Character sheaves

Tanmay Deshpande

Introduction

The category $\mathcal{D}_G(G)$

Twists

An Example

Main Conjecture

Our approach

Character sheaves on solvable algebraic groups

Tanmay Deshpande

Tata Institute of Fundamental Research
Mumbai, India
Let \mathbb{F}_q be a finite field of characteristic p and let $k = \overline{\mathbb{F}}_q$. We work with algebraic groups G over k equipped with a q-Frobenius map $F : G \to G$. Then for each positive integer m, we have the finite group $G(\mathbb{F}_q^m) = G^{F^m}$.

Introduction

Let \mathbb{F}_q be a finite field of characteristic p and let $\mathbb{k} = \overline{\mathbb{F}}_q$. We work with algebraic groups G over \mathbb{k} equipped with a q-Frobenius map $F : G \to G$. Then for each positive integer m, we have the finite group $G(\mathbb{F}_q^m) = G^{F^m}$.

Our goal is to study the irreducible characters of the finite group $G(\mathbb{F}_q) = G^F$ in terms of certain geometric objects which we will call “character sheaves”.

- Let \mathbb{F}_q be a finite field of characteristic p and let $\mathbb{k} = \overline{\mathbb{F}}_q$. We work with algebraic groups G over \mathbb{k} equipped with a q-Frobenius map $F : G \to G$. Then for each positive integer m, we have the finite group $G(\mathbb{F}_q^m) = G^{F^m}$.

- Our goal is to study the irreducible characters of the finite group $G(\mathbb{F}_q) = G^F$ in terms of certain geometric objects which we will call “character sheaves”.
Introduction

Let \mathbb{F}_q be a finite field of characteristic p and let $k = \overline{\mathbb{F}}_q$. We work with algebraic groups G over k equipped with a q-Frobenius map $F : G \to G$. Then for each positive integer m, we have the finite group $G(\mathbb{F}_{q^m}) = G^{F^m}$.

Our goal is to study the irreducible characters of the finite group $G(\mathbb{F}_q) = G^F$ in terms of certain geometric objects which we will call “character sheaves”.

Character sheaves on G are supposed to be certain special objects in $\mathcal{D}_G(G)$, the triangulated category of conjugation equivariant $\overline{\mathbb{Q}}_\ell$-complexes on G. They are supposed to be a geometric analogue of the notion of irreducible characters.
Remark on disconnected groups

- In this talk, we will mostly talk about connected algebraic groups G. But everything can be made to work for disconnected groups as well.
Remark on disconnected groups

- In this talk, we will mostly talk about connected algebraic groups G. But everything can be made to work for disconnected groups as well.

- However, it is important to note that in the disconnected case we should consider not only the original Frobenius F, but also all its pure inner forms which are parameterized by the finite set $H^1(F, G)$.
In this talk, we will mostly talk about connected algebraic groups G. But everything can be made to work for disconnected groups as well.

However, it is important to note that in the disconnected case we should consider not only the original Frobenius F, but also all its pure inner forms which are parameterized by the finite set $H^1(F, G)$.

If $g \in G$, then the corresponding inner form of the Frobenius is defined by $gF := \text{ad}(g) \circ F : G \to G$. The finite group G^{gF} is said to be an inner form of the group G^F.
Character sheaves are supposed to lie in the \mathbb{Q}_ℓ-linear triangulated braided monoidal category $\mathcal{D}_G(G)$ of conjugation equivariant \mathbb{Q}_ℓ-complexes on G. (We fix some prime number $\ell \neq p$.)
The triangulated braided category $\mathcal{D}_G(G)$

- Character sheaves are supposed to lie in the $\overline{\mathbb{Q}}_\ell$-linear triangulated braided monoidal category $\mathcal{D}_G(G)$ of conjugation equivariant $\overline{\mathbb{Q}}_\ell$-complexes on G. (We fix some prime number $\ell \neq p$.)

