **Aim**: Study this symmetry on the corresponding Hecke algebras and Artin groups.
What are (marked) elliptic root systems?

- **finite case** = a root system lives in vector spaces with a positive definite bilinear form I
- **affine case** = a root system lives in vector spaces with a bilinear form I of $\dim(\text{rad}(I)) = 1$
- **elliptic case** = a root system lives in vector spaces with a bilinear form I of $\dim(\text{rad}(I)) = 2$

In an elliptic root system, there are two primitive imaginary roots $\mathbf{1}$ and $\mathbf{2}$.

An elliptic root system automatically has a $\text{SL}_2(\mathbb{Z})$-symmetry:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$$

Aim: Study this symmetry on the corresponding Hecke algebras and Artin groups.
What are (marked) elliptic root systems?

- **finite case** = a root system lives in vector spaces with a positive definite bilinear form \(I \)
- **affine case** = a root system lives in vector spaces with a bilinear form \(I \) of \(\dim(\text{rad}(I)) = 1 \)
- **elliptic case** = a root system lives in vector spaces with a bilinear form \(I \) of \(\dim(\text{rad}(I)) = 2 \)

i.e. In an elliptic root system, there are two primitive imaginary roots (null roots) \(\delta_1 \) and \(\delta_2 \).
What are (marked) elliptic root systems?

finite case = a root system lives in vector spaces with a positive definite bilinear form \(I \)

affine case = a root system lives in vector spaces with a bilinear form \(I \) of \(\dim(\text{rad}(I)) = 1 \)

elliptic case = a root system lives in vector spaces with a bilinear form \(I \) of \(\dim(\text{rad}(I)) = 2 \)

i.e. In an elliptic root system, there are two primitive imaginary roots (null roots) \(\delta_1 \) and \(\delta_2 \).

\(\Rightarrow \) An elliptic root system automatically has a \(SL_2(\mathbb{Z}) \)-symmetry:

\[
\begin{align*}
\delta_1 & \mapsto a\delta_1 + c\delta_2 \\
\delta_2 & \mapsto b\delta_2 + d\delta_2
\end{align*}
\]

where \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \).
What are (marked) elliptic root systems?

finite case = a root system lives in vector spaces with a positive definite bilinear form I

affine case = a root system lives in vector spaces with a bilinear form I of $\dim(\text{rad}(I)) = 1$

elliptic case = a root system lives in vector spaces with a bilinear form I of $\dim(\text{rad}(I)) = 2$

i.e. In an elliptic root system, there are two primitive imaginary roots (null roots) δ_1 and δ_2.

\Rightarrow An elliptic root system automatically has a $SL_2(\mathbb{Z})$-symmetry:

$$
\begin{align*}
\delta_1 &\mapsto a\delta_1 + c\delta_2 \\
\delta_2 &\mapsto b\delta_2 + d\delta_2
\end{align*}
$$

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$.

Aim: Study this symmetry on the corresponding Hecke algebras and Artin groups.
Plan

§1 Review on elliptic root systems

§2 Definition of elliptic Artin groups

§3 $SL_2(\mathbb{Z})$-action

§4 Hidden braid group symmetries on elliptic Artin groups
§1 Review on elliptic root systems

Let F be an $(n+2)$ dim'l real vector space, and $I:F \times F \to \mathbb{R}$ a positive semi-definite symmetric bilinear form with 2-dim'l radical $\text{rad}(I)$.

For a non-isotropic vector $\alpha \in F$ ($\iff I(\alpha, \alpha) \neq 0$), set

$$s_\alpha(u) := u - I(u, \alpha^\vee)\alpha \quad (u \in F'),$$

where $\alpha^\vee := 2\alpha/I(\alpha, \alpha)$.
§1 Review on elliptic root systems

Let \(F \) be an \((n + 2)\) dim'1 real vector space, and \(I:F \times F \to \mathbb{R} \) a positive semi-definite symmetric bilinear form with 2-dim'1 radical \(\text{rad}(I) \).

For a non-isotropic vector \(\alpha \in F \) (\(\text{def} \ I(\alpha, \alpha) \neq 0 \)), set
\[
s_\alpha(u) := u - I(u, \alpha^\vee)\alpha \quad (u \in F),
\]
where \(\alpha^\vee := 2\alpha/I(\alpha, \alpha) \).

Definition. (1) A set of non-isotropic vectors \(R \) is an elliptic root system if
(i) \(Q(R) \otimes \mathbb{R} \cong F \) where \(Q(R) \) is the additive subgroup of \(F \) gen. by \(R \),
(ii) \(s_\alpha(R) = R \) for every \(\alpha \in R \),
(iii) \(I(\alpha, \beta^\vee) \in \mathbb{Z} \) for every \(\alpha, \beta \in R \),
(iv) \(R \) is irreducible.
(2) A subspace \(G \) of \(\text{rad}(I) \) of rank 1 defined over \(\mathbb{Q} \) is called a marking, and a pair \((R, G)\) is called a marked elliptic root system.
§1 Review on elliptic root systems
Let F be an $(n+2)$ dim'l real vector space, and $I:F \times F \to \mathbb{R}$ a positive semi-definite symmetric bilinear form with 2-dim'l radical $\text{rad}(I)$.

For a non-isotropic vector $\alpha \in F$ ($\overset{\text{def}}{\iff} I(\alpha, \alpha) \neq 0$), set

$$s_\alpha(u) := u - I(u, \alpha^\vee)\alpha \quad (u \in F'),$$

where $\alpha^\vee := 2\alpha/I(\alpha, \alpha)$.

Definition. (1) A set of non-isotropic vectors R is an **elliptic root system** if
(i) $Q(R) \otimes \mathbb{R} \cong F$ where $Q(R)$ is the additive subgroup of F gen. by R,
(ii) $s_\alpha(R) = R$ for every $\alpha \in R$,
(iii) $I(\alpha, \beta^\vee) \in \mathbb{Z}$ for every $\alpha, \beta \in R$,
(iv) R is irreducible.

(2) A subspace G of $\text{rad}(I)$ of rank 1 defined over \mathbb{Q} is called a **marking**, and a pair (R, G) is called a **marked elliptic root system**.

Let $\pi_a : R \to R/G$ (resp. $\pi_f : R \to R/\text{rad}(I)$) be a natural projection.

$\Rightarrow R_a := \pi_a(R)$ (resp. $R_f := \pi_f(R)$) is an affine (resp. finite) root system.
Example.

F_0: an n-dim’l real vector space
$I_0: F_0 \times F_0 \to \mathbb{R}$ a positive definite bilinear form
R_0: a finite root system of type X_n ($X = A, B, C, D, E, F, G$)
Example.

F_0: an n-dim’l real vector space

$I_0: F_0 \times F_0 \rightarrow \mathbb{R}$ a positive definite bilinear form

R_0: a finite root system of type X_n ($X = A, B, C, D, E, F, G$)

Set $F := F_0 \oplus \mathbb{R}\delta_1 \oplus \mathbb{R}\delta_2$, and define $I: F \times F \rightarrow \mathbb{R}$ by

$$I|_{F_0} = I_0 \quad \text{and} \quad \text{rad}(I) = \mathbb{R}\delta_1 \oplus \mathbb{R}\delta_2.$$

Then, $R := \{\alpha + n_1\delta_1 + n_2\delta_2 | \alpha \in R_0, n_1, n_2 \in \mathbb{Z}\}$ is an elliptic root system.

Set $G := \mathbb{R}\delta_1$.

⇒ The pair (R, G) is a marked elliptic root system (of type $X_n^{(1,1)}$).
Example.

F_0 : an n-dim’l real vector space

$I_0 : F_0 \times F_0 \to \mathbb{R}$ a positive definite bilinear form

R_0 : a finite root system of type X_n ($X = A, B, C, D, E, F, G$)

Set $F := F_0 \oplus \mathbb{R}\delta_1 \oplus \mathbb{R}\delta_2$, and define $I : F \times F \to \mathbb{R}$ by

$$I|_{F_0} = I_0 \quad \text{and} \quad \text{rad}(I) = \mathbb{R}\delta_1 \oplus \mathbb{R}\delta_2.$$

Then, $R := \{\alpha + n_1\delta_1 + n_2\delta_2 \mid \alpha \in R_0, n_1, n_2 \in \mathbb{Z}\}$ is an elliptic root system.

Set $G := \mathbb{R}\delta_1$.

\Rightarrow The pair (R, G) is a marked elliptic root system (of type $X_n^{(1,1)}$).

