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ABSTRACT

}A‘priori estimates for solutions of the quasilinear hyperbolic-parabolic
equations governing the initial value problem describing the motion of
compressible, viscous and heat~conductive, Newtonian fluids afe derived by
means of a new energy method. This technique enables us to simplify and unify
our previous results on the global existence in time and uniqueness of smooth
solutions of these equations for sufficiently smooth and "small" initi;l data

and to obtain their rate of decay.
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SIGNIFICANCE AND EXPLANATION

The motion of compressible, viscous and heat-conductive Newtonian fluids
is described by a system of partial differential equations which is of
hyperbolic-parabolic type and highly nonlinear. One of the first mathematiqai
problems associated with this system is the initial value problem. We obtain
the exis;ence qf a/pnique smooth global solution in time for the initial walue
pf&blem and aléo the decay rate of the solution as time tends to infinity.
Since the system is gquasilinear with respect to the unknowns: density,
velocity and temperature, we need to assume that the initial data are close to
the constant equilibrivm state. The purpdse of this paper 1s to obtain a
priori e§timates for the solutions of these equations by means of a new energy
method. This technique, although still necessarily laboricus, enables us to
simp;ify and unify our previous results, described briefly in the abstract and

i

obtained jointly with T. Nishida (see, e.g. MRC TSR #1991).

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



AN ENERGY METHOD FOR THE EQUATIONS OF MOTION
OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS

Akitaka Matsumura’

§1. Introduction and Main Theorem.
In previous papers [1], [2], we have investigated the global solution in
time of the initial value problem for the following equations governing the

motion of isotropic Newtonian fluids;
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with the initial data
(1.2) _ (‘p.u.e)(ﬂ_.x) = (poyuogeo)(x) .

sX_) € R3, p is the density, u = (u1,u2,u3) is the

where t > 0, x = (x1,x2 3

velocity, 8 4is the absolute temperature, p = p{p,8) 1is the pressure,
p= u{p,8) and u'(p.8) are viscous coefficients, x = k{p,0) is the

coéfﬁicient of heat conduction, cv = cv(p,e) is the heat capacity at

constant volume, and ¥ = 1 (uJ + uk )2 + u’(uJ Jz ig dissipation
2 xj xj
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function. We shall consider the solutions only in a neighbourhood of any
fixed constant state (p,u,8) = (;.O,E) where ;,3 are any positive
constants. Moreover, we shall make the following natural assumptions on the
hyperbolic-parabolic system (1.1) throughout this paper; . - -

(1) p, u, ¥ and « are smooth functions of O = {(p,u,8) : lp - El,

v!
lal, 1o - 8] < v,} .
s C

{ii) pp.p ¥, x> 0 and u'+%u>o in o,

8" v’
where g < min(;,a).

In {1], we succeeded in obtaining a global solution in time of (1.1),
{1.2} by using energy methods which were rather technical and complicated
under the assumptions that the fluid is an ideal and polytropic gas and that

- %, u,, 6 =18  is suitably small in ©> ,

(og 0’ Yo

where Hk

represents the usual Sobolev's spaces with the norm I-lk. We also
proved the decay of the solution to the constant state (E, 0, 8), but we
were not able to estimate the decay rate of the solution. In [2}, we obtained
both the global solution in time of the original problem (1.1), (1.2) and its
decay rate to the constant state by using a calculation of the decay rate for
the linearized equations, together with the energy estimates. Moreover, Qe
had to ipvestigate the precise properties 6f the spectrum of linearized .
equatiogs, and assume that

{po - o, @, s 80 -8 is suitably small in gt an Lt .



The purpose of this paper is to eméloy a different energy method to
hgndle the nonlinearity. The present approach is simpler and less technical
than the energy form used in (1], moreover we do not require all of the
precise properties of the linearized eéuations obtained laboriously in [21.
However, we note that because of the relative roughness of the new method, the
coefficients of the various estimates might be more rough than those in [1]
and ([2]. By making use of this approach, we obtain both the existence of
global smooth solution in time as well as its decay rate to the constant state

for the general case (1.1), (1.2). under the assumption that

(p0 -‘;. Q. 80 -~ 8) is sﬁitably small in H> R

(the previous approach required H4

a L'). This method will be applied to an
initial boundary value problem for (1.1), (1.2) in a subsequent paper.
The main result is:

Theorem 1.1. Consider the initial value problem (1.1), (1.2) and suppose

the initial data (po - ;, Y 6. - 8) e H3. Then there exist positive

0

-9 - probl
constants €4 and Cq such that if lp0 P uo, BD Bl3 < €7 the problem

(1.1), (1.2) has the unigque global solution in time satisfvying

o -5 eclo, +ey B2 nclo, +o; 5D
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and

{1.3) sup I(p;;, u, 8 - 8)(t)]| < c0(1+t)
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§2. Proof of Theorem