- Each object $C \in \mathcal{D}_G(G)$ has an equivariance structure which defines isomorphisms

$$\phi_C(g, x) : C_x \xrightarrow{\simeq} C_{gxg^{-1}}.$$
The triangulated braided category $\mathcal{D}_G(G)$

- Character sheaves are supposed to lie in the $\overline{\mathbb{Q}}_\ell$-linear triangulated braided monoidal category $\mathcal{D}_G(G)$ of conjugation equivariant $\overline{\mathbb{Q}}_\ell$-complexes on G. (We fix some prime number $\ell \neq p$.)

- Each object $C \in \mathcal{D}_G(G)$ has an equivariance structure which defines isomorphisms

$$\phi_C(g, x) : C_x \xrightarrow{\cong} C_{gxg^{-1}}.$$

- Each object $C \in \mathcal{D}_G(G)$ has its associated twist $\theta_C : C \to C$ defined on stalks by

$$\theta_C(x) = \phi_C(x, x) : C_x \to C_x.$$
For $C_1, C_2 \in \mathcal{D}_G(G)$, we have their convolution with compact support

$$C_1 \ast C_2 = \mu!(C_1 oxtimes C_2) = \mu!(p_1^*C_1 \otimes p_2^*C_2).$$

![Diagram](image)
The triangulated braided category $\mathcal{D}_G(G)$

- For $C_1, C_2 \in \mathcal{D}_G(G)$, we have their convolution with compact support

\[C_1 \ast C_2 = \mu!(C_1 \boxtimes C_2) = \mu!(p_1^*C_1 \otimes p_2^*C_2). \]

\[G \times G \xrightarrow{\mu} G \]
\[\begin{array}{c}
G \\
\downarrow p_1 \\
\end{array} \quad \begin{array}{c}
G \\
\downarrow p_2 \\
\end{array} \]

- We have braid isomorphisms

\[\beta_{c_1,c_2} : C_1 \ast C_2 \xrightarrow{\sim} C_2 \ast C_1 \text{ which satisfy} \]

\[\theta_{c_1 \ast c_2} = \beta_{c_2,c_1} \circ \beta_{c_1,c_2} \circ (\theta_{c_1 \ast c_2}). \]
The sheaf-function correspondence

- If \(C \in \mathcal{D}_G(G) \) is such that we have \(\psi : F^* C \rightarrow C \), then we can define its associated trace of Frobenius function on each pure inner form and obtain a function \(Tr_{C,\psi} \in \text{Fun}([G], F) \).
The sheaf-function correspondence

- If $C \in \mathcal{D}_G(G)$ is such that we have $\psi : F^*C \rightarrowtail C$, then we can define its associated trace of Frobenius function on each pure inner form and obtain a function $\text{Tr}_{C,\psi} \in \text{Fun}([G], F)$.

- We will say that an object $C \in \mathcal{D}_G(G)$ is simple if $\text{End}(C) = \overline{\mathbb{Q}}_\ell$. If a simple C is F-stable, then the function $\text{Tr}_{C,\psi}$ is determined by C up to scaling.
The sheaf-function correspondence

- If $C \in \mathcal{D}_G(G)$ is such that we have $\psi : F^*C \xrightarrow{\cong} C$, then we can define its associated trace of Frobenius function on each pure inner form and obtain a function $Tr_{C,\psi} \in \text{Fun}([G], F)$.

- We will say that an object $C \in \mathcal{D}_G(G)$ is simple if $\text{End}(C) = \overline{\mathbb{Q}}_\ell$. If a simple C is F-stable, then the function $Tr_{C,\psi}$ is determined by C up to scaling.

- **Question:** Given any irreducible character χ of G^F, does there exist a simple F-stable $C \in \mathcal{D}_G(G)$ such that $\chi = Tr_{C,\psi}$?
The sheaf-function correspondence

- If \(C \in \mathcal{D}_G(G) \) is such that we have \(\psi : F^* C \xrightarrow{\sim} C \), then we can define its associated trace of Frobenius function on each pure inner form and obtain a function \(Tr_{C,\psi} \in \text{Fun}([G], F) \).

