距離付ボラレク環 = 於テ問デタ連続群

吉田 希作 (隠大)

第58号 (論文203) = 於テ南雲氏「連続ナ環」ナ定義ソ次デテコ = einbetten シタ one-parameter group / analytical representation ワ英テラテナ。筆者ハ以下ニ


H. Cartan: Sur les groupes de transformations analytiques (Actualités 198)

”論法ヲ助ケトシテ朝：一般ニ表題ノ如キ議論ヲテミタニト実ハス。英ノ idée = 於テ Neumann ハ異ナル所ハ

ナイノデスガ i) Neumann / Matrix = 関スル議論 が特有距離ガボラレクx vollständig と Ring = 於テ開

デタ有限次元 / 連続群 / 話ナルコトガ明 = ナリ ii) 於カル群=於ケル differentiability at Einselement ハ

Cartan / propriétė (P) = 揮ツテ定義スレバ南雲氏

ノ如キ abstract ナ微分方程式 = ヨッテ群ヲ erzangen シ得ルコトガ言ヘル iii) Fundamental theoren (以下=述ベル) / 證明ガ上ノ微分方程式 ハメ = Neumann

—1—
ノリモワカリヨクナッテフリマス。レマケヲ注意シテオキタイト愚ヒマス。

I 準 備

南雲氏、「連続ナ環」ノ距離ヲCFラレタ環ト呼バコト＝ツマス。即チ賓数ヲOperatorbereich トシ metric 且ツ
vollständig ト環。但シ次ヲ＝八此ノ環＝Einheit（其
絶対値１））存在ヲ假定シマス。然レバ此ノ Ring R ＝於
テ（絶対収斂＝ヨリ）

\[
\exp A = E + \sum_{\nu=1}^{\infty} \frac{A^{\nu}}{\nu!} \quad \text{for all } A \in R
\]

\[
\ln A = \sum_{\nu=1}^{\infty} \frac{(-1)^{\nu-1}}{\nu} (A - E)^{\nu} \quad \text{for all } A \in R \quad \text{for which } |A - E| < 1
\]

ガ定義サレル。

Neumann ュ Matrix サกำหนด定義シテ exp イ ln.

ト同様論法デ（17級数トノ比較）

(1) exp ln A = A for |A - E| < 1
(2) ln exp A = A for |A| < ln 2
(3) exp A = E + A + O(|A|^2) for |A| small
(4) ln A = A - E + O(|A - E|^2) for |A - E| small

がフヘマス。ヨウ＝O(|A|^2) オハ O(|A|^2) ハ大々コン
order ノ絶対値ヲモツ如キ R , element , 意。

定理1. A_{\varepsilon_i} \in R, A_{\varepsilon_i} \rightarrow E \text{ for } i \rightarrow \infty. \text{ 且 } 0 < \varepsilon_i,
\[ \varepsilon_i \to 0 \quad \text{for} \quad i \to \infty \quad \text{すると然らべ} \]

\[
\frac{A \varepsilon_i - E}{\varepsilon_i} \quad \text{および} \quad \frac{\ln A \varepsilon_i}{\varepsilon_i}
\]

トハ同時ハ \( R \) 同一, \( \text{element} = \) 収束スル。

証明。

\[
\frac{1}{\varepsilon_i} \ln A \varepsilon_i = \frac{1}{\varepsilon_i} (A \varepsilon_i - E) + \frac{1}{\varepsilon_i^2} O \left( \frac{1}{|A \varepsilon_i - E|^2} \right) \quad \text{by (4)}
\]

\[
= \frac{1}{\varepsilon_i} (A \varepsilon_i - E) + \varepsilon_i O \left( \frac{1}{|\varepsilon_i^2| A \varepsilon_i - E|^2} \right)
\]

\[
\frac{1}{\varepsilon_i^2} (A \varepsilon_i - E) = \frac{1}{\varepsilon_i} \left( \exp \ln A \varepsilon_i - E \right) \quad \text{by (1)}
\]

\[
= \frac{1}{\varepsilon_i} \left( \ln A \varepsilon_i + O \left( \frac{1}{|\ln A \varepsilon_i|^2} \right) \right) \quad \text{by (3)}
\]

\[
= \frac{1}{\varepsilon_i} \ln A \varepsilon_i + \varepsilon_i O \left( \frac{1}{\varepsilon_i^2} |\ln A \varepsilon_i|^2 \right)
\]

カラ明カ。

定理 2. \( \frac{1}{\varepsilon_i} (A \varepsilon_i - E) \to U \in R \) ナラベ \( R = \n \)

\[
\frac{n}{A n - E} \to U; \quad n = 1, 2, \cdots
\]

