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1. INTRODUCTION

This paper is a brief note on some mathematical questions concerning a rest state A
for a general polytropic moving in a bounded rigid vessel under the action of an external
potential force. Precisely, we prove the uniqueness of # » the existence of global (in
time) motions starting (at the initial time) from small perturbations to %, » and their
behavior at large time (stability of % ).

As well known, the problem of the global (in time) existence and of the asymptotic
behavior of a non-steady compressible flow has attracted the attention of several authors
(cf. Matsumura and Nishida (1980, 1982, 1983), Valli (1983), Valli and Zajaczkowski
(1986), Padula (1986), Coscia and Padula (1990)). Moreover, also the existence and the
uniqueness of a solution of steady compressible fluids, recently, received several con-
tributions (cf., e.g., Padula (1981, 1983a, 1983b, 1987), Fujita Yashima (1986), Valli
(1987), Beirao da Veiga (1987), Matsumura and Nishida (1989), Farwig (1989)). How-
ever, several important physical questions still remain unsolved.

In particular, there have been no results on the global existence and large-time be-
havior of the solutions for «large external forces» except some one-dimensional results.
Here, we intend to fumish an answer to the following one:

In a bounded rigid fixed vessel, let a viscous heat-conducting fluid be subject only to
a large potential force. Does any perturbation to the rest state eventually vanish?
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Such a question for compressible fluids meets, in general, a crucial difficulty: the
rest state may include a vaccum part. In this relation we remark that the constitutive
form prescribed on the pressure appears to play a fundamental role. In fact, da Veiga
(1987) provides necessary and sufficient conditions on the constitutive equations of the
pressure for the existence of the rest state, with a positive density, for general barotropic
fluid. The objective pursued here is just to prove, in the same class of constitutive as-
sumptions on the pressure, that the rest state, with a positive density, is unique and is
asymptotically stable. To this end, throughout this paper, we technically manipulate the
thermodynamical relations and energy forms. Then, we derive the well-posedness of the
steady problem, starting from showing the uniqueness of the rest state without smallness
of the external forces. Next, the well-posedness and asympiotic stability for the unsteady
problem around the rest state is achieved by a slight modification of the classical energy
method, in the form used first by Matsumura and Nishida (1980) (also cf. Galdi and
Padula (1990)).

An existence and regularization theorem of steady flows of heat-conducting gases in
presence of large potential forces and small non-potential forces, is given in Novotny
and Padula, in preparation.

The plan of the paper is the following. In section 2 we state the problem, and in
section 3 we prove existence and uniqueness of compressible heat-conducting stationary
flows satisfying the suitable constitutive assumptions, subject to the action of an external
potential force. In section 4 we prove a cricial energy identity which enables us to state an
universal stability criterion (cf. Serrin (1959)). Precisely, the exponential stability of the
rest state holds for any large external force and for any regular flow which is uniformly
bounded in time. Next, in section 5 we prove a global existence theorem of regular flows
subject to large extemal potential forces for «sufficient]y» small initial perturbations.

2. STATEMENT OF THE PROBLEM

Let Q be a bounded three dimensional domain of R? having smooth boundary
0Q . The basic equation goveming the flow of a viscous heat-conducting compressible
fluid are

P+ V-(pu) =0,
(pu)+ V- (pu®u+T) = f,
@1 (p(1/21u* +€)),+ V-
(ou (1/2]u]* +€) —xVO+ T -u) = pu - f,

p(t,z) >0, T=pl—p® - NV -uwl

Here, p,0 and e denote the unsteady density, temperature and the intemal energy
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per unit mass, respectively, furthermore, u is the velocity, x represents the diadic sym-
bol, f the external force, p the pressure, ©; ; = (Ju,/dz;) + (3u;/dz;) . Moreover,
the constant coefficients ), p are the shear and bulk viscosity and x the thermal con-
dictivity. From thermodynamical consideration we assume

@) 3IN+2u2>0, u>0, >0,
(i) 3 smooth entropy S(p,8) such that

de=6dS —pd(1/p), e=e(p,8), p=p(p,®;

(iii) e=c,0, c, = positive constant = specific heat at constant volume;
(iv) p=p(p,6),p>0 and p, >0 for p>0 and 6>0.

