466. 直線収論

武 田 梅 雄（旅順中）

上述ノ如ク採ラレタ標識ヲ基木標識R。ト名付ケル。

尚基木方程式 (I) ノ精度条件ノトシテ容易＝

\[E_{ij} = E_{ij}, \quad F_{ij} = F_{ij}, \quad G_{ij} = G_{ij}, \]

\[H_{ij} = H_{ij} \quad (i, j = 1, 2) \]

ヲ得ル。

—7—
4. ψ は parameter u', u^2 が

$$u' = u'(v', v'^2), \quad u^2 = u^2(v', v'^2)$$

トウシテ 变換 ψ, 映

$$\lambda_i = \frac{\partial u_i}{\partial u^2}$$

トウケ バ

$$H_i' = \left(\begin{pmatrix} p' \frac{\partial p_i'}{\partial u^2} \end{pmatrix} \right) = H_0 \lambda_i \lambda_i$$

トナリ，コノ変換 = ヨウシテ p, p_5 位標変うラズ，ψ, p_2 へ

$$0, \lambda'_1, \lambda'_2, 0, 0, 0), \quad (0, \lambda'_2, \lambda'_2, 0, 0, 0) = 移

レル。故 = 平面 ψ, p_2, p_5 へ変うラズ，従ムテ ψ, p_2, p_5 亦変うタ

ナイ。

次 = 因数 $\nu(u', u^2)$ ト p_5 位標 = カケレベ

$$H_i' = (\lambda)^2 H_i$$

$$\frac{1}{2} H_i' = \frac{\partial v_i'}{\partial u^c} = \frac{1}{\lambda} \left\{ \frac{1}{2} H_i' \frac{\partial v_i'}{\partial u^c} + \lambda \frac{\partial v_i'}{\partial u^c} \right\}$$

$$\rho' = \left(\frac{1}{\lambda} \right)^2 \left\{ \rho + \frac{1}{2} \lambda \rho + \frac{1}{2\lambda} H \frac{\partial \rho}{\partial u^c} \right\}$$

トナリ，ψ, p, p_2, p_5 へ変うラズ

$$\lambda, 0, 0, 0, 0, 0), \quad (\lambda\lambda_1, \lambda, 0, 0, 0, 0), \quad (\lambda\lambda_2, 0, \lambda, 0, 0, 0), \quad (\lambda^2 \lambda_\lambda, \lambda', \lambda^2 \lambda, 0$$

トナリ，ψ, p, p_5 へ変うナイ。

※上 = より

$$G_i' = \lambda G_i, \quad F_i' = \lambda F_i$$

$$M_i' = \frac{1}{\lambda} (M_i - G_i p \lambda), \quad N_i' = \frac{1}{\lambda} (N_i - F_i p \lambda$$

--8--
\[L'_{\omega} \, d\varepsilon^\omega = L_{\omega} \, d\varepsilon^\omega \]

従って、マ่า

\[\Lambda = F^\omega_c \tilde{G}^i_c \]

トオケベ

\[\Lambda' = \frac{f}{(\Lambda)^3} \Lambda \]

トナルル。

5. \[p' = \Lambda p + \text{残} \] は、ヨリ

\[F^i_{\omega \ell} = F^i_{\omega \ell} \ell + (H^i_{\omega \ell} \Lambda \ell + H^\omega_{i \ell} \Lambda \ell - H_{i \ell} \Lambda^i \ell) \]

\[\left(\frac{\partial F^i_{\omega \ell}}{\partial u_{\omega \ell}} \right) = \Lambda \left\{ \frac{\partial F^i_{\omega \ell}}{\partial u_{\omega \ell}} + (H^i_{\omega \ell} F^\omega_{i \ell} \Lambda \omega + H^\omega_{i \ell} F^i_{\omega \ell} \Lambda \omega) \right\} - (F^i_{\omega \ell} \Lambda \ell + F^\omega_{i \ell} \Lambda \ell + F^i_{\omega \ell} \Lambda^i \ell) \]

\[F^i_{\omega \ell} = \frac{1}{2} \left\{ \frac{\partial F^i_{\omega \ell}}{\partial u_{\omega \ell}} + F^\omega_{i \rho} F^{\rho}_{\ell \omega} - F^\omega_{i \ell} F^\rho_{\omega \rho} + F^\rho_{i \ell} F^\omega_{\rho \omega} - 2N^i_{\omega \ell} \right\} \]