- We will say that an object \(C \in \mathcal{D}_G(G) \) is simple if \(\text{End}(C) = \overline{\mathbb{Q}}_\ell \). If a simple \(C \) is \(F \)-stable, then the function \(Tr_{C,\psi} \) is determined by \(C \) up to scaling.

- **Question:** Given any irreducible character \(\chi \) of \(G^F \), does there exist a simple \(F \)-stable \(C \in \mathcal{D}_G(G) \) such that \(\chi = Tr_{C,\psi} \)?

- **Ans:** Not always. We will see some examples soon.
Geometric and rational conjugacy classes

- We say that $g, h \in G^F$ are geometrically conjugate if $g = xhx^{-1}$ for some $x \in G$, not necessarily in G^F.
Geometric and rational conjugacy classes

- We say that \(g, h \in G^F \) are geometrically conjugate if \(g = xhx^{-1} \) for some \(x \in G \), not necessarily in \(G^F \).

- Let \(G^F / \sim \) denote the set of conjugacy classes in the finite group \(G^F \). These are called the rational conjugacy classes.
Geometric and rational conjugacy classes

We say that $g, h \in G^F$ are geometrically conjugate if $g = xhx^{-1}$ for some $x \in G$, not necessarily in G^F.

Let G^F/ \sim denote the set of conjugacy classes in the finite group G^F. These are called the rational conjugacy classes.

If $g \in G^F$ and $C_G(g)$ is connected then the geometric conjugacy class of g coincides with its rational conjugacy class.
Let G be connected. We have a twist $(G^F/\sim) \xrightarrow{\Theta} (G^F/\sim)$ which permutes the rational conjugacy classes within each geometric conjugacy class.
The twisting map

- Let G be connected. We have a twist $(G^F/\sim) \xrightarrow{\Theta} (G^F/\sim)$ which permutes the rational conjugacy classes within each geometric conjugacy class.

- For $g \in G^F$, write $g = xF(x)^{-1}$, then

$$\Theta : \langle g \rangle \mapsto \langle F(x)^{-1}x \rangle.$$
The twisting map

- Let G be connected. We have a twist $(G^F/\sim) \xrightarrow{\Theta} (G^F/\sim)$ which permutes the rational conjugacy classes within each geometric conjugacy class.
- For $g \in G^F$, write $g = xF(x)^{-1}$, then
 $$\Theta: \langle g \rangle \mapsto \langle F(x)^{-1}x \rangle.$$

- If $g \in G^F$ is such that $g \in C_G(g)^\circ$ then Θ fixes $\langle g \rangle$.
The twisting map

- Let G be connected. We have a twist $(G^F/\sim) \xrightarrow{\Theta} (G^F/\sim)$ which permutes the rational conjugacy classes within each geometric conjugacy class.

- For $g \in G^F$, write $g = xF(x)^{-1}$, then

 \[\Theta : \langle g \rangle \mapsto \langle F(x)^{-1}x \rangle. \]

- If $g \in G^F$ is such that $g \in C_G(g)^\circ$ then Θ fixes $\langle g \rangle$.

- We have the induced twisting operator

 \[\Theta^* : \text{Fun}(G^F/\sim) \xrightarrow{\cong} \text{Fun}(G^F/\sim). \]
The twisting map

- Let G be connected. We have a twist $(G^F/\sim) \xrightarrow{\Theta} (G^F/\sim)$ which permutes the rational conjugacy classes within each geometric conjugacy class.

- For $g \in G^F$, write $g = xF(x)^{-1}$, then

 $$\Theta : \langle g \rangle \mapsto \langle F(x)^{-1}x \rangle.$$

- If $g \in G^F$ is such that $g \in C_G(g)^\circ$ then Θ fixes $\langle g \rangle$.

- We have the induced twisting operator

 $$\Theta^* : \text{Fun}(G^F/\sim) \xrightarrow{\cong} \text{Fun}(G^F/\sim).$$

- In general the twist of an irreducible character can be complicated.
The trace of Frobenius functions and twists

If $C \in \mathcal{D}_G(G)$ is simple, then the twist $\theta_C : C \rightarrow C$ is a scalar.