- $R_a \cong \{\alpha + n_2\delta_2 \mid \alpha \in R_0, n_2 \in \mathbb{Z}\}$: the affine root system of type $X_n^{(1)}$.
- $R_f \cong \{\alpha \mid \alpha \in R_0\}$: the finite root system of type X_n.
Example.

\(F_0 \): an \(n \)-dim’l real vector space
\(I_0 : F_0 \times F_0 \to \mathbb{R} \) a positive definite bilinear form
\(R_0 : \) a finite root system of type \(X_n \) \((X = A, B, C, D, E, F, G)\)

Set \(F := F_0 \oplus \mathbb{R}\delta_1 \oplus \mathbb{R}\delta_2 \), and define \(I : F \times F \to \mathbb{R} \) by

\[
I|_{F_0} = I_0 \quad \text{and} \quad \text{rad}(I) = \mathbb{R}\delta_1 \oplus \mathbb{R}\delta_2.
\]

Then, \(R := \{\alpha + n_1\delta_1 + n_2\delta_2 \mid \alpha \in R_0, n_1, n_2 \in \mathbb{Z}\} \) is an elliptic root system.

Set \(G := \mathbb{R}\delta_1 \).

\(\Rightarrow \) The pair \((R, G)\) is a marked elliptic root system (of type \(X_n^{(1,1)} \)).

- \(R_a \cong \{\alpha + n_2\delta_2 \mid \alpha \in R_0, n_2 \in \mathbb{Z}\} \) : the affine root system of type \(X_n^{(1)} \).
- \(R_f \cong \{\alpha \mid \alpha \in R_0\} \) : the finite root system of type \(X_n \).

- In this talk, we mainly consider marked elliptic root systems of type \(X_n^{(1,1)} \).
Elliptic Dynkin diagrams

Let \((R, G)\) be a marked elliptic root system.

Take a generator \(\delta_1\) of \(G \cap Q(R)\) (i.e. \(G \cap Q(R) = \mathbb{Z}\delta_1\)).

For \(\alpha \in R\), set \(k_\alpha := \inf\{k \in \mathbb{Z}_{>0} \mid \alpha + k\delta_1 \in R\}\), and \(\alpha^* := \alpha + k_\alpha\delta_1\).
Elliptic Dynkin diagrams

Let (R, G) be a marked elliptic root system.

Take a generator δ_1 of $G \cap Q(R)$ (i.e. $G \cap Q(R) = \mathbb{Z}\delta_1$).

For $\alpha \in R$, set $k_\alpha := \inf\{k \in \mathbb{Z}_0^+ | \alpha + k\delta_1 \in R\}$, and $\alpha^* := \alpha + k_\alpha\delta_1$.

Fix a subset $\Gamma_a = \{\alpha_0, \cdots, \alpha_n\}$ of R which has the following properties:

- $\pi_a(\Gamma_a) = \{\pi_a(\alpha_0), \cdots, \pi_a(\alpha_n)\}$ form a basis of R_a,
- $\delta_a = \sum_{i=0}^n n_i \pi_a(\alpha_i)$ with $n_i \in \mathbb{Z}_0^+$ and $n_0 = 1$.
 (δ_a is a primitive imaginary root of R_a.)

Set $\delta_2 := \sum_{i=0}^n n_i \alpha_i$.
Elliptic Dynkin diagrams
Let \((R, G)\) be a marked elliptic root system.

Take a generator \(\delta_1\) of \(G \cap Q(R)\) (i.e. \(G \cap Q(R) = \mathbb{Z}\delta_1\)).
For \(\alpha \in R\), set \(k_\alpha := \inf\{k \in \mathbb{Z}_{>0} | \alpha + k\delta_1 \in R\}\), and \(\alpha^* := \alpha + k_\alpha\delta_1\).

Fix a subset \(\Gamma_a = \{\alpha_0, \cdots, \alpha_n\}\) of \(R\) which has the following properties:
• \(\pi_a(\Gamma_a) = \{\pi_a(\alpha_0), \cdots, \pi_a(\alpha_n)\}\) form a basis of \(R_a\),
• \(\delta_a = \sum_{i=0}^{n} n_i\pi_a(\alpha_i)\) with \(n_i \in \mathbb{Z}_{>0}\) and \(n_0 = 1\).
 \((\delta_a\) is a primitive imaginary root of \(R_a\).)
Set \(\delta_2 := \sum_{i=0}^{n} n_i\alpha_i\).

For \(0 \leq i \leq n\), set \(m_i := I_R(\alpha_i, \alpha_i)n_i/2k_\alpha_i\).
Here \(I_R\) is a normalization of \(I\) s.t. \(\inf\{I_R(\alpha, \alpha) | \alpha \in R\} = 2\).
Elliptic Dynkin diagrams

Let \((R, G)\) be a marked elliptic root system.

Take a generator \(\delta_1\) of \(G \cap Q(R)\) (i.e. \(G \cap Q(R) = \mathbb{Z}\delta_1\)).

For \(\alpha \in R\), set \(k_\alpha := \inf\{k \in \mathbb{Z}_{>0} \mid \alpha + k\delta_1 \in R\}\), and \(\alpha^* := \alpha + k_\alpha\delta_1\).

Fix a subset \(\Gamma_a = \{\alpha_0, \cdots, \alpha_n\}\) of \(R\) which has the following properties:

- \(\pi_a(\Gamma_a) = \{\pi_a(\alpha_0), \cdots, \pi_a(\alpha_n)\}\) form a basis of \(R_a\),
- \(\delta_a = \sum_{i=0}^{n} n_i\pi_a(\alpha_i)\) with \(n_i \in \mathbb{Z}_{>0}\) and \(n_0 = 1\).
 (\(\delta_a\) is a primitive imaginary root of \(R_a\).)

Set \(\delta_2 := \sum_{i=0}^{n} n_i\alpha_i\).

For \(0 \leq i \leq n\), set \(m_i := I_R(\alpha_i, \alpha_i)n_i/2k_\alpha\).

Here \(I_R\) is a normalization of \(I\) s.t. \(\inf\{I_R(\alpha, \alpha) \mid \alpha \in R\} = 2\).

Let \(m_{max} := \max\{m_i \mid 0 \leq i \leq n\}\), and set

\[
\Gamma_{max} := \{\alpha_i \in \Gamma_a \mid m_i = m_{max}\} \quad \text{and} \quad \Gamma_{max}^* := \{\alpha_i^* \mid \alpha_i \in \Gamma_{max}\}.
\]
Define a finite graph \(\Gamma(R, G) \) (the elliptic Dynkin diagram of \((R, G) \)) by the following way:

1. The set of vertices is \(\Gamma := \Gamma_a \cup \Gamma_{\text{max}} \).
Define a finite graph $\Gamma(R, G)$ (the elliptic Dynkin diagram of (R, G)) by the following way:

(1) The set of vertices is $\Gamma := \Gamma_a \cup \Gamma^*_{\text{max}}$.

(2) Draw bonds and arrows among vertices according to the same rules for usual root system.

- $\alpha \quad \circ \beta$ if $I(\alpha, \beta) = I(\beta, \alpha) = 0$,
- $\alpha \circ \dashv \beta$ if $I(\alpha, \beta^\vee) = I(\beta, \alpha^\vee) = -1$,
- $\alpha \mu \dashv \beta$ if $I(\alpha, \beta^\vee) = -\mu$ and $I(\beta, \alpha^\vee) = -1$ for $\mu = 2, 3$,
- $\alpha \infty \dashv \beta$ if $I(\alpha, \beta^\vee) = I(\beta, \alpha^\vee) = -2$.

Theorem (K.Saito). The isomorphism classes of marked elliptic root systems are completely classified by their elliptic Dynkin diagrams.
Define a finite graph $\Gamma(R,G)$ (the elliptic Dynkin diagram of (R,G)) by the following way:

(1) The set of vertices is $\Gamma := \Gamma_a \cup \Gamma^*_{\text{max}}$.

(2) Draw bonds and arrows among vertices according to the same rules for usual root system with an additional case.

- $\alpha \circ \circ \beta$ if $I(\alpha, \beta) = I(\beta, \alpha) = 0$,
- $\alpha \circ \circ \circ \beta$ if $I(\alpha, \beta^\vee) = I(\beta, \alpha^\vee) = -1$,
- $\alpha \circ \mu \circ \beta$ if $I(\alpha, \beta^\vee) = -\mu$ and $I(\beta, \alpha^\vee) = -1$ for $\mu = 2, 3$,
- $\alpha \circ \infty \circ \beta$ if $I(\alpha, \beta^\vee) = I(\beta, \alpha^\vee) = -2$,
- $\alpha \circ \circ \circ \circ \circ \circ \circ \beta$ if $I(\alpha, \beta^\vee) = I(\beta, \alpha^\vee) = 2$.

