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System of non-viscous and heat-conductive ideal gas

Pt + (Pu)ﬂ: — 03
(pu)¢ + (pu? + p)z = 0,
(ple + )i + (pule + %) + pu)e = 10z,

p= RpB, e=——0.

p (> 0) : density,

u : fluid velocity,

p : pressure,

e : internal energy per unit mass,

v (> 1) : adiabatic constant,

R : gas constant,

K : coefficient of heat-conductivity (a positive constant).



Energy method for nonlinear PDEs (around 1980)

e Global solutions in time for multi-dimensional

(Quasi-linear dissipative wave equations

around the zero solution (Publ. RIMS Kyoto Univ., 1977):

T
Ut — E ﬂij(us U, v“}“m,—mj + Ku; =0
ij=1

e Global solutions in time for three dimensional
System of viscous and heat-conductive ideal gas

around the constant state
(J. Math. Kyoto Univ., 1980, with T. Nishida).



e 1981, M. Slemlod : System of nonlinear thermo-elasticity

" Global Existence, Uniqueness, and Asymptotic )
Stability of Classical Smooth Solutions
in One-Dimensional Non-linear Thermoelasticity

M. SLEMROD
\_  (Arch. Rat. Mech. Ana. 76, 97-133 (1981)) J

Linearized system of non-linear thermo-elasticity

v — Uy = 0,
Ut — Vg + 05 = 0,

ﬂt + Uy = KOz



Remark.

If we set v = 1/p (specific volume), the system of non-
viscous and heat-conductive gas is rewritten in the form

v + uvy — vuy = 0,

|
S

Ut + uy — pvy + RO,

0: + ubz + (v — 1)0uy

(T—l}mve

o

|
=y



e Energy estimates for the linearized system

v — up = 0, XV
Ut — vy + 0, =0, Xu
Ht —|— Uy = H-B;[};E. X 6

¥

d 1
(v + u? +92)dm—|—ﬁ[|ﬂm|2 de = 0.

dt

d 1
o | 3U0el + ual? + 16.) de + [ 16,1 d = 0.



To restore the dissipativity for v and wu,

¢

v — uyp = 0, X 5 Uy
{ ut — vp + gm — U, XEX(—%’U‘E — 9‘1?)
\ gt _I‘ Uy = Hgmm- X XU
[ a@u— vy de 45 [l + luaf?) d
7 a(Bu, 211;1:9, @ (|vs Uy @x
= a f(;umﬂm + 10,]* + k0,,u,) dx,
(0w, 0) (1) |12 + f (1(02 w2) (P22 + 102(F)]20) d

< Cl(v,u,0)(0) ”Hl'



Cauchy problem

Pt T (pu)ﬂ‘? — D:l
(pu)e + (pu? +p)e =0, t>0, z€R, O
(ple +2)): + (pu(e + %) + pu), = Kb,

R
p = Rpﬂj c = _9,

v —1
with the initial data
(P, u,0)(0,z) = (po, w0, 6o)(xz), = € R, (2)
and the far field condition
lim (p,u,0)(t,x) = (p+,us,04), t2=>0, (3)

r—r+ oo

where p;+ > 0, 81+ > 0 and u4+ € R are given constants.



Viscous and Heat-conductive case

Pt + (pu)m = 0,
(pu)t + (PHE + p)m = UUz,
(p(e + u?z))f« + (pu(e + uﬁ—z) + pu)y = KO+ (pun,),.

Riemann Problem for the Euler system

( pe + (pu)e = 0,
(pu): + (pu® + p). = 0, t>0, = €R,

e

(P(E50 + %)) + (pu(E56 + %) + pu), = 0,

(P—Eu—?a—)ﬂ- x <0,
(P+sus,04), > 0.

(p,u,0)(0, ) = {

“



Charactaristic speeds :
A(z) =u—csy, As(z) =u, A3(z) =u+ cs,

where z = '(p, u, 8).

Sound speed : I|' v/ vy RO

t-characteristic field (¢ = 1,3) is genuinely nonlinear,

2-characteristic field is linearly degenerate.




