923. 函数方程式 \( f(x+y) + f(x-y) = \frac{2f(x)g(y)}{1 - \lambda^2 f^2(x) f^2(y)} \) (1 \( \leq \lambda \leq 0 \)) に於て

藤本

上記の函数方程式は於テ \( \lambda = 0 \) トフルトキ即ち

\( f(x+y) + f(x-y) = 2f(x)g(y) \) トフルトキハ、ノリ可

測解トシテ

(I) \[
\begin{align*}
\begin{cases}
 f(x) = ax + b \\
 g(x) = 1
\end{cases}
\end{align*}
\]

(II) \[
\begin{align*}
\begin{cases}
 f(x) = a \cos \alpha x + b \sin \alpha x \\
 g(x) = \cos \alpha x
\end{cases}
\end{align*}
\]

(III) \[
\begin{align*}
\begin{cases}
 f(x) = a \cosh \alpha x + b \sinh \alpha x \\
 g(x) = \cosh \alpha x
\end{cases}
\end{align*}
\]

ヲ得ルコトヘ、ヨリ知ラレタキル。兹＝ \( a, b, \alpha \) ハ任意ノ

実数ナル。コノ場合ノ形式の一拡張トシテ

(F) \[
\begin{align*}
\begin{cases}
 f(x+y) + f(x-y) = \frac{2f(x)g(y)}{1 - \lambda^2 f^2(x) f^2(y)} \\
 (1 \leq \lambda \leq 0)
\end{cases}
\end{align*}
\]

ノ原点ノ近傍＝於ケル連続解ヲ求メタ見ヨリ。コノ＝注意ス

べきコトハ (F)＝於テ \( \lambda = 0 \) トフルトキノリ \( \lambda > 0 \) トフルトキ

ハ模様が少シクフルテ未ルト云フコトナル。ソレハ \( \lambda = 0 \)

ノフルトキ \( f(0) \) ハ不定テアルガ \( 1 \leq \lambda > 0 \) トフルトキハ常数解ヲ

除ケサ ハ \( f(0) = 0 \) トフルフルトタイプ点＝アル。

(F)＝於テ \( x = 0, y = 0 \) トフルコパ \( f(0) = a, g(0) = b \)
\[ a = 0 \quad \text{すなわち} \quad 1 - a^4 r^2 = b \]

\[ a = 0 \quad \text{と} \quad f(y) = 0 \quad \text{を} \quad f(x) \neq 0 \quad \text{とする。すると} \quad b = 0 \quad \text{とし} \]

\[ 1 - a^4 r^2 = b \quad \text{と} \quad \text{図} \quad f(y) = 0 \quad \text{とする。すなわち} \quad f(x) \neq 0 \quad \text{とする。}

\[ f(x) \left\{ 1 - a^2 r^2 f^2(x) \right\} = b f(x) \]

今 \( a = 0 \) と仮定する。\( f(0) = 0 \) で、\( f(x) \) は連続である。

原点を適当な近傍と

\[ 1 - a^2 r^2 f^2(x) = b \]

が成立する。

\[ r = 0 \quad \text{とする} \quad \text{すなわち} \quad f(x) = \frac{1 - b}{a^2 r^2} = a^2 \]

\[ f(0) = a \quad \text{とする} \quad f(x) = a \]

改 = \( f(x) \) は常数である。

\( f(0) = \) 設定されたが、\( f(x) = f(0) \) で、\( \varphi(x) = \varphi(x) \) と

\( \varphi(x) = \) 容易に評価される。

\( f(x) \) の積分は用いてコトをヨリ、\( F(x) = f(x), \varphi(x) \) が

連続する微分可能であると証明し得る。

\( f(x) \) は \( x = 0 \) を関数 \( f(x) \) で

\[ f'(x+y) + f'(x-y) = 2 \varphi(y) \cdot \frac{f'(x) + a^2 f(x) f'(x) f^2(y)}{\left\{ 1 - a^2 f^2(x) f^2(y) \right\}^2} \]

\( x = 0 \) と \( f'(x) = f'(-x), f(0) = 0 \) と仮定

\[ \varphi(y) f'(0) = f'(y) \]

\( f'(0) = \) と \( f'(x) = f'(x) \) が恒等的 \( f(x) = c \) の場合を除く。
(1) \[ f(x+y) + f(x-y) = \frac{2f(x)f'(y)}{1 - \lambda^2 f^2(x) f^2(y)} \]

(2) \[ f(x+y) - f(x-y) = \frac{2f(y)f'(x)}{1 - \lambda^2 f^2(x) f^2(y)} \]

(1) + (2) から

\[ f(x+y) = \frac{f(x)f'(y)+f(y)f'(x)}{1 - \lambda^2 f^2(x) f^2(y)} \]

\( f(x) \) は何回でも微分可能であるから (1) より、(2) より、(3) より、結局 (4) が導かれます

\[ \lambda f'''(x) = 2\lambda^3 \mu^2 f^3(x) + \beta f(x) \]

\( f'(x) \) の両辺をカテル積分スコト＝ヨリ結局

\[ f'(x) = \lambda^2 \mu^2 f''(x) + \frac{\beta}{\lambda} f^2(x) + \lambda^2 \]

これにより、イテ結局

\begin{align*}
(Ⅰ) & \quad \begin{cases}
  f(x) = \lambda d \nu [ \lambda x; \lambda^2 \mu^2 ] \\
  g(x) = c \nu [ \lambda x; \lambda^2 \mu] d \nu [ \lambda x; \lambda^2 \mu ] 
\end{cases} \\
(Ⅱ) & \quad \begin{cases}
  f(x) = \lambda f \nu [ \lambda x; \sqrt{1 - \lambda^4 \mu^2} ] \\
  g(x) = \frac{d \nu [ \lambda x; \sqrt{1 - \lambda^4 \mu^2} ]}{c \nu [ \lambda x; \sqrt{1 - \lambda^4 \mu^2} ]}
\end{cases}
\end{align*}
(Ⅲ) \[
\begin{align*}
 f(x) &= \frac{1}{\sqrt{\omega}} \tan \alpha \, dx \, d\nu \, d\rho \\
 g(x) &= \frac{dn^2 dx}{cn^2 dx} - k^2 \, dn^2 dx
\end{align*}
\]

\( \alpha \) \任意大, \( n \) \実数, \( \nu, I, \ell \) \実数 \( \frac{1}{\sqrt{\omega}} \) \任意大, \( k \geq 0 \) トレル。

（完）