Theorem (K. Saito). The isomorphism classes of marked elliptic root systems are completely classified by their elliptic Dynkin diagrams.
Define a finite graph \(\Gamma(R, G) \) (the elliptic Dynkin diagram of \((R, G)\)) by the following way:

(1) The set of vertices is \(\Gamma := \Gamma_a \cup \Gamma_{max}^* \).

(2) Draw bonds and arrows among vertices according to the same rules for usual root system with an additional case.

- \(\alpha \quad \beta \) if \(I(\alpha, \beta) = I(\beta, \alpha) = 0 \),
- \(\alpha \quad \beta \) if \(I(\alpha, \beta) = I(\beta, \alpha) = -1 \),
- \(\alpha \quad \beta \) if \(I(\alpha, \beta) = -\mu \) and \(I(\beta, \alpha) = -1 \) for \(\mu = 2, 3 \),
- \(\alpha \quad \beta \) if \(I(\alpha, \beta) = I(\beta, \alpha) = -2 \),
- \(\alpha \quad \beta \) if \(I(\alpha, \beta) = I(\beta, \alpha) = 2 \).

Theorem (K. Saito). The isomorphism classes of marked elliptic root systems are completely classified by their elliptic Dynkin diagrams.
Example. Let us consider the marked elliptic root system of type $B_{n}^{(1,1)}$.
Example. Let us consider the marked elliptic root system of type $B_n^{(1,1)}$.

(i) Let R_0 be the finite root system of type B_n. By the definition, we have

$$R = \{\alpha_f + n_1\delta_1 + n_2\delta_2 \mid \alpha_f \in R_0, n_1, n_2 \in \mathbb{Z}\} \quad \text{and} \quad G = \mathbb{Z}\delta_1.$$
Example. Let us consider the marked elliptic root system of type $B_n^{(1,1)}$.

(i) Let R_0 be the finite root system of type B_n. By the definition, we have

$$R = \{ \alpha_f + n_1 \delta_1 + n_2 \delta_2 \mid \alpha_f \in R_0, n_1, n_2 \in \mathbb{Z} \} \quad \text{and} \quad G = \mathbb{Z} \delta_1.$$

(ii) Recall $\pi_a : F \to F/G$.

$$R_a = \pi_a(R) \cong \{ \alpha_f + n_2 \delta_2 \mid \alpha_f \in R_0, n_2 \in \mathbb{Z} \} : \text{the affine root system of type } B_n^{(1)}.$$
Example. Let us consider the marked elliptic root system of type $B_n^{(1,1)}$.

(i) Let R_0 be the finite root system of type B_n. By the definition, we have

$$R = \{ \alpha_f + n_1 \delta_1 + n_2 \delta_2 \mid \alpha_f \in R_0, n_1, n_2 \in \mathbb{Z} \} \quad \text{and} \quad G = \mathbb{Z} \delta_1.$$

(ii) Recall $\pi_a : F \rightarrow F/G$.

$$R_a = \pi_a(R) \cong \{ \alpha_f + n_2 \delta_2 \mid \alpha_f \in R_0, n_2 \in \mathbb{Z} \} : \text{the affine root system of type } B_n^{(1)}.$$

(iii) $\Gamma_a = \{ \alpha_0, \cdots, \alpha_n \} : \text{an usual basis of } R(B_n^{(1)}).$
Example. Let us consider the marked elliptic root system of type $B_{n}^{(1,1)}$.

(i) Let R_0 be the finite root system of type B_n. By the definition, we have

$$R = \{ \alpha_f + n_1 \delta_1 + n_2 \delta_2 | \alpha_f \in R_0, n_1, n_2 \in \mathbb{Z} \} \quad \text{and} \quad G = \mathbb{Z} \delta_1.$$

(ii) Recall $\pi_a : F \to F/G$.

$$R_a = \pi_a(R) \cong \{ \alpha_f + n_2 \delta_2 | \alpha_f \in R_0, n_2 \in \mathbb{Z} \} : \text{the affine root system of type } B_{n}^{(1)}.$$

(iii) $\Gamma_a = \{ \alpha_0, \cdots, \alpha_n \} : \text{an usual basis of } R(B_{n}^{(1)}).$

$$\delta_2 = 1\alpha_0 + 1\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-1} + 1\alpha_n.$$

\[B_{n}^{(1)} \]
Example. Let us consider the marked elliptic root system of type $B_n^{(1,1)}$.

(i) Let R_0 be the finite root system of type B_n. By the definition, we have

$$R = \{ \alpha_f + n_1 \delta_1 + n_2 \delta_2 \mid \alpha_f \in R_0, n_1, n_2 \in \mathbb{Z} \} \quad \text{and} \quad G = \mathbb{Z} \delta_1.$$

(ii) Recall $\pi_a : F \rightarrow F/G$.

$$R_a = \pi_a(R) \cong \{ \alpha_f + n_2 \delta_2 \mid \alpha_f \in R_0, n_2 \in \mathbb{Z} \} : \text{the affine root system of type } B_n^{(1)}.$$

(iii) $\Gamma_a = \{ \alpha_0, \ldots, \alpha_n \} : \text{an usual basis of } R(B_n^{(1)}).$

$$\delta_2 = 1\alpha_0 + 1\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-1} + 1\alpha_n.$$

$$\Rightarrow \quad m_0 = 1, m_1 = 1, m_2 = 2, \ldots, m_{n-1} = 2, m_n = 1.$$

$$\Rightarrow \quad \Gamma_{\text{max}} = \{ \alpha_2, \ldots, \alpha_{n-1} \} \quad \text{and} \quad \Gamma_{\text{max}}^* = \{ \alpha_2^*, \ldots, \alpha_{n-1}^* \}.$$

![Diagram of $B_n^{(1)}$ root system]
Example. Let us consider the marked elliptic root system of type $B_n^{(1,1)}$.

(i) Let R_0 be the finite root system of type B_n. By the definition, we have

$$R = \{\alpha_f + n_1\delta_1 + n_2\delta_2 \mid \alpha_f \in R_0, n_1, n_2 \in \mathbb{Z}\} \quad \text{and} \quad G = \mathbb{Z}\delta_1.$$

(ii) Recall $\pi_a : F \to F/G$.

$$R_a = \pi_a(R) \cong \{\alpha_f + n_2\delta_2 \mid \alpha_f \in R_0, n_2 \in \mathbb{Z}\} : \text{the affine root system of type } B_n^{(1)}.$$

(iii) $\Gamma_a = \{\alpha_0, \cdots, \alpha_n\} : \text{an usual basis of } R(B_n^{(1)})$.

$$\delta_2 = 1\alpha_0 + 1\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-1} + 1\alpha_n.$$

$$\Rightarrow \quad m_0 = 1, m_1 = 1, m_2 = 2, \cdots, m_{n-1} = 2, m_n = 1.$$

$$\Rightarrow \quad \Gamma_{max} = \{\alpha_2, \cdots, \alpha_{n-1}\} \quad \text{and} \quad \Gamma_{max}^* = \{\alpha_2^*, \cdots, \alpha_{n-1}^*\}.$$

\[\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{elliptic_root_system.png}
\caption{Elliptic root system of type $B_n^{(1,1)}$.}
\end{figure} \]
Example. Let us consider the marked elliptic root system of type $B_n^{(1,1)}$.

(i) Let R_0 be the finite root system of type B_n. By the definition, we have

$$R = \{ \alpha_f + n_1 \delta_1 + n_2 \delta_2 \mid \alpha_f \in R_0, n_1, n_2 \in \mathbb{Z} \} \quad \text{and} \quad G = \mathbb{Z} \delta_1.$$

(ii) Recall $\pi_a : F \to F/G$.

$$R_a = \pi_a(R) \cong \{ \alpha_f + n_2 \delta_2 \mid \alpha_f \in R_0, n_2 \in \mathbb{Z} \} : \quad \text{the affine root system of type } B_n^{(1)}.$$

(iii) $\Gamma_a = \{ \alpha_0, \cdots, \alpha_n \} : \text{an usual basis of } R(B_n^{(1)})$.

$$\delta_2 = 1\alpha_0 + 1\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-1} + 1\alpha_n.$$

$$\Rightarrow \quad m_0 = 1, m_1 = 1, m_2 = 2, \cdots, m_{n-1} = 2, m_n = 1.$$

$$\Rightarrow \quad \Gamma_{max} = \{ \alpha_2, \cdots, \alpha_{n-1} \} \quad \text{and} \quad \Gamma_{max}^* = \{ \alpha_2^*, \cdots, \alpha_{n-1}^* \}.$$

Add bonds and arrows according to the usual rules,
Example. Let us consider the marked elliptic root system of type $B_n^{(1,1)}$.

