361. 相対微分幾何ツイテ

松村 宗治（台北大）

(I) Bohr 及び Jessen 之解析的数論等共, 積分表現用スル目的ツイテ平面冪多線群ノ和ヲ考究シテイル (H. Bohr
und B. Jessen, "Om Sandsynlighedsforsel-
ger ved Addition af Konvekse Kurver," det
Kongelige Danske Videnskabernes Selskabs
Skrifter, Naturvidenskabelig og Mathematis-
k Afdeling, Ser. S, Vol. 12, No. 3.).

ソコガ有限個ノ卵形線群ノ和ノ相対微分幾何ツ考ヘル
コトニスル, ソノトメト下ノ記号ヲ用ヒル。（Lüss 君ノ論
文参照）

\[p = \sum p_i, \quad q = \sum q_i, \]

\[\overline{p}(q) = \sum \overline{p}(q_i), \quad \overline{p}(\mu) = \sum \overline{p}(\mu_i), \quad q = \sum q_i, \]

\[\mu = \sum \mu_i \]

ダアルカリ次場合ノ重要公式ハ下ノ通りデアル。

\[\gamma(\xi) = \frac{\sum p_i(\xi)}{\sum q_i(\xi)} , \]

\[\frac{dS}{d\sigma} = \rho = \frac{\sum dS(\xi_i)}{\sum dS(\mu_i)} = \frac{\sum \overline{p}(\xi_i)}{\sum \overline{p}(\mu_i)} , \]

\[2I(q) = \oint r ds = \oint r \rho d\sigma , \]

— 3 —
\[\Sigma = \int d\sigma = \int \sum_{i}(\mu) = 2 \sum_{i} \int \mu_i \, d\sigma_i, \]
\[S = \int dS = \int \rho d\sigma = \int \rho d\sigma, \]

以上ノ様＝ツテ今前ノ公式ヲ変形シ且ツ相対ヲボメテ務メバヨイ。

(II) 相対的距離

\[d = \sqrt{g_1 g_2 \left(\frac{\mu_1}{g_2} - \frac{\mu_2}{g_2} \right)^2} \]

又＝スイテ \(\frac{\mu_1}{g_2} \) より \(\frac{\mu_2}{g_2} \)，(\(i = \sqrt{-1} \)) ナル場合＝ヘスケハルマタ

\[d^2 = g_1 g_2 \xi_1^2 \quad \text{或} \quad d^2 = -g_1 g_2 \xi_2^2 \]

トナル。但シ \(g_1, g_2 \neq 0 \) ダアル。

又＝スイノ①ラバリ＝相対的複素数＝ツ用ヒレト同ツ場合＝

\[d^2 = g_1 g_2 \xi_1^2 \quad \text{或} \quad g_1 g_2 \xi_1 \xi_2 = 0 \]

トナル。

(III) S. Lie が考へタ \((x, y, z = \frac{dy}{dx})\) ナル微積分ノ推

寫ノマハ＝ \((y, \frac{dy}{dS})\) ナル微積分ノ推寫ノ考ヘル＝コトモツノ

相対的幾何ノ問題＝フルデアラク。

(IV) 本會ヲハ私が考ヘタマハ＝相対的空間＝於ケル

絶座標ノガ分ラテスカラ吾々ノ場合＝二種々ノ曲線ヲ定義スル

コトガ出ラル。例ヘベ下ノ通りデアル。

—4—
（仮し R が綫線の初等的動径，Θが首綫トナス初等の角，γ ハ R 曲線，対応点＝於ケル切線，原点ヨリ下シシル重線ノ長サガナル）

(1) R. Bernoullische Lemniskate:

\[\sqrt{g} R = a \sqrt{\cos 2\Theta} \]

上式ナ a ハ常数ガアリス，

\[q^2 + \left(\frac{d\varphi}{d\varphi} \right)^2 = \gamma^2 \]

ヨリ γ ノγ ノ表示ハスコトモ出来ル。γ ハ R 曲線，対応点＝於ケル動径ガアリ，ソレが首綫トナス初等的角ガ α ノアリ

(2) R. Kappakurve: \[\sqrt{g} R = a \cot \theta \]

等ノボメルコトが出ルル。

而シサキレ等曲線ノ性質ヲボ此等ノ式ヨリボメルトヨイ。ソレ＝ハ

\[\text{Inhalt} = \frac{1}{2} \int \sqrt{g} R \, ds = \frac{1}{2} \int g \sqrt{g} R \, ds \]

等ノ公式が役＝立ツ。