ナル如キ \( \{ A n \} \) が存在スル。然モ \( A n \) ハ \( \{ A \varepsilon_i \} \) ノ適當ナ

Teilfolge, Potenz = トレル。

証明。 \( \varepsilon_i(n) < \frac{1}{n} \) タル \( \varepsilon_i(n) \) フルト。正整数 \( \varphi_i(n) \)

\[
(n \varepsilon_i(n) - 1) \varepsilon_i(n) < \frac{1}{n} \leq \varphi_i(n) \varepsilon_i(n)
\]

\( n \varepsilon_i(n) \) 満足スル知フリ \( B_i(n) = (A \varepsilon_i(n))^{\varphi_i(n)} \) トフケペ

\[
\ln B_i(n) = \ln A \varepsilon_i(n) = n \varphi_i(n) \{ \frac{1}{\varepsilon_i(n)} \ln A \varepsilon_i(n) \}
\]

—3—
→ l \cup = \cup \text{ (by 1. 仮定)}

ヨッテ \( A_n = (A_{\varepsilon_i(n)})^{q_i(n)} \) トライテ 定理 1 仮定ヘ ヨイ。
（上 = \ln A^m = m \ln A 仮定ツメ。之ハタ克斯ク証明出来ル。 \( m \) ハ正整数）

次 = \( \mathbb{R} \) 仮合集合 \( \mathcal{O} \) が \( \mathbb{R} \) 括弧ヲソソ Compositionsregel トシテ，\( \mathbb{R} \) metric 仮意味デ連続群ヲ作
ツテリツルヲ。\( \mathcal{O} \) 仮Einheit ハ先ヘトム。今
\( \mathcal{O} \ni A_{\varepsilon_i} \), \( \frac{1}{\varepsilon_i} (A_{\varepsilon_i} - E) \to \cup \) 如クツテ得ラレル \( \cup \in \mathbb{R} \)
全体 \( \mathcal{O} \) トスル。

定理 3. \( \mathcal{O} \) 仮 linear manifold \( \subseteq \mathbb{R} \) デフリ，且
\( \cup, \mathbb{V} \) ト共ツソソ commutator \( \cup \mathbb{V} - \mathbb{V} \cup \mathbb{V} \) 含ム。

証明. \( \frac{1}{\varepsilon_i} (A_{\varepsilon_i} - E) \to \cup \), \( \frac{1}{\varepsilon_i} (A_{\varepsilon_i} - E) \to \mathbb{V} \) ト
セヨ。

然ウヘ \( \mathcal{O} \) 内 = \( n(A_n - E) \to \cup \), \( n(A_n' - E) \to \mathbb{V} \) ヌ
ル如キ \( \{A_n\}, \{A_n'\} \) 仮存在スル。（定理 2）

\[
n(A_n A_n' - E) = n(A_n - E)n(A_n - E) + n(A_n - E)(A_n' - E)
\]

\[
= n(A_n - E) + n(A_n' - E) + \frac{1}{n} (n(A_n - E) \cdot n(A_n' - E)) \to \cup + \mathbb{V}
\]

\[
\left\{ \begin{array}{l}
\pi^2 (A_n A_n' A_n^{-1} A_n'^{-1} - E) = \pi^2 (A_n A_n' A_n A_n' - E) A_n^{-1} A_n'^{-1} \\
\pi^2 (A_n A_n' - A_n' A_n) = \pi^2 (A_n' - E)(A_n' - E) \to \cup \mathbb{V} - \mathbb{V}
\end{array} \right.
\]

及び \( \pi \cup (A_n - E) \to \cup \mathbb{U} \) \( (\times \text{ real}) \) カラ定理 2 = ヨリ

\( \pi (A_n - E) \to \cup \mathbb{U} \) フル如キ \( \{A_n\} \) 仮 \( \mathcal{O} \) 仮存在スルコト
カラワカル。
II. 群の定義

以下 = \^ \text{定義} \text{微分方程式} と \text{定義}

\( A_i \in \mathcal{O}, \quad A_i \to B \in \mathcal{R} \) と

\( B \in \mathcal{O} \) と假定する。

定理4. \( \mathcal{U} \in \mathcal{J} \) と \( \mathcal{E}^{\mathcal{O}}(\mathcal{A} \text{ real}) \in \mathcal{O} \).

証明. \( \mathcal{A} \in \mathcal{J} \) (定理3) と \( \mathcal{A} \in \mathcal{O} \).

\( \mathcal{A} \) と \( \mathcal{O} \) の部分列 = \text{対数} \( \mathcal{N}(A_n - E) \to \mathcal{A} \).

定理1 = \text{定理}

\( \mathcal{N} \ln A_n = \ln (A_n^\mathcal{N}) \to \mathcal{A} \).