(i) Let R_0 be the finite root system of type B_n. By the definition, we have

$$R = \{ \alpha_f + n_1 \delta_1 + n_2 \delta_2 \mid \alpha_f \in R_0, n_1, n_2 \in \mathbb{Z} \} \quad \text{and} \quad G = \mathbb{Z} \delta_1.$$

(ii) Recall $\pi_a : F \to F/G$.

$$R_a = \pi_a(R) \cong \{ \alpha_f + n_2 \delta_2 \mid \alpha_f \in R_0, n_2 \in \mathbb{Z} \} : \text{the affine root system of type } B_n^{(1)}.$$

(iii) $\Gamma_a = \{ \alpha_0, \cdots, \alpha_n \} : \text{an usual basis of } R(B_n^{(1)}).$

$$\delta_2 = 1\alpha_0 + 1\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-1} + 1\alpha_n.$$

$$\Rightarrow \quad m_0 = 1, m_1 = 1, m_2 = 2, \cdots, m_{n-1} = 2, m_n = 1.$$

$$\Rightarrow \quad \Gamma_{\text{max}} = \{ \alpha_2, \cdots, \alpha_{n-1} \} \quad \text{and} \quad \Gamma^*_{\text{max}} = \{ \alpha_2^*, \cdots, \alpha_{n-1}^* \}.$$

Add bonds and arrows according to the usual rules, and new bonds and arrows.
Elliptic Weyl groups

\[W(R, G) := \langle s_\alpha \mid \alpha \in R \rangle \subset O(F, I) \] (Elliptic Weyl group).
Elliptic Weyl groups

$$W(R, G) := \langle s_\alpha \mid \alpha \in R \rangle \subset O(F, I) \quad \text{(Elliptic Weyl group)}.$$

Set $$\Lambda := F \oplus \mathbb{R} \gamma_1 \oplus \mathbb{R} \gamma_2,$$ and define an extended symmetric bilinear form $$I_\Lambda : \Lambda \times \Lambda \to \mathbb{R}$$ by

$$I_\Lambda(\alpha_f, \gamma_j) = 0, \quad I_\Lambda(\delta_i, \gamma_j) = \delta_{i,j} \quad (\alpha_f \in R_0, i, j = 1, 2).$$

$$\Rightarrow I_\Lambda$$ is a nondegenerate symmetric bilinear form of signature $$(n + 2, 2).$$
Elliptic Weyl groups

\[W(R, G) := \langle s_\alpha \mid \alpha \in R \rangle \subset O(F, I) \quad \text{(Elliptic Weyl group)}. \]

Set \(\Lambda := F \oplus \mathbb{R} \gamma_1 \oplus \mathbb{R} \gamma_2 \), and define an extended symmetric bilinear form \(I_\Lambda : \Lambda \times \Lambda \to \mathbb{R} \) by

\[
I_\Lambda(\alpha_f, \gamma_j) = 0, \quad I_\Lambda(\delta_i, \gamma_j) = \delta_{i,j} \quad (\alpha_f \in R_0, i, j = 1, 2).
\]

\(\Rightarrow I_\Lambda \) is a nondegenerate symmetric bilinear form of signature \((n + 2, 2)\).

\(\bullet \) \(R \) is considered as a non-isotropic subset of \(\Lambda \).

\(\Rightarrow \) For each \(\alpha \in R \), one can consider the corresponding reflection:

\[
s_{\Lambda, \alpha} : u \mapsto u - I_\Lambda(u, \alpha^\vee)u \quad (u \in \Lambda).
\]

Set

\[
W_\Lambda(R, G) := \langle s_{\Lambda, \alpha} \mid \alpha \in R \rangle \subset O(\Lambda, I_\Lambda).
\]
Elliptic Weyl groups

\[W(R, G) := \langle s_\alpha | \alpha \in R \rangle \subset O(F, I) \quad (\text{Elliptic Weyl group}). \]

Set \(\Lambda := F \oplus \mathbb{R} \gamma_1 \oplus \mathbb{R} \gamma_2 \), and define an extended symmetric bilinear form \(I_\Lambda : \Lambda \times \Lambda \to \mathbb{R} \) by

\[
I_\Lambda(\alpha_f, \gamma_j) = 0, \quad I_\Lambda(\delta_i, \gamma_j) = \delta_{i,j} \quad (\alpha_f \in R_0, i, j = 1, 2).
\]

\(\Rightarrow I_\Lambda \) is a nondegenerate symmetric bilinear form of signature \((n + 2, 2)\).

- \(R \) is considered as a non-isotropic subset of \(\Lambda \).

\(\Rightarrow \) For each \(\alpha \in R \), one can consider the corresponding reflection:

\[s_\Lambda,\alpha : u \mapsto u - I_\Lambda(u, \alpha^\vee)u \quad (u \in \Lambda). \]

Set

\[W_\Lambda(R, G) := \langle s_\Lambda,\alpha | \alpha \in R \rangle \subset O(\Lambda, I_\Lambda). \]

Remark.
- \(W(R, G) \) and \(W_\Lambda(R, G) \) are not Coxeter groups.
- Especially, word problems have not solved.

\(\Rightarrow \) Technology in Coxeter groups can not be applied.
Theorem (K. Saito-Takebayashi, Yamada, Shiota-S). $W_{\Lambda}(R, G)$ has a presentation with generators $s_{\Lambda, \alpha}$ ($\alpha \in \Gamma(R, G)$) subject to $(s_{\Lambda, \alpha})^2 = 1$, usual Coxeter relations, and "elliptic Coxeter relations".

relations between two generators.

elliptic Coxeter relations = relations between three or four generators.

More precisely, for every subdiagrams of (R, G) in the following list, we give new relations (elliptic Coxeter relations) attach to these diagrams.
Theorem (K.Saito-Takebayashi, Yamada, Shiota-S). $W_{\Lambda}(R, G)$ has a presentation with generators $s_{\Lambda, \alpha}$ ($\alpha \in \Gamma(R, G)$) subject to $(s_{\Lambda, \alpha})^2 = 1$, usual Coxeter relations, and “elliptic Coxeter relations”.

- usual Coxeter relations = relations between two generators.

- elliptic Coxeter relations = relations between three or four generators.
Theorem (K. Saito-Takebayashi, Yamada, Shiota-S). $W_\Lambda(R,G)$ has a presentation with generators $s_{\Lambda,\alpha}$ ($\alpha \in \Gamma(R,G)$) subject to $(s_{\Lambda,\alpha})^2 = 1$, usual Coxeter relations, and “elliptic Coxeter relations”.

- usual Coxeter relations = relations between two generators.

- elliptic Coxeter relations = relations between three or four generators.

More precisely, for every subdiagrams of $\Gamma(R,G)$ in the following list, we give new relations (elliptic Coxeter relations) attach to these diagrams.

![Diagram](image)

Relations between 3 generators

Relations between 4 generators
Example. Recall the elliptic Dynkin diagram of type $B_n^{(1,1)}$.

There are many subdiagrams isomorphic to e.

Set $r_i := s_i$; $r_i := s_i$; $x_i := r_i r_i r_i$.

For every subdiagram of the form $f_i f_j f_i$, $r_j (r_i r_i r_i) r_j (r_i r_i r_i) = (r_i r_i r_i) r_j (r_i r_i r_i)$.
Example. Recall the elliptic Dynkin diagram of type $B_n^{(1,1)}$.

There are many subdiagrams isomorphic to α_i.

\[
\begin{array}{cccc}
\alpha_0 & \alpha_2^* & \alpha_3^* & \alpha_{n-1}^* \\
\alpha_1 & \alpha_2 & \alpha_3 & \alpha_{n-1}
\end{array}
\]
Example. Recall the elliptic Dynkin diagram of type $B_n^{(1,1)}$.

![Elliptic Dynkin Diagram](https://via.placeholder.com/150)

There are many subdiagrams isomorphic to ![Isomorphic Subdiagram](https://via.placeholder.com/150).
Example. Recall the elliptic Dynkin diagram of type $B_n^{(1,1)}$.

There are many subdiagrams isomorphic to ℓ.
Example. Recall the elliptic Dynkin diagram of type $B_{n}^{(1,1)}$.

There are many subdiagrams isomorphic to $\begin{array}{c}
\alpha_0 \\
\alpha_2 \\
\alpha_3 \\
\alpha_{n-1}
\end{array}$.
Example. Recall the elliptic Dynkin diagram of type $B_{n}^{(1,1)}$. There are many subdiagrams isomorphic to .
Example. Recall the elliptic Dynkin diagram of type $B_n^{(1,1)}$.