Condition (iii) is the polytropy condition and it is usually made. Moreover, we as-
sume,

f=-Vé, ¢=d(z).

We have (cf. Courant and Friedrichs 1948).
LEMMA 2.1. The thermodynamical relations (ii), (iii), (iv) imply

p(p,0) =6G(p), G>0, G, (p)>0, for p>0;

2.2) »
S=2S8(p,68) =c,log 6 -/ (G(s)/s*)ds.

Proof. By (ii) it easily follows

dS=(c,/0)d6 ~ (p/6"6) dp,

from which

Sp=(c,/8), Sp=—(p/0"6).

By Sp, = 0 itdelivers p = 8p,, with p, = G(p) independent of &, and (2.2),
follows. Next, integrating (ii) we obtain (2.2), up to a constant.

The Lemma 2.1, now proved, asserts that the constitutive equation of an ideal fluid
p = Rpl is included as particular case.

In the sequel for any scalar function ¢ denoting a physical quantity as density, tem-
perature, etc. we set by ¢ = p(t,z) the function computed for unsteady flows while
@ = P(z) represents the same function computed for steady flows.
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After Lemma 2.1 we can rewrite (2.1) as
P+ V- (pu) =0,
2.3) (pu)+ V- -(pu®@u) —V-(u® + M(V-u)I) = -Vp - pVé,

cup(0t+u-V0)—nA0+pV-u—‘l‘=0,

where ¥ = (4/2)© : © + A(V -u)? . For given positive constants 6 and 7, we have
append the following initial and boundary conditions

(P;Uyo)(0,$)=(po,uo,oo)(z), IEQ,

2.4)
inf py >0, infé, >0, /podx=|Q|E;
Q
and
2.5) u(t,z) =0, 6(t,2)=8, t>0, z€dq.

Since ¢ = ¢(z) and 6 = const., equation (2.3), (2.5) admit the triple (p,4,0)
solution to the following boundary problem

V(5,8 =0, A=z >0,
(2.6) 5,G-Vi+VP—V-(ub + M(V-B)]) = —5V¢,
5,8 -Vo+pV - 5—-kf-F =0, z€0Q,
with

o~

a|an =0, 9|an

9,
/Rz)dx=|Q|ﬁ<=/po(z)dx>.
Q Q

.7

3. EXISTENCE AND UNIQUENESS OF STATIONARY FLOWS FOR LARGE
EXTERNAL FORCES

The aim of this section is to prove that under the thermodynamical assumptions
(i),....(iv), there exist a unique stationary solution to (2.6), (2.7) corresponding to any
large potential ¢ . Since the existence has been already proven (cf. da Veiga (1987)),
here we prove in the lemma 3.1 the uniqueness.
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First note that a particular solution to (2.6), (2.7) is the triple (p,0, 8) solution to

2 p (5,0
./_‘#ds+ ¢ = const.,
3.1 d

/ax)dz= Q5.
Q

The lemma below proves that it is the unique solution to (2.6), (2.7).

LEMMA 3.1. Let 5 € CY(Q), (§,8) € C2(Q), inf 5> 0, inf & > O, then the
triple (5,0,8) solving (3.1) is the unique solution to the boundary value problem (2.6),
Q..

Proof. Multiplying (2.6), by fZ 2845, (2.6), by @ and (2.6); by (1—
—(5/5)) , next integrating over Q it delivers

/(a.v+¢)dz=0,
Q

(3.2) /n(l—(?/?f)) (cuaa-v§+5v-a—mb‘_\?)dz=o,

/ (/pf’"(s—’e)ds>v-(ﬁa)dz=o.
Q I} S

Summing (3.2), to (3.2), it fumishes
(3.3) /{—('6/5)(5v-a—~f')+n(§/b’) ;v§|2} dz=0.
Q
Moreover, (3.2), implies
(3.4) 0=/pp(ﬁ,i)a-vadu/p(ﬁ,é)v-adx.
Q Q

The particular functional dependence (2.2), of p on 8 and (3.4) allow to conclude
from (2.10)

(3.5) /n {(6/5)\? +k (@/6‘2) |v5|2}dx = 0.