\( \text{対数} \) \( \exp \ln A_n = A_n \to \mathcal{E}^{\mathcal{O}} \).

\( A_n \in \mathcal{O} \) \( \exp \mathcal{A} \in \mathcal{O} \) \( \mathcal{O} \) と \( \mathcal{R} \) は \text{fermé}.

定理5. \( \mathcal{U} \in \mathcal{J} \) と \( \text{微分方程式}

\( (x) \frac{dx}{dt} = \mathcal{U} x \quad (t \text{ real parameter})

\( \text{initial condition} \quad (x = 0 \text{ と } x = E) \) の解

\( x(t) \in \mathcal{O} \).

証明. \( \text{導出} \text{abstract} + \text{微分方程式} \) と \text{定義} より

\( \text{論文} \) \( \text{取扱} \text{微分方程式} \) と \text{定義} より

\( x(t) = E + \mathcal{U} \int_0^t x(t) \, dt \)

\( \text{successive approximation} = \text{導体} \text{解} \) と

\( \text{導体} \text{解} \)
\[ X(t) = E + \sum_{m=1}^{\infty} \frac{U^m}{m!} t^m \]

アッタ。之ハ我々ノ先＝定義シタ exp. t U = 他ラスカラ前定理ヲ用フレベヨイ。

III. 群ノ生成 (Erzeugung)

オハ \( \mathcal{R} = \) 於テ閉デテフマールトディフコトノ他＝, \( \forall A_i, A_i \neq E, A_i \rightarrow E \) ニアル \( \{ A_i \} \) レ集ヘタトキ＝ \( A_i \) ト適當ノ\( Teilfolge \) \( A'_i : \) チトレベ \( \frac{1}{\varepsilon_i} (A'_i - E) \rightarrow \mathcal{U} (\neq 0) \epsilon \mathcal{T} \) ニアル知キ \( \varepsilon_i > 0, \varepsilon_i \rightarrow 0 \) が存在スルモノト仮定スル。之ガ群 \( \mathcal{O} \) カ \( E = \) 於テ differentiable ト名づケルコト＝ショク。

Fundamental theorem. \( \mathcal{O} \) カ

i) \( \mathcal{R} = \) 於テ閉デテフリ

ii) \( \mathcal{O} \) ガ finite dimension

iii) \( \mathcal{O} \) ガ zusammenhängend トスルバ

\( \mathcal{O} \) ハ Lie group ニ作ル。即チ \( \mathcal{O} \) ハ任意ノ element \( \prod_{i=1}^{n} \exp{V_i} \), \( V_i \in \mathcal{T} \) ハ書ケル。

証明. 第一段: \( \mathcal{O} \) ガ n dimension トスルバ \( \mathcal{T} \) ト高々 \( n \) dimension。何者 \( \mathcal{T} \) ハlinear manifold デラノノ一次獨立ナ Base \( \cup U_1, U_2, \ldots, U_m \); \( n+1 \leq m \) トスルバ \( \mathcal{O} \) ハ属スル element exp. \( \sum_{i=1}^{m} a_i U_i \);
実数；\( \mathbb{R} \) 近傍デレククト \( n+1 \) 次元 \( \mathbb{R} \) = ヌッパリ \( \mathcal{U} \) ヨッテ \( \mathcal{S} \) \( \mathcal{U} \leq n \) コノ一次独立 + Base \( \mathcal{U}_1, \mathcal{U}_2, \cdots, \mathcal{U}_k \) ヨモツ。従って \( \mathcal{S} \) \( \mathcal{R} \) = オイテ \( \text{fermé} \)

第二段。\( \exp \frac{\delta}{\delta t} a_i \mathcal{U} ; a_i \in \mathbb{R} \) \( \frac{\delta}{\delta t} \left| a_i \right| \leq 1 ; \) 形

= むケル \( \mathcal{O} \) 、element 全体 \( \mathcal{U} \) \( \mathcal{O} \) = オテ \( \text{fermé} \)。

然も \( \mathcal{S} \) element デレククト \( \mathcal{O} \) 近傍 = オレモノ \( \mathcal{O} \) Gruppen-

eigenschaft = フィ。何者,

\[
\frac{dx(t)}{dt} = \mathcal{U} x(t), \quad \frac{dy(t)}{dt} = \mathcal{V} y(t); \quad \mathcal{U}, \mathcal{V} \in \mathcal{S}
\]

トールベ明カ=

\[
\frac{d\chi(t) y(t)}{dt} = \frac{d\chi(t)}{dt} y(t) + \chi(t) \frac{dy(t)}{dt}
\]

\[
= \mathcal{U} \chi(t) y(t) + \chi(t) \mathcal{V} y(t).
\]