First rewrite the problem (1.1), (1.2) by the changes of variables:

p * ; + p,u+u, 6 + 3 + 8, P(;+Or 346) + p{p,8), u(;+ﬂr §+e) + u{p.,0)

so on resulting in = - L L
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Define a positive constant Eqy by the Sobolev's lemma so that for

Ifl2 < E; we have sup|£]| < (:Ifl2 < Yy Dencte
a a.,
p¥e = {3kf/3x113x:23x33

i+ = I-ID. Then the solution of (1.1), (1.2) is sought in the set of

for all «a, a, + a, + a, = k} and define

functions X(0, +=; E) for some E < ED' where for 0 < t1 < t:2 £ +o,
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and



We define N(t1, tz} by

N2(t1, t) = sup (l(p.u,e)(t)|§ +t ID(p,u,0) (L} 02 + £2 .«

t.! <t<t2

t

e %o, 00012 + [ 2 Wo(0 il + o0l +
€ 2 3

+ T2 (p,u, (T 1% + T (ID () + ID3(u.B)(T)Ii)dT ]

We prove Theorem 1.1 by a combination of a local existence result and a priori

estimate for the solution in X.

Theorem 2.1. (local existence) Consider the initial wvalue problem (2.1)

for t > t with the initial data at ¢t = ;1 as

1

(2.3) “(pru,0)(t,) € g .

P C{(e1c % Eo) and T which are

Then there exist positive constants ¢ 1

1

indevendent of t, such that if N(t1, t1)-< € the problem (2.1)-(2.3) has

1'

the unique solution

(p,,8) € X(t1. t1 + T C1N(t1.t1)) .

The proof of Theorem 2.1 is given in the same way as in [1].

Theorem 2.2. (a priori estimates) Suppose that the initial value

problem (2.1}, (2.2) has a solution

{p,u,8) ¢ X{(Q,T; E)



for some T > 0 and some E £ Ea. Then there exist three positive constants

(C253¢1+Ci < Eo) which are indevendent of

and E < 53, then the solution satisfies

d
52 and 53 (52,53 < 31) an c

T such that if !po,u0.90l3 < €

2

2

the a priori estimate

(p,u,a) € X(OpT: Czlpo,uo,ec l3) -

Proof of Theorem 2.2. Take

€ € €
lE = min(g rEnt _3! _1! 2 ] .
0 12 C1 C2 C2;1+C?

We may use the standard continuation arguments of a local solution on
(O,n1]l, n = 1,2,... to get the global solution. In fact, by the local

existence thecrem, the definition of eo and the assumption

Ipo,uo,sol3 <.EO' we have a local solution

<

(psu,8) € X(O.t:.c1lpo,uo,eol3) .

By C1Ep0,u ,aon < C,ge. S ¢ and Ipo,uo,eol3 < €ys the a‘priori estimate

0

gives
(p,u,8) € X(0,1; Czlpo,uu,eol3) .

b o] s | . i
Then by 2lpo,u0,80I3 < CZEO < e1 and the local existence theorem with

t,= 1, we have again

(D,u,O) £ X(Ta 21; C1C2lp°‘,uo;30 I3) »



Noting that
8%(0,27) < 8%0, 1) + Ni(v,20)
we also have
(p,u,8) e X(0,21; czfq:zé-lpo,uo,eol3) .

[ 2 ' S 2 '
Now by C2 1+C1 Ipo,uo,eol3 £ C0 1+C1 eo < Eqr the a priori estimate shows

that

(p,a,8) ¢ X(0,27; Czlpo,uo,eola) .

Thus we can continue to use the same arguments on [nrt, (n+1)t] and

-

[0, (n+1)1] successively n = 2,3,... « Finally the estimate (1.3) foliows
from Nirenberg's inequality (3]

3

2 4
(2.4) suplp,u,6l < Clp,u,88 (p,u,ﬁ)l .
x

h'-ﬁ

§3. A Priori Estimates
We present here an energy method to obtain a priori estimates for small

solutions of equations with dissipatin. First we rewrite the system (2.1) so

that all the nonlinear terms appear at the right hand side of equations;
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Then we have the following:

Lemma 3.1.

of ¢

1)y

(1)

(ill)zlk

{iv)

Z,m

There exist positive constants v and € which are independent

such that

: +
(e, a8 (0017 + v [5 0" w0 0017 ar <
< ctro®ipyu 0007 + [T 1A%(an), 0 <k <3,
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< C(lepolz + |nm’1u°|2 + 0™ Yageri® +

+ fo oo + 13V (0] + I (e, 1<m <3,

- + .
t"’le(p,u,B)(t)l2 + v f; - " 1(u¢8)(1)12d1
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Lemma 3.2. There exist a positive constant € which is independent of ¢

such that

2

(3.2) ¥3(0,8) < clip ,u 8,02+ fo 1 (hiciatior « stol +
. =0

+ |C£(T)|) + (1+12)|A3(1)Id1) .