There are many subdiagrams isomorphic to Δ

Set

$$r_i := s_{\Lambda, \alpha_i}, \quad r_i^* := s_{\Lambda, \alpha_i^*}, \quad \text{and} \quad x_i := r_ir_i^*.$$

For every subdiagram of the form Δ we assume

$$r_jx_ir_jx_i = x_ir_jx_ir_j \quad \Leftrightarrow \quad r_j(r_ir_i^*)r_j(r_ir_i^*) = (r_ir_i^*)r_j(r_ir_i^*)r_j.$$
Example. Recall the elliptic Dynkin diagram of type $B_{n}^{(1,1)}$.

The attached relation is

$$r_0 x_2 r_0 x_2 = x_2 r_0 x_2 r_0.$$

There are many subdiagrams isomorphic to

Set

$$r_i := s_{\Lambda, \alpha_i}, \quad r_i^* := s_{\Lambda, \alpha_i^*}, \quad \text{and} \quad x_i := r_i r_i^*. \quad \text{For every subdiagram of the form} \quad \alpha_i \rightarrow \alpha_j \quad \text{we assume} \quad

$$r_j x_i r_j x_i = x_i r_j x_i r_j \quad \Leftrightarrow \quad r_j (r_i r_i^*) r_j (r_i r_i^*) = (r_i r_i^*) r_j (r_i r_i^*) r_j.$$
o An abelian subgroup N of $W_{\Lambda}(R,G)$

In general, there exists a vertex $\alpha_j \in \Gamma_a \setminus \Gamma_{\text{max}}$. For such a vertex, we define x_j by the following way.
An abelian subgroup N of $W_\Lambda(R, G)$

In general, there exists a vertex $\alpha_j \in \Gamma_a \setminus \Gamma_{\max}$. For such a vertex, we define x_j by the following way.

Lemma. The component $\Gamma(R, G) \setminus (\Gamma_{\max} \cup \Gamma_{\max}^*) = \Gamma_a \setminus \Gamma_{\max}$ is a disjoint union of A-type diagrams, say $\Gamma(A_{l_1}), \cdots, \Gamma(A_{l_r})$.
An abelian subgroup N of $W_{\Lambda}(R,G)$

In general, there exists a vertex $\alpha_j \in \Gamma_a \setminus \Gamma_{max}$. For such a vertex, we define x_j by the following way.

Lemma. The component $\Gamma(R, G) \setminus (\Gamma_{max} \cup \Gamma_{max}^*) = \Gamma_a \setminus \Gamma_{max}$ is a disjoint union of A-type diagrams, say $\Gamma(A_{l_1}), \cdots, \Gamma(A_{l_r})$.

Assume $\alpha_j \in \Gamma_a \setminus \Gamma_{max}$, then α_j belongs to a component $\Gamma(A_{l_k}) = \{\alpha_{i_1}, \cdots, \alpha_{i_{l_k}}\}$ for some k. Let us consider of the following diagram:

\[
\begin{array}{c}
\alpha_{i_0}^* \\
\downarrow \\
\alpha_{i_0} \\
\end{array} \quad \mu \quad \begin{array}{c}
\alpha_{i_1} \\
\alpha_{i_2} \\
\vdots \\
\alpha_{i_k} \\
\end{array}
\]

where α_{i_0} is a vertex in Γ_{max} which is connected to $\Gamma(A_{l_k})$.

\[\mu = 1, 2^\pm, 3^\pm,\]
An abelian subgroup \(N \) of \(W_{\Lambda}(R, G) \)

In general, there exists a vertex \(\alpha_j \in \Gamma_a \setminus \Gamma_{max} \). For such a vertex, we define \(x_j \) by the following way.

Lemma. The component \(\Gamma(R, G) \setminus (\Gamma_{max} \cup \Gamma_{max}^*) = \Gamma_a \setminus \Gamma_{max} \) is a disjoint union of \(A \)-type diagrams, say \(\Gamma(A_{l_1}), \ldots, \Gamma(A_{l_r}) \).

Assume \(\alpha_j \in \Gamma_a \setminus \Gamma_{max} \), then \(\alpha_j \) belongs to a component \(\Gamma(A_{l_k}) = \{\alpha_{i_1}, \ldots, \alpha_{i_{l_k}}\} \) for some \(k \). Let us consider of the following diagram:

\[
\begin{array}{c}
\alpha_{i_0}^* \\
\alpha_{i_0} \\
\alpha_{i_1} \\
\alpha_{i_2} \cdots \\
\alpha_{i_{l_k}} \\
\end{array}
\quad \mu = 1, 2^\pm, 3^\pm,
\]

where \(\alpha_{i_0} \) is a vertex in \(\Gamma_{max} \) which is connected to \(\Gamma(A_{l_k}) \).

By using this diagram we define

\[
x_j := r_j x_{j-1} r_j x_{j-1}^{-1} \quad (1 \leq j \leq l_k)
\]

inductively.
Example. Type $B_{n}^{(1,1)}$.

$\begin{align*}
\alpha_0 & \quad \alpha_2^* \quad \alpha_3^* \\
\alpha_1 & \quad \alpha_2 & \quad \alpha_3 & \quad \alpha_{n-1} \\
\alpha_1 & \quad \alpha_2 & \quad \alpha_3 & \quad \alpha_{n-1} \\
\end{align*}$
Example. Type $B_{n}^{(1,1)}$: $\Gamma_{\text{max}} = \{\alpha_{2}, \cdots, \alpha_{n-1}\}$.
Example. Type $B_{n}^{(1,1)}$: $\Gamma_{\text{max}} = \{\alpha_{2}, \ldots, \alpha_{n-1}\}$, $\Gamma_{a} \setminus \Gamma_{\text{max}} = \{\alpha_{0}, \alpha_{1}, \alpha_{n}\}$.
Example. Type $B_n^{(1,1)}$: $\Gamma_{\text{max}} = \{\alpha_2, \cdots, \alpha_{n-1}\}$, $\Gamma_a \setminus \Gamma_{\text{max}} = \{\alpha_0, \alpha_1, \alpha_n\}$.

- For $2 \leq i \leq n - 1$ ($\iff \alpha_i \in \Gamma_{\text{max}}$: The cyan vertices),

 $$x_i := r_i r_i^*.$$
Example. Type $B_{n}^{(1,1)}$: $\Gamma_{\text{max}} = \{\alpha_2, \cdots, \alpha_{n-1}\}$, $\Gamma_a \setminus \Gamma_{\text{max}} = \{\alpha_0, \alpha_1, \alpha_n\}$.

- For $2 \leq i \leq n-1$ ($\Leftrightarrow \alpha_i \in \Gamma_{\text{max}}$: The cyan vertices),
 $$x_i := r_i r_i^*.$$

- For $i = 0, 1, n$ ($\Leftrightarrow \alpha_i \in \Gamma_a \setminus \Gamma_{\text{max}}$: The red vertices),
 $$x_0 := r_0 x_2 r_0 x_2^{-1} = r_0 (r_2 r_2^*) r_0 (r_2 r_2^*)^{-1},$$
 $$x_1 := r_1 x_2 r_1 x_2^{-1} = r_1 (r_2 r_2^*) r_1 (r_2 r_2^*)^{-1},$$
 $$x_n := r_n x_{n-1} r_n x_{n-1}^{-1} = r_n (r_{n-1} r_{n-1}^*) r_n (r_{n-1} r_{n-1}^*)^{-1}.$$
For $\alpha \in \Gamma_a$, set
\[
\alpha^\dagger := k_\alpha \alpha^\vee.
\]
Hence, $Q((R, G)_a) := \bigoplus_{i=0}^n \mathbb{Z}\alpha_i^\dagger$ forms a root lattice of an affine root system $(R, G)_a$ with a basis $\{\alpha_i^\dagger\}_{i=0}^n$.
For $\alpha \in \Gamma_a$, set

$$\alpha^\dagger := k_\alpha \alpha^\vee.$$

Hence, $Q((R, G)_a) := \bigoplus_{i=0}^{n} \mathbb{Z}\alpha_i^\dagger$ forms a root lattice of an affine root system $(R, G)_a$ with a basis $\{\alpha_i^\dagger\}_{i=0}^{n}$.

Proposition (K.Saito-Takebayashi). (1) The subgroup N of $W_\Lambda(R, G)$ generated by x_i $(i = 0, \ldots, n)$ is an abelian group.
For $\alpha \in \Gamma_a$, set

$$\alpha^\dagger := k\alpha^\vee.$$

Hence, $Q((R, G)_a) := \bigoplus_{i=0}^{n} \mathbb{Z}\alpha_i^\dagger$ forms a root lattice of an affine root system $(R, G)_a$ with a basis $\{\alpha_i^\dagger\}_{i=0}^{n}$.