之れか \( \forall \chi(t) y(t), \forall \in \mathcal{S} \) 形 = カケルトヨイ。依ッ

テ \( \mathcal{U} \chi(t) + \chi(t) \mathcal{V} = \mathcal{U} \chi(t) \) トカケルトヨイ。前辺

\( \chi(t) = \chi(-t) \) カケルコト = ヨリ結局

\( \chi(t) \mathcal{V} \chi(-t) \in \mathcal{S} \)

がシベレハヨイ。然ム = \( \forall \in \mathcal{S} \) カテ \( \mathcal{N}(A_n - E) \to \mathcal{N} \)

ル \( \{A_n\} \) が \( \mathcal{O} \) = 存在スル。故 =

\( \mathcal{N}(\chi(t) A_n \chi(-t) - E) \to \chi(t) \mathcal{V} \chi(-t) \)

ヨッテ \( \chi(t) \mathcal{V} \chi(-t) \in \mathcal{S} \)。
ス、\( \bigcap \) は \( \mathcal{O}_f \) は \( \text{fermé} \) で \( \mathcal{T} \subseteq \bigcap \) ナルト

\[ |TA_i - E| \leq |T_i A_i - E| = \varepsilon_i > 0 \]

ナル如き \( T_i \) が \( \bigcap \) は存在シナケレバナラス。\( A_i \to E, \)
\( E \in \bigcap \) で \( T_i \to E \) 従ツテ \( \varepsilon_i \to 0 \)。differentiability at \( E \) カラ

\[ \frac{1}{\eta_i(n)} (T_i(n) A_i(n) - E) \to W \neq 0 \]

ナル如き \( \text{Tiefolge} \) がアノ。

ヨツテ特

\[ \frac{\varepsilon_i(n)}{\eta_i(n)} \to 0 \]

ョツテ \( \eta_i(n) \) が充足ナテ\n
\[ \exp. (-\eta_i(n) W) \in \bigcap \]

ヨツテ \( \exp. (-\eta_i(n) W) T_i(n) \in \bigcap \) (第二段)。故＝

\[ |\exp. (-\eta_i(n) W) T_i(n) A_i(n) - E| = \varepsilon_i(n) \]

トナント \( \varepsilon_i(n) \geq \varepsilon_i(n) \) デナケレバナラス。然ル＝

\[ \exp. (-\eta_i(n) W) = E - \eta_i(n) W + O(\eta_i(n)^2) \]

又

\[ T_i(n) A_i(n) = E + \eta_i(n) W + O(\eta_i(n)) \]

から

\[ \exp. (-\eta_i(n) W) T_i(n) A_i(n) - E = O(\eta_i(n)) \]

ヨツテ

\[ \varepsilon_i(n) = O(\eta_i(n)) \]

又一方

\[ \frac{\varepsilon_i(n)}{\eta_i(n)} \to 0 \]

ヨツテ

\[ \varepsilon_i(n) = 0(\varepsilon_i(n)) \]

又一方

\[ \varepsilon_i(n) \geq \varepsilon_i(n) = \text{反ス。} \]

カクテ \( \mathcal{O}_f \) は \( E \) 近傍ハ \( \mathcal{O}_f \) デネクサレコトカマカットサ。

第四段。\( \prod_{i=1}^{l} \exp. V_i , V_i \in \mathcal{F} \) 形＝関ケル \( \mathcal{O}_f / element \) に \( \mathcal{O}_f \) ン \( \mathcal{O}_f / \mathcal{O}_f = \text{fermé} \) offer + subgroup

ヲ作ウ。何者、\( A \in \mathcal{O}_f , B_i \in \mathcal{O}_f , B_i \to A \) トスルト

\( B_i A^{-1} \to E \)。ヨツテ \( \mathcal{O}_f \) ン充足ナキト，\( B_i A^{-1} \in \bigcap \subseteq \mathcal{O}_f \).
ヨッテ $B_i \in \Omega'$. 昭ヲ個 $\Omega'$ ペ明カ = Zusaemunhângend ガカラ $\Omega' = \Omega$.

Remark. 南雲氏ヘ Polya が matrix = 話テ行
ツタマヲ = integration = ヨッテ $R = \mathfrak{S}$ ル One-
parameter group ト微分可能性ヲ巧ミ = 証サレタ。

コノトキハ 従ツテ

$$G(\frac{t}{n}) - G(0) \rightarrow G'(0)$$

故 = $n \{ G(\frac{t}{n}) - E \} = t G'(0)$. 従ツテ $n \ln G(\frac{t}{n}) \rightarrow t G'(0)$
ヨッテ $G(\frac{t}{n})^n = G(t) \rightarrow \exp (t G'(0))$ デアリマス(定
理4) 同明ト同ジデ Fundamental theorem ウ要ハ
ナイ)

— 9 —