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It is commonly known that a priori estimates play an important role
in the study of global existence in time for the initial value problems
to the quasilinear partial differential equations. In this thesis, two
methods of ocbtaining a priori estimates for suitably "small" solutions
are proposed ; one is composed of only energy estimates in the space of
square summable functions, and the other involves a conbination of the
estimates for the decay rate of the linearized equations and the enerqgy
estimates. These methods are concretely applied to the pure initial
value problems to quasilinear equations of wave propagation and ones of
compressible fluid. In each problem, it is proved that a unique solution
exists globally in time for suitably small initial data. Also, the

asymptotic behavior of the solution as ¢t + + = is investigated.
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INTRODUCTION

There are many interesting but not fully investigated quasilinear
partial differential equations in mathematical physics. Among these
equations, we will focus our attention on the quasilinear equations of
wave propagation and ones of campressible viscous fluid. One of the
fundamental mathematical problems associated with these equations is the
pure initial value problem. Especially our most interesting theme is
existence of "global solutions in time". Since the equations are highly
nonlinear with respect to the unknowns, we abandon to seek global solu-
tions in general, and restrict ourselves to seek global solutions which
are suitably close to constant equilibrium states. Therefore we may say
that we shall investigate stability of constant equilibrium states.

When we construct a global solution in time by continuation of local
solutions in time, we need "a priori" estimates for the solution. There
have been many methods to derive a priori estimates. Two main methods
of them, especially in multi-space—dimensional cases, are the energy
method to construct and estimate an energy form of the solution skillfully,
and the method to estimate the decay rate of the solutions of the linearized
equations and absorb nonlinearity by using these estimates of decay rate
{cf.[14][33] [44] [57] [62] [63] [64] [67] [68] [73]). But they all have been
applied to the "semilinear" equations. In this thesis, by using the fact
that the solution is suitably close to the constant equilibrium state,
we improve the energy method so that it may be applied to "quasilinear"
equations. In fact it is applied to the quasilinear dissipative wave
equations and the equations of ideal polytropic gase, and their global

solutions in time are obtained for the initial data which are suitably
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close to the constant equilibrium states. Furthermore, by using a com-
bination of this energy method and the estimates of decay rate for the
solutions of the linearized equations, we obtain the global solutions
in time of the ecuations of the generel isotropic Newtonian fluid and
the quasilinear wave equations with suitably high nonlinearity for the
initial data which are suitably close to the constant equilibrium states.
Also, as a consequence of the a priori estimates, the solutions are proved
to decay to the constant equilibrium states as time tends to infinity.
This method to dbtain the small but global solutions in time for these
particular nonlinear problems is rather general and can be applied to
many systems of nonlinear partial differential equations, if the solution
of the linearized equation has an appropriate decay rate as time tends
to infinity and if the equations are amenable to ordinary energy estimates.
This thesis is devided to four parts. In Chapter I, we will mention
what kind of local existence theorem and a priori estimate quarantee
existence of a global solution in time, and roughly mention our methods
to derive a priori estimates. Prepairing the basic energy estimates and
existence theorems for the linear equations in Chapter II, we will inve-
stigate the quasilinear wave equations in Chapter III and the equations

of camwpressible viscous fluid in Chapter IV.



SOME NOTATIONS

(i) P o 1<p<w) : the Lebesgue space of measurable functions on B (n=

1,2,..) whose p—th powers are integrable , with the norm

171, = (| lr@P am™®.
Lp

R?’l

For p=2 , we simply write | - [
(ii) Bk (k=0,1,2..) : the Banach space of bounded continuous functions
on R’ such that all their partial derivatives of order <k exist and are

moreover bounded continuous, with the norm

- 3_,a
7 = I sup |(=)f(x)]| ,
Bk |C¢|<k Rn 3z
n
where a = (0,500,050 ) 5 |a] = Za and

i=1
3 on olala. %1 % a,
G £ =9 /o, A
{(iii) ‘Bk'l'o (k=0,1,2,..,0<0<1) : the Hblder space of f:!k—flmctions such

that their partial derivatives of order k are uniformly Holder continuous

with an exponent o, with the norm

3 o 3,
|(—) flx) - (=) f'(y)]
sup ax aH .

ki = I pt L
B0 B lo| =k x#an |z - y|°
x, Y€

sl

(iv) Let 2 ¢ R and f = (f,(2),Fy()s.. . f (). Then D;ff denotes a vector

camposed of all k-th partial derivatives with respect to z,i.e.,
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Ko _ 9, . .
sz‘.:{ (E'z_)fi fal =k, 21<i<r ],

Especially we write sz instead of Dif. Dijf- D:g denotes the usual inner

[S

9, and |D§f‘| is defined by

product of D:f' and D

K Ko Key1/2
|D_f| = (D f-D.F) /2

(v} Hz (l=0,1,2...) : the Sobolev space on B of L2—functions whose

partial derivatives of order f.Z are also L2—functions , with the norm

k .2 1/2
i =( 3 J D dx)™’ ",
EAPER SR Er)

(vi) Let B be a Banach space,k% be a nonnegative integer and T be same
positive constant. Then,

Ck(O,T;B) (respectively L?;(O,T;B)) : the Banach space of functions f(t)
on [0,T] which have the values in B for every fixed ¢ € [0,T] and are
k-times continuously (resp. boundedly) differentiable with respect to ¢
in B—-topology.

