1006. Cauchy integral formula =
於ケルニノ意義=就テ

高橋鶴三郎(東北大)

解析学、普通レ数論ノモノト同型=ナリマス。其レカラ
宣=小数論トコトバ、此ノモノト、Z = x + j y / x = 0, j = \sqrt{-1},
ヨシマ j^2 = -1 / 1場合デモ全然無関係デアルコトデス。共
レラ在来ノ数論デZ = x + j y ルトト(1)ノイコトヲ同ジ
=シテ居タコトバ、convention デ聞ニ合セテ居ノデ
デアルコトが分リマス。 (1) j は幅分御＝ヒソノデ居ルノト
約シクレルタメ＝追入ツテ居ルデアッテ、Zahlen-
system Z = x + j y / j ルハ無関係デ遊離シツ、
Hilfsmittel デアッテ、Zahlensystem フ
genstören ハルトナフ、恰ミ水ノ中ノ油ノ如キモノテ
アリマス。

其ノラ因バケテガ追入ツタケトエフト、x y 平面上ノ法
則ヲ規定スルノ＝、Kreispunkte フ導入シタコトト、
角、Laguerre 型 1 定義式

(2) \[\frac{1}{j} \log (i, i_2, g, g_2) = \angle (g, g_2) \]

はアラベル log/periodic function デアルコト
カラ追入っちゃ Cristiano ジルフミット ダリマク。

2. 項がコノコットが言へんねトキメニハ、(1) が成立ム
コトヲ確メネベナツス訳デスガ、一式若ヘルト 1 \(r^2 + 4 \mu \geq 0 \)
1 場合ニハ (1) 成立、或ハ共、特段 + 場合

(3) \[\int \frac{dz}{z-z_0} = 2\pi i \quad (z^2 = -1) \]

が問題ニサレル様デス。事柄ハ向ラオスカヤ以下専ラ 0、
\(\mu = 0 \) 1 場合ニハツイテ述べマセウ。私 / 理論ト普普通 / 在来
/ 函数論ト同功同器デアルコトハ次！如ケ対比的ニ考ヘレ
(私 / j-domain デヤッテコトハ普通 / 函数論デハ
i-domain デヤッテ居ルコトナドガ参照）一目瞭然＝テ
リマス。

(4) \[z = x + iy, \quad i^2 = -1 \quad | \quad z = x + iy, \quad j^2 = +1 \]

= つ

\[x = r \cos \phi, \quad y = r \sin \phi, \quad | \quad x = \rho \cos \theta, \quad y = \rho \sin \theta, \]

\[r^2 = x^2 + y^2, \quad | \quad \rho^2 = x^2 - y^2 \]

ヲ用フル時ニハ、\(x, y \) 平面上 / 業何学的法則＝規定スル材
料トセテ

Kreispunkte \quad | \quad real absolute points

ト角 / Laguerre 型 1 定義 (2) ニ

\[j = i' \quad | \quad j = j \]
導入シストーケリ。此ノ土台ノ下＝

左末ノ函数論 | 私ノ属数論

カスラスラ行ノナベス。然ル＝ (14) = 於ラ意地悪い

\[x = r \cos \theta, \ y = r \sin \theta \]

導入シモスト。最近

Kreispunkte | real absolute points

新＝

real absolute points | Kreispunkte

が主座ヲ占特ルコト＝ナリ、前トスハフ平面上ノ幾何学的法則
が別＝ナルレデス。コノ際尚属数論フスラスラフ展開セントルニヘ、今間視ジモノ追加シテ置カレバナリマセン。ソウスルト

通常ノ | 独特ノ

orthogonal involution が追加ナレサレス。即

P, OP ノ isotropes OA, OA' = 関シテ共軛ツシテ

オノト。
\[\angle(x, y) = \frac{\pi}{2} \frac{i'}{i}, \quad \angle(x, y) = \frac{\pi}{2} \frac{i'}{j}, \]

\[\angle(o, p) = \frac{\pi}{2} \frac{i'}{i}, \quad \angle(o, p) = \frac{\pi}{2} \frac{i'}{j}. \]

\[\angle(o, p, o) = \angle(o, o, p) + \angle(o, p, o) + \angle(o, o, p) \]

\[\frac{\pi}{2} \frac{i'}{i} = \angle(o, o, p) \quad \frac{\pi}{2} \frac{i'}{j} = \angle(o, o, p) \]