Proof of Lemma 3.1. For (i), and (iii)z k! e may estimate the equality
r

P P
Pt 2ot 0%+ ot L0t e 20wt . pMe axar
p P3
t 2k
= fq *amar

which implies after integrating by parts
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e e | e e LA R N
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k
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where 61'3 represents Kronecker's delta. These inequalities prove (i)k

and (ilijl,k easgily.

Wext for (ii)  and (iv)z n We may estimate the equality

-10-



t -1
=[5 ™ e

1
+ Cm'1(t!r£ +_Bm- (ttt dt ..

These equalites imply (ii)m and (iv}z o

r

Proof of Lemma 3.2. For any positve constant ¢ > ¢, consider the form

3 3 5
(3.3) It +e (14) + e"(atd)

* s3(iv)1 +
k=0 =1

1 2

4 . 5 6 .
+ e (i.v.:i.)z'2 + & (i.v)L3 + e (111)2'3 .

By taking € suitably small in (3.3), we can easily prove (3.2) by {3.3).

Next let us estimate the nonlinear terms.

-11=



Lemma 3.3. Suppose (p,u,8) € X(0,7T; E) for some E ¢ Eo- Then, for anv

positive constant g, there exists a pogitive constant C{e) which is

indemendent of t+ such that

2

o1 ashaattol + shl + icton + aediadnar
2=0

< e N2(0,8) + EC(eIN2(0,€) .
Before proving Lemma 3.3, we note that Lemmas 3.2 and 3.3 easily imply

the desired a priori estimates. In fact, we may first choose ¢ so small and

next choose E so small that we have

2 2
N {0,t) < Clpo,uo,eol3 for E ¢ ez

Proof of Lemma 3.3. Because there are many terms to estimate, we pick up some

examples. The remaining terms will be estimated in the same way. First let

us pick up
(3.4) j’g f £%p axdr

in f; AO(r)dT. By using Nirenberg's inequality (2.4) efficiently we estimate

(3.4) as follows;

If: f fop dxdr| = ]f; f - pzui. - ujppx dxdrt|
] 3
" 2
= 1/, [;“3—1:3(' axdr]
]

-12-



1 .t i
<3 IO(s:plpl)lpl IDu tdv

3
t
<c [, 101 ur p?artdr

Blw

3 1 3

< CE(Suplplz]S[sup(1+1)IDuIz)z(su§(1+%)2Iszlz)s
T T , T

&l

. -
+
x IO (1+71) 'dr
2
< CENT(0,t) .
MNext let us consider the quantity

(3.5) fo [ <0 (puj) - D°p axdr

f; TzA (t)dr or ft B2 (7)dT . We estimate (3.5) as follows;

appearing in a

(3.5) = [E f rztpx ul + pui )

j 3 % m ¥k
= f I T u D Pe * D p+ 3729 x i . Py : +
*3 *3"x *2"n k2 m

R 2 3 s
X,X X ui Px, x x T % D’
ik 4 m k2Im 3

+ 312p . Dap +

i * 3129 ui x,x Px x x *
3j *x Jim ktm

2
+ T (Dap . Dap)u

+ 3120 l + sz I:):"u:|

x, X,
Kk x X xkx j

. DSp dxdt

= + + + + + + +
= 11 12 13 I4 I5 I6 17 I

@
~
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X 2
jr,.1 = Ift / Tzuj(lgagi—Jx‘ dxdrl.

3

3,2
2 3 D
= Ift f -1 ui. l—EﬂL— dxdr]
]

2
< CE j: 2 i0’p(nidar < cnto,t)

2
t 2,3 2 9 2 2
12,1, 11,0 < f5 [ e ©Ip7pl® + 2= 1D%p|

2 .2
ic ID"u| " dxdr

1

<eviio,e + £ 15 (fIo?e1%ax)?(f I0%al%ax)ac

—

2 c £ 2.2 2 2 2
< ew(o,8) + < [0 7D 0Ny ID7uly dr

2 2 2,2 2
< e N2(0,8) + % (sup(1+r2)ID pﬂ1](sup(1+1 )ID ul1) x
T T

&

-

) t 2 2. -2
x IO T (1+7 ) “drx ‘

1 2
< e N2(0,t) + Ce EENZ(0,8)

|I3|: 1141, 115l “and |16| are estimated in the same way as |I1|,

P

t 2 3 3
1,1 = |f0 [t pD’p D u;  dxdq|

8 .
]
a2 4 -
< Iu Tt suplpl |Dapn 1D uldr
X
1 3
2

t 2_ 4 -1 2 2
< fo.e T 1D ul2 +Ce T lpI2ID plzlnapn dt

2 -1
< ¢ NO(0,t) + CEE; ¢ N2 (0, €) f; 21+ Zar

LSTEN

14



< € N2(0,t) + Cle)ENZ(0,t) .

Proceeding in this manner proves Lemma 3.3.
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