Riemann (1860)

( Pt + (P'U.?):.:: = 0,
(pw)t + (pw? + p)z = 0,
 p=p(p) =ap’.

e

Ueber die Fortpflanzung ebener Luftwellen von endlicher

Schwingungsweite.
(Aus dem achten Bande der Abhandlungen der Kiriglichen Gesellschaft der . .
Wissenschaften zu Gottingen. 1860.) Georg Friedrich
- Bernhard
Riemann
Lax (1957) (1826 — 1866)

ut + f(u)m = 0.

Mathematical Theory of Conservation Laws

Commun. Pure Appl. Math., 10 (1957)

Peter David Lax (1926--)



Simple Waves In the case the characteristic field is genuinely nonlinear

Shock wave: zi(z — st;z_,24)

3_,%: m—k(z
: // 33_“\(2+)

Rankine-Hugoniot Condition + Entropy Condition

Rarefaction Wave: 2l (xz/t;z_,24)




Simple Waves : In the case the characteristic field is linearly degenerate

Contact discontinuity : z;’(:r: — At z_, z_|_)

x = At
z_ : Z_ .
I Il Z+
| d o A /,
A I Em o i(z_) I,' d
: / ,I / Eﬂ} == At (.z+)
zZ4 ,,'

General Riemann Solution

[ A linear superposition of simple waves ]




An example

.?’.-R(t, :1’:) — Ef(fﬂ - 51t; ~—3 E*ﬂl?--l}

+ EE(-T — }"Et; =m.1s Em-i} — #=m.l

+ Eg(ﬂ?ﬁ; Z11,2 E-I—] — Zm,2



Asymptotic state under viscous effect

* Rarefaction wave ) Rarefaction wave

*Shock wave — Viscous shock wave

* Contact discontinuity _ Viscous contact wave

Viscous shock wave : U (x — st;u_,uy)
> : Traveling wave relaxed by viscosity
s
| P
i . veE_At,
Viscous contact wave U, ( v TU_, Uy)

> —-\\Diffusion wave relaxed by viscosity
N |

Z4




An example

4
7/
4
/
z :
— 4
7/
4
4

T
Consider the case where the Riemann solution consists of two shocks:

Riemann Solution:
,F.."H(t, ﬂ?) — Ef(.‘]? — st;z—, Emj + EE(JF — Al; z, E-I—j — Zm

Asymptotic Solution:

Z(t,x) = Z%(x — st + a2, z,) + ZJ°(= ;,’}f, Zins 21 ) — Zm



Known results on Viscous and Heat-conductive case :

Kawashima-M (1985)

Single Shock —
INgie Shoc (zero mass initial perturbations)
Liu (1997)
Zumbrum (2004)
Liu-Zen (2009)
Shock +Shock —_— Huang-M (2009)

Rarefaction =+ (Rarefaction) 3 Kawashima-Nishihara-M (1986)

Single Contact discontinuity — Huanag-Xin-M (2006)
(zero mass initial perturbation)

Huang-Xin-Yang (2008)
Contact discontinuity+Rarefactions —> Huang-Li-M (2010)

Rarefaction+Shock S Open
Contact discontinuity 4+ Shocks — Open

Rarefaction+ Contact discontinuity+Shock ~ =—> Open



Non-viscous and Heat-conductive case

Consider the case where the Riemann solution consists of two shocks:

i >

€Ir

R 5 {. . sf .
2ty x) = z{(x — sity 2, z,,) 4+ z3(@ — s3t5 200, 24 ) — 2.
The corresponding asymptotic solution for the system (1) :