From (3.5) we infer « = 0, 6=0 and p solution to the equation (3.1), . The
proof of the Lemma is so completed.
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To solve (3.1) we assume ¢ € C1(Q),

v ,5
(.6) im [ P59 40 oo,

o=t

Relation (3.6) is a typical regularity assumption which infer regularity for the den-
sity, furthermore, it generalizes the hypothesis of ideal fluids, usually adopted. We also
assume

r ,6
3.7 lim / 289D 4 oo,
r—0 B S
or

? .8
/ p”(;)ds<+oo
0 L]

(3.8)
(1/|Q|)/Qb}(x)dx<ﬁ,

where the function p, is defined by

3.9 /p‘ @ds = —¢(z) + sup ¢(z).
0 E

From the results of da Veiga (1987) and Lemma 3.1 it easily follows

THEOREM 3.1. Let (3.6) be satisfied together with either (3.7) or (3.8). Then there
exists a unique steady solution (p,,8) = (5,0,0) to (2.6), (2.7) and a unique ¢ € R
such that

peCiT), infp>0, /Qﬁx)dz=|9|ﬁ,

/pIMds+¢=$, T€Q.
7 S

The proof is an easy consequence of assumptions made on the constitutive equation
for p and of Lemmas 3.1, 3.2, 3.3.

REMARK 3.1. It is worth of notice that the counter example of da Veiga (1987) applies
equally to those fluids having constitutive equations for the pressure not obeying one of
the restrictions (3.7), or (3.8). An obvious consequence of such result is that stationary
flows of arbitrary polytropic gases, in a fixed rigid vessel, cannot exist, for arbitrary large
external potential forces, unless the total prescribed mass of the gas is sufficiently large.

REMARK 3.2. Using the function p (z) defined by (3.9) the condition (3.8), canbe
interpreted as a (smallness) condition on the potential force field ¢(z) , once the total
mass is let to be small.

r]
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4. A UNIVERSAL STABILITY CRITERION

In this section we shall prove a crucial energy inequality which allow us to state a
universal stability criterion.

Let (5,0,6) be the steady flow whose existence and uniqueness are given in The-
orem 3.1. As known (cf. Okada and Kawashima (1983)), the intemnal energy e when
considered as functionof V = (1/p) and S ,say e = e(V, S) , has the Hessian positive
definite for p > 0, 8 > 0 . Therefore, by the Taylor polynomial, the form

(.1 ple—E-E,(V -V) —Eg(S -]

results a positive definite quadratic form. Here we set € = &(V,5) ,..., etc. Moreover,
our thermodynamical consideration infer

@.2) ey = —p, £g=0.

Inspired by (4.1), using (2.2), , we can manipulate suitably the total energy E as
follows

pE = p{e—e(5,0) + p(5,0[(1/p) — (1/D)]+
—8(S - S(5,0} + (p/D]ul =

4.3) = (p/2)|ul> + c,pl(8 — 8) — Blog (8/D)}+

? (s, [
+[p/; p(; )ds~p(s?; )(p_@]
p

with
? p(s,6) p(s,)
o)
=7[G,0/2¢] 0%, 3¢ between 5 and p,
x — Blog (8/8) = (6/2¢) x*, 3¢ between 8 and 6,

and where 0 = (p—p),u, x = (6 — 8) , denote the unsteady perturbation to the
rest state (p,0,8) . It becomes enormous the difference between the standard energy
which is (regarded as) function of the total unsteady flow and the energy E deduced
in (4.3) which is function of the perturbation only. As well known, for incompressible
fluids there is no difference between the kinetic energy of the total flow and that of the
perturbation only, because it is derived from a linear term. The energy E given by (4.3)
will play an essential role in the sequel.
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LEMMA 4.1. There exists a positive constant ¢ dependingonsup p,inf p,sup p, inf
p.sup 0,inf § and 8 such that

c_I/ {|u|2+02+x2}dzgprdzg
4.4) “ “

Sc/ {|u|2+02+x2}dx.
Q

Keeping the form (4.3) in mind, we multiply (2.3); by [1 — (5/ 8)] and integrate
over Q . The use of the transport theorem implies after straightforward calculation

(/ c,plx —flog (0/5)]> +
Q t

+ / {pl1 = (B/0)IV - u+ x(8/6%)|V6[* + [(5/6) — 1¥ } = 0.
Q

“4.5)

