今、$f(z)$ が $|z| = 1$ 上に任意の点 $z = z_0$ における球面微分 $\frac{|f'(z_0)|}{1 + |f(z)|^2}$ が常二、$\frac{1}{2}$ ならばルツル。更に $f(z) = 1$ 條件 $f(1) = 1$, $f(-1) = -1$ よりルツル。

この時 $f(z)$ は如何なるルツル函数トナルか？

結果ハカ、ルツル函数ハ $f(z) = z$, $f(z) = \frac{1 + e^{i\theta}z}{z + e^{i\theta}}$ ($|\theta| > 1$) ハルツル函数ヲ限ル。以下＝之ヲ証明シヲラ。

(証明) 今 $f(1) = 1$, $f(-1) = -1$ ト W 平面上ノ像点ヲ大々

A (1 テアラハス), B (-1 テアラハス) トシ, $Riemann$

球面上ノ像点ヲ大々 A^*, B^* トシ, 更に W 平面上ノ半円 $z = e^{i\theta}$ ($0 \leq \theta \leq \pi$) ト W 平面上ノ像曲線ヲ \mathcal{C}, 又 $Riemann$

球面上ノ像曲線ヲ K トスル。

次元 $\quad \int_0^\pi \frac{|f(z)|}{1 + |f(z)|^2} d\theta$ ルツル積分ヲ考ヘレバ (仮に $z = e^{i\theta}$)

假定＝ヨリ $\quad \int_0^\pi \frac{|f(z)|}{1 + |f(z)|^2} d\theta = \frac{1}{2} \pi$ ($z = e^{i\theta}$)

然ル $\quad \int_0^\pi \frac{|f(z)|}{1 + |f(z)|^2} d\theta$ ハ $Riemann$ 球面上

A^* (複素数 1 テアラハス), B^* (複素数 -1 テアラハス)

ヲ結ブ曲線ノ長サ $\ell(K)$ ル与ヘル。

シガモ K ハ球面上直径ノ両端 A^*, B^* ヨ結ブ曲線デア

\(\vdots\)
ルカラ

\[K/ \text{長さ} = \lambda(K) \leq \frac{1}{2} \pi \]

等号が成立すルハ大円/半分/弧単半円/時=限ルカラKハ実半円ナルコトが判ツタ。従ツテ又、@ハA, Bが通ル円/弧トナル。（必ずシモ半円トハナラナイ）

今度ハ乙半面上実軸/下/半円，\(Z = e^{i \theta} (\pi \leq \theta \leq 2 \pi) \)

\[f(Z) = \gamma \text{ リーマン球面上及} \tilde{\gamma} \text{ 平面上} / \text{写像曲} \]

線ナヲハベラ同様＝シテ、夫々半円，円ノ弧トナル。仮定ヲ除ハバ，\(|Z| = 1 \) 上ハハ \(f'(Z) \) キオナルコトが判ルカラ。

結局，\(|Z| = 1 / f(Z) = \gamma \text{ リーマン球面上} / \text{写像} \)

曲線ハ大円トナル，周ハ一対一＝対対スル。

従ツテ又，\(f(Z) = \gamma \text{ リーマン} \) 平面上/写像曲線ハA, Bが通ル円デアル。併シ之ハ必ずシモ単位円デハナナイ。

単位円デナヨ時ハ之ヲ単位円＝スルタメ，\(\alpha \equiv |\alpha| > 1 \)ナ

適當ナル実数トスルトキ。\(\text{リーマン球面上} / \text{迴転} \frac{i - i\alpha Z}{Z - i\alpha} \)

7行ヘバ単位円＝ナゾル。

次＝議論ヲニツノ場合＝別ケテ，進メヨウ。

（第1ノ場合） \(f(Z) = \gamma \text{ リーマン} \) 平面上/像曲線

が始メカラ単位円ナルトキ

此ノ時ハ結局，\(f(Z) = Z \) トナル。

（第2ノ場合） \(f(Z) = \gamma \text{ リーマン} \) 平面上ベノ像曲線

が単位円デナイトキ。
此ノ時ハ変換
\[g(z) = \frac{1-i\alpha f(z)}{f(z)-i\alpha} \quad (|\alpha| > 1) \]
\[\alpha \text{ハ実数} \]

= 依リ |z| = 1 ト
\[g(z) = \text{ヨル} \text{ Uト平面上} \text{像曲線ハ单位円トナル}。 \]

\[\alpha \text{ノ定数ヲカラ易ニ判ルカラニ}, f(z)-i\alpha = 0 \text{ナル故} \]
\[g(z) \text{ヘ勿論} |z| = 1 \text{デ正則デ}, \text{シカモ} |z| = 1 \text{ナルトキハ} \]
\[|g(z)| = 1 \text{デアル。} \]

之ヨリ結局 \[g(z) = z \]

即チ
\[f(z) = \frac{1+i\alpha z}{z+i\alpha} \quad (\alpha \text{ハ} |\alpha| > 1 \text{ナル実数}) \]

勿論之ハ与へラレタ条件ヲ満足スルカラ

結局求ムル函数ハ

\[z, \frac{1+i\alpha z}{z+i\alpha} \quad (\alpha \text{ハ} |\alpha| > 1 \text{ナル実数}) \]

ノニツニ限ルコトが判ツタ。

-（完）