LZ(O,T;B) : the Banach space of functions f(¢) on [0,T] which are square
sumable on [0,7] in B-topology.

(vii) C , Ci . C(X) , Ci(X) (1=0,1,2,..) denote samne constants. We write
Ci when we want to distinguish it from the others, and C(X) when we must
to emphasize its dependence on a quantity X. Also, hi( T) (i=0,1,2,..J denote

same continuous nonnegative and nondecreasing functions on T > 0,
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CHAPTER I
LOCAL EXISTENCE AND GLOBAL EXTSTENCE

In this chapter,we abstractly mention what kind of local
existence theorem and a priori estimate are sufficient to gua-
rantee a global solution in time for suitably small initial
data and how to construct the global solution by a combination
of them. Especially in & 1.2,we roughly mention how to derive

the desired a priori estimate in this thesis.

§ 1.1 Iocal Existence and Global Existence
Let B,,B, and B; be some Banach spaces with the norms || « "Bl'" . H32

and | - ﬂ33 such that

By 6 By ¢ By, | U “Bl <lv “Bz < v IBa for U € Bs.

let N(+) be a continuous operator from B, to B, such that ¥(0) = 0. Then

we consider the following nonlinear evolution equation in B, ;

d _
ZZUE) = NUE)) ¢ > 0,

(1.1}

U(o) = Uy € Bs.
Our purpose is to obtain a global solution in time of (1,1) satisfying
U € C'(0,+0;B,) n C'(0,+%;B,).

First we choose a positive constant F, and restrict ourselves to seek



only a solution satisfying

sup | Ut) I, < Eo

>0 B2 -
so that the equation (1.1) may keep to be a convenient type to be studied
for all t > 0, for example, strictly hyperbolic type or uniformly para-
bolic type. Let F be a positive number not more than F,. Then let us

define the set of solution X(¢,,%2;8) for 0 < ¢, < t2 < + = by
(1.2) X(t1,t2;E) = { U | U(t) € CO(ty,t2;B2) n Cl(ty,t2;B,) and

sup | utt) |, <E (<Ed) .
t1<t<ty z
1et us consider a problem what kind of local existence theorem and a prio—
ri estimate are sufficient to guarantee a global sclution U X(0,+=;E,)

of (1.1). One answer is in the followings :

local Existence For every nonnegative number h,consider the

initial value problem

d -

o7 U(t) = mie)),
(1.3)

Uth) = Uh € B2, t 2 h.

Then there exist positive constants T and § (8<I) which do not depend

on k such that if
I Uy, "Bz < 8E  for same E (<E,),

then the problem (1.3) has a unique solution

U € Xth,h+1;E).



A Priori Estimate Suppose that the initial value problem (1.1)

has a solution
U € X(0,h;E)

for same h and E (fE‘o). Then there exist positive constants Cy,€; and
€2 which do not depend on % such that if £ < g, and | Us |5 < €2, we
> 3 -

have

U € X(O,h;Co" Uy ”Ba)'

Remark 1 Since N(U) dose not include ¢t explicitly, it suffices

to show Local Existence only for 2 = 0.
Now,once Local Existence and A Priori Estimate are proved, we have

Glcbal Existence There exist positive constants (, and g4 such

that if | U, ”B < gq, then the problem (1.1) has a unique solution
s 2
U € X(0,+0;Co| Uo “Bs)'
In fact,we may take ¢, as
. de
gp = min ( 8e1, —?‘lj—, €2 J.

Then, by Local Existence with 7 = 0 and £ = ¢;, we have a local solution

U € X{0,t13e:).



By || Us "B; <gg < ey and | Uy “Ba < 6¢1/Co,A Priori Estimate implies

U € X(0,1;C| Uoll, ) € X(0,1;8¢e1).

Iy,

Therefore, by using Local Existence with 2 = T and F = £, again, we have
U € X(0,81;84)

which implies

U € X(0,21;6¢,)

by virtue of A Priori Estimate again. Repeating the same arquments,

we have Global Existence.