Next, we multiply (2.3), by v and integrate over Q receiving

(4.6) (/ l,o|u|2daa> +/ {v-Vp+V¥ +pu-Vé}dz=0.
(12 t Q

It also holds

1

p [ g 50 pp(s,0

/\P(s;t‘?)ds+p(p,)_p(&)=/App( )ds
p 9 p p P s

this identity, together with the continuity equation (2 .3), , provides an identity perfectly

analogous to (3.2),

/ (/jpp(s’e)ds) (og+ V-(pu))dz=0.
Q p 8

By this last relation we achieve the wanted identity for sigma (analogous to (3.4))

[p 0o ).
Q p S p ¢
7 X
—/ {M(pu) vy PO s -Vﬁ}dz= 0.
Q P : p

By noticing that

4.7

/p,,(p,a)u-Vpdz=—/p(p,a)V-udz,
Q Q

[ (s39/5) 0w - vpdz= [ ~(ou) 9805,
Q Q
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adding (4.5), (4.6) and (4.7) we receive

4.8) (./(;pEdz)t+/Q{(@/92)nlvo|2+(5/0)‘l‘}dz=0.

By Poincaré inequality, there exists a 7 (depending on sup, , 6,0 and |Q|) such
that

@9 ([ az) vl li<o

t
where || - ||, denotes H*(Q)-norm, the L2-norm will be indicated by || - ||, the
LP-norm will be indicated by || - ||;» . Inequality (4.9) is sufficient to ensure contin-

uous dependence on the data and the asymptotic decay to zero for the perturbation to
the kinetic and temperature fields along sequences of times, this is due to the parabolic
character of the equation governing such fields. However, because of the conservative
character of the continuity equation, an analogous dissipative term for the perturbation to
the density field o is not evident. In the remaining part of this section, we shall provide
an algorithm, introduced in Valli (1983), which provides a dissipation for the L?-norm
of ¢ and requires few regularity properties on the perturbed flow. In the wake of the
Valli (1983), we now consider the following two auxiliary problems.

Neumann problem

Aw =0,
4.10
a_w =0, / wdz=0.
In |aq Q
Relation (2 .4), ensurcs that o satisfies the compatibility condition, furthermore,

(4.10), fixes the constant up to wihch the Neumann solution exists in such a way that
it results

@.11) lwl,<Clia]l-
Stokes problem

—-Aw+Vqg=0,
@4.12) V-w=0,
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The solution of the Stokes problem satisfies the compatibility condition |, s W M=
= 0, becausc of (4.10), . Moreover, it satisfies the estimate,

4.13) lwli<CllwlhpsaCllw|L<Cllal]l,
where || - ||;/; 50 denotes the fractional norm of order 1/2 on the boundary (cf. Cat-
tabriga (1961)).

The momentum equation (2.3), can be rewritten as

o N}
U+ 4-Vu+V (/A Mds> +Pgy_ L
F) 8 P P
@.14)

- 1
[ps0.® ~ 2, (0,0 Vo - -V - 140 + XV -1 = 0.

Multiplying (4.14) by w — Vw , it delivers

(/u-(w—Vw)dz) +/{(w—Vw)‘(u~V)u+
Q t Q

p s,@
— - (w— VW), + cr/; %d.&H— %p,,(w—vw) . Vo+

p

4.15) 1 -
== [P0 —2,(0,0)] - (w = V) - Vpr
o

+ V@ (w - Vw) :(ueu(v.u)z)_%.

(u® + MV -wI]-(w—-Vw)}dz.
By taking the derivative with respect to the time of (4.10), (4.12) we obtain
Aw,=0,= -V (pu),

0w,

=0
on |59 !
—Aw,+¢q,=0,
V.-w, =0,

Wylaa = Vwylag -
This, in turn, implies
I Vuli< Cll pu i< & (swp5) I w1l
4.16) 1
Hw I Clla IS C||V-(pu) Il,
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I [
/o<ﬁ g‘ﬁfﬁds)dmmlauz,
Q p S

with 4 a positive constant depending on 8, sup 75, inf 5. After such considerations it
is easy to deduce from (4.15) and (4.16) the

