
Large time behaviors of solutions for
the equations of one-dimensional motion of

viscous and heat-conductive gas

Akitaka Matsumura

Department of Pure and Applied Mathematics,
Graduate School of Information Science and Technology,

Osaka University, Toyonaka 650-0043, Japan
akitaka@ist.osaka-u.ac.jp

In this short note, we make a survey on the recent works on large time behaviors of so-
lutions to the Cauchy problem for the equations of one-dimensional motion of viscous and
heat-conductive gas.

The one-dimensional motion of the viscous and heat-conductive ideal gas is described in the
Lagrangian mass coordinates by the system

vt − ux = 0,
ut + px = µ(ux

v )x,

(e + u2

2 )t + (pu)x = (κ θx
v + µuux

v )x, x ∈ R1, t > 0
(1)

where the unknown functions v > 0, u, θ > 0, e > 0 and p are the specific volume, fluid velocity,
internal energy, absolute temperature, and pressure respectively, while the constants µ > 0 and
κ > 0 denote the viscosity and heat conduction coefficients respectively. Here we study the ideal
and polytoropic gas, that is, p and e are given by the state equations

p =
Rθ

v
, e =

R

γ − 1
θ

where γ > 1 is the adiabatic exponent and R > 0 is the gas constant. We consider the Cauchy
problem for the system (1) with the initial data

(v, u, θ)(x, 0) = (v0, u0, θ0)(x), x ∈ R1 (2)

which satisfy

lim
x→±∞

(v0, u0, θ0)(x) = (v±, u±, θ±), inf
x∈R1

v0(x) > 0, inf
x∈R1

θ0(x) > 0

where v±(> 0), u±, θ±(> 0) are given constants.
We are interested in the global solutions in time of the Cauchy problem (1)-(2) and their

large time behaviors in the relations with the spatial asymptotic states (v±, u±, θ±). It has been
known that these asymptotic behaviors are well characterized by those of the solutions of the
corresponding Riemann problem for the hyperbolic part of (1) (Euler equation)

vt − ux = 0,
ut + px = 0,

(e + u2

2 )t + (pu)x = 0, x ∈ R1, t > 0

(v, u, θ)(x, 0) = (vR
0 , uR

0 , θR
0 )(x) :=

{
(v−, u−, θ−), x < 0,
(v+, u+, θ+), x > 0.

(3)

The system of conservation laws (3) has three distinct real eigenvalues for positive v and θ

λ1 = −
√

γp/v < 0, λ2 = 0, λ3 = −λ1 > 0



which implies the first and third characteristic fields are genuinely nonlinear and the second
field is linearly degenerate. Then it is known that the solutions of (3) (Riemann solutions)
consist of the various combinations of the three elementary nonlinear waves, that is, shock wave,
rarefaction wave and contact discontinuity (in total, 17 cases). In what follows, we use the
abbreviations z = (v, u, θ), z± = (v±, u±, θ±), , , and assume that for any fixed left state z−, the
right state z+ is in a suitably small neighborhood of z− in R3.

In the case the Riemann solution of (3) consists of a single rarefaction wave zr
i (x/t)(i = 1, 3)

corresponding to the i-characteristic field which connects the left constant state z− to the right
z+, Kawashima-Matsumura-Nishihara [6] showed that around this rarefaction wave, the global
solution in time of (1)-(2) exists and asymptotically tends toward the rarefaction wave zr

i (x/t)
of the hyperbolic part. The case the Riemann solution consists of two rarefaction waves zr

1(x/t)
and zr

3(x/t) can be treated similarly and the global solution in time is proved to tend toward
the linear combination zr

1(x/t)+ zr
3(x/t)− zm. Here zm is the uniquely determined intermediate

constant state so that zr
1(x/t) connects z− to zm and zr

3(x/t) connects zm to z+.
In the case the Riemann solution of (3) consists of a single contact discontinuity correspond-

ing to the 2-characteristic field, Huang-Matsumura-Xin [3] recently showed that the system (1)
approximately has a corresponding “viscous contact wave” zvc

2 (x/
√

t) which connects z− to z+

and around this viscous contact wave the global solution in time of (1)-(2) exists and tends
toward the viscous contact wave zvc

2 (x/
√

t) provided the integral of the initial perturbation is
zero. Furthermore, Huang-Xin-Yang [4] extended the result for more general initial pertur-
bation whose integral is not necessarily zero. The cases the Riemann solution consists of the
contact discontinuity and shock waves (or rarefaction waves) are interesting open problems we
should challenge as next targets (just recently, Huang-Li-Matsumura [1] solved the case where
the Riemann solution consists of the contact discontinuity and rarefaction waves).