トナルル故=

\[F^i_{\omega \ell} = \frac{1}{\Lambda} \left(F^i_{\omega \ell} + \frac{5}{3} (N^i_{\omega \ell} - \Lambda N^i_{\omega \ell}) \right) \]

トナルル今

\[H^\omega_{i \ell} = F^\omega_{i \ell} + \frac{5}{3} N^i_{\ell} \quad (i = 1, 2) \]

トオケベ

\[H^\omega_{i \ell} = \frac{1}{\Lambda} H^\omega_{i \ell} \]

トナルル同様＝
\[G_{i,\ell}^\omega = G_{i,\ell}^\omega + \frac{5}{3} M_{\ell} \quad (i = 1, 2) \]

トオケバ

\[G_{i,\ell}^\omega = \frac{1}{\lambda} G_{i,\ell}^\omega \]

ヲ得む。

漸近線媒介座標

6° \(\nu' = \text{const} \) 及び \(\nu^2 = \text{const} \) ヨ媒介クノ像

ノ上ノ漸近曲線ノ方向＝トルトキハ

\[H_{11} = H_{22} = 0 \]

デアリ、\(\Gamma_1, \Gamma_2 \) ハ \(\Theta_1, \Theta_2 \) ハオリ、\(\Theta_1, \Theta_2 \) ハ \(\Phi_1, \Phi_2 \) ノ母線
tオナルル。今

\[\log H_{12} = 0 \]

トオケバ

\[\Gamma_{111} = \Gamma_{122} = \Gamma_{211} = \Gamma_{222} = 0 \]

\[\frac{\Gamma_{11}'}{H_{12}} = \Theta_\nu, \quad \frac{\Gamma_{22}'}{H_{12}} = \Theta_\nu \]

トナリョ（IX）ハ

\[F_{12} = 0, \quad G_{12} = 0 \]

トナリ、又

\[\frac{\partial w_1^3}{\partial \nu^2} = \frac{\partial w_1^4}{\partial \nu^2} = \frac{\partial w_2^3}{\partial \nu'} = \frac{\partial w_2^4}{\partial \nu'} = 0 \]

デアリョ。
以下、便宜性で、\(u', u'' \) 代わりに \(u, v \) と示す。これをスレーブ基本方程式 (I) と

\[
\begin{align*}
dp &= du \ p_u + dv \ p_v, \\
dp_u &= (E_{1u} du + E_{2u} dv) p + O_{1u} du p_u + F_{1u} du p_3 \\
&\quad + G_{1u} du p_4 + H_{1u} dv p_5, \\
dp_v &= (E_{2v} du + E_{2v} dv) p + O_{2v} dv p_v + F_{2v} dv p_3 \\
&\quad + G_{2v} dv p_4 + H_{2v} dv p_5, \\
dp_3 &= (M_1 du + M_2 dv) p + G_1^2 du p_v + G_1 dv p_v
\end{align*}
\]

(II)

\[
\begin{align*}
&dp_3 = (M_1 du + M_2 dv) p + G_1^2 du p_v + G_1 dv p_v \\
&\quad + (L_1 du + L_2 dv) p_3, \\
dp_4 &= (N_1 du + N_2 dv) p + F_1^2 dv p_u + F_1 du p_u \\
&\quad -(L_1 du + L_2 dv) p_4, \\
dp_5 &= (E_1^2 du + E_2^2 dv) p_u + (E_1^2 du + E_2^2 dv) p_v \\
&\quad -(N_1 du + N_2 dv) p_3 - (M_1 du + M_2 dv) p_4.
\end{align*}
\]

