736. Mean ergodic theorem

谷田耕作

発話 724 = 於テ mean ergodic theorem (発話 720) 應用例 トシテ Markov−Dobr 定理ヲヨリ精密シテ結果ヲ 得タ。角谷君ハ本号発話 = 於テ之上
尚一般ニテラレノ之ヲ著八全テ Banach 空間上 = 於ケル線型 operator ト反復、論証ヲアリ。後カラ述べ
ルマラ＝団有値方程式 T・X = X / 解ノ multiplicity トノ、失転方程式 T・X = X / 解ノ multiplicity ト
ノ関係ヲ知ル必要が生ジテス。S. Mazur ハ 論文 (Über
die Nullstellen linearer Operationen,
Stud. Math. II (1930) ド見付ケタケレドモ、此ノ
—543—
§1. 共転 operator について

Le は Banach 空間に於て定義される linear functional $f(x) (x \in L)$ の全体を、線形空間とする、これを norm

$$\| f \| = \text{L.U.L.} | f(x) |$$

$$\| x \| \leq 1$$

定義されるハは Banach 空間の作るものとする。之ノ共転空間ト呼ぶ。

Le, Le, ハ Banach 空間に於て定義される共転空間T家々 Le, Le, ト呼ぶ。Le, Le, 内に属する線型 operator

$x, = T \cdot x (x \in L, x \in L_1)$

に対し、次ノ如クシテ $L, L, L, L, L, L, L,$ 内に属する線型 operator

T が定義される。ハ Le, 1 恕 $f, (x_1) (x_1, 線型 functional, x \in L_1) = L, f (x) (x_1, 線型 functional, x \in L_1) = f_1 (T \cdot x) \gamma$ に対應セールモノデアルノ。

$T \cdot f, = f$。

此ノ、T ト、共転 operator ト呼ぶ。共転空間、共転 operator ト言念、Banach ト等請トメル Poland school 線型 operator ト理論ニ於テ基本的ナ
役割が上手ですね。次に例を挙げて。意味がある端がワカル
コトは思

\(0 \leq t \leq 1 \) を与え、集合可能な関数 \(x(t) \) 作る Banach
空間（L）（1）の共転空間 \(\mathcal{H}(\mathcal{M}) \) （0 \leq t \leq 1）で有限可測な関数
\(Y(t) \) を束 Banach 空間（2）で \(\mathcal{H} \) に取る。したがって、任意
線形 functional \(f(x) = \int_0^1 Y(t) x(t) \, dt, \quad Y \in \mathcal{M} \)

(3) 形＝数ハサを

\(0 \leq t \leq 1, \quad 0 \leq \alpha \leq 1 \) で可測 \(K(\alpha, t) \) が、(L)
束全体任意 \(\mathcal{H} \) と \(\mathcal{M} \) = 束全体任意 \(Y = \) 随

\[\int_0^1 \int_0^1 |K(\alpha, t) x(t) Y(\delta)| \, d\alpha \, d\delta < \infty \]

\(\mathcal{T} \) を満足タイラバ

\[y(\alpha) = y = T \cdot x = \int_0^1 K(\alpha, t) x(t) \, dt \]

\(\mathcal{L} \) \(\mathcal{M} \) 内＝線型形 operation \(T \) 定義スル。\(T \)
共転 operator \(\mathcal{T} \) 上述 \(\mathcal{M} \) \(\mathcal{M} \) 内＝線型形
operator トシテ表現サレル場合デアル。実際 Banach

(1) (L) \(\mathcal{H} \) 様絶対値 \(\|x\| = \int_0^1 |x(t)| \, dt \).

(2) (M) \(\mathcal{M} \) 様絶対値 \(\|Y\| = \max |Y(t)| \), \(0 \leq t \leq 1 \)

(3) S. Banach: Théorie des Opérations linéaires, p. 65.

-545-
著物（loc. cit. p. 105）=

\[X(t) = X = T \cdot Y = \int_{0}^{t} K(s, t) Y(s) \, ds \]

ト従現スレコトガ即サレテナル。
ヨッテ共軛 operation トフハ Fredholm 積分方程式 華＝於ケル transposed 積分 operator
概念ヲ抽象化シタモノデアルソトガ明＝ナッダコトト
思フ。

§2. S. Mazur / 定理 / 擴張

Banach 空間 \(L \) ン内ヘ線型 operator \(T \)
が、i） \(||T^n|| \leq \) 常数 \(C (n = 1, 2, \ldots) \)　ii）任意
ノ \(x \) に対し列式 \(\{ x_n \} = \left\{ \frac{T^0 + \ldots + T^n}{n} \cdot x \right\} \) が weakly
compact in \(L \) ンフルラ滿足スルスルト mean
ergodic theorem が成立ツ（談語 724 並＝角谷氏談
話 731 参照），即チ

任意 / \(x \in L \) ン於キ

\[
\begin{cases}
\lim_{n \to \infty} \frac{T^0 + T^1 + \ldots + T^n}{n} x = T \cdot x \\
(T^2 = T, \quad TT = T, \quad T T = T)
\end{cases}
\]