(/ u-(w—Vw)dx> +7 o<
Q t

@.17) <c / (x| + [VuD Vol |w] + [Vuld z+
Q

+C [ 1ulIV-(owlaz+ Clulf +[1017).
Assuming
(4.18) Vp € L=([0, joo), L} (Q))

we deduce

/ (VullVpl(jw] + [Vwdz <
Q

<C(1Vw lle + [ wlle) 1 Vo lls ]l Vu [I<

<Cllollulhll Vollpselolf +
) |
() 190l w B,

/Qlunv-(pundzsnunnv-(pu) <

<Cllulfi [(supp)+ (| Volly]
and employing (4.17), we reach the following estimate

“.19) (/Qu-(w—vwdz> sallolP<C(lul+N017),
t

here the constant C depends also on the L?-norm of Vp. Next, we add to (4.9) relation
(4.19) multiplied by a positive constant «. For a sufficiently small, we achieve the
fundamental energy estimate

</ {pE + au-(w—Vw)}dx) +
(4.20) Q t

+y(le P+ llullf +11611}) <O.
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Since it is
/Q{pE+ a(w—u-Vw)}dz>C(lo |+ ful’ + [ x|I?),

employing Gronwall’s Lemma in (4.17) we receive

Il Cayu, %) | (2) SC/ {pE+ au-(w—-Vw)}dz <
4.21) °
SCe""/. {pE + au-(w—-Vw)}dx
Q

t=0

The inequality (4.21) proves the any sufficiently regular perturbation to the rest de-
cays exponentially in time for every large potential force. This is resumed in the main
theorem of this section

THEOREM 4.1. Suppose the regular solution (p,u,8d) of (2.3), (2.4), (2.5) satisfies

sup p(t, ) < +o0, i{lf p(t,z) >0,
K

t,z

4.22) sup 8(t, ) < +oo, inf 6(t,z) >0,
. tx tz

sup |u(t,z)| < +oo, and Vpe L=([0,00);L>).
t,z

Then the solution tends to the stationary solution (p,0,8) exponentially inthe L2 —
norm in the sense of (4.21).

Let us explicitly observe that the above theorem does not require smallness of external
forces and of the initial data, as well. This latter statement has an important consequence
because, in order to prove stability, it is enough to prove that the class of regular unsteady
flow with the uniform (in time) estimates (4.22) is non empty. This will be the content
of the next section.

5. ON THE EXISTENCE OF REGULAR GLOBAL FLOWS

In this section we shall prove the existence of global (in time) regular flows in a
suitably small neighbourhood of the steady flow (p,0, 8) , and, conscquently, prove the
exponential asymptotic stability of the steady flow for any large external potential force.
To do that, we further assume the followings:

5.1) ¢ € HY(Q),
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(5.2) (po,U0,00) EH:’(Q)
and the compatibility conditions

tolaa =0, 6o laq =§,

4, (0|sq =0,  8,(0)|sq =8,

(5.3)

where u,(0, ) and 6,(0,z) are determined by the equations (2.3) and the initial data
(2.4). Our main theorem in this section reads as follows.

THEOREM 5.1. Suppose (5.1)-(5.3) hold, and let p satisfy (3.6) together with either
(3.7) or (3.8). Then there exist positive constants &, , 8, and C, , depending on 7, ]
and || ¢ ||, , such thatif || py — 5, tg . 6y — 8 ||3< & - then the initial boundary value
problem has a unique global in time solution (p,u,0) satisfying

(p,4,8) € (C° NL™)([0,+00); H*(Q)),

(5.4) )

i‘nf p(t,z) >0, l?f 6(t,z) >0,
and as the asymptotic behavior
(5.5) sup [(p — B,u,8 — 0)(t,3)| < Coe ™.

Proof. First, we notice that once we get the global solution satisfying (5.4), the sta-
bility criterion in section 4 and the Sobolev type inequality

sup |(p_5lulo—.§)[ S
z

<Clio—-Bu0-0|"*lp-5u8-8|3"

easily imply the exponential stability (5.5). To obtain the global solution satisfying (5.4),
we sct

p=p+o, 0=0+x,
and rewrite the original problem (2.3-6) in the following form
d ~
otV (pw = hy(o,u),
(w)y = (/P)Au — [(u+ N /BIVV -u+ VI(8G,(P) /P o]+
+(1/pV(G(P)x) = h(a,u,x),