\[+ \frac{\pi}{2} \frac{i'}{i} + \angle(o, o, p) \quad + \frac{\pi}{2} \frac{i'}{j} + \angle(o, o, p) \]

\[\text{仍而} \quad \angle(o, o, p) + \angle(o, o, p) = 0 \]

\[\text{因此} \quad \angle(o, o, p) + \angle(o, o, p) \text{ 互相 cancel} \]

\[\text{此时} \quad \text{作} \quad o \rightarrow o A, \quad \text{此时必然} \quad o \rightarrow o A \]

\[\text{于是} \quad \frac{d\phi}{|p|} = \int \frac{d\theta}{|\cos \phi + j \sin \phi|} \quad \int \frac{d\phi}{|p|} = \int \frac{d\phi}{|\cos \phi + j \sin \phi|} \]

\[\int \frac{d\phi}{|p|} = \int \frac{d\phi}{|\cos \phi + j \sin \phi|} \]

1. 右项 diverge 形状差積分 0, DA 作てレップ
2. \text{angular domains} 1 角分が schrittweise = cancel + i, \text{limit process} 0 converge

\[\text{formula} \quad \cos \theta + j \sin \theta = \cos \phi + j \sin \phi \]

\[\text{由此等} \quad \text{向} \quad \text{作} \quad \text{0A, 0A'} \]

\[\text{通過スル} \quad \text{向} \quad \text{作} \quad \text{0A, 0A'} \]

\[\frac{\pi}{2} \frac{i'}{i}, \quad \frac{\pi}{2} \frac{i'}{j} \]

\[\text{结论} \quad \text{生シテ, 結局} \]

\[-785-\]
\[
\frac{4 \times \pi}{2} i' \quad i = 2 \pi i' \\
\frac{4 \times \pi}{2} j' \quad j = 2 \pi i'
\]

が成り立ち（3）が分析的法則で破れルコトナク成立スルノデス。同様ノコトハ（1）ニツテモ云ヘルノデス。

要之,

\[
x + iy \\
x + jy
\]

1纯粹分析ト，XY平面ニ於テ幾何学的法則トノ視点ガ何処＝アルか云フ問題＝帰シテガ，之＝明リストルノハハ中々滑か折レッズガ，上＝説明セシテガラ

仏変/\(x + iy\) ハ函数論/\(x + jy\) ハ函数

ラスパリト手際ヨクスキル＝ハ

Kreispunkte/real absolute points

= refer シス

\((x, y)\) \\
\((\rho, \theta)\)

ラ変フバ，同何同罪デ達メルコトダケハ明白デアリムス。

此ノ意味デ夫々ノ函数論＝ミツテ，XY平面＝

Euclid 非Euclid幾何学ナ附属セレレクテ

居ルト云フコトガ出来ますス。目ヲ見フニテ，x−軸ヘ直交軸＝トリコンタガ，突ヘリレヘ

普通/real absolute points

= refer シス

1意味ノ直交軸ガトゥテーヌヲデス。此ノコトヲ理解セラレ

-786-
イト仏、巫婆論（学士院記事）十一月号及お月号、中
十一月号、案、宿、一月デ巫婆論キマンタ。anschauliche
Darstellung ハ来北科学報告二昭和顧出マッハ
解シテ頂クマサノ。私ノ巫婆論仏 Euclid 1 見地即チ(Y,Y)
1 見地カラ非遊サレルコトハ、本来ノ巫婆論仏(P,θ)
1 見地
カラ非遊サレルノ同シ程度、議論＝トリマス。

附記 私ノ理論ノ鍵ノ dθ = 2π i θ t、ソシテ

Modulus t absolute value トヲ箋別スルコトノ
二点＝トリマス、此ノ見地＝ bicomplex Z = x + j y
+j j' + ζ + j j' ζ Gamel. (j, j', i、箋別ハ二次方程式ノ根)
1 場合ト bicomplex 1 場合＝鍵ノトリマシテ、例ヘハ
前者＝ special case άル j' = -1, j'' = +1 1 場合＝
川谷次郎／1928, T. M. J. 1 論文＝改良ヲラレ、四次元
Cauchy, integral formula

f(z) = \frac{1}{2πi} \int_{C} \frac{f(ζ)}{ζ - z} \, dζ

＝於ケル C ト、二川君＝知リ、Nullteiler 1 親節タル
is atropic 1 Hyperebenen トヨケテ通ルモ、＝設ハ必要
ハクシトリマス。イソレズ組織的ナミナラ発表シテス。