トナル。

\(\Pi \) 今４直線 \(p, p_u, p_v, p_5 \) 交点を図に示す。\(A, A_1, A_2, A_3 \) トスレベ、元来 \(p_3 \) ト \(p_4 \) ト八交ハテスカラ \(p_u, p_v, p_5 \) ノテハ \(A_0 \) ト一一致シ、他ハ \(A_1, A_2 \) ト一致スベリナチス。

今 \(p_3 \) フヨテ \(A_1, A_2 \) 一一致スルモトスル。

カクノ如＋ラモノハ渐近線媒介介座標 \(R_0 \) トナタ計瓦ル。
トカレベ

\[0^1 y^5 + y^3 y^4 = H_{12} y^1 y^2 \]

プラックベ直線で、Plücker座標で上、下、ノ間が平衡

\[p^0 = y^0, \quad p^{01} = y^1, \quad p^{02} = y^2, \quad p^{03} = y^4, \]

\[p^{12} = y^3, \quad p^{13} = H_{12} y^2, \quad p^{23} = y^5 \]

ノ関係がトカレベ、ノコトが出来ない。

極で \(R_a = \) 極ノパラメータ、変換はヨツベハ座標ハ変

\[p' = \lambda p = \text{ヨツベハ} \quad R_S = \text{ヨツベハ} \quad p_1, p_2, p_3 \quad \text{ハ々} \]

\((1, 0, 0, 0, 0, 0), (\lambda_1, 1, 0, 0, 0, 0), (\lambda_2, 0, 1, 0, 0, 0), \)

\((\lambda_1 \lambda_2, \lambda_2, \lambda_1, 0, 0, H_{12}) \)

トナルベ \(A_0, A_1 \) 変換ゼ、 \(A_2, A_3 \) て々

\((0, \lambda_1, 1, 0), (-\lambda_2, 0, 0, H_{12}) \)

= 於ハノ。

叉明カナル如ノ標棒 \(R_a = \) 極トハ平面 \(p_{14}, p_{15} \) ハ々

急点 \(A_0, A_1 \) 極ハ \(S_0, S_1 \) ハノ切平面デアル。

8° ミック変化ストキハ \(p \) ト展開曲面ハ画キ \(A_0 \) ハ

コノ展開曲面ノ外側曲線 \(D_0 \) ハ画セリ、 \(\lambda = \text{ヨツベハ} \) 同様デアル。故に \(H(H_1) \) ト作ル行列式 \(S \) が零ノデナイトキハ求ヘイテハ明

カハ線叢 \(K \times \infty^2 \) ノ展開曲面ハ持テ、マタ2ツノコトナル変

曲面 \(S_0, S_1 \) ハモツ。而シテハ \(A_0 = \) 極 \(S_0 \) (例ヘバ) =

切シ \(A_1 = \) 極 \(S_1 = \) 切スル。

\(S_1 \) 上 = 極 \(A_1 \) ト通ル任意ノ曲線ハ、切線アノ
\[g = \alpha p + \beta f_2 + \delta \nu \quad \text{とする} \]

\[\gamma = 0 \]

(2) \[\alpha \, d\nu + \beta \, G_2 \, d\nu = 0 \]

上のものから \(T \) と \(S \) 上、漸近曲線ナルトキハタより

(3) \[\alpha \, d\nu + \beta \, G_2 \, d\nu = 0 \]

トナリ、モノ \(G_{11}G_{22} + 0 \) ナレトキヘ \(S \), 上＝ヘナル漸近曲線

= 既知ト互＝ 共軸＋2ツノ曲線アルコトヲ知

マス (2), (3) より \(\alpha, \beta \) 消去スレバ

\[G_{11} \, d\nu^2 - G_{22} \, d\nu^2 = 0 \]

トナル＝コレハ \(S \), 上ノ漸近曲線ノ方向ヲ示ス。

変曲面 \(S_p \) ツイテモ同様デアルも、依ツテ

ニツノ異ナル変曲面ヲ有スル線義が \(W \) 線義ナルテメ、必要

シテ其ツ充合ナル条件ハ

\[F_{11} : F_{22} = G_{11} : G_{22} \]

ナル事デアル。