Zﬂlﬂa(t? :13) — ZIIW(I‘ o ‘qlt + Q15 =—» E"‘”) + Zgﬁ(m _ Hﬂt + X35 Zms 3+) — Zme



Lili Fan -M, J. Differential Equations, 2015

mf the strengthens of shock waves |zy, — z—| and |z4 — 2| are suitably small th

same order, and the initial perturbation from Zgg is suitably small in H? and
further satisfies some technical smallness conditions, there exist a unique time-
global solution =z = *(p,w, 0) of the Cauchy problem (1)-(3) satisfying z—Za, s €
C([0,00); H?) and the asymptotic behavior

sup [(z — Za,.a3)(tx)] = 0, t — o0,

z€R
where the spatial shifts ey and g are uniquely determined by the initial perturba-

\tmn. /




Remarks:

e As for the proof, basically follow the arguments in
Kawashima-M and Huang-Li-M, except careful manipulation to a
dissipative structure which is weaker than one for the viscous and
heat-conductive case,

e Other cases are also expected to be similar as in the viscous and
heat-conductive case.

Murakami, preprint : rarefaction wave

Lili, preprint : viscous contact wave



Remarks on the initial boundary value problems on the half space

[ pt + (pu):: = 0,
(P'Uf)t + (PHE —I—it;l'):TJ = HUgqz, i E n! r ;_-; D&
\ (p(E + 1;_2))? _I_ (pu(E + HTE) _I_p'u']'m — Hemm—{—(ILTLTLJ.)_l._

.

with the initial data

(P, u,8)(0,x) = (po, o, 6o)(x), x>0,
and the far field condition

lim (p,u,0)(t,z) = (py, uy,04), t2>0,

H ey du

and the boundary condition of Dirichet’s type.

The boundary condition has to be imposed for the initial boundary

value problem to be well-posed as for hyperbolic-parabolic system .




Boundary condition for ;+ > 0 (Viscous and Heat-conductive case)

" pi +up, = l.o.t,

l w— Eu_,._,. = l.o.t.,

o P
0, — 0. —l.out.
Y — 1 P

The boundary condition is depending on the sign of wu.

w(t,0) = u_,
u. <0 = B.C. t > 0.
= 6(t,0) = 6_. =
p(t,0) = p_,

u_ >0 = B.C. {u(t,0)=u_, t>0.
0(t,0) =6_,




General principle to predict asymptotic behavior

Admissible set for the boundary condition :

A_:={z € R%,506>0 |z : consistent with B.C. }

e For the fixed far field state z,, consider the Riemann problem for
any z_ € A_.

3

e In the case where ?'2_ € A_ such that the Riemann solution includes

no incoming wave:

z — outgoing asymptotic waves, & — ooc.

t

3 € A_

~+




v

e In the case where "z_ € A_, the Riemann solution includes

an incoming wave ;

z — stationary solution 4 outgoing asymptotic waves, ¢ — oo.

(boundary layer solution)

i

-

V2 € A_

=+

Important are the signs of the characteristic speeds

A(z)=u—¢sy, A2(2) =u, A3(z) =u+ c;.
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ﬂ:ub::{zl[]{u{':ﬁ}a ﬁ;ub::{3|_*33{u{ﬂ},
+ . — L
QSH}T}TET M {E | u } Cs }! ﬂsupper S {ﬁ | u {: —Cg }1'

rt  ={z|lu=¢c}, TV, ={z|u=0},
L. =1z|u=—c:}.

e For any fixed far field state z,, consider the situation where the initial

data zy(-) belongs a sufficiently small neighborhood w., of z,.

For all cases =, ¢ QT QF T}

sub? supper® = trans?

and I'Y , . we can classify all the
asymptotic behaviors depending on the boundary conditions in w.,
by the general principle .




Boundary condition for ;» = 0 (Non-viscous and heat-conductive case)

( Pr+ up, + pu, = 0,

.

wy + wi, + %p_,. = [.o.1.,

R p
o

8, ——0,, = l.o.t.