1 成立スキル如ノ線型 operator \(T \) が存在スキル。

(1) 角谷氏ハノ々 1 成立スキル完全線形トシテ weakly completely
continuous operator \(\nabla \) が存在スル ||T - \nabla|| < \(\sigma \)
ルコトヲ得テレキ。
定理 E が T に同型である線型演算子 (写像 \mathcal{T}) であるとき，
之を完全演算子 $(E - T)$ の零元として考えると，

$$(E - T)x = 0, \quad (E - T)x = 0 \quad (x \in E, x \in E)$$

一次元独立解に数を一致させる。

注意 Mazur (loc. cit.) は $\|T\| = 1$ とし，
locally weakly compact ルールを定理 1 成立スルコンタクト示レキ。コンドキハ T が条件で，dd と発
足スルコンタクト明ケダガラ，上定理ノ言がゲット一様ガナル。Mazur ノ論法ハハマルガ，之ノ型＝一般＝レデハ
e. t. カ簡単＝得ニルルコトハ却百イト思々。

証明: 第一段。 $(E - T)x = 0$ 一次元独立解ヲ
x_1, x_2, \ldots, x_p ポールル。x_1, x_2, \ldots, x_p 一強バ線状空間
m が丁度 $T, L^p = L^p$ がアレ。L^p ノ定義ガラレ任意
linear functional $X(x) (x \in L^p)$, $X'(x) = X(T, x) (x \in L^p)$ が社メタ
linear functional が定義ノル。

$$X'(x) - T \cdot X'(x) = X(T, x) - X(T, T \cdot x)$$

$$= X(T, x) - X(T, x) = 0 \quad (x \in L^p)$$

がガテ，コノ X' は $(E - T)X = 0$ が満足スルル。
即ち \((\overline{E} = \overline{T})x = 0\) なる一次独立解の個数は \(L\) １次元元数 \(P\) をもつ。

第二段 \(x \in \bar{E}\) の \((\overline{E} = \overline{T})x = 0\) を満たす\(x\) とすれば、\(x(x) = x(T \cdot x) = 0\) （\(x \in \bar{E}\)）。ヨッテ

\[x(x) = x\left(\frac{T + T^2 + \cdots + T^n}{n}\right)\text{ for } n = 1, 2, \ldots\]

ヨッテ \(x(x) = x(T \cdot x)\) 即ち \(x\) と実 \(L\) 上に定義される \(linear\ functional\) がアル。故が

\[(\overline{E} = \overline{T})x = 0\) なる一次独立解の個数は \(L\) １次元元数 \(P\) をもつ。以上。

§3. 定理 1 應用

談話 724 = に \(x, 0 \leq x \leq 1, 0 \leq y \leq 1\) と測り

\(\varphi(x, y) = 0, \int_0^1 \varphi(x, y) dy = 1\) と定義アル

\(\rho(x, y)\) が

\[
\begin{cases}
\varepsilon_i \equiv \varepsilon_{i+1}, \quad \lim \text{mes} (\varepsilon_i) = 0 \quad \text{の如く任意,}

\text{可測集合列 } \{\varepsilon_i\} = \text{対し, } x = \text{関し} \text{一様=}

\lim_{i \to \infty} \int_{\varepsilon_i} \rho(x, y) dy = 0
\end{cases}
\]

\(\rho\) 満ストレッセル (L), (L) へ \(\text{線状operator}\) \(T\):

\[T \cdot f(x) = \int_0^1 f(x) \rho(x, y) dx\]

（入複素数 \(|\lambda| = 1\)

（i i）\(m, e, \text{ 件 i) ii) \(\rho\) 満足ストレッセルデシタ。 故が

-548-
定理 7.7

\[f(y) = \int_0^1 f(x) p(x, y) \, dx \quad (f(y) \in \mathbb{L}) \]

\[g(x) = \int_0^1 g(y) p(x, y) \, dy \quad (g(x) \in \mathbb{M}) \]

1 次独立 + 解 1 数へ 1 数となり。

証明 7.2.4, p. 435 に ヨレヨレ (※※) 1 解 \(g(x) \) 1 存在スル如け 入 h 入^m = 1 (m 整数) より満足スル。故 =

定理 固有値方程式

\[f(y) = \int_0^1 f(x) p(x, y) \, dx \quad (1 \text{次}) = 1 \]

が解ツ固有済ナルラベ 入 h 入^m = 1 (m 整数) より満足スル。

系、然も斯ル入 h 高さ有限個シカライ。

証。入^m = 1 + r にて最少数 \(r \) が有限ナルコトヲハヘ
ベヨベソテハ、入^m = 1 证明1仕方 (証話 676, p. 250) カ
ヲ珍チハ入 h。

注意 Docil 牆件 (X) 次 @ = Docil 条件 (木芯
元柱式証話) より 満足ハレテ テラチテ ハー場合=モ、m.e. トガ成立ス
コトヲハ本ス）証論がソノイマテハマルコトハテフ返モナイ。