Lemma

Let C be an F-stable simple object in $\mathcal{D}_G(G)$ and let $\psi : F^* C \xrightarrow{\sim} C$. Then we have

$$\Theta^*(Tr_C,\psi) = \theta_C \cdot Tr_C,\psi$$

i.e. the associated trace of Frobenius function is an eigenvector for the twisting operator with eigenvalue θ_C.
Example: Borel subgroup of $SL_2(\mathbb{F}_q)$

Let $B := \left\{ \begin{pmatrix} t & a \\ 0 & t^{-1} \end{pmatrix} \right\}$ be the Borel subgroup of SL_2. $B(\mathbb{F}_q)$ has $q + 3$ conjugacy classes:
Example: Borel subgroup of $SL_2(\mathbb{F}_q)$

Let $B := \left\{ \begin{pmatrix} t & a \\ 0 & t^{-1} \end{pmatrix} \right\}$ be the Borel subgroup of SL_2. $B(\mathbb{F}_q)$ has $q + 3$ conjugacy classes: (Let $\alpha \in \mathbb{F}_q^\times$ be a non-square)

$$l \quad -l \quad \begin{pmatrix} u \\ 0 \\ 1 \end{pmatrix} \quad \begin{pmatrix} u' \\ 0 \\ 1 \end{pmatrix} \quad \begin{pmatrix} -u \\ 0 \\ -1 \end{pmatrix} \quad \begin{pmatrix} -u' \\ 0 \\ -1 \end{pmatrix} \quad \begin{pmatrix} t \\ 0 \\ t^{-1} \end{pmatrix} \quad t \in \mathbb{F}_q^\times \setminus \{\pm 1\}$$
Example: Borel subgroup of $SL_2(\mathbb{F}_q)$

Let $B := \left\{ \begin{pmatrix} t & a \\ 0 & t^{-1} \end{pmatrix} \right\}$ be the Borel subgroup of SL_2. $B(\mathbb{F}_q)$ has $q + 3$ conjugacy classes: (Let $\alpha \in \mathbb{F}_q^\times$ be a non-square)

\[
I \quad -I \quad \begin{pmatrix} u & \alpha \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} u' & -\alpha \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} -u & -\alpha \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} -u' & \alpha \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \quad t \in \mathbb{F}_q^\times \setminus \{\pm 1\}
\]

Its character table is given by: (Here $\varepsilon = \left(\frac{-1}{q} \right)$)

<table>
<thead>
<tr>
<th>Irrep</th>
<th>I</th>
<th>$-I$</th>
<th>u</th>
<th>u'</th>
<th>$-u$</th>
<th>$-u'$</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ</td>
<td>1</td>
<td>$\chi(-1)$</td>
<td>1</td>
<td>1</td>
<td>$\chi(-1)$</td>
<td>$\chi(-1)$</td>
<td>$\chi(t)$</td>
</tr>
<tr>
<td>χ_1</td>
<td>$\frac{q-1}{2}$</td>
<td>$\frac{q-1}{2}$</td>
<td>$\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$-\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$-\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>χ_2</td>
<td>$\frac{q-1}{2}$</td>
<td>$\frac{q-1}{2}$</td>
<td>$-\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$-\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>χ_3</td>
<td>$\frac{q-1}{2}$</td>
<td>$-\frac{q-1}{2}$</td>
<td>$\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$-\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$-\frac{\sqrt{\varepsilon q+1}}{2}$</td>
<td>$\frac{\sqrt{\varepsilon q+1}}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>χ_4</td>
<td>$\frac{q-1}{2}$</td>
<td>$-\frac{q-1}{2}$</td>
<td>$-\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$\frac{\sqrt{\varepsilon q-1}}{2}$</td>
<td>$\frac{\sqrt{\varepsilon q+1}}{2}$</td>
<td>$-\frac{\sqrt{\varepsilon q+1}}{2}$</td>
<td>0</td>
</tr>
</tbody>
</table>

We see that the last 4 irreducible characters that are not preserved by the twist Θ.