LY — 1 P

The boundary condition is depending on the signs of

U T Cg

C
ES — ,\/E —_— - { ES#
P VY
ﬂ.‘ﬂ!h = {z | |‘LI',| < E’:‘? }" f;t'rt?r.w P= {z | u = ﬁ:é}; }"
Qt ::{z|u}é’3}, Q- ::{Elu{_ﬁs}'

supper Supper

where

e



‘ S (Entropy)= const.
% % 't |

trans 2127
O+
supper ~ 4+
Ftrans V
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$+Eﬁ+

SUpper

In a neighborhood w. ,

P(tﬂu) = P—
u(t,0) =u_, t2>0.
| 0(t,0) = 6_,

B.C.

-

e For z, € Q;Lwﬁr C Stl;ﬁw“.ﬂ., the asymptotic behavior is expected to

be the same as that for the Cauchy problem.

eFor z, € 2, N S:Jj;”}jw, the asymptotic behavior is expected to be

z — stationary solution 4 outgoing asymptotic waves, ¢ — oo.



o

E+Eﬂ_

SUupper

In a neighborhood w._,

B.C. 6(t,0) =6_.

e For z, € ﬂ;uppw C Stl:_“j}j“_ﬂ,, the asymptotic behavior is expected to
be

z — stationary solution, ¢ — oo.

Nakamura-Nishibata, preprint : Existence and asymptotic stability
of stationary solutions for the Kawashima-Shizuta system.

ekor z, € Q). N Q- the asymptotic behavior is expected to be

sub supper?

z — an outgoing asymptotic wave, ¢ — ooc.



E+ e ﬂ.'-r'ﬂeir

In a neighborhood w.

u(t,0) = u_,
t > 0.
0(t,0) =06_, -

B.C.

e For z. € 7, NQ.,,, the asymptotic behavior is expected to be

sub

z — outgoing asymptotic waves, & — oc.

sub

e For =, € Q_, N .., the asymptotic behavior is expected to be

z — stationary solution 4+ an outgoing asymptotic wave, & — oo.

e For 2z, € I‘Sub and u_ = 0, the asymptotic behavior is expected to be

z — a viscous contact wave with zero convection, ¢ — oo.

(one of basic open problems)



E+Ef+

trans

In a neighborhood w._,

B.C. : Subtle!

In this case, we may have to consider the well-posedness of the problem
without separating the system to the hyperbolic part and parabolic

part.

These situations above for the half space problem shows
much differences from the viscous case ;2 > 0, and so would
be more interesting as the next topics.



A Toy Model

uy + uu, + 60, =0,

t>0,z >0,
&I —I_ uJ‘" — 'h.’H.r.rp

with the initial data

(u,0)(0,z) = (uo, 00)(x), x>0,
the far field condition

w]i_}n;:(u,ﬁ)(t, r) = (u4,04), t2>0,
and the boundary conditions

8(t,0) =0, wu(t,0)= depends !.



Hyperbolic part

(5),+ (1e) () =»

Characteristic speeds

u—Vu24+4 u+ Vvu? 4 4

A(u) = 5 <0< Az(u) = 5

u

\ 7 /!
N )
"/

N




Boundary conditions and asymptotic behaviors for u % 0

e For u;, > 0 and =z_ is in a neighborhood of z, ., the boundary condition

should be
t,0) = u_
pc. JuB0=u o
0(t,0) = 0, =

and the asymptotic behavior is expected to be

z — stationary solution + an outgoing asymptotic wave, & — oo.

e For u, < 0 and =z is in a neighborhood of z,, the boundary condition
should be only

B.C. 6(t,0)=0,
and the asymptotic behavior is expected to be

z — outgoing asymptotic wave, t — oo.

[The case u_ — 0 or u, = 0 is a subtle prﬂblem!]




Stationary solution  Assume iu? = Lu? +6,.

lyr2 — 1.2
EU —}—9—§H+—|—9+3 x>0
KO, =U — uy,
e In thecaseuy, >0and u_ =0
U
HUmzﬂJrU , x>0,
U0) =0, U(oo) = uy
U
T R e L L LT T PEFPPPEER P REEFFRre
T

U(xz) ~ vz, x—0.



e In the case uy =0 and u_ >0

Problem: Investigate the asymptotic behaviors of the solution

around these stationary solutions.




Thank You!