X+ [§G(ﬁ)/(cv@]V U — [R/(Cub)]Ax = h4(c,u,x),

(5.6)
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with

5.7 (0,u,%)(0,7) = (04, 89, Xo) = (po — B, g, 0, — 0) € H?,
and

(5.8) tlag = Xlaq =0,

where -:—t = -% + u - V is the Lagrangian derivative, furthermore,

ho(o,u) = -0V -y,

h(o,u,x) = —u-Vu—[o/(p+ 0)pl(pAu+ (u+ X)VV . uw)+

-V (/f* [66,(5)15) ds - [86,(» /(D] c) +

. (G(f)) B G(Aﬁ+ o‘)) Vit
p p+o

+[(6, @ /(@) Vo - (G, 5+ 0) /(5+ ) V(5+ )| x,
hy = (—u-Vx) + [(0G(D) /c,p) — (BG(p+ o) /c (P + a))] -
(V-u)+ [‘P/cv(2'5+ o)] — koAx/c,p(p+ o).

In the wake of the results by Matsumura and Nishida (1980, 1982, 1983), the exis-
tence of a regular global solution to (5.6-8) will be the consequence of the following
suitable «a priori» estimates.

THEOREM 5.2. There exist positive constants &, (small)and C, dependingon 5, 8
and || ¢ ||, suchthatif (o,u,x) € X(0,T) is asolution of (5.6-8) for some T' > 0
and

sup “ (o)u‘y)() ||§ (t) < €y,
0<t<T :
then it holds

T
sup || (o,u,%) |3 (1) +/ (o 15 @+ 11 (a0 |IE (] de <
0<i<T 0

S C] {” (0'0,“0:)(0) “§} ’
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where
X(0,7) = {(0,u,) : 0 € C°([0,T); H?),
(u,x) € C°(10,T); H*) nL*(10,T); HH) }.

Proof. First by the same estimates (4.22) deduced in the stability criterion Theorem
4.1, for g, properly small we receive

T
sup || (o,u,%) |I* (1) +/ [l oI 0+ 1 (u,0 |} (D] dt <
(5.9) 0<t<T 0

< C |l (o9, 80, x0) II* -

Next, we add the nonlinear term —u - Vo at the right hand sides of (5.6), in doing so
we can deduce a very nice basic energy equality. In fact, multiplying by (G (D)/P)o
relation (5.6), ,by pu relation (5.6), and by (pc,/8)x relation (5.6), , integrating
over Q and summing the resulting equations it delivers

G (p) p pc
[ 2 L4 2 Py 2
(/Q [———25 [o|“ + 2lu| + 2—0-|X! dz | +

t

+/ [u|Vu|2 + O+ )|V -uf+ %[vxP] dz =
(5.10) a

6G
=/ (ho — u- Vo) p—fb)odz+
Q P

+/ [5h-u+ pf"h4x]dm.
Q g

Here we emphasize that the equality (5.10) holds without the smallness condition of
| ¢ |4 » which s the crucial difference from the previous arguments. Then, keeping (5.9-
10) in mind, we may follow the corresponding lines of Matsumura and Nishida (1982),
to obtain the remaining estimates of higher derivatives. In what follows, let us show
that we can simplify the arguments by using the auxiliary Neumann and Stokes problem
(4.10), (4.12). Multiplying w — Vw by (5.6), and combining it together with (5.10),
in the same way as in section 4, we have

t
E,(0,u,50(D) + / (1o 17 D+ ]| (w2 ()] dr<

5.11 t
G-ID SEa(oo,uo,xO)+0/o (w2 () o | (n)+

+ |1 ho [P (D+ |1 (A, k) |24 (D] d,
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for some positive constants o, v and C depending on 5, 6 and 5 (eventually on
Il ¢ |4 ). where the quadratic energy form E_(o,u,x) has the form

E (0,u,() =

(5.12) ic ~ .

which is the just linearized counterpart to the linear form pE + o fn( w~Vw)- -udz
introduced in section 4. Here, we further note the term || u |[2{| o || in the right hand
side of (5.11) comes from the only one non linear term u - Vo in the left hand side of
(5.6). Thus, taking £, properly small, we have by (5.11) the basic estimate for the linear
(except one term) system (5.6-8) with given hy , h, h,

T
sup | (0,0 | <t>+/ ol 0+
0<t<T (4]