Occasionally,we have a case that it is convenient to seek a solution

in more restricted space than in C°(0,+;B,). For such cases,we may take

some suitable space X(t,%¢,) with the nom | - "X(tl ;,) Satisfying
k]
X(t1,t2) G C°(t1,%25B2),
sup | uet) Mg, < vl
tlftftz By - X(t1,t2)°
" u IlX(thtz) f || u "X(tl,t) + " v “X(?':,‘f:z) for ta f t f ta,

and modify (1.2) as

(1.4) X(ty,t238) = { U | U€ X(t1,t2) 0 C'(E1,%2;B,) and

| v ||X(tbt2) < E (<Ey) L



Then,if we take gy as

, 8 S
€0 = mzn{—%’l-, _ZE‘_:_’ €2 1,

local Existence and A Priori Estimate imply Global Existence also in the

case (1.4). In fact,by Local Existence with £ = ¢,/2 and & = (,we have

U € X(0,1;e:/2).

Then A Priori Estimate implies

U € X(0,1;C Uy ||Ba)

- X(U,T;5€1/2)-
Using Local Existence with £ = £;/2 and A = 1 again,we have
U € Xft,21;e,/2)

Therefore,noting that

v ”X(U,zT) s vllgep, o+ o “X(T,2T)

< §e./2 + E1/2

f €1,
we have

U €& X(0,27t;e,).



Then A Priori Estimate implies

U € Xx(0,81; 6e1/2).

Thus,repeating the same arguments,we have Global Existence in the cace

(1.4) .

§ 1.2 A priori Estimates

Although Local Existence is usually cbtained along the linear

theory,there are no general methods to derive an estimate

as A Priori Estimate. In this thesis,we use an energy method and a com-

bination of the estimates of decay rate for the linearized equation

and the energy estimates. Our energy method is,roughly speaking,
to find a suitable energy form E; (U) associated with a structure of (1.1)
satisfying

(1.5) ol s Evw) ccal|ully for jvu Iz, < Eo

B,
where (') is same positive constant,and to get the energy inequality for
the solution U € X(0,h;E) of (l.1) such as

t
(1.6) Ex(U(t)) ~ Ey(Ug) + J V(1 - O(E))E2(U(s)) ds < 0

0
where v is some positive constant and £, (V) is another nonnegative energy

form. If (1.6) is cbtained,A Priori Estimate is easily proved by (1.5)

and taking E small in (1.6).



Usually we may not expect to get such convenient inequality as (1.6).

More generally,let us assume that (1.6) has the form

t
(1.7) E\(U(t)) - E1(Uy) + J‘ V(1 - O(E))E;(U(s)) ds
0

t
< J hotll uts) Il ) ds
0

where || - || is some seminorm. Then A Priori Estimate follows from (1.7)

again, if the following estimates hold ; for U € X(0,h;E)

oo i < coczees ™| us 15,
(1.8) 3

hotlluce) ) < Ca vie) I¥ (k> o, p>1, kp>1).

In fact, (1.8) gives

I A

¢ +1 ¢ -k
I notll Ues) ) ds < B uongaj (1+e) P ds
g 0

) Cg-{-l Eg-l

kp - ] " UD“Bg‘

Now suppose that N(U) is Frechet differentiable at U = ¢ and denote the

Frechet derivative at U = ¢ by A. Then we rewrite (1.1l) in the form
Ut - AU = N(U) - AU

(1.9)
uig) = Uy

or in the form

t
(1.10)  u(t) = v,y + J T4 ¢ muiss) - aus) Y ds,
0



if A generate the semigroup etA in B). There are many various cases
that we can obtain the estimates of decay rate such as (1.8) by using (1.10).

So,we mention only the simplest case. Let us assume

”|etA [

Fill <cslf Fl, (2+t)77, (1>k1>1)

Is,
(1.11)

| wer) - aF |5 < CIFNI 2 0, for N Flp < E.
By applying (1.11) to (1.10}, we have for U € X{0,h;E)

(1.12) Nlveed|]]

I A

t
03(I+t)-ZH Us M31+J cq(1+t-s)'ZH|U(s)”p" U(s) HBzds
0

A

t
03(1+t)_1H Ug HB3+ CuE J (1+t-s)‘zluufs)n| ds.
0

Set M(t) = sup (I+T)k“]U(T)|”. Then it follows fram (1.12) that

O<t<t
k [t 1,k
M(t) < Cs] Ug "33+ CyEM(t) (1+¢) [ (1+t-s) “(1+s) = ds
- 0
< Csl Uo g+ Comm(t)
which implies
G5
ut) < 765 1 0o llg,

A

2050 Uo for E < 1/2Cs

I3,

which consequently gives

)

fueed |} < 2cs(1+t) || Us u33 for E < 1/2Cs.