Example: Almost characters for $B(\mathbb{F}_q)$

However, let us take certain linear combinations of these 4 characters:

\[
\begin{align*}
\chi_1 + \chi_2 + \chi_3 + \chi_4 &= 2q^{-1} - 1 - 1 - 0 \\
\chi_1 - \chi_2 - \chi_3 + \chi_4 &= 20 q^{-1} - 1 - 1 - 1 \\
\chi_1 - \chi_2 - \chi_3 + \chi_4 &= 20 q^{-1} - 1 - 1 - 1 \\
\chi_1 - \chi_2 + \chi_3 - \chi_4 &= 20 q^{-1} - 1 - 1 - 1
\end{align*}
\]

We see that the first 3 “almost characters” above are fixed by Θ, whereas the last one is an eigenvector with eigenvalue -1.

The unitary matrix relating the 4 special characters and almost characters is the S-matrix of a certain modular category, namely the Drinfeld double of $\mathbb{Z}/2\mathbb{Z}$.
Example: Almost characters for $B(\overline{F}_q)$

However, let us take certain linear combinations of these 4 characters:

```
<table>
<thead>
<tr>
<th>“Almost char”</th>
<th>I</th>
<th>−I</th>
<th>u</th>
<th>u'</th>
<th>−u</th>
<th>Θ</th>
<th>−u'</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{x_1+x_2+x_3+x_4}{2}$</td>
<td>$q-1$</td>
<td>0</td>
<td>$-1$</td>
<td>$-1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{x_1+x_2-x_3-x_4}{2}$</td>
<td>0</td>
<td>$q-1$</td>
<td>0</td>
<td>0</td>
<td>$-1$</td>
<td>$-1$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$\frac{x_1-x_2+x_3-x_4}{2}$</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{\varepsilon}q$</td>
<td>$-\sqrt{\varepsilon}q$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$\frac{x_1-x_2-x_3+x_4}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{\varepsilon}q$</td>
<td>$-\sqrt{\varepsilon}q$</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```
Example: Almost characters for $B(\overline{F}_q)$

However, let us take certain linear combinations of these 4 characters:

<table>
<thead>
<tr>
<th>“Almost char”</th>
<th>l</th>
<th>$-l$</th>
<th>u</th>
<th>u'</th>
<th>$-u$</th>
<th>$-u'$</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{x_1+x_2+x_3+x_4}{2}$</td>
<td>$q - 1$</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{x_1+x_2-x_3-x_4}{2}$</td>
<td>0</td>
<td>$q - 1$</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{x_1-x_2+x_3-x_4}{2}$</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{\varepsilon q}$</td>
<td>$-\sqrt{\varepsilon q}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{x_1-x_2-x_3+x_4}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{\varepsilon q}$</td>
<td>$-\sqrt{\varepsilon q}$</td>
<td>0</td>
</tr>
</tbody>
</table>

We see that the first 3 “almost characters” above are fixed by Θ, whereas the last one is an eigenvector with eigenvalue -1.

The unitary matrix

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
\end{pmatrix}
\]

relating the 4 special characters and almost characters is the S-matrix of a certain modular category, namely the Drinfeld double of $\mathbb{Z}/2\mathbb{Z}$.
Example: Almost characters for $B(\overline{F}_q)$

However, let us take certain linear combinations of these 4 characters:

<table>
<thead>
<tr>
<th>“Almost char”</th>
<th>l</th>
<th>$-l$</th>
<th>u</th>
<th>u'</th>
<th>$-u \Theta$</th>
<th>$-u'$</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{x_1 + x_2 + x_3 + x_4}{2}$</td>
<td>$q - 1$</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{x_1 + x_2 - x_3 - x_4}{2}$</td>
<td>0</td>