In the case the Riemann solution of (3) consists of a single shock wave zs
i (x − sit)(i =

1, 3) with the shock speed si (s1 < 0 < s3) corresponding to the i-characteristic field which
connects z− to z+, it is known that the system (1) has the corresponding traveling wave solution
zvs
i (x − sit) which we call “viscous shock wave”, and we expect that around zvs

i (x) the global
solution in time of (1)-(2) exists and tends toward the zvs

i (x − sit + αi) with a suitable shift
αi. Kawashima-Matsumura [5] first showed this asymptotic stability provided the integral of
the initial perturbation is zero. For more general initial perturbation whose integral is not
necessarily zero, Szepessy-Xin [11] replaced the viscous terms by some artificial ones and showed
the asymptotic stability. For the original physical system (1) it is still not clear (for the 2 × 2
viscous p-system, Mascia-Zumbrun [8] proved it). The case the Riemann solution consists of
both shock and rarefaction waves is entirely open even for the 2× 2 viscous p-system. The case
the Riemann solution consists of two shock waves zs

1(x − s1t) and zs
3(x − s3t) has been another

open problem. In this case, the global solution in time of (1)-(2) is expected to tend toward a
linear combination of the corresponding combination of viscous shock waves

zα1,α3(x, t) := zvs
1 (x − s1t + α1) + zvs

3 (x − s3t + α3) − zm

with suitable shifts α1 and α3. Here zm is the uniquely determined intermediate constant state
so that zs

1(x − s1t) connects z− to zm and zs
3(x − s3t) connects zm to z+. Recently, Huang-

Matsumura [2] showed that this asymptotic stability does hold in a small neighborhood of
z0,0(x, 0). The proof is technically given by constructing a good approximation of the linear
diffusion wave around the constant state zm and combining the arguments by Liu [7] on how the
shifts α1, α3 and the strength of the diffusion wave are determined, together with the elementary
L2-energy method by Kawashima-Matsumura [5].

Finally we show our arguments on the asymptotic stability of zα1,α3 is applicable to the



study of the following initial boundary value problem on the half line
vt − ux = 0,
ut + px = µ(ux

v )x,

(e + u2

2 )t + (pu)x = (κ θx
v + µuux

v )x,

x > 0, t > 0, (4)

with the initial data
(v, u, θ)(x, 0) = (v0, u0, θ0)(x), x > 0 (5)

satisfying
lim

x→∞
(v0, u0, θ0)(x) = (v+, u+, θ+), inf

x>0
v0(x) > 0, inf

x>0
θ0(x) > 0

and the boundary conditions

u(0, t) = 0, θx(0, t) = 0, t > 0. (6)

For this initial boundary value problem, if we extend the unknown v and θ as even functions
and u as odd function on whole R1, we can reduce the initial boundary value problem (4)-(6)
to the Cauchy problem (1)-(2) with z+ = (v+, u+, θ+) and z− = (v+,−u+, θ+). Then it turns
out that if u+ is negative, the corresponding Reimann solution of (3) consists of two shock
waves with s3 = −s1 and the intermediate constant state zm is uniquely determined in the form
zm = (vm, 0, θm). Thus we can show that if u+ is negative, the global solution in time of (4)-(6)
exists and asymptotically tends toward the outgoing viscous shock wave zvs

3 (x−s3t+α3) with a
shift α3 which connects the left state zm to the right z+, under several smallness conditions. For
the case u+ is positive, we can similarly show the solution tends toward the outgoing rarefaction
wave. These results are natural extensions of those for the initial boundary value problems on
the half line to the 2 × 2 viscous p-system discussed in [9] and [10].
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