G.13) + 1 (w30 I} (0] dt < C |l (00,80, x0) I +

T
o [ 0h 1 o 1 b 12, 0] e}

Let 9 represent a linearly independent system of smooth first-order partial deriva-
tives (vector ficlds) on Q which are tangential to g2 . Applying d to the equations
(5.6-8) and following the same procedure as (5.11-13), for properly small ¢, , it is
straightforward to obtain

T
swp | aCa,u0 [P 0+ [ (190 | ()
0<t<T 0
+18Cu,x) |} (0] dt < C{]| (o0,50,%0) IIT +
(5.14)

T
e [ el ol I @

+ || (ho,h,hy) ||2 + || Ohy ||2] dt}'

In fact, we may estimate the form E,(da, du,dx) which comes from the principal
lincar part of @ (5.6), and estimate the commutator of 3 and the principal part of (5.6)
which produces only lower order terms.
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Next, we multiply (5.6), by pu, and (5.6); by c,0x, .integrate over Q toobtain

_sup / [BIVe? + O+ w|V - o] dz+
o<t<r Jo

T
/ /nmumdzdt < C{ll (00,50, x0) I +

T
619+ s @0 IF @+ [ IAIP+ oI+l e,
0<t<T 0

T
sup /anxlzd:z+/ /ﬁcle,|2dzdtg
o<i<T Jo 0o Jo

T
<o{ilxalf+ [+ 1k 7] ac},

where we used the fact

R 6G (P 0G,(p)
Lput-v< 5 )dz-—/ﬂ( 5 )V (pu)dz =
= (/ (—oc‘f@o)V-udz) —/ (_OG,:S@)V

Q P : Q p

-(pu) (hy —u-Vo)dz.

Let 8, = n- V represent a smooth first-order partial derivative on Q , where n
is a smooth vector field on Q which coincides with the unit outer normal to dQ on
the boundary. Operating 9, to (5.6), and combining the form pn-(5.6), (refer to
Matsumura and Nishida (1982)), we can have '

[(Z+2u)/p10, < >+0G’ (p)0,0 = —pn-u,+ terms of tu+

(5.16) + terms of 80, u+ terms of o+ first-order terms of (u,x)+

+pn-h+ termsof (hg,8,hg).
Multiplying 9,0 by (5.16) and taking ¢, properly small, we deduce

T
sup | 9,0 | <t>+/ 18,0 | (Dt <

0<tT
2 T 2 2 2
<c{lioo i+ [ P+ 10wl + o+

{1 20 [} + 1 ho I + ([ A 112) (Ddt} .

.17
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Thus, combining the estimates (5.13-17) together with the standard elliptic estimates,
it yields

Ix 1B CUAXIPSCUV -l +|Ixe P+ 11 ha 1),
(5.18) lul< Ol pAu+ A+ wVV -u] [P

<SClw P+ (au,) IR+ 1 AIP),
we have, for properly small ¢, ,

T
sup || (o,u,%) |1 (t)+/ [l o1} + 1l (w0 1] (Dt <
0<t<T 0
(5.19)

T
<C{ll Gorsarxa) I+ [ 11 (b he) 17 + 11 ho 18] 00}
For remaining higher derivatives, after obtaining the corresponding estimates of

(0,4,X),» (80,0u,0x) and (0%0,0%u,d%x) tothe H'-estimates (5.19), estimating
g, (5.16), 948, (5.16), 6,2 (5.16), and the ellipticity in (5.18), we can finally have

T
sup || (,u,%) ||§<t>+/ (e ll3 @+ 1 w0 IF 0] de <
0<I<T 0
T
620 <c{ll@ororxo) B+ [ 11 (hh) I3+ 1l ho I8 DAt +

T
+ [0 @h0ba) 1E + 1l aiko 1] 002}

for properly small £, . We omit the details (refer to Matsumura and Nishida (1982)).
Last, it holds

T
[, [ (b he) 1B+ 11 Bo 1+ 1) (B, Behe) 1 + 1| Beho 2] (DL <
(5.21 r
<C sup || (0,0, n%m-/ (1o 1B + 1l (s, 13] (0.
0<t<T 0

Therefore, taking &, small agaih in (5.20-21), the desired estimates in Theorem 5.1
are obtained. Thus, the proof of the Theorem is completed.
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