<td>$q - 1$</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{x_1 - x_2 + x_3 - x_4}{2}$</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{\varepsilon q}$</td>
<td>$-\sqrt{\varepsilon q}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{x_1 - x_2 - x_3 + x_4}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{\varepsilon q}$</td>
<td>$-\sqrt{\varepsilon q}$</td>
</tr>
</tbody>
</table>

We see that the first 3 “almost characters” above are fixed by Θ, whereas the last one is an eigenvector with eigenvalue -1. The unitary matrix

$$\frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}$$

relating the 4 special characters and almost characters is the S-matrix of a certain modular category, namely the Drinfeld double of $\mathbb{Z}/2\mathbb{Z}$.
Main conjecture

Our main goal is to define a set of some special simple objects in $\mathcal{D}_G(G)$ which we will call character sheaves.

Conjecture 1

There exists a (possibly infinite) set $CS(G)$ of isomorphism classes of some special simple objects of $\mathcal{D}_G(G)$ such that
Main conjecture

Our main goal is to define a set of some special simple objects in $\mathcal{D}_G(G)$ which we will call character sheaves.

Conjecture 1

There exists a (possibly infinite) set $CS(G)$ of isomorphism classes of some special simple objects of $\mathcal{D}_G(G)$ such that

- The set $CS(G)$ can be partitioned into finite families called \mathbb{L}-packets, i.e.

$$CS(G) = \bigsqcup_{\mathbb{L}(G)} L,$$

where each L is a finite set of character sheaves. Associated with each \mathbb{L}-packet L, there is a modular category C_L whose simple objects are the character sheaves in the \mathbb{L}-packet L.
Main conjecture

Conjecture 1 (contd.)

Let $\varphi : \mathcal{D}_G(G) \rightarrow \mathcal{D}_G(G)$ be any braided triangulated autoequivalence. Then φ preserves the set $\mathcal{C}S(G)$ and if L is an \mathcal{L}-packet of character sheaves, then $\varphi(L)$ is also an \mathcal{L}-packet.
Main conjecture

Conjecture 1 (contd.)

- Let $\varphi : D_G(G) \to D_G(G)$ be any braided triangulated autoequivalence. Then φ preserves the set $CS(G)$ and if L is an \mathbb{L}-packet of character sheaves, then $\varphi(L)$ is also an \mathbb{L}-packet.

- For each \mathbb{L}-packet L, φ induces an equivalence of modular categories $\varphi_L : C_L \to C_{\varphi(L)}$. In particular this holds for $\varphi = F^*$.
Main conjecture

Conjecture 1 (contd.)

- Let $\varphi : D_G(G) \to D_G(G)$ be any braided triangulated autoequivalence. Then φ preserves the set $CS(G)$ and if L is an \mathbb{L}-packet of character sheaves, then $\varphi(L)$ is also an \mathbb{L}-packet.

- For each \mathbb{L}-packet L, φ induces an equivalence of modular categories $\varphi_L : C_L \to C_{\varphi(L)}$. In particular this holds for $\varphi = F^*$.

- For each $C \in CS(G)^F$, we fix an isomorphism $\psi_C : F^* C \to C$ such that $|Tr_{C,\psi_C}| = 1$. Then the set $\{Tr_{C,\psi_C}\}_{C \in CS(G)^F} \subset Fun([G], F)$ is an orthonormal basis of Θ^*-eigenvectors.
Main conjecture

Conjecture 1 (contd.)

We have $\mathcal{CS}(G)^F = \bigsqcup_{L \in \mathbb{L}(G)^F} L^F$. The unitary matrix relating the two bases $\{\text{Tr}_C, \psi_C\}_{C \in \mathcal{CS}(G)^F}$ and $\text{Irrep}(G, F)$ of $\text{Fun}([G], F)$ is block diagonal where the blocks correspond to the F-stable \mathbb{L}-packets.
Main conjecture

Conjecture 1 (contd.)