Proposition (K.Saito-Takebayashi). (1) The subgroup N of $W_\Lambda(R, G)$ generated by x_i ($i = 0, \ldots, n$) is an abelian group.

(2) Let δ'_a be a primitive imaginary root of the affine root system $(R, G)_a$. Write $\delta'_a = \sum_{i=0}^{n} n'_i \alpha_i^\dagger$ with $n'_{\alpha_0^\dagger} = 1$. Then, the element $x_0^{n'_0} \cdots x_n^{n'_n}$ belongs to the center of $W_\Lambda(R, G)$.
For $\alpha \in \Gamma_a$, set

$$\alpha^\dagger := k_\alpha \alpha^\vee.$$

Hence, $Q((R, G)_a) := \bigoplus_{i=0}^{n} \mathbb{Z} \alpha_i^\dagger$ forms a root lattice of an affine root system $(R, G)_a$ with a basis $\{\alpha_i^\dagger\}_{i=0}^{n}$.

Proposition (K. Saito-Takebayashi). (1) The subgroup N of $W_\Lambda(R, G)$ generated by x_i ($i = 0, \cdots, n$) is an abelian group.

(2) Let δ_a' be a primitive imaginary root of the affine root system $(R, G)_a$. Write $\delta_a' = \sum_{i=0}^{n} n'_i \alpha_i^\dagger$ with $n'_0 \alpha_0^\dagger = 1$. Then, the element $x_0^{n'_0} \cdots x_n^{n'_n}$ belongs to the center of $W_\Lambda(R, G)$.

(3) The elliptic Weyl group $W(R, G)$ is isomorphic to $W_\Lambda(R, G)/\langle x_0^{n'_0} \cdots x_n^{n'_n} \rangle$. Namely, $W(R, G)$ has a presentation with generators $r_\alpha = s_\Lambda, \alpha$ ($\alpha \in \Gamma(R, G)$), and $r_\alpha^2 = 1$, the usual and elliptic Coxeter relations, and $x_0^{n'_0} \cdots x_n^{n'_n} = 1$.

§2 Elliptic Artin groups

Definition. For a marked elliptic root system \((R,G)\), let \(A(R,G)\) a group with generators \(g_\alpha \) (\(\alpha \in R\)) and the relations obtained form the Coxeter and the elliptic Coxeter relations of \(W_\Lambda(R,G)\) replacing \(r_\alpha\) with \(g_\alpha\). It is celled the elliptic Artin group of type \((R,G)\).
§2 Elliptic Artin groups

Definition. For a marked elliptic root system \((R, G)\), let \(A(R, G)\) a group with generators \(g_\alpha (\alpha \in R)\) and and the relations obtained form the Coxeter and the elliptic Coxeter relations of \(W_\Lambda(R, G)\) replacing \(r_\alpha\) with \(g_\alpha\). It is celled the elliptic Artin group of type \((R, G)\).

Proposition(Yamada,Shiota-S). For \(i = 0, \cdots, n\), define elements \(x_i \in A(R, G)\) in the similar way as \(A(R, G)\), replacing \(r_\alpha\) with \(g_\alpha\).

1. The subgroup \(N\) of \(W_\Lambda(R, G)\) generated by all \(x_i\)'s is an abelian group.

2. Recall \(\delta'_a = \sum_{i=0}^{n} n'_i \alpha_i^\dagger\) with \(n'_0 = 1\). Then, the element \(x_0^{n'_0} \cdots x_n^{n'_n}\) belongs to the center of \(A(R, G)\).
§2 Elliptic Artin groups

Definition. For a marked elliptic root system \((R, G)\), let \(A(R, G)\) a group with generators \(g_\alpha (\alpha \in R)\) and and the relations obtained form the Coxeter and the elliptic Coxeter relations of \(W_{\Lambda}(R, G)\) replacing \(r_\alpha\) with \(g_\alpha\). It is celled the elliptic Artin group of type \((R, G)\).

Proposition (Yamada, Shiota-S). For \(i = 0, \cdots, n\), define elements \(x_i \in A(R, G)\) in the similar way as \(A(R, G)\), replacing \(r_\alpha\) with \(g_\alpha\).

1. The subgroup \(N\) of \(W_{\Lambda}(R, G)\) generated by all \(x_i\)'s is an abelian group.

2. Recall \(\delta'_a = \sum_{i=0}^n n'_i \alpha_i\) with \(n'_0 = 1\). Then, the element \(x_0^{n'_0} \cdots x_n^{n'_n}\) belongs to the center of \(A(R, G)\).

- These groups were essentially appeared in our previous study on “elliptic Hecke algebras” (Shiota-S).
Elliptic Hecke algebras

\(A[A(R, G)]:\) The group ring of \(A(R, G)\) over \(A := \mathbb{Z}[t_\alpha]_{\alpha \in \Gamma}/\mathcal{I}.
\)

\(\mathcal{I}\) is a certain ideal of \(\mathbb{Z}[t_\alpha]_{\alpha \in \Gamma}.
\)

\(\Rightarrow A\) is the Laurent polynomial ring of unequal parameters.
Elliptic Hecke algebras

\(\mathbb{A}[A(R, G)] \): The group ring of \(A(R, G) \) over \(\mathbb{A} := \mathbb{Z}[t_{\alpha}]_{\alpha \in \Gamma}/\mathcal{I} \).

\(\mathcal{I} \) is a certain ideal of \(\mathbb{Z}[t_{\alpha}]_{\alpha \in \Gamma} \).

\(\Rightarrow \mathbb{A} \) is the Laurent polynomial ring of unequal parameters.

Set

\[\mathbb{H}(R, G) := \mathbb{A}[W_{\wedge}(R, G)]/J, \]

where \(J \) is an ideal generated by

\[(g_{\alpha} - t_{\alpha})(g_{\alpha} + t_{\alpha}^{-1}) \quad (\alpha \in \Gamma) \]

(Hecke relations).

The elliptic Hecke algebra
Elliptic Hecke algebras

\(\mathbb{A}[A(R, G)] \): The group ring of \(A(R, G) \) over \(\mathbb{A} := \mathbb{Z}[t_\alpha]_{\alpha \in \Gamma}/\mathcal{I} \).

\(\mathcal{I} \) is a certain ideal of \(\mathbb{Z}[t_\alpha]_{\alpha \in \Gamma} \).

\(\Rightarrow \mathbb{A} \) is the Laurent polynomial ring of unequal parameters.

Set

\[\mathbb{H}(R, G) := \mathbb{A}[W_{\Lambda}(R, G)]/J, \]

where \(J \) is an ideal generated by

\[(g_\alpha - t_\alpha)(g_\alpha + t_\alpha^{-1}) \quad (\alpha \in \Gamma) \]

the elliptic Hecke algebra (Hecke relations).

Theorem (Shiota-S). The elliptic Hecke algebra \(\mathbb{H}(R, G) \) is isomorphic to a subalgebra of a Cherednik-Macdonald’s double affine Hecke algebra.

Remark. DAHA/ell.Hecke \(\cong \mathbb{A}[\text{a certain finite group}] \).
§3 $SL_2(\mathbb{Z})$-action

Since an elliptic root system R has two primitive null roots δ_1 and δ_2, there is a natural action of $SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$.

Remark. For other types, $\text{Im } \phi$ is isomorphic to the congruence subgroup $\Gamma_0(k)$ or $\Gamma_0(3)$. Here $\Gamma_0(k) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}, ad - bc = 1, \quad c \equiv 0 \pmod{k} \right\}$.

19
§3 $SL_2(\mathbb{Z})$-action

- Since an elliptic root system R has two primitive null roots δ_1 and δ_2, there is a natural action of $SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$.

Recall $\Lambda = F \oplus \mathbb{R}\gamma_1 \oplus \mathbb{R}\gamma_2$, and $I_\Lambda : \Lambda \times \Lambda \to \mathbb{R}$ (non-deg. symm. bilinear form).

$$\Theta(R, G) := \{ \phi \in O(\Lambda, I_\Lambda) \mid \phi(R) = R \}.$$

\Rightarrow Every $\phi \in \Theta(R, G)$ preserves $Q_0 := \mathbb{Z}\delta_1 \oplus \mathbb{Z}\delta_2$.

§3 $SL_2(\mathbb{Z})$-action

- Since an elliptic root system R has two primitive null roots δ_1 and δ_2, there is a natural action of $SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$.

