Satz 1. Komplex $K^n \rightarrow (n+1)$ 次元以上
Torsionsgruppe が持つナイトル。n 次元 T_{i}-komplex $K^n \rightarrow S^n$ に変換変換 f が normal
$\Rightarrow f \rightarrow K^n \rightarrow S^n$ 变換 = erweitern がリ。

Beweis. $f: K^n \rightarrow S^n$ normal + と故 $K^{n+1} = er$
weitern サケル f' トス。

各 (n+1) 次元 Simplex $T_{i}^{n+1} \rightarrow S^n = (n+1)$
次元 Homotopiegruppe $\pi_{n+1} (S^n)$ 有り元 a_i が対
應サケル、即て $T_{i}^{n+1} \rightarrow a_i \in \pi_{n+1} (S^n)$。

対策方法： $\dot{T}_{i}^{n+1} \backslash f \sim S^n = \text{unweisentlich}$.

$T_{i}^{n+1} \oplus$, T_{i}^{n+1} ト相似、t_{i}^{n+1}, $f' (t_{i}^{n+1})$
$= p \in S^n$ + る如 f' 出来り、故
$f' (t_{i}^{n+1}) \rightarrow S^n \oplus \pi_{n+1} (S^n)$ 有り元 a_i
任意、有 a_i = トル様 = f' 可能。

f' 明作レバ (n+1) 次元代数複体群し $\pi_{n+1} (K^{n+1})$
$\pi_{n+1} (S^n)$ へ 一つ Homomorphismus が興

1) f normal と $K^n \rightarrow Z_{h} = Km \rightarrow \pi_0 \Rightarrow f (Z^n) \sim \text{Grad} 0 = \text{null}$

2) $S^n \rightarrow S^n$ 連続変換、Klasse (Homotopie) が
作る群、Abelich.
\[\sum t^i T_{i}^{n+1} \longrightarrow \sum t^i a_i. \]
任意の同型写像 \(f \) \(f' \) 同値
得る。

\[L^{n+1}(K^{n+1}) \longrightarrow \pi_{n+1}(S^n) \]

\[L^{n+1}(K^{n+1}) / \text{Basist} \cong Z_i^{n+1}, u_i^{n+1}, v_i^{n+1}, w_i^{n+1}, y_i^{n+1}. \]

\[\text{目標は} Z_i^{n+1} \rightarrow \nu \text{ Zyklus; } v_i^{n+1} \rightarrow, \]

\[f_i : Z_i^{n+1} \rightarrow 0 \text{ (} f_i \text{ integer) } + \nu \text{ Zyklus; } u_i^{n+1} \rightarrow 0; \]

\[v_i^{n+1} \text{ Zyklus } r + 1 \text{ Komplex. } v_i^{n+1} = g_i v_i^{n}; \]

\[y_i^{n+1} = u_i^{n}; \text{ と如右} \]

\[Z_i^{n+1}, u_i^{n+1}, \]

\[\exists \pi_{n+1}(S^n) \] 任意の元 \(h \) は存在する。

即 \(u_i^{n+1} \) 及 \(Z_i^{n+1} = \sum_i t^i T_{i}^{n+1} \) と

\[h : T_{i}^{n+1} \longrightarrow a_i \in \pi_{n+1}(S^n) \]

とスレバ

\[h : Z_i^{n+1} \rightarrow \sum_i t^i a_i \in \pi_{n+1}(S^n). \]

\[h \] は \(\text{Abbildung } f' \) が何等何等の \(\longrightarrow \)

\[T_i^{n+2} = \sum_k T_i^{n+1} \stackrel{f'}{\longrightarrow} S^n \]

\(S^{n+1} \longrightarrow S^n \text{ ダイアテソレハ } \pi_{n+1}(S^n) \) \(\text{同値} \)元。

\[h : T_i^{n+2} \rightarrow \sum_k a_i \in \pi_{n+1}(S^n) \]

1) Alexandroff u. Hopf; Topologie S. 216.

---280---
\[f'(t_i^{n+1}) = p \in S^n \]

\[f'(\sum \kappa T_i^{n+1} - \sum \kappa t_i^{n+1}) \subset S^n \]

従って又 \(S^{n+1} \rightarrow S^n + \text{Abbildung} \) トノヘア

\[f' \] トノヘア

\[\pi_{n+1}(S^n) \] トノ元

何学的

\[\dot{T}_k^{n+2} \rightarrow S^n \]

\[\sum_{i} \kappa a_i \in \pi_{n+1}(S^n) \] トノ元

何学的

\[\begin{aligned}
 u_i^{n+1} &= \sum_{\kappa} p_{\kappa} \dot{T}_k^{n+2} - \sum_{\kappa} p_{\kappa} (e_{\kappa} + \sum_{i} \kappa a_i) \\
 \dot{u}_i^{n+1} &= \sum_{\kappa} p_{\kappa} \dot{T}_k^{n+2} - \sum_{\kappa} p_{\kappa} (e_{\kappa} + \sum_{i} \kappa a_i)
\end{aligned} \]

何学的

今 Torision が存在シナイカラ後半ヘ然イ

代数的対称 \(h \) ハ任意 / character = ℜ Abildung

\[f' \] ベトレタ

何学的

\[\begin{aligned}
 u_i^{n+1} &\rightarrow e_{\kappa} \in \pi_{n+1}(S^n) \\
 \pi_{n+1}(S^n) &\rightarrow S^n \] トノ元

何学的

\[\begin{aligned}
 u_i^{n+1} &\rightarrow \gamma \in \pi_{n+1}(S^n) \\
 \pi_{n+1}(S^n) &\rightarrow S^n
\end{aligned} \]

トナル。
然ならば

\[\hat{\pi}^{n+2} = \sum_i b_i u_i^{n+1} f'_{0} \rightarrow 0 \in \pi_{n+1}(S^n). \]

即ち，\(f'_{0} \) デハ各 \(\hat{\pi}^{n+2} \) が \(S^n = \text{unwesentlich} \)，故に
\(f'_{0} \) ハ \(K^{n+2} = \mathbb{R}^{2n} \) erweitern サル。以下同様。

Bemerkung. Torsion がアッテハ因ルノハ

\[Z_{j}^{n+1} \rightarrow -\frac{1}{q_{j}} \left(+ \sum_{i} p_{k} e_{k} \right) \]

ナルホモモフリズム \(h \) が存在ハルトヘ限フナイ、

右边 \(\pi_{n+1}(S^n) \) 1 元 = ナルトハ限フナイ。

---282---