- We have \(CS(G)^F = \bigsqcup_{L \in \mathbb{L}(G)^F} L^F \). The unitary matrix relating the two bases \(\{ Tr_C, \psi_C \}_{C \in CS(G)^F} \) and Irrep\((G, F)\) of Fun([\(G\], F) is block diagonal where the blocks correspond to the \(F\)-stable \(\mathbb{L}\)-packets.

- If \(L \in \mathbb{L}(G)^F \) then we have the modular autoequivalence \(F_L^* : \mathcal{C}_L \to \mathcal{C}_L \). Then the corresponding block in the change of basis matrix is equal to the crossed \(S\)-matrix associated with the pair \((\mathcal{C}_L, F_L^*)\).
Our approach towards a theory of character sheaves

- We aim to break up the category $\mathcal{D}_G(G)$ into more manageable pieces using minimal idempotents $f \in \mathcal{D}_G(G)$.

...
Our approach towards a theory of character sheaves

- We aim to break up the category $\mathcal{D}_G(G)$ into more manageable pieces using minimal idempotents $f \in \mathcal{D}_G(G)$.
- For a minimal idempotent f, we look at the full subcategory $f\mathcal{D}_G(G) \subset \mathcal{D}_G(G)$ and we aim to first define the set $CS_f(G)$ of character sheaves and its \mathbb{L}-packet decomposition in this full subcategory.
Our approach towards a theory of character sheaves

- We aim to break up the category $\mathcal{D}_G(G)$ into more manageable pieces using minimal idempotents $f \in \mathcal{D}_G(G)$.

- For a minimal idempotent f, we look at the full subcategory $f\mathcal{D}_G(G) \subset \mathcal{D}_G(G)$ and we aim to first define the set $CS_f(G)$ of character sheaves and its \mathbb{I}-packet decomposition in this full subcategory.

- There are some special idempotents e in $\mathcal{D}_G(G)$ which can be described very explicitly. These are known as Heisenberg idempotents.
An auxiliary conjecture

Conjecture 2

(i) A Heisenberg idempotent $e \in \mathcal{D}_G(G)$ is always a minimal idempotent.
An auxiliary conjecture

Conjecture 2

(i) A Heisenberg idempotent \(e \in \mathcal{D}_G(G) \) is always a minimal idempotent.

(ii) Let \(f \in \mathcal{D}_G(G) \) be any minimal idempotent. Then there exists a Heisenberg idempotent \(e \in \mathcal{D}_{G'}(G') \) for some \(G' \subset G \) such that \(f \cong \text{ind}_{G'}^G e \) and such that we have a braided triangulated equivalence

\[
\text{ind}_{G'}^G : e \mathcal{D}_{G'}(G') \xrightarrow{\cong} f \mathcal{D}_G(G).
\]
An auxiliary conjecture

Conjecture 2

(i) A Heisenberg idempotent $e \in \mathcal{D}_G(G)$ is always a minimal idempotent.

(ii) Let $f \in \mathcal{D}_G(G)$ be any minimal idempotent. Then there exists a Heisenberg idempotent $e \in \mathcal{D}_{G'}(G')$ for some $G' \subset G$ such that $f \simeq \text{ind}_G^{G'} e$ and such that we have a braided triangulated equivalence

\[
\text{ind}_G^{G'} : e \mathcal{D}_{G'}(G') \xrightarrow{\simeq} f \mathcal{D}_G(G).
\]

Theorem

(a) Conjecture 2(i) implies 2(ii).
An auxiliary conjecture

Conjecture 2

1. A Heisenberg idempotent $e \in \mathcal{D}_G(G)$ is always a minimal idempotent.

2. Let $f \in \mathcal{D}_G(G)$ be any minimal idempotent. Then there exists a Heisenberg idempotent $e \in \mathcal{D}_{G'}(G')$ for some $G' \subset G$ such that $f \cong \text{ind}^G_{G'} e$ and such that we have a braided triangulated equivalence

$$\text{ind}^G_{G'} : e\mathcal{D}_{G'}(G') \cong f\mathcal{D}_G(G).$$

Theorem

(a) Conjecture 2(i) implies 2(ii).

(b) Conjecture 2 is true if G° is solvable.