Recall $\Lambda = F \oplus \mathbb{R}\gamma_1 \oplus \mathbb{R}\gamma_2$, and $I_\Lambda : \Lambda \times \Lambda \to \mathbb{R}$ (non-deg. symm. bilinear form).

\[\Theta(R, G) := \{ \varphi \in O(\Lambda, I_\Lambda) \mid \varphi(R) = R \} . \]

⇒ Every $\varphi \in \Theta(R, G)$ preserves $Q_0 := \mathbb{Z}\delta_1 \oplus \mathbb{Z}\delta_2$.

\[\Theta_0(R, G) := \{ \varphi \in \Theta(R, G) \mid \det(\varphi|_{Q_0}) = 1 \} . \]

Let $\pi : \Theta_0(R, G) \to \text{Aut}(Q_0)$ be a map defined by $\varphi \mapsto \varphi|_{Q_0}$.
§3 $SL_2(\mathbb{Z})$-action

Since an elliptic root system R has two primitive null roots δ_1 and δ_2, there is a natural action of $SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$.

Recall $\Lambda = F \oplus R_1 \oplus R_2$, and $I_\Lambda : \Lambda \times \Lambda \to \mathbb{R}$ (non-deg. symm. bilinear form).

$$\Theta(R, G) := \{ \varphi \in O(\Lambda, I_\Lambda) \mid \varphi(R) = R \}.$$

\Rightarrow Every $\varphi \in \Theta(R, G)$ preserves $Q_0 := \mathbb{Z}\delta_1 \oplus \mathbb{Z}\delta_2$.

$$\Theta_0(R, G) := \{ \varphi \in \Theta(R, G) \mid \det(\varphi|_{Q_0}) = 1 \}.$$

Let $\pi : \Theta_0(R, G) \to \text{Aut}(Q_0)$ be a map defined by $\varphi \mapsto \varphi|_{Q_0}$.

Lemma. If (R, G) is a marked elliptic root system of type $X_n^{(1,1)}$, the image of π coincides with $SL(Q_0) \cong SL_2(\mathbb{Z})$.
§3 $SL_2(\mathbb{Z})$-action

- Since an elliptic root system R has two primitive null roots δ_1 and δ_2, there is a natural action of $SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$.

Recall $\Lambda = F \oplus \mathbb{R}\gamma_1 \oplus \mathbb{R}\gamma_2$, and $I_\Lambda : \Lambda \times \Lambda \to \mathbb{R}$ (non-deg. symm. bilinear form).

$$\Theta(R, G) := \{ \varphi \in O(\Lambda, I_\Lambda) \mid \varphi(R) = R \}.$$

\Rightarrow Every $\varphi \in \Theta(R, G)$ preserves $Q_0 := \mathbb{Z}\delta_1 \oplus \mathbb{Z}\delta_2$.

$$\Theta_0(R, G) := \{ \varphi \in \Theta(R, G) \mid \det(\varphi|_{Q_0}) = 1 \}.$$

Let $\pi : \Theta_0(R, G) \to Aut(Q_0)$ be a map defined by $\varphi \mapsto \varphi|_{Q_0}$.

Lemma. If (R, G) is a marked elliptic root system of type $X_n^{(1,1)}$, the image of π coincides with $SL(Q_0) \cong SL_2(\mathbb{Z})$.

Remark. For another type, $\text{Im} \pi$ is isomorphic to the congruence subgroup $\Gamma_0(2)$ or $\Gamma_0(3)$. Here $\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \middle| c \equiv 0 \text{ mod } N \right\}$.
• From now on, we assume \((R, G) \) is of type \(X_n^{(1,1)} \).

\[\Rightarrow \text{There is an exact sequence} \]

\[1 \rightarrow \text{Ker } \pi \rightarrow \Theta_0(R, G) \xrightarrow{\pi} \text{SL}(Q_0) \rightarrow 1. \]

\[\varphi \mapsto \varphi|_{Q_0} \]
From now on, we assume (R, G) is of type $X_n^{(1,1)}$.

There is an exact sequence

$$1 \rightarrow \text{Ker } \pi \rightarrow \Theta_0(R, G) \xrightarrow{\pi} SL(Q_0) \rightarrow 1.$$

Moreover, we have

- The above exact sequence is split. i.e. $\Theta_0(R, G) \cong \text{Ker } \pi \times SL(Q_0)$. Especially, $SL(Q_0) \cong SL_2(\mathbb{Z})$ acts on Ker π.
- $W_\Lambda(R, G)$ is a normal subgroup of Ker π which is invariant under the $SL_2(\mathbb{Z})$-action. i.e.
- Ker $\pi/W_\Lambda(R, G)$ is a finite group (generated by some diagram automorphisms).
• From now on, we assume \((R, G)\) is of type \(X_{n}^{(1,1)}\).

\[\Rightarrow \text{There is an exact sequence} \]

\[1 \rightarrow \text{Ker } \pi \rightarrow \Theta_{0}(R, G) \xrightarrow{\pi} SL(Q_{0}) \rightarrow 1. \]

Moreover, we have

• The above exact sequence is split. i.e. \(\Theta_{0}(R, G) \cong \text{Ker } \pi \times SL(Q_{0}).\)

 Especially, \(SL(Q_{0}) \cong SL_{2}(\mathbb{Z})\) acts on \(\text{Ker } \pi\).

• \(W_{\Lambda}(R, G)\) is a normal subgroup of \(\text{Ker } \pi\) which is invariant under the \(SL_{2}(\mathbb{Z})\)-action. i.e.

• \(\text{Ker } \pi/W_{\Lambda}(R, G)\) is a finite group (generated by some diagram automorphisms).

Remark. For other types, similar results hold by replacing \(SL_{2}(\mathbb{Z})\) with \(\Gamma_{0}(2)\) or \(\Gamma_{0}(3)\).
• From now on, we assume \((R, G)\) is of type \(X_n^{(1,1)}\).

⇒ There is an exact sequence

\[
1 \rightarrow \text{Ker} \, \pi \rightarrow \Theta_0(R, G) \xrightarrow{\pi} \text{SL}(Q_0) \rightarrow 1.
\]

Moreover, we have

\[
\varphi \quad \mapsto \quad \varphi|_{Q_0}
\]

- The above exact sequence is split. i.e. \(\Theta_0(R, G) \cong \text{Ker} \, \pi \times \text{SL}(Q_0)\).

 Especially, \(\text{SL}(Q_0) \cong \text{SL}_2(\mathbb{Z})\) acts on \(\text{Ker} \, \pi\).
- \(W_\Lambda(R, G)\) is a normal subgroup of \(\text{Ker} \, \pi\) which is invariant under the \(\text{SL}_2(\mathbb{Z})\)-action. i.e.
- \(\text{Ker} \, \pi/W_\Lambda(R, G)\) is a finite group (generated by some diagram automorphisms).

Remark. For other types, similar results hold by replacing \(\text{SL}_2(\mathbb{Z})\) with \(\Gamma_0(2)\) or \(\Gamma_0(3)\).

Q. These stories work for elliptic Artin groups?
From now on, we assume \((R, G)\) is of type \(X_n^{(1,1)}\).

There is an exact sequence

\[
1 \to \ker \pi \to \Theta_0(R, G) \xrightarrow{\pi} SL(Q_0) \to 1.
\]

Moreover, we have

\[
\varphi \mapsto \varphi|Q_0
\]

- The above exact sequence is split. \textit{i.e.} \(\Theta_0(R, G) \cong \ker \pi \times SL(Q_0)\).
 Especially, \(SL(Q_0) \cong SL_2(\mathbb{Z})\) acts on \(\ker \pi\).

- \(W_\Lambda(R, G)\) is a normal subgroup of \(\ker \pi\) which is invariant under the \(SL_2(\mathbb{Z})\)-action. \textit{i.e.}

- \(\ker \pi/W_\Lambda(R, G)\) is a finite group (generated by some diagram automorphisms).

\textbf{Remark.} For other types, similar results hold by replacing \(SL_2(\mathbb{Z})\) with \(\Gamma_0(2)\) or \(\Gamma_0(3)\).

\textbf{Q.} These stories work for elliptic Artin groups?

\textbf{A.} YES (at least for of type \(X_n^{(1,1)}\)).
§4 Hidden braid group symmetry

o Preliminaries

(1) Set

\[S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \]

Then, \(SL_2(\mathbb{Z}) = \langle S, T \mid S^2 = (ST)^3 = (TS)^3, \; S^4 = 1 \rangle. \)
§4 Hidden braid group symmetry

○ Preliminaries

(1) Set

\[S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \]

Then, \(SL_2(\mathbb{Z}) = \langle S, T \mid S^2 = (ST)^3 = (TS)^3, \ S^4 = 1 \rangle. \)

(2) Let \(U := TST = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}. \) Then \(T \) and \(U^{-1} \) generate \(SL_2(\mathbb{Z}) \) and they satisfy the braid relation of type \(A_2: \ TU^{-1}T = U^{-1}TU^{-1}. \) Moreover, there exists an exact sequence:

\[
1 \to \langle c \rangle \cong \mathbb{Z} \to A(A_2) \to SL_2(\mathbb{Z}) \to 1 \text{ (central extension).}
\]

\[
a \mapsto T, \quad b \mapsto U^{-1}
\]

Here \(A(A_2) = \langle a, b \mid aba = bab \rangle \) is the Artin group of type \(A_2, \) and \(c := (ab)^6 = (ba)^6. \)
(3) Let \((R, G)\) be a marked elliptic root system of type \(X_{n}^{(1,1)}\). Recall that the modular group \(SL_2(\mathbb{Z})\) acts on \(W_\Lambda(R, G)\). i.e.

\[
\iota : \quad SL_2(\mathbb{Z}) \quad \leftrightarrow \quad Aut(W_\Lambda(R, G))
\]

\[
X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \mapsto \quad X_W.
\]

Note that there exists a natural projection:

\[
\varpi : A(R, G) \quad \rightarrow \quad W_\Lambda(R, G)
\]

where \(i_1 i_2 (R, G)\):

\[
g_{i_1} g_{i_2} \quad \mapsto \quad s_i g_{i_2} s_i g_{i_1}
\]

Definition. A group automorphism \(\varphi \in Aut(A(R, G))\) is called a lift of \(\varphi \in Aut(W_\Lambda(R, G))\) if \(\varpi(\varphi(g)) = \varpi(g)\) for every \(g \in A(R, G)\).
(3) Let \((R, G)\) be a marked elliptic root system of type \(X_n^{(1,1)}\). Recall that the modular group \(SL_2(\mathbb{Z})\) acts on \(W_\Lambda(R, G)\). i.e.

\[
\iota : SL_2(\mathbb{Z}) \mapsto \text{Aut}(W_\Lambda(R, G))
\]

\[
X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto X_W.
\]

(4) Note that there exists a natural projection:

\[
\varpi : A(R, G) \mapsto W_\Lambda(R, G)
\]

where \(\alpha_{i_1} \cdots \alpha_{i_l} \in \Gamma(R, G)\).

\[
g\alpha_{i_1} \cdots g\alpha_{i_l} \mapsto s\alpha_{i_1} \cdots s\alpha_{i_l}
\]
Let \((R, G)\) be a marked elliptic root system of type \(X_n^{(1,1)}\). Recall that the modular group \(SL_2(\mathbb{Z})\) acts on \(W_\wedge(R, G)\). i.e.
\[
\iota : \quad SL_2(\mathbb{Z}) \quad \hookrightarrow \quad Aut\left(W_\wedge(R, G)\right)
\]

\[
X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \mapsto \quad X_W.
\]

Note that there exists a natural projection:
\[
\varpi : \quad A(R, G) \quad \rightarrow \quad W_\wedge(R, G)
\]

where \(\alpha_{i_1} \cdots \alpha_{i_l} \in \Gamma(R, G)\).

\[
g\alpha_{i_1} \cdots g\alpha_{i_l} \quad \mapsto \quad s\alpha_{i_1} \cdots s\alpha_{i_l}
\]

Definition. A group automorphism \(\varphi \in Aut\left(A(R, G)\right)\) is called a lift of \(\psi \in Aut\left(W_\wedge(R, G)\right)\) if
\[
\varpi(\varphi(g)) = \psi(\varpi(g)) \quad \text{for every } g \in A(R, G).
\]
Theorem. For \((R, G)\) of type \(X_n^{(1,1)}\), there exist group automorphisms \(S_A\) and \(T_A\) of \(A(R, G)\) which have the following properties.

1. They are lifts of \(S_W\) and \(T_W \in \text{Aut}(W_\Lambda(R, G))\), respectively.

2. The following commutative relations are satisfied:

 \[(S_A T_A)^3 = (T_A S_A)^3 = S_A^2.\]

3. \(S_A^4 \Delta \text{Inn}(A(R, G))\). More precisely,

 \[S_A^4(g) = (g w_0)^2 g (g w_0)^2\]
 for every \(g \in A(R, G)\).

4. Let \(G\) be a subgroup of \(\text{Aut}(A(R, G))\) generated by \(S_A\) and \(T_A\). Then there exists an exact sequence.

\[
1 \rightarrow \mathbb{Z} = \langle S_A \rangle \rightarrow G \rightarrow \text{SL}_2(\mathbb{Z}) \rightarrow 1
\]

Namely, \(G\) is isomorphic to the braid group of type \(A_2\).
Theorem. For \((R, G)\) of type \(X_n^{(1,1)}\), there exist group automorphisms \(S_A\) and \(T_A\) of \(A(R, G)\) which have the following properties.

1. They are lifts of \(S_W\) and \(T_W \in \text{Aut}(W_A(R, G))\), respectively.
2. The following commutative relations are satisfied:

\[
(S_AT_A)^3 = (T_AS_A)^3 = S_A^2.
\]
Theorem. For \((R, G)\) of type \(X_n^{(1,1)}\), there exist group automorphisms \(S_A\) and \(T_A\) of \(A(R, G)\) which have the following properties.

1. They are lifts of \(S_W\) and \(T_W \in \text{Aut}(W_\Lambda(R, G))\), respectively.
2. The following commutative relations are satisfied:
 \[(S_A T_A)^3 = (T_A S_A)^3 = S_A^2.\]
3. \(S_A^4 \in \text{Inn}(A(R, G))\). More precisely,
 \[S_A^4(g) = (g w_0)^{-2} g (g w_0)^2 \quad \text{for every } g \in A(R, G).\]

Here \(w_0\) is the longest elem. of \(W(R_0)\), \(g w_0\) is the corresp. elem. in \(A(R, G)\).
Theorem. For \((R, G)\) of type \(X_n^{(1,1)}\), there exist group automorphisms \(S_A\) and \(T_A\) of \(A(R, G)\) which have the following properties.

1. They are lifts of \(S_W\) and \(T_W \in \text{Aut}(W_\wedge(R, G))\), respectively.
2. The following commutative relations are satisfied:
 \[(S_AT_A)^3 = (T_AS_A)^3 = S_A^2.\]
3. \(S_A^4 \in \text{Inn}(A(R, G))\). More precisely,
 \[S_A^4(g) = (g_{w_0})^{-2}g(g_{w_0})^2 \quad \text{for every } g \in A(R, G).\]
Here \(w_0\) is the longest elem. of \(W(R_0)\), \(g_{w_0}\) is the corresp. elem. in \(A(R, G)\).
4. Let \(G\) be a subgroup of \(\text{Aut}(A(R, G))\) generated by \(S_A\) and \(T_A\). Then there exists an exact sequence.

\[
1 \rightarrow \mathbb{Z} \cong \langle S_A^4 \rangle \rightarrow G \rightarrow SL_2(\mathbb{Z}) \rightarrow 1 \quad \text{(central extension)}
\]

Namely, \(G\) is isomorphic to the braid group of type \(A_2\).
(hidden braid group symmetry of \(A(R, G)\)).
Remark. (1) The explicit forms of S_A and T_A are obtained. But, since they deeply depend on “personality” of each (R, G), we omit to give them.
Remark. (1) The explicit forms of S_A and T_A are obtained. But, since they deeply depend on “personality” of each (R, G), we omit to give them.

(2) Our S_A and T_A induce automorphisms of the corresponding elliptic (≡ double affine) Hecke algebra. Namely, the elliptic Hecke algebra of type $X_n^{(1,1)}$ also has the hidden braid group symmetry.
Remark. (1) The explicit forms of S_A and T_A are obtained. But, since they deeply depend on “personality” of each (R, G), we omit to give them.

(2) Our S_A and T_A induce automorphisms of the corresponding elliptic (⇐ double affine) Hecke algebra. Namely, the elliptic Hecke algebra of type $X_n^{(1,1)}$ also has the hidden braid group symmetry.

(3) As well-known, there is an anti-automorphism ω of a double affine Hecke algebra which is called the duality anti-automorphism or Fourier transformation due to Cherednik. (It plays an important role in his proof of Macdonald’s inner product conjecture.) In our setting, it is a “lift” of $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in GL_2(\mathbb{Z}) \setminus SL_2(\mathbb{Z})$, and does not coincide one of $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
(4) What is happened in marked elliptic root systems of other types?

→ Work in progress:

 We have done only for some low